数学符号大全
数学符号大全
数学符号大全1. 数字和基本运算符号•0, 1, 2, 3, 4, 5, 6, 7, 8, 9:十进制数字。
•+:加法运算符。
•-:减法运算符。
•× 或 *:乘法运算符。
•÷ 或 /:除法运算符。
•%:取余运算符。
2. 算术表达式符号•( ):括号。
用于改变运算顺序。
•{ }:花括号。
常用于集合符号。
•[ ]:方括号。
常用于向量和数组的表示。
•|:绝对值符号。
•√:平方根符号。
•^:乘方符号,表示乘方运算。
3. 特殊数学符号•π:圆周率。
•∞:无穷大。
•e:自然对数的底数。
•i:虚数单位,表示根号下-1。
•≈:约等于符号,表示两个数值大致相等。
•≡ :全等符号,表示恒等于。
4. 比较符号•=:等于符号。
•≠:不等于符号。
•<:小于符号。
•:大于符号。
•≤:小于或等于符号。
•≥:大于或等于符号。
5. 代数符号•x, y, z:常用的代数变量。
•a, b, c:常用的系数或常数。
•n:整数变量。
•α, β, γ:希腊字母符号,常用于表示角度或系数。
•∑:求和符号。
•∏:求积符号:•∴:因此符号。
6. 集合和逻辑符号•∅:空集符号。
•∈:属于符号,表示元素属于集合。
•∉:不属于符号,表示元素不属于集合。
•∪:并集符号,表示两个或多个集合的并集。
•∩:交集符号,表示两个或多个集合的交集。
•⊂:子集符号,表示一个集合是另一个集合的子集。
7. 几何符号•∠:角度符号,用于表示角度。
•∥:平行符号,表示两条线段平行。
•⊥:垂直符号,表示两条线段垂直。
•≅:全等符号,表示两个图形全等。
8. 微积分符号•∂:偏导符号,用于表示偏导数。
•∫:积分符号,表示定积分。
•∬:重积分符号,表示二重积分。
•∭:三重积分符号,表示三重积分。
•∮:曲线积分符号,表示沿曲线的积分。
9. 统计学符号•μ:总体均值。
•σ:总体标准差。
•x̄:样本均值。
•s:样本标准差。
•P:概率。
•Z:正态分布的标准化变量。
数学符号大全
数学符号大全一、基础符号1. 数字:0、1、2、3、4、5、6、7、8、92. 加号:+3. 减号:-4. 乘号:×5. 除号:÷6. 等号:=7. 左括号:(8. 右括号:)9. 百分号:%二、数学运算符号1. 平方:²2. 立方:³3. 开平方根:√4. 开立方根:∛5. 阶乘:n!6. 绝对值:|x|7. 取整函数:⌊x⌋8. 取余函数:x mod y9. 英文逗号:,10. 圆周率:π11. 自然对数底数:e12. 函数符号:a. 一元函数:f(x)b. 多元函数:f(x, y, z)13. 向量符号:→14. 求和符号:∑15. 无穷大:∞16. 积分符号:∫17. 微分符号:d/dx三、代数符号1. 大于号:>2. 小于号:<3. 大于等于号:≥4. 小于等于号:≤5. 不等于号:≠6. 比例符号:∷7. 成比例符号:∝8. 幂符号:^9. 集合符号:a. 前者属于后者:∈b. 前者不属于后者:∉c. 子集:⊆d. 真子集:⊂e. 交集:∩f. 并集:∪10. 等价符号:≡11. 拉丁字母符号:a、b、c、…、x、y、z12. 希腊字母符号:a. α、β、γ、δ、ε、ζ、η、θ、ι、κ、λ、μ、ν、ξ、ο、π、ρ、σ、τ、υ、φ、χ、ψ、ωb. 大写字母:Α、Β、Γ、Δ、Ε、Ζ、Η、Θ、Ι、Κ、Λ、Μ、Ν、Ξ、Ο、Π、Ρ、Σ、Τ、Υ、Φ、Χ、Ψ、Ω13. 求导符号:f'(x) 或∂f/∂x四、几何符号1. 垂线符号:⊥2. 平行符号:∥3. 三角形:a. 各边长:a、b、cb. 各角度:α、β、γ4. 角度符号:a. 度数符号:°b. 弧度符号:rad五、统计符号1. 样本均值:x̄或 $\overline{x}$2. 总体均值:μ3. 样本方差:s²4. 总体方差:σ²5. 标准差:s6. 总体标准差:σ7. 协方差符号:cov8. 相关系数符号:r六、数学课程常用符号1. 代数符号:a. 复数:z = a + bib. 多项式:f(x) = anxn + an-1xn-1 + … + a1x + a02. 几何符号:a. 直线:ABb. 射线:OPc. 线段:PQd. 圆:Oe. 直角符号:∟3. 三角函数符号:a. 正弦:sinb. 余弦:cosc. 正切:tand. 余切:cote. 正割:secf. 余割:csc4. 对数符号:log5. 极限符号:lim6. 矩阵符号:a. 行列式符号:detb. 矩阵:A、B、C、D、E、…c. 矩阵乘法符号:× 或乘号d. 逆矩阵符号:A-17. 向量符号:a. 点积符号:·b. 叉积符号:×c. 向量长度:|v|8. 概率统计符号:a. 期望值:Eb. 方差:Varc. 标准差:SDd. 正态分布符号:N(μ,σ²)9. 微积分符号:a. 一元函数导数:f'(x) 或 dy/dxb. 一元函数微分:df/dxc. 一元函数微积分:∫f(x)dx 或∫dyd. 二元函数偏导数:i. ∂f/∂xii. ∂f/∂ye. 二元函数偏微分:i. ∂f/∂x ∂z/∂xii. ∂f/∂y ∂z/∂yiii. ∂f/∂x ∂z/∂yiv. ∂f/∂y ∂z/∂xf. 多元函数积分:∫∫f(x,y)dxdyg. 梯度符号:∇h. 散度符号:divi. 旋度符号:curl以上是数学符号的大全,不论是初学者或是专业人士都可以对这些符号进行了解,为以后的学习和工作提供便利。
