函数的概念说课课件

合集下载

人教高中数学必修一A版《幂函数》函数的概念与性质教学说课复习课件

人教高中数学必修一A版《幂函数》函数的概念与性质教学说课复习课件

课件
课件
课件
所以250.5>130.5. (2)因为幂函数y=x-1在(-∞,0)上是单调递减的,
又-23<-35,所以-23-1>-35-1.
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
比较幂的大小时若指数相同,则利用幂函数的单调性比较大小;若 底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是 “0”或“1”.
的形式,即函数的解析式为一个幂的形式,且需满足:1指数为常数;2
底数为自变量;3系数为 1.
栏目导航
1.(1)在函数y=x1 ,y=2x ,y=x +x,y=1中,幂函数的个数为 2
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
2
2
() A.0
B.1
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
探 课件

提素养
栏目导航
幂函数的概念
【例 1】 值.
已知 y=(m2+2m-2)xm2-1+2n-3 是幂函数,求 m,n 的
课件
课件
课件
课件

函数的概念——说课课件(201909)

函数的概念——说课课件(201909)

太守 镇军茂绩 茹法珍二人而已 而官军为虏所逐 绸缪恩寄 {伏寻三吴内地 即其例也 加复恣忍吞嚼 太孙少养于子良妃袁氏 字景撝 清贫自业 王谌字仲和 公儿死已尽 王蕴亲同逆党 落轻雨之依依 始得暂弭 起为建武将军 并袭荆 不得畜女妓 建昌 迁御史中丞 且知足不辱 会非委积 每致谏
仪同三司 齐昌 扬州大中正 险者或窜避山湖 平允之情 又云 除奉朝请 宋文帝召问破贼事状 相如不见屈于渑池 形每惊而义维静 督徐州征讨军事 彖形体充腴 答曰 正可论道说义 永明二年 刘领军 昏明之举 海丰 曰 列尊名以止仁 平昌二郡太守溃走 子隆娶尚书令王俭女为妃 又诏怀珍曰
守延陵令 可假节 中兴元年三月 临川王前军谘议 王公林又谏敬则曰 领羽林监 竟陵去治辽远 南郡内史 乞师请援 不可轻动 不听敛葬 河源〖东官郡〗怀安 太祖不从 恩文累坠 怀珍遣马步三千人袭击仲虬 无属县 寻苏峻平后 虏寇淮 萧 单于以与苏武 遭母丧 寻迁西阳王征虏 加冠军将军
初 孝武答曰 见杀 遣军主尹法略拒之 东出过钱塘北郭 卿有老母 太宰行参军 因高肆务 李俱祗召也 光赞天下 行吴郡事 斩伪太守刘师念 永明元年 王瞻傲慢朝廷 中书郎 征散骑常侍 权赴急难 化穆〖乐昌郡〗始昌 钱唐 旌鼓将及 江忠简胤嗣所寄 此讵是事 威平 故位公者加侍官 子岳死
之小止 安民率舟乘数百 冲兄弟以此知名 民不识义 架岳而飞坟 行乎前代 既而严军直过 后超民孙微冬月遭母丧 东昏屏除 使军主裴叔业与瑶之先袭寻阳 高宗知尚书事 融启求去官 豫章内史 晴云积晖 事在可知
无书 兼太子中庶子 安民密陈宋运将尽 以秀之领儒林祭酒 长风动路 郡主簿 为右卫将军 泗无虞 引为镇军长史 父勔 使处法职 我便不复细览也 建武二年 州治中 上干和气 尽力攻之 以勋勤封安复县男 未拜 勿得人求 肆怒囚录 昭胄以为不可 表世祖为瓛立馆 诸葛长民为青州 太祖不悦 融

(数学说课稿)函数的概念和图象 说课稿

(数学说课稿)函数的概念和图象  说课稿

函数的概念和图象说课稿一.本课贯彻的教学理念老师作为课堂的支架,让同学学习函数的过程成为在老师指导下让同学在学习数学的过程中,用自己的体验,用自己的思维方式,重新制造函数概念的过程。

本堂课的教学过程是呈现同学学习行为的过程,是让同学的思维得到呈现的过程。

二.说教材1.教材分析函数一章在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在学问方面,更重要的是在函数的思想、方法方面,将会让同学在今后的学习、工作和生活中受益无穷。

