平行线知识点归纳及典型题目练习.doc

合集下载

15_相交线与平行线_全章知识点归纳及典型题目练习(含答案)

15_相交线与平行线_全章知识点归纳及典型题目练习(含答案)

五单元,七,下,相交线与平行线知识点及考题一、知识结构图余角余角补角补角角两线相交对顶角同位角三线八角内错角同旁内角平行线的判定平行线平行线的性质尺规作图二、基本知识提炼整理(一)余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。

2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。

3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。

4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。

5、余角和补角的性质用数学语言可表示为:(1)00001290(180),1390(180),∠+∠=∠+∠=则23∠=∠(同角的余角或补角相等)。

(2)0000∠=∠(等角的余1290(180),3490(180),∠+∠=∠+∠=且14,∠=∠则23角(或补角)相等)。

6、余角和补角的性质是证明两角相等的一个重要方法。

(二)对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。

2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

3、对顶角的性质:对顶角相等。

4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。

5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。

(三)同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。

2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。

3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。

4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。

5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。

(四)六类角1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。

第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时平行线及其性质七年级数学下册考点知识清单+例题讲解+课后练习(人教版)(原卷版)

第3课时——平行线及其性质(答案卷)知识点一:平行线:1.平行线的定义:在同一平面内,的两条直线叫做平行线。

若直线a平行于直线b,则记作,读作。

注意:一定要在同一平面内。

且一定要时直线。

2.平行线的画法:过直线外一点画直线与已知直线平行的具体步骤:①将直角三角板的一条直角边与已知直线重合。

②将直尺与三角尺的另一直角边紧靠在一起。

③固定直尺不变,平移三角尺,使三角尺原来与已知直线重合的直角边与已知点重合。

④沿着三角尺该直角边画直线。

【类型一:确定平行线】1.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定2.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条3.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【类型二:作图】4.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?5.在下面的方格纸中经过点C 画与线段AB 互相平行的直线l 1,再经过点B 画一条与线段AB 垂直的直线l 2.知识点二:平行公理及其推论:1. 平行公理:经过直线外一点, 条直线与这条直线平行。

有且只有:存在且唯一。

2. 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即若c b b a ∥,∥, 则a c 。

3. 垂直于同一直线的两直线平行:若c a b a ⊥⊥,,则b c 。

【类型一:对平行公理及其推论的判断理解】6.下列说法正确的是( )A .垂直于同一条直线的两直线互相垂直B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么同位角相等D .从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离7.下列说法正确的是( )A .a 、b 、c 是直线,若a ⊥b ,b ∥c ,则a ∥cB .a 、b 、c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a 、b 、c 是直线,若a ∥b ,b ⊥c ,则a ∥cD .a 、b 、c 是直线,若a ∥b ,b ∥c ,则a ∥c8.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系9.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个B.2个C.3个D.4个10.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行知识点三:平行线的性质:1.两直线平行,同位角相等:两条平行线被第三条直线所截,同位角相等。

初三平行线知识点以及经典例题

初三平行线知识点以及经典例题

初三平行线知识点以及经典例题平行线是初中数学中的重要概念之一。

本文将介绍初三学生需要掌握的平行线的知识点,并提供几个经典例题供大家练。

知识点1. 平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。

平行线可以用符号"// "表示。

平行线定义:如果两条直线在同一个平面内,且没有交点,那么它们被称为平行线。

平行线可以用符号"// "表示。

2. 平行线的判定方法:以下是几种判定平行线的方法:平行线的判定方法:以下是几种判定平行线的方法:- (a) 两条直线的斜率相等,且不重合。

- (b) 两条直线之间的对应角相等。

- (c) 一条直线与另一平行线的任意直线交角为180°。

3. 平行线的性质:平行线具有以下性质:平行线的性质:平行线具有以下性质:- (a) 平行线之间的距离在每个交点处相等。

- (b) 平行线之间的夹角为0°,即平行线之间没有夹角。

- (c) 平行线与同一直线相交的角被称为"同位角",同位角的对应角相等。

经典例题例题1已知AB//CD,AB=6cm,BC=4cm,EF=5cm,求EF的长度。

例题2已知直线l与平行线m及n相交,交角1为120°,求交角2的度数。

例题3已知直线k与平行线p及q相交,交角a为40°,求交角b的度数。

例题4已知平行四边形ABCD中,AB=10cm,BC=6cm,求AD的长度。

以上是初三平行线知识点以及经典例题的介绍。

希望能对初三学生理解和掌握平行线有所帮助。

【精心整理】平行线的性质知识点总结、例题解析

【精心整理】平行线的性质知识点总结、例题解析

平行线的性质知识点总结、例题解析知识点1【平行线的性质】(1)性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等.∵AB∥CD∴∠2=∠3(2)性质2:两条平行线被地三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补.∵AB∥CD∴∠2+∠4=180°(3)性质3:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等。