常用数学符号大全
1、几何符号ⅷⅶ↋ↆↄ△2、代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻⅺⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↠℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r 个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算ⅸ命题的“合取”(“与”)运算ⅹ命题的“析取”(“或”,“可兼或”)运算Ⅾ命题的“条件”运算A<=>B 命题A与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A的对偶公式wff 合式公式iff 当且仅当Ⅽ命题的“与非”运算(“与非门”)Ⅿ命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”θ空集ⅰ属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加ↅ)真包含ⅻ集合的并运算ⅺ集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:XⅮY f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴+plus 加号;正号-minus 减号;负号±plus or minus 正负号×is multiplied by 乘号÷is divided by 除号=is equal to 等于号≠is not equal to 不等于号≡is equivalent to 全等于号ↄis approximately equal to 约等于≈is approximately equal to 约等于号<is less than 小于号>is more than 大于号≤is less than or equal to 小于或等于≥is more than or equal to 大于或等于%per cent 百分之…∞infinity 无限大号√(square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角semicircle 半圆↋circle 圆○circumference 圆周△triangle 三角形perpendicular to 垂直于ⅻintersection of 并,合集∩union of 交,通集∫the integral of …的积分∑(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号@at 单价。
常用数学符号大全、关系代数符号
常用数学符号大全、关系代数符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全及意义
常用数学符号大全及意义1.加号(+):表示两个数的和,通常用来表示加法运算。
2.减号(-):表示两个数的差,通常用来表示减法运算。
3.乘号(×):表示两个数的乘积,通常用来表示乘法运算。
4.除号(÷):表示两个数的商,通常用来表示除法运算。
5.等于号(=):表示两个数相等,通常用来表示等式或者表达式的结果。
6.大于号(>):表示左边的数大于右边的数,通常用来表示一种比较关系。
7.小于号(<):表示左边的数小于右边的数,通常用来表示一种比较关系。
8.大于等于号(≥):表示左边的数大于等于右边的数,通常用来表示一种比较关系。
9.小于等于号(≤):表示左边的数小于等于右边的数,通常用来表示一种比较关系。
10.不等于号(≠):表示左边的数不等于右边的数,通常用来表示一种比较关系。
11.竖线(|):一般用来分隔字符串,表示分割。
12.加上等于号(+=):在原有基础上加上一定量,通常用来表示赋值运算。
13.减去等于号(-=):在原有基础上减去一定量,通常用来表示赋值运算。
14.乘以等于号(*=):在原有基础上乘以一定量,通常用来表示赋值运算。
15.除以等于号(/=):在原有基础上除以一定量,通常用来表示赋值运算。
16.幂运算符(^):表示一个数的n次方,通常用来表示乘方运算。
17.三角函数符(sin,cos,tan):分别表示正弦、余弦、正切函数。
18.根号(√):表示求n次方根的运算,通常用来表示开方运算。
19.百分号(%):表示一个数字的百分比,即该数字与100的比例。
20.逻辑运算符(&&,||):&&代表“与”,||代表“或”,都是常用的逻辑运算符。
数学表示符号大全
数学表示符号大全1. √:平方根符号,是记号符号,用来计算开方的结果,此时的√表示正实数的平方根。
2. ⊃:是“超集”的符号,表明A律集合是B律集合的超集,即B集合中的所有元素都在A集合中,该形式的表述为:A⊃B。
3. ⊆:是“子集”的符号,表明A集合是B集合的子集,即A集合中的所有元素都在B集合中存在,该形式的表述为:A⊆B。
4. ±:表示正负号,即“加号减号”符号,是数学中常见的表示正负符号,此时的两个符号±表示正负号。
5. <:表示“小于”符号,在不等式中表示右边大于左边,用该符号比较大小,如2<3解释为2小于3。
6. > :表示“大于”符号,在不等式中表示右边小于左边,用该符号比较大小,如4>3解释为4大于3。
7. →:表示“极限”的符号,它表示当函数的变量趋于某一数值时,函数值所取到的极限,即当自变量X趋于某一值A时,函数Y趋于B,表示为X→A,Y→B。
8. ≠:表示“不等于”符号,即“不等号”,用于表达两个数的大小的不等,如3≠4,表示3不等于4。
9. ±:表示加减号,即“正负号”,用于表达数值的正负,如3±2,表示3加2或3减2。
10. ×:表示“乘号”,即“乘法号”,用于表达两个数的乘积,如2×3,表示2乘以3。
11. ÷:表示“除号”,即“除法号”,用于表达两个数的商,如9÷3,表示9除以3。
12. Ι:表示“求和”符号,即“积分符号”,用于表达求和运算,如Ιx2dx,表示求x2在某一区间内的积分。
13. ∫:表示“换元式”符号,指在三角函数中,将某个角度从角度形式(用弧度表示)转换为一个三角函数的形式,需要借助换元定理进行转换,用∫来表示,如A∫B。
14. Σ:表示“累加符号”,即“求和符号”,用于表达累加运算,它是累加结果的缩写表示,如Σxk,表示从1加到k的x的累加和。
常用数学符号大全、关系代数符号-公式符号大全
常用数学符号大全、关系代数符号1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全
常用数学符号大全点击查看>>数学实用工具:数学符号大全1、几何符号ⅷⅶ△2、代数符号ⅴⅸⅹ~ⅵ?3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(?),交集(?),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(?),曲线积分(?)等。
4、集合符号ⅰ5、特殊符号ⅲπ(圆周率)6、推理符号|a| ??△ⅶ±??ⅰ?↖↗↘↙ⅷⅸⅹ&; §←↑→↓??↖↗ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεδεζηθικλμνπξζηυθχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹⅰⅱⅲ?ⅳⅴⅵ? ⅶ?ⅷⅸⅹ⊕??℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“?”是近似符号,“?”是不等号,“>”是大于符号,“<”是小于符号,“?”是大于或等于符号(也可写作“?”),“?”是小于或等于符号(也可写作“?”),。
“? ”表示变量变化的趋势,“?”是相似符号,“?”是全等号,“ⅷ”是平行符号,“?”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f (x)),极限(lim),角(ⅶ),因为,(一个脚站着的,站不住)所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n 个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学符号大全
数学符号大全1、几何符号≱‖∠≲≰≡ ≌△2、代数符号∝∧∨~∫ ≠ ≤ ≥ ≈ ∞ ∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩ ∈5、特殊符号∑ π(圆周率)6、推理符号|a| ≱∸△∠∩ ∪≠ ≡ ± ≥ ≤ ∈← ↑ → ↓ ↖↗↘↙‖∧∨&; §≳≴≵≶≷≸≹≺≻≼Γ Δ Θ ∧Ξ Ο ∏ ∑ Φ Χ Ψ Ω α β γ δ ε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈∏ ∑ ∕ √ ∝∞ ∟ ∠∣‖∧∨∩ ∪∫ ∮∴∵∶∷∸≈ ≌≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮≯⊕≰≱⊿≲℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∸”是相似符号,“≌”是全等号,“‖”是平行符号,“≱”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“〔〕”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学符号大全