∵AB∥CD∴∠1=∠2【例题1】如图,已知DE∥BC,∠B=80°,∠C=56°,求∠ADE和∠AEC的度数。

【答案】∠ADE=80°;∠AEC=124°【例题2】如图,平行线AB。

CD被直线AE所截,若∠1=110°,则∠2等于()A、70B、80C、90D、110【答案】A【例题3】如图,已知AB∥CD,∠1=150°,∠2=______【答案】30°【例题4】在平面内,将一个直角三角板按如图所示摆放在一组平行线上:若∠1=55°,则∠2的度数是_______【答案】35°【例题5】如图所示,已知∠AOB=50 °,PC ∥OB ,PD 平分∠OPC ,则∠APC=______ °,∠PDO=______°【答案】50 ,50 ;【例题6】如图所示,OP∥QB∥ST,若∠2=110°,∠3=120°,则∠1的度数为________【答案】10°【例题7】如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF【答案】证明:∵AB∥CD,∴∠BAC=∠DCA.(两直线平行,内错角相等)∵AE∥CF,∴∠EAC=∠FCA.(两直线平行,内错角相等)∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,∴∠BAE=∠DCF.【例题8】如图,已知AB∥CD,∠B=40°CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数。

平行线及其判定知识点(含例题)

平行线及其判定知识点(含例题)

平行线及其判定1.平行线的定义和画法(1)平行线的定义:在同一平面内,不相交的两条直线叫做__________,记作a∥b,读作a平行于b.(2)平行线没有公共点;在同一平面内,不重合的两条直线只有两种位置关系:相交和平行,应特别注意“在同一平面内”这一条件,重合的直线视为一条直线.(3)平行线定义满足三个条件:一是在同一平面内,二是两条直线,三是不相交,三者缺一不可.(4)平行线的画法一落:把三角尺一边落在已知直线上;二靠:用直尺紧靠三角尺的另一边;三推:沿直尺推动三角尺,使三角尺与已知直线重合的边过已知点;四画:沿三角尺过已知点的边画直线.【注意】在作图中必须确保直尺定好位置后不再变动位置;三角尺移动时,要始终保持一边紧靠直尺.2.平行线的基本事实及其推论(1)平行线的基本事实(平行公理):经过直线__________一点,有且只有__________条直线与这条直线平行.(2)推论:如果两条直线都与第三条直线__________,那么这两条直线也互相平行.3.平行线的判定(1)判定方法1两条直线被第三条直线所截,如果同位角__________,那么这两条直线平行. 简单说成:__________.(2)判定方法2两条直线被第三条直线所截,如果内错角__________,那么这两条直线平行. 简单说成:__________.(3)判定方法3两条直线被第三条直线所截,如果同旁内角__________,那么这两条直线平行. 简单说成:__________.归纳:判定平行线的思路:(1)定:确定已知条件是位置关系还是数量关系;(2)选:若已知条件是位置关系,则用平行公理的推论证明;若已知条件是数量关系,则选用平行线的3个判定方法证明;(3)证:根据所选证明方法写出证明过程.拓展:在同一平面内,如果两直线都垂直于同一条直线,那么这两条直线平行,即a⊥b,a⊥c,则b∥c.K知识参考答案:1.(1)平行线2.(1)外;一(2)平行3.(1)相等;同位角相等,两直线平行(2)相等;内错角相等,两直线平行(3)互补;同旁内角互补,两直线平行一、平行线的基本事实及其推论的应用强调“经过直线外一点”,而非直线上的点;“有且只有”强调直线的存在性和唯一性.【例1】如图,已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是__________.【答案】过直线外一点,有且只有一条直线与已知直线平行【解析】∵AB∥EF,BC∥EF,∴A、B,C三点在同一条直线上(过直线外一点,有且只有一条直线与已知直线平行),故答案为:过直线外一点,有且只有一条直线与已知直线平行.二、平行线的判定方法的综合应用判定两直线平行的一般思路是先看题中存在同位角、内错角、同旁内角中的哪一类角,然后说明同位角或内错角相等,或说明同旁内角互补,从而得出两直线平行.【例2】如图,下列条件不能判定直线a∥b的是A.∠1=∠3 B.∠2=∠4C.∠2=∠3 D.∠2+∠3=180°【答案】C【解析】A、∵∠1=∠3,∴a∥b(同位角相等,两直线平行);B、∵∠2=∠4,∴a∥b(同位角相等,两直线平行);C、∠2=∠3与a,b的位置无关,不能判定直线a∥b;D、∵∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行).故选C.【例3】如图,∠EFB=∠GHD=53°,∠IGA=127°,由这些条件,能找到__________对平行线.【答案】2【解析】∵∠GHD=53°,∴∠GHC=127°,∵∠IGA=127°,∴∠GHC=∠IGA,∠IGB=53°,∴AB∥CD,∵∠EFB=53°,∴∠IGB=∠EFB,∴IH∥EF.故答案为:2.【点评】本题考查了平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【例4】如图,两直线a,b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a,b 的位置关系是__________.【答案】a∥b【解析】因为∠2=130°,所以∠3=50°,因为∠1=50°,所以a∥b,故答案为:a∥b.【例5】已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.【解析】(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.【点评】本题主要考查了平行线的性质以及判定的运用,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.三、平行线的判定的实际应用解决几何证明或计算问题时,通常把已知的数量关系标注在图形上,并结合图形中的位置关系及相关的性质确定解法,这种“数形结合”的方法在解决几何问题时具有非常重要的作用.【例6】如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺另一边过点B画直线,若所画直线与BA重合,则这块木板的对边MN与PQ是平行的,其理论依据是__________.【答案】内错角相等,两条直线平行【解析】∵∠ABM=90°,∠BAQ=90°,∴∠MBA=∠QAB,∴MN∥PQ(内错角相等,两条直线平行),故答案为:内错角相等,两条直线平行.【点评】本题考查了平行线的判定;熟记内错角相等,两直线平行是解决问题的关键.。

最新平行线知识点归纳及典型题目练习(含答案)

最新平行线知识点归纳及典型题目练习(含答案)

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.⑴∵∠1=∠2又∵∠2=∠3(对顶角相等)∴∠1=∠3∴a ∥b (同位角相等 两直线平行)⑵∵a ∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.22.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2.对顶角,对顶角相等3.垂直有且只有垂线段最短4.点到直线的距离5.同位角内错角同旁内角6.平行相交平行7.平行这两直线互相平行8.同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.9.平行10.两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.11.命题题设结论由已知事项推出的事项题设结论真命题假命题12.平移相同平行且相等13.6cm 8cm 10cm 4.8cm.14.平行平行垂直15.28°118°59°16. OD⊥OE理由略17. 1(两直线平行,内错角相等)DE∥CF(平行于同一直线的两条直线平行)2(两直线平行,内错角相等).18.⑴∵∠1=∠2,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a∥b(同位角相等两直线平行)⑵∵a∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19. 两直线平行,同位角相等MFQ FQ同位角相等两直线平行20.96°,12°.21.,AD BC FE BC ⊥⊥Q 90EFB ADB ∴∠=∠=o//EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠Q 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

平行线判定大题30道

平行线判定大题30道

平行线判定大题30道摘要:一、引言1.平行线的概念2.平行线的判定方法3.判定大题的重要性二、平行线的判定方法1.同位角相等2.内错角相等3.同旁内角互补4.两直线被第三条直线截形成的对应角相等5.两直线被第三条直线截形成的同旁内角互补三、30 道平行线判定大题1.利用同位角相等判定平行线2.利用内错角相等判定平行线3.利用同旁内角互补判定平行线4.利用对应角相等判定平行线5.利用同旁内角互补判定平行线6.利用同位角相等判定平行线7.利用内错角相等判定平行线8.利用同旁内角互补判定平行线9.利用对应角相等判定平行线10.利用同旁内角互补判定平行线11.利用同位角相等判定平行线12.利用内错角相等判定平行线13.利用同旁内角互补判定平行线14.利用对应角相等判定平行线15.利用同旁内角互补判定平行线16.利用同位角相等判定平行线17.利用内错角相等判定平行线18.利用同旁内角互补判定平行线19.利用对应角相等判定平行线20.利用同旁内角互补判定平行线21.利用同位角相等判定平行线22.利用内错角相等判定平行线23.利用同旁内角互补判定平行线24.利用对应角相等判定平行线25.利用同旁内角互补判定平行线26.利用同位角相等判定平行线27.利用内错角相等判定平行线28.利用同旁内角互补判定平行线29.利用对应角相等判定平行线30.利用同旁内角互补判定平行线正文:一、引言平行线是几何学中的一个基本概念,它指的是在同一平面内,永不相交的两条直线。