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
1、几何符号
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
domf 函数 的定义域(前域)
ranf 函数 的值域
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学中的符号大全
数学中的符号大全
数学符号是数学中的重要组成部分,它们是用来表达数学概念的象征,是数学
思维的重要工具。
数学符号的使用可以使数学表达更加简洁、清晰,从而更好地表达数学思想。
数学符号可以分为几类:
一、算术符号:包括加号(+)、减号(-)、乘号(×)、除号(÷)、等号(=)、大于号(>)、小于号(<)等。
二、代数符号:包括平方(²)、立方(³)、根号(√)、括号(())、乘
方(^)、积分(∫)、微分(∂)、极限(lim)等。
三、集合符号:包括属于(∈)、不属于(∉)、子集(⊆)、真子集(⊂)、并集(∪)、交集(∩)、空集(∅)等。
四、函数符号:包括函数(f)、反函数(f-1)、导数(f')、偏导数
(∂f/∂x)、极限(lim)等。
五、其他符号:包括模(mod)、等价(≡)、相等(≈)、不等(≠)、大
于等于(≥)、小于等于(≤)等。
数学符号的使用可以使数学表达更加简洁、清晰,从而更好地表达数学思想。
它们是数学思维的重要工具,是数学中的重要组成部分,是用来表达数学概念的象征。
数学符号的使用可以使数学表达更加简洁、清晰,从而更好地表达数学思想。
正确使用数学符号,可以更好地理解数学概念,更好地掌握数学思维,从而更好地应用数学知识。
数学符号符号大全
公式输入符号≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒⊙≌∽√数学符号(理科符号)——运算符号1.基本符号:+-×÷(/)2.分数号:/3.正负号:±4.相似全等:∽≌5.因为所以:∵∴6.判断类:=≠<≮(不小于)>≯(不大于)7.集合类:∈(属于)∪(并集)∩(交集)8.求和符号:∑9.n次方符号:¹(一次方)²(平方)³(立方)⁴(4次方)ⁿ(n次方)10.下角标:₁₂₃₄(如:A₁B₂C₃D₄效果如何?)11.或与非的"非":¬12.导数符号(备注符号):′〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙ 11.或与非的"非":¬12.导数符号(备注符号):′〃13.度:°℃14.任意:∀15.推出号:⇒16.等价号:⇔17.包含被包含:⊆⊇⊂⊃18.导数:∫∬19.箭头类:↗↙↖↘↑↓↔↕↑↓→←20.绝对值:|21.弧:⌒22.圆:⊙αβγδεζηθικλμνξοπρστυφχψωΑΒΓΔΕΖΗΘΙΚ∧ΜΝΞΟ∏Ρ∑ΤΥΦΧΨΩабвгдеёжзийклмнопрстуфхцчшщъыьэюяАБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯΔ集合符号大全X老人整理(一)符号应用字体∈∈∈x∈Ax∈Ax∈ASymbolCourier NewLucida Sans Unicode∉ ∉∉y∉Ay∉Ay∉ASymbolCourier NewLucida Sans Unicode{,…,}{a,b,c,…,n} 宋体{|} {x∈A|p(x)} 宋体∅∅∅SymbolCourier NewLucida Sans UnicodeN宋体N* N +宋体+工具宋体+工具Z 宋体Q 宋体R 宋体C 宋体(二)符号应用字体⊂ ⊆ ⊆B⊂AB⊆AB⊆ASymbolSymbolLucida Sans Unicode⊂≠B ⊂≠AEq域*⊄ ⊈B⊄ AB⊈ ASymbolLucida Sans Unicode∪∪A∪B BA∪B宋体Lucida Sans Unicode∩∩A∩BA∩B B宋体Lucida Sans UnicodeC ∁C A B∁A B BNiagara Solid+工具Lucida Sans Unicode+Eq域**域是Word的精髓,正确的使用域能完成一些复杂的功能,Word2000就提供了9大类70余种域,使用EQ域,可以输入任意复杂的数学公式。
常用数学符号读法大全
常用数学符号读法大全常用数学符号读法数学符号归纳大全1、几何符号⊥、∥、∠、⌒、⊙、≡、≌、△。
2、代数符号∝、∧、∨、~、∫、≠、≤、≥、≈、∞、∶。
3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪、∩、∈。