在解决几何问题时,判断两条直线是否平行常常是关键步骤。

本文将介绍几种常用的平行线判定方法,并通过30 道平行线判定大题来帮助大家巩固这一知识点。

二、平行线的判定方法要判断两条直线是否平行,我们可以利用以下五种方法:1.同位角相等:若两直线被一条横截线所截,同位角相等,则这两条直线平行。

2.内错角相等:若两直线被一条横截线所截,内错角相等,则这两条直线平行。

3.同旁内角互补:若两直线被一条横截线所截,同旁内角互补,则这两条直线平行。

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。

(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。

(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。

二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。

七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习

七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习

专题第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【解析】解:(1)由平行公理可知,过直线a外的一点B画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与(1)中所作的直线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)在同一平面内,过直线外一点一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.2.请你动手试试,过一条直线外的一点作这条直线的平行线,能作几条?由此能得出一个什么数学结论.____________________________.【解答】解:过一条直线外的一点作这条直线的平行线,能做1条,理由是:过直线外一点有且只有一条直线与这条直线平行.故答案为:能做一条,过直线外一点有且只有一条直线与这条直线平行.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【解析】解:AB∥CD.理由:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠E为直角,即∠E=90°(已知),∴∠α+∠β=90°(直角三角形的两个锐角互余),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.完成下面的证明,括号内填根据.如图,直线a、b、c被直线l所截,量得∠1=65°,∠2=115°,∠3=65°.求证:a∥b证明:∠1=65°,∠3=65°∴_______∴___________________∵∠2=115°,∠3=65°∴____________∴___________________∴a∥b【解答】证明:∵∠1=65°,∠3=65°∴∠1=∠3,∴a∥c(同位角相等,两直线平行),∵∠2=115°,∠3=65°∴∠2+∠3=180°,∴b∥c(同旁内角相等,两直线平行)∴a∥b(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)故答案为:∠1=∠3;a∥c(同位角相等,两直线平行);∠2+∠3=180°;b ∥c(同旁内角相等,两直线平行).2.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).3.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠_____=____°(______)∵∠1=30°∴∠BAD=∠_____+∠___=_____°又∵∠B=60°∴∠BAD+∠B=_____°∴AD∥BC(______________)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【解析】解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.【解答】解:∠AEC=2∠AFC.理由:如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠AEG=∠BAE,∠CEG=∠DCE,∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,同理可得∠AFC=∠BAF+∠DCF,∵∠BAE,∠DCE的平分线相交于点F,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.2.课上教师呈现一个问题:已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F作MN∥CD.分析思路:①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;⑤从而可求∠EFG的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)辅助线:过点P作PN∥EF交AB于点N.分析思路:①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;③又已知∠1的度数,所以只需求出∠2的度数;④由已知EF⊥AB,可得∠4=90°;⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;⑥从而可以求出∠EFG的度数.(2)如图,过点O作ON∥FG,∵ON∥FG,∴∠EFG=∠EON∠1=∠ONC=30°,∵AB∥CD,∴∠ONC=∠BON=30°,∵EF⊥AB,∴∠EOB=90°,∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.3.问题情境:(1)如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.【解析】解:如图,∵∠3=∠4(已知),∴AE∥BC(内错角相等,两直线平行),∴∠EDC=∠5(两直线平行,内错角相等).∵∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC∥AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°,∴BE∥CF(同旁内角互补,两直线平行).2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【解析】解:(1)如图1,过P作PE∥l1,∵l1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC,则∠A=∠1.∵AC∥BD,∴PE∥BD,∴∠B=∠EPB.∵∠APB=∠BPE﹣∠1,∴∠APB=∠B﹣∠A;(3)如图3,过点A作MN∥BC,则∠B=∠1,∠C=∠2.∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关系,并说明理由.【解答】解:CF⊥AB,理由如下:∵∠1=∠A(已知)∴AC∥FG(同位角相等,两直线平行)∴∠2=∠ACF(两直线平行,内错角相等)∴∠2+∠3=180°(已知)∴∠ACF+∠3=180°∴DE∥CF(同旁内角互补,两直线平行)∴∠DEF=∠1+∠2∵DE⊥AB∴∠1+∠2=90°∴CF⊥AB2.如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于,AM平分∠EAF,AN平分∠BAE,证明:∠AFG =2∠MAN.【解答】证明:(1)因为∠DCE+∠ECG=180°,∠CEG+∠CGA+∠ECG=180°,所以∠DCE=∠CEG+∠CGA因为CD⊥AG所以∠DCE﹣∠CGA=∠CEG=90°又因为∠DCE﹣∠HAE=90°所以∠CGA=∠HAE所以BH∥DI(2)因为AM平分∠EAF AN平分∠BAE所以∠EAM=∠F AM∠EAN=∠BAN又因为∠MAN=∠EAN﹣∠EAM所以∠MAN=∠BAN﹣∠F AM又因为∠BAN=∠BAF+∠F AN∠F AM=∠MAN+∠F AN所以∠MAN=∠BAF﹣∠MAN所以∠BAF=2∠MAN又所以BH∥DI所以∠AFG=∠BAF所以∠AFG=2∠MAN.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【解析】解:(1)“两个锐角的和是钝角位”是假命题,如30°和40°的和为70°;(2)“在同一平面内,垂直于同一条直线的两条直线互相平行”为真命题.已知:如图,在同一平面内,直线b⊥a,直线c⊥a.证明:如图,∵b⊥a,c⊥a,∴∠1=90°,∠2=90°,∴∠1=∠2,∴b∥c.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.已知:三条不同的直线a、b、c在同一平面内:①a∥b;②a⊥c;③b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,其中一个事项作为结论(用如果…那么…的形式,写出命题,例如:如果a⊥c、b⊥c、那么a∥b).(1)写出一个真命题,并证明它的正确性;(2)写出一个假命题,并举出反例.【解答】解:(1)如果a⊥c、b⊥c、那么a∥b;理由:如图,∵a⊥c、b⊥c,∴∠1=90°,∠2=90°,∴∠1=∠2,∴a∥b.(2)如果a⊥c、b⊥c、那么a⊥b;反例:见上图,如果a⊥c、b⊥c、那么a∥b.2.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【解答】已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.【答案】两条直线都垂直于同一条直线这两条直线互相平行【解析】解:把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.“垂直于同一直线的两直线平行”改写成为“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.题设:两条直线都垂直于同一条直线;结论为:这两条直线互相平行.故答案为:两条直线都垂直于同一条直线这两条直线互相平行2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.【答案】57°【解析】解:如图,设AD与BC′交于点E.∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∠ADC=90°,∴∠3=∠4,∠1=∠2+∠4.∵△BDC′是由△BDC翻折得到,∴∠2=∠4,∠C=∠C′=90°,∠BDC=∠BDC′∴∠2=∠3,∵∠ADC′=24°,∴∠1=90°﹣∠EDC′=66°,∵∠1=∠2+∠4=2∠2,×66°=33°,∴∠2=∠3=12∴∠BDC=∠D-∠3=90°-33°=57°.故答案为57°.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?【解析】解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?【解析】解:C,D,E三点共线.理由:因为过直线AB外一点C有且只有一条直线与AB平行,直线CD、DE都经过点C 且与AB平行,所以直线CD、DE重合,所以点C、D、E三点共线.5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?【解析】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°(垂直的定义).所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;【解析】解:(1)假命题.反例为:两个锐角分别为40°,60°,它们的和为100°,为钝角;(2)假命题.反例为:a=1,b=﹣3,但是a2=1<b2=9.7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.【解析】解:∵∠EFG=90°,∠E=35°,∴∠FGH=180°-∠EFG-∠E=180°-90°-35°=55°.∵GE平分∠FGD,∴∠FHG=∠HGD=55°.∵AB∥CD,∴∠FHG=∠HGD =55°.∴∠FHE=180°-∠FHG=180°-55°=125°.在△EFH中,∠EFB=180°-∠FHE-∠E=180°-125°-35°20°.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.【解析】证明:(1):∵AB∥CD,∴∠4=∠BAF(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠4=∠DAC,(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).。