5、特殊符号∑、π(圆周率)。
6、推理符号|a|、⊥、∽、△、∠、∩、∪、≠、≡、±、≥、≤、∈、←。
7、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”)。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“||”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5×4×3×2×1=120C-Combination-组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算A<=>B命题A与B等价关系A=>B命题A与B的蕴涵关系A*公式A的对偶公式wff合式公式iff当且仅当↑命题的“与非”运算(“与非门”)↓命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”C复数集N自然数集(包含0在内)N*正自然数集P素数集Q有理数集R实数集Z整数集。
最全数学特殊符号大全
最全数学特殊符号大全+加号,正号-减号,负号× 乘号÷ 除号± 正负号∓差∸除<小于号>大于号= 等于号≠ 不等号∞ 无穷大符≡ 等价于← 左箭头→ 右箭头∴ 因此┗┓ 画框¥美元符号∧ 与∨ 或⊥ 正交∠ 角⦅左括号⦆右括号⊙ 圆∩ 交∪ 并△ 三角形⊥ 平行∽ 相等∝ 成比例≌ 等同∽ 等于或等于≦ 不大于≧ 不小于◊星号Δ 增减∫ 积分⌒ 弧形% 百分比∑ 求和§ 小节# 井字号@ 耶℃ 摄氏度℉ 华氏度′ 分″ 秒① 一等② 二等③ 三等④ 四等\ 斜线~间隔号﹣直角减号——横线减号∷ 两冒号中间等于∤三角形中间等号Ⅰ I(拉丁文字)‰ ‰号⊙ (∘)大圆⊕ (O)大加号⊿ 小加号√ 平方根号【【括号】】括号!惊叹号≪(〈)尖括号【】二括号{} 大括号ⅴV 拉丁文字‰千分号♂♀♀三性符号¤ 通用货币符号° 水平线两端角度符号・顿号⊕ 加圈花瓣号⊙大圈花瓣号∥ 双竖线或平行线¶ 分隔符◆ 菱形﹦圈点=实心点• 黑点… 省略号⊰〔九宫格@耶。
(完整版)常用数学符号大全
(完整版)常用数学符号大全1. 加号(+):表示两个数相加,例如 2 + 3 = 5。
2. 减号():表示两个数相减,例如 5 3 = 2。
3. 乘号(×):表示两个数相乘,例如2 × 3 = 6。
4. 除号(÷):表示两个数相除,例如6 ÷ 2 = 3。
5. 等号(=):表示两个数或表达式相等,例如 2 + 3 = 5。
6. 不等号(≠):表示两个数或表达式不相等,例如2 + 3 ≠ 4。
7. 大于号(>):表示一个数大于另一个数,例如 5 > 3。
8. 小于号(<):表示一个数小于另一个数,例如 3 < 5。
9. 大于等于号(≥):表示一个数大于或等于另一个数,例如 5 ≥ 3。
10. 小于等于号(≤):表示一个数小于或等于另一个数,例如3 ≤ 5。
11. 分数线(/):用于表示分数,例如 1/2 表示一半。
12. 开方号(√):用于表示求一个数的平方根,例如√9 = 3。
13. 乘方号(^):用于表示求一个数的幂,例如 2^3 = 8。
14. 求和号(∑):用于表示求和,例如∑(i=1 to n) i 表示求从 1 到 n 的和。
15. 积分号(∫):用于表示求定积分,例如∫(f(x)dx) 表示求函数 f(x) 在某个区间上的定积分。
16. 对数号(log):用于表示求对数,例如 log10(100) = 2。
17. 三角函数符号(sin、cos、tan):用于表示求三角函数的值,例如sin(30°) = 0.5。
18. 倒数符号(1/x):用于表示求一个数的倒数,例如 1/2 =0.5。
19. 无穷大符号(∞):表示无穷大,例如lim(x→∞) f(x) 表示求函数 f(x) 当 x 趋向于无穷大时的极限。
(完整版)常用数学符号大全1. 矩阵符号([ ]):用于表示矩阵,例如 [1 2; 3 4] 表示一个 2x2 的矩阵。
数学中的所有符号
数学中的所有符号
1、几何符号:
几何是研究空间结构及性质的一门学科。
它是数学中最基本的研究内容之一,常见定理有勾股定理,欧拉定理,斯图尔特定理等。
常用符号有:⊥(垂直)、∥(平行)、∠(角)、⌒(弧)、⊙(圆)。
2、代数符号:
代数的研究对象不仅是数字,而是各种抽象化的结构。
在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
常用符号有:∝(正比)、∧(逻辑和)、∨(逻辑或)、∫(积分)、≠(不等于)、≤(小于等于)、≥(大于等于)、≈(约等于)、∞(无穷)。
3、运算符号:
运算符号是计算数学时所用的符号,计算符号有加号、减号、乘号、除号。
常用符号有:×(乘)、÷(除)、√(根号)、±(加减)。
4、集合符号:
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集。
常用符号有:∪(并)、∩(交)、∈(属于)。
5、希腊符号:
在数学中,希腊字母通常被用来表示常数、特殊函数和一些特定的变量。
在数学领域,通常大写与小写的希腊字母所代表的意义都会有所分别,并且互不相关。
常用符号有:α(阿尔法)、β(贝塔)、γ(伽马)、δ(代尔塔)、ε(埃普西龙)、ζ(泽塔)、η(诶塔)、θ(西塔)、ι(埃欧塔)、κ(堪帕)、λ(兰姆达)、μ(谬)、ν
6、特殊符号:
数学中常用某个特定的符号来表示某个元素。
常用符号有:∑(求和)、π(圆周率)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录数学符号起源 (1)数学符号种类 (2)数学符号读法 (10)数学符号起源数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。
数学符号的发明和使用比数字晚,但是数量多得多。
现在常用的有200多个,初中数学书里就不下20多种。
它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用"+"号。
"+"号是由拉丁文"et"("和"的意思)演变而来的。
十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"δ"最后都变成了"+"号。
"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。
到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。
乘号曾经用过十几种,现在通用两种。
一个是"³",最早是英国数学家奥屈特1631年提出的;一个是"²",最早是英国数学家赫锐奥特首创的。
德国数学家莱布尼茨认为:"³"号象拉丁字母"X",加以反对,而赞成用"²"号。
他自己还提出用"п"表示相乘。
可是这个符号现在应用到集合论中去了。
到了十八世纪,美国数学家欧德莱确定,把"³"作为乘号。
他认为"³"是"+"斜起来写,是另一种表示增加的符号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“ⅳ”表示根号。
“ⅳ”是由拉丁字线“r”变,“——”是括线。
"÷"最初作为减号,在欧洲大陆长期流行。
直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。
后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。
十六世纪法国数学家维叶特用"="表示两个量的差别。
可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。
1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。
十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"ↂ"表示相似,用"ↄ"表示全等。
大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。
至于↊""↉"、"ↅ"这三个符号的出现,是很晚很晚的事了。
大括号"{}"和中括号"[]"是代数创始人之一魏治德创造的。
任意号来源于英语中的any一词,因为小写和大写均容易造成混淆,故将其单词首字母大写后倒置,如图所示。
数学符号种类1、几何符号ⅷⅶ↋ↆↄ△2、代数符号ⅴⅸⅹ~ⅼↅↇↈↃⅵↀ3、运算符号如加号(+),减号(-),乘号(³或²),除号(÷或/),两个集合的并集(ⅻ),交集(ⅺ),根号(ⅳ),对数(log,lg,ln),比(:),微分(dx),积分(ⅼ),曲线积分(ⅽ)等。
4、集合符号ⅻⅺⅰ5、特殊符号ⅲθ(圆周率)6、推理符号|a| ↂ△ⅶⅺⅻↅↆ±ↈↇⅰⅬⅭⅮⅯ↖↗↘↙ⅷⅸⅹ&; §←↑→↓↔↕↖↗ΓΔΘΛΞΟΠΥΦΧΨΩΪΫάέήίΰαβγδεζηθικλμνξοπⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹⅰⅱⅲ↚ⅳⅴⅵ↛ⅶ↜ⅷⅸⅹⅺⅻⅼⅽⅾⅿↀↁↂↃↄ↝ↅↆↇↈ↞↟↉↊⊕↋↠℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率θ。
8、关系符号如“=”是等号,“Ↄ”是近似符号,“ↅ”是不等号,“>”是大于符号,“<”是小于符号,“ↈ”是大于或等于符号(也可写作“↉”),“ↇ”是小于或等于符号(也可写作“↊”),。