(完整版)平行线知识点归纳及典型题目练习(含答案).doc

(完整版)平行线知识点归纳及典型题目练习(含答案).doc

(完整版)平行线知识点归纳及典型题目练习(含答案).doc第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为 _____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互 _______.垂线的性质:⑴过一点 ______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有 ________与 _________两种 .7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 .简单说成:_____________________________________. ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 .简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行的性:⑴两条平行直被第三条直所截,同位角相等.成:_________________.⑵两条平行直被第三条直所截,内角相等.成:__________________________________. ⑶两条平行直被第三条直所截,同旁内角互.成: ____________________________________ .11.判断一件事情的句,叫做 _______.命由 ________和 _________ 两部分成 .是已知事,是______________________. 命常可以写成“如果??那么??”的形式,“如果”后接的部分是_____,“那么”后接的部分是_________.如果成立,那么一定成立 .像的命叫做___________.如果成立,不能保一定成立,像的命叫做___________.定理都是真命 .12.把一个形整体沿某一方向移,会得到一个新形,形的种移,叫做平移,称_______.形平移的方向不一定是水平的 .平移的性:⑴把一个形整体平移得到的新形与原形的形状与大小完全______.⑵新形中的每一点,都是由原形中的某一点移后得到的,两个点是点. 接各点的段_________________.熟悉以下各:13.如,BC AC, CB 8cm, AC 6cm, AB10cm, 那么点A 到 BC 的距离是 _____,点B 到 AC 的距离是 _______,点 A、B 两点的距离是 _____,点C 到 AB 的距离是 ________.14. a 、b、c平面上三条不同直,a)若 a // b,b // c ,a与c的位置关系是_________;b)若 a b, b c ,a与c的位置关系是_________;c)若 a // b , b c,a与c的位置关系是________.15.如图,已知 AB、 CD、EF 相交于点 O,AB⊥ CD, OG 平分∠ AOE,∠ FOD =28°,求∠ COE 、∠ AOE、∠ AOG 的度数.16.如图,AOC 与BOC 是邻补角,OD、OE分别是AOC 与BOC 的平分线,试判断 OD 与 OE 的位置关系,并说明理由.17.如图,AB ∥DE,试问∠ B、∠ E、∠ BCE 有什么关系.解:∠ B+∠ E=∠ BCE过点 C 作CF∥ AB,则B____()又∵ AB∥ DE ,AB∥ CF,∴ ____________ ()∴∠ E=∠ ____()∴∠ B+∠ E=∠ 1+∠ 2即∠ B+∠ E=∠ BCE.18.⑴如图,已知∠1=∠ 2求证:a∥b.⑵直线a // b,求证:1 2 .⑴∵∠ 1=∠ 2又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 3∴a∥ b(同位角相等两直线平行)⑵∵ a∥ b∴∠ 1=∠ 3(两直线平行,同位角相等)又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 2.19.阅读理解并在括号内填注理由:如图,已知AB∥ CD ,∠ 1=∠ 2,试说明EP∥ FQ .证明:∵ AB ∥CD ,∴∠ MEB =∠ MFD ()又∵∠ 1=∠ 2,∴∠ MEB -∠ 1=∠ MFD -∠ 2,即∠MEP =∠ ______∴ EP∥ _____.()20.已知DB∥FG ∥EC, A 是 FG 上一点,∠ ABD =60°,∠ ACE =36°, AP 平分∠ BAC,求:⑴∠ BAC 的大小;⑵∠ PAG 的大小 .21.如图,已知ABC , AD BC 于D, E 为 AB 上一点, EF BC 于F, DG // BA 交CA 于 G.求证1 2 .22.已知:如图∠1=∠2,∠ C=∠ D,问∠ A 与∠ F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直有且只有垂线段最短4.点到直线的距离5.同位角内错角同旁内角6.平行相交平行7.平行这两直线互相平行8.同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行 .9.平行10.两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补 .11.命题题设结论由已知事项推出的事项题设结论真命题假命题12.平移相同平行且相等13.6cm 8cm 10cm 4.8cm.14.平行平行垂直15. 28°118° 59°16. OD ⊥OE 理由略17. 1(两直线平行,内错角相等)DE ∥ CF(平行于同一直线的两条直线平行)2 (两直线平行,内错角相等). 18.⑴∵∠ 1=∠ 2 ,又∵∠ 2=∠ 3(对顶角相等),∴∠ 1=∠ 3∴ a∥ b(同位角相等两直线平行)⑵∵ a∥ b ∴∠ 1=∠ 3(两直线平行,同位角相等 )又∵∠ 2=∠ 3(对顶角相等)∴∠ 1=∠ 2. 19. 两直线平行,同位角相等MFQ FQ 同位角相等两直线平行20. 96°,12°.21.Q AD BC, FE BC EFB ADB 90o EF // AD 2 3Q DG // BA, 3 1 1 2. 22. ∠A=∠ F.∵∠ 1=∠ DGF (对顶角相等)又∠ 1=∠ 2 ∴∠ DGF =∠ 2∴DB∥ EC(同位角相等,两直线平行)∴∠ DBA=∠ C(两直线平行,同位角相等)又∵∠ C=∠ D ∴∠ DBA=∠ D ∴ DF ∥AC(内错角相等,两直线平行)∴∠A=∠ F( 两直线平行 ,内错角相等 ).。

相交线与平行线知识点归纳及典型题目练习(含答案)

相交线与平行线知识点归纳及典型题目练习(含答案)

相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥ 90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

平行知识点整理与精选练习

平行知识点整理与精选练习

平行线知识点整理1、平行线的判定2、平行线的性质1、平行线的判定知识点:同一平面中,不重合的两条直线的位置只有两种情况:相交或平行。

平行线的定义:在同一平面内,不相交的两条直线是平行线。

①过直线外一点有且只有一条直线和已知直线平行。

②如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

③平行线的判定方法1:语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单地说:同位角相等,两直线平行。

几何叙述:∵∠1=∠5∴l1∥l2 (同位角相等,两直线平行)平行线的判定方法2:语言叙述:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

简单地说:内错角相等,两条直线平行。

几何叙述:∵∠3=∠5∴l1∥l2 (内错角相等,两直线平行)平行线的判定方法3:语言叙述:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单地说:同旁内角互补,两条直线平行。

几何叙述:∵∠3+∠6=180°∴l1∥l2 (同旁内角互补,两直线平行)平行线的判定方法4:垂直于同一条直线的两条直线平行。

总结识别两条直线平行的方法①垂直于同一条直线的两条直线平行②同位角相等,两直线平行③内错角相等,两直线平行④同旁内角互补,两直线平行⑤平行与同一直线的两直线互相平行例题1、如图所示,下列条件中,①∠1=∠4;②∠2=∠4;③∠1=∠3;④∠5=∠4,其中能判断直线l1∥l2的有()A .1个B .2个C .3个D .4个例2如图,∠1 = ∠A 、∠2 = ∠C 、∠3与∠A 互补,试判断直线关系,并说明理由。

∵ ∠1 = ∠A ,∴ ___ ∥ ___,( ________ ) ;∵ ∠2 = ∠C ,∴___ ∥___ ,( _________ ) ;∵∠3 + ∠A = 180°,∴ ___ ∥___,( _________ ).例3 如图2—15,∠1=∠2,∠2+∠3=180°,AB ∥CD 吗? AC ∥BD 吗?为什么?例4已知:∠B+∠D+∠F=360o .求证:AB ∥EF.例5如图,∠1+∠2=∠BCD,求证AB ∥D E 。

平行线及其判定知识点总结、例题解析

平行线及其判定知识点总结、例题解析

平行线及其判定知识点总结、例题解析知识点1【平行线】在同一平面内,不重合的两条直线的只有两种位置关系:平行和相交。

1、平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.2、平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合②靠:用直尺紧靠三角板的一条直角边③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点④画:沿着这条斜边画一条直线,所画直线与已知直线平行3、平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.注意区别垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。

(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用。

如果a∥b,b∥c,那么a∥c。

【例题1】下列叙述正确的是()A、两条直线不相交就平行B、在同一平面内,不相交的两条线叫做平行线C、在同一平面内,不相交的两条直线叫做平行线D、在同一平面内,不相交的两条线段叫做平行线【答案】C【例题2】在同一平面内,不重合的两条直线的位置关系有()A、平行或垂直B、平行或相交C、垂直或相交D、平行、垂直或相交【答案】B【例题3】下列说法中正确的序号有_______①一条直线的平行线只有一条:②过一点与已知直线平行的直线只有一条:③因为a∥b,c∥d,所以a∥d:④经过直线外一点有且只有一条直线与己知直线平行【解析】①一条直线有无数条平行线;②必须过直线外一点,如果点在直线上,会出现重合。

【答案】④【例题4】下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。

其中正确的有()。

A、1个;B、2个;C、3个;D、4个。

【解析】②③需在同一平面内,④过直线外一点【答案】A知识点2【平行线的判定】(1)判定方法1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)(2)判定方法2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)(3)判定方法3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行判定方法补充:①两条直线都和第三条直线平行,那么这两条直线平行.②在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.【例题5】如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5:②∠1=∠7:③∠2+∠3=180°:④∠4=∠7,其中能判断a∥b的条件的序号是()A、①②B、①③C、①④D、③④【答案】A【例题6】如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【例题7】如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB∥CD【答案】∵∠1=∠2∴2∠1=2∠2,即∠ABC=∠BCD∴AB∥CD(内错角相等,两直线平行)【例题8】如图,在四边形ABCD中,AD∥BC,∠ABC=∠CDA,BE、DF分别是∠ABC和∠ADC 的平分线,求证:BE∥DF【解析】想要证明EB∥DF,根据平行钱的判定方法,只要证明∠AEB=∠ADF即可【答案】证明:∵AD∥BC∴∠AEB=∠EBC∵∠ABC=∠ADC,BE、DF分别是∠ABC和∠ADC的平分线∴∠EBC=∠ADF∴∠AEB=∠ADF∴EB∥DE【例题9】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由【答案】解:AB∥CD。

平行线知识点归纳及典型题目练习

平行线知识点归纳及典型题目练习

第五章相交线与平行线1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.⑴∵∠1=∠2又∵∠2=∠3(对顶角相等)∴∠1=∠3∴a ∥b (同位角相等 两直线平行)⑵∵a ∥b∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等)∴∠1=∠2.19.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠PAG 的大小.21.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.22.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°. 21.,AD BC FE BC ⊥⊥Q 90EFB ADB ∴∠=∠=o//EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠Q 1 2.∴∠=∠ 22. ∠A =∠F.∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