“Ⅾ”表示变量变化的趋势,“ↂ”是相似符号,“ↄ”是全等号,“ⅷ”是平行符号,“”是垂直符号,“ⅴ”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“ⅰ”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(ⅶ),ⅿ因为,(一个脚站着的,站不住)ⅾ所以,(两个脚站着的,能站住)总和(ⅲ),连乘(ⅱ),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号C-组合数A-排列数N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5³4³3³2³1=120C-Combination- 组合A-Arrangement-排列13、离散数学符号├断定符(公式在L中可证)╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算ⅸ命题的“合取”(“与”)运算ⅹ命题的“析取”(“或”,“可兼或”)运算Ⅾ命题的“条件”运算A<=>B 命题A 与B 等价关系A=>B 命题A与B的蕴涵关系A* 公式A 的对偶公式wff 合式公式iff 当且仅当Ⅽ命题的“与非”运算(“与非门”)Ⅿ命题的“或非”运算(“或非门”)□模态词“必然”◇模态词“可能”ν空集ⅰ属于(??不属于)P(A)集合A的幂集|A| 集合A的点数R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加ↅ)真包含ⅻ集合的并运算ⅺ集合的交运算- (~)集合的差运算〡限制[X](右下角R) 集合关于关系R的等价类A/ R 集合A上关于R的商集[a] 元素a 产生的循环群I (i大写) 环,理想Z/(n) 模n的同余类集合r(R) 关系R的自反闭包s(R) 关系的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:XⅮY f是X到Y的函数GCD(x,y) x,y最大公约数LCM(x,y) x,y最小公倍数aH(Ha) H 关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(u,v) 点u与点v间的距离d(v) 点v的度数G=(V,E) 点集为V,边集为E的图W(G) 图G的连通分支数k(G) 图G的点连通度△(G) 图G的最大点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集N 自然数集(包含0在内)N* 正自然数集P 素数集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴上述符号所表示的意义和读法(中英文参照)+plus 加号;正号-minus 减号;负号±plus or minus 正负号³is multiplied by 乘号÷is divided by 除号=is equal to 等于号ↅis not equal to 不等于号ↆis equivalent to 全等于号ↄis approximately equal to 约等于Ↄis approximately equal to 约等于号<is less than 小于号>is more than 大于号ↇis less than or equal to 小于或等于ↈis more than or equal to 大于或等于%per cent 百分之…ⅵinfinity 无限大号ⅳ(square) root 平方根X squared X的平方X cubed X的立方ⅿsince; because 因为ⅾhence 所以ⅶangle 角semicircle 半圆↋circle 圆○circumference 圆周△triangle 三角形perpendicular to 垂直于ⅻintersection of 并,合集ⅺunion of 交,通集ⅼthe integral of …的积分ⅲ(sigma) summation of 总和°degree 度′minute 分〃second 秒#number …号@at 单价数学符号读法大写小写英文注音国际音标注音中文注音ΑΩ alpha alfa 阿耳法ΒΪ beta beta 贝塔ΓΫ gamma gamma 伽马Δά deta delta 德耳塔Εέ epsilon epsilon 艾普西隆Ζή zeta zeta 截塔Ηί eta eta 艾塔Θΰ theta ΰita 西塔Ια iota iota 约塔Κβ kappa kappa 卡帕ⅸγ lambda lambda 兰姆达Μδ mu miu 缪Νε nu niu 纽Ξζ xi ksi 可塞Οη omicron omikron 奥密可戎ⅱθ pi pai 派Ρι rho rou 柔ⅲκ sigma sigma 西格马Σλ tau tau 套Τμ upsilon jupsilon 衣普西隆Υν phi fai 斐Φξ chi khai 喜Χο psi psai 普西Ψπ omega omiga 欧米伽。