第一章平行线知识点归纳以及综合练习

第一章平行线知识点归纳以及综合练习

第一章 知识网络构建+小练习
一、知识网络:
1、
2、 平行线的判定
3、
平行线
1、
平行线的性质 2、
3、
两平行线之间的距离:两条平行线中,一条直线上的点到另一条直线的距离 。

二、小练习
1、(1)已知:如图1, AB ∥CD ,则E D B ∠∠∠,,之间的关系是?请说明理由。

1、(1)变式:如图,直线m l //,将含有
45角的三角板ABC
的直角顶点C 放在直线m 上,若 251=∠ ,则2∠的
度数为__________
(2)若将点E 移至图2所示的位置,此时E D B ∠∠∠,,之间的关系是?请说明理由。

(3)若将点E 移至图3所示的位置,此时E D B ∠∠∠,,之间的关系是?请说明理由
(4)若图形1变形成图4,AB ∥CD 不变,猜想G E ∠+∠与D F B ∠+∠+∠之间的数量
关系? 请说明理由。

(5)若上述图形变形成图5,AB ∥CD 不变,又得到什么结论?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章相交线与平行线
1、两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,
互为 _____________。

2、两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,
具有这种关系的两个角,互为__________ 。

对顶角的性质:___________________________________ 。

3、两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点_____________________________ 一条直线与已知直线垂直。

⑵连接直线外一点与直线上各点的所在线段中,_____________________________________ 。

4、直线外一点到这条直线的垂线段的长度,叫做_______________________________________ 。

5、两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线
的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________ 。

6、在同一平面内,不相交的两条直线互相___________。

同一平面内的两条直线的位置关系只有________与 _________两种。

7、平行公理:经过直线外一点,有且只有一条直线与这条直线________________ 。

推论:如果两条直线都与第三条直线平行,那么_______________________________ 。

8、平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:
____________________________________ 。

⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:
_________________________________________ 。

⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:
________________________________________ 。

9、在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_________________ 。

10、平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:
__________________________________ 。

⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________ 。

⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ 。

11判断一件事情的语句,叫做 _______.命题由 ________和 _________ 两部分组成 .题设是已知事项,结论是
____________________. 。

命题常可以写成“如果那么”的形式,这时“如果”后接的部分是
_______________ ,“那么”后接的部分是_____________________.。

如果题设成立,那么结论一定成立. 像这样的命题叫做___________。

如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________. 定理都是真命题。

12、把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______。

图形平移的方向不一定是水平的。

平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全_________________ 。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的
线段 ___________________________________________________。

熟悉以下各题:
1、如图 1,BC AC , CB 8cm, AC 6cm, AB 10cm, 那么点A到BC的距离是___________________,
点 B 到 AC 的距离是 ____________________,点 A、 B 两点的距离是 ___________________ ,点 C 到 AB 的距
离是 ______________________ 。

2、设a、 b、c 为平面上三条不同直线,
a)若 a // b,b // c ,则a与c的位置关系是_________;
b) 若a b,b c ,则a与c的位置关系是_________;
c) 若a // b,b c ,则a与c的位置关系是________。

( 1)
3、如图 2,已知 AB、CD 、EF 相交于点 O,AB⊥ CD,OG 平分∠ AOE,∠FOD =28°,求∠ COE、∠AOE 、
∠AOG 的度数。

(2)
4、如图 3, AB ∥DE,试问∠ B、∠ E、∠ BCE 有什么关系.
解:∠ B+∠ E=∠ BCE
过点 C 作 CF∥AB,
则B____()
又∵ AB∥ DE , AB∥ CF ,
∴____________ ()
∴∠ E=∠ ____()
∴∠ B+∠ E=∠ 1+∠ 2(3)
即∠ B+∠ E=∠ BCE
5、阅读理解并在括号内填注理由:
如图 4,已知 AB∥ CD ,∠ 1=∠ 2,试说明EP ∥FQ.
证明:∵ AB ∥CD,
∴∠ MEB =∠ MFD ()
又∵∠ 1=∠ 2,
∴∠ MEB -∠ 1=∠ MFD -∠ 2,
即∠MEP =∠ ______(4)
∴ EP∥ _____.()
6、已知,如图 5, DB∥FG ∥ EC, A 是 FG 上一点,∠ ABD = 60°,∠
ACE= 36°, AP 平分∠ BAC,求:⑴∠ BAC 的大小;⑵∠ PAG 的大小 .
( 5)
7、如图6,已知ABC , AD BC 于D, E 为 AB 上一点, EF BC 于
F,DG //BA交 CA 于 G.求证12.
(6)
8、已知:如图∠1=∠2,∠ C=∠ D,问∠ A 与∠ F 相等吗?试说明理由.
( 8)。

相关文档
最新文档