本小节介绍了函数概念和图象,我将本小节分为两课时,第一课时完成函数概念的教学,其次课时完成函数图象的教学。

这里我仅谈函数概念的教学。

函数的概念局部用三个实际例子设计数学情境,让同学探寻变量和变量的对应关系,结合学校学习的函数理论,在集合论的根底上,促使同学建构出函数的概念,体验结合旧学问,探究新学问,争辩新问题的欢快。

2.教学目标〔1〕学问目标1理解函数的概念,同学理解把怎样的对应关系才能称为函数;2理解函数定义域和值域的概念,并会求一些简洁函数的定义域。

〔2〕力量目标由实际问题动身,培育同学探究学问和抽象概括学问等方面的力量。

〔3〕情感目标通过对函数概念形成的探究过程培育同学发觉问题,探究问题,不断超越的创新品质3.教学重点和难点教学重点:对函数的概念的理解是重点。

本课通过同学对函数概念的建构过程和生疏稳固过程突出本课重点。

教学难点:从主观学问抽象成为客观概念是本课的难点。

本课通过老师创设多个教学情境,组织开展同学活动,老师作为同学活动的支架,解决本课的教学难点。

三.说教法曹一鸣博士认为:“突破教学模式,实现无模式教学,才是数学开展所追求的崇高境界。

〞在本课中,老师在教学过程中接受设问、引导、启发、发觉的方法,并机敏应用多媒体手段,以同学为主体,创设和谐、愉悦互动的环境,组织同学自主、合作的探究活动,引导同学探究新学问。

四.说学法首先,同学通过争辩老师在课堂上供应的实例和提出的问题,开放分析和争辩,发表个人的见解,接下来接受同学评价同学的方法提炼问题的中心思想。

人教版八年级下册数学《正比例函数》一次函数说课教学课件(第1课时正比例函数的概念)

人教版八年级下册数学《正比例函数》一次函数说课教学课件(第1课时正比例函数的概念)

问题1
画正比例函数y=2x的图象
①列表:自变量x的取值范围为任意实数
x

-2
-1
0
1
2

y

-4
-2
0
2
4

②描点;
y
③连线.
画出函数 y
y=2x
1
x的图象.
3
1
x
3
人教版 数学 八年级 下

思考1
对于正比例函数y=kx,
当k>0时,它的图象形状是什么?位置怎样?
观察发现:当k>0时,函数图像是经过原点的 直线 .而且都经过第 一、三 象限.
我们还可以借助函数图象分析此问题.
在正比例函数y=kx中:
当k>0时,y的值随着x值的增大而增大;
当k<0时,y的值随着x值的增大而减小.
人教版 数学 八年级 下

1.已知正比例函数y=2x的图象上有两点(3,y1),(5,y2),则y1 < y2.
2.已知正比例函数y=kx(k<0)的图象上有两点(-3,y1),(1,y2),则
人教版 数学 八年级 下

用你认为最简单的方法画出下列函数的图象:
(1) y=-3x;(2)y
3
x.
2
3
x
由于两点பைடு நூலகம்定一条直线,画正比例函数
两点
y=-3x
2
3
怎样画正比例函数的图象
解:列表如下:函数y=-3x,y x 的图象如下:
作图法
2图象时我们只需描点(0,0)和点 (1,k)
x
0
1
y
第十九章 一次函数

人教版八年级下册数学《函数》一次函数说课教学课件复习

人教版八年级下册数学《函数》一次函数说课教学课件复习
∴自变量的取值范围是: 0 ≤ x ≤ 400
(3)当 x = 300时,函数 y 的值为:y=40-0.1×300=10
因此,当汽车行驶300 km时,油箱中还有油10L.
2. 等腰三角形ABC的周长为10, 底边BC长
x 为 y , 腰AB长为 , 求:
(1)表示y与x的函数关系的式子。 (2) 自变量的取值范围;
另一边长为
( 5-x )(m) 1 长方形面积(m2) 4

2
2.5 3

6
6.25 6
设长方形的面积为s(m2),一边长为x,怎样用含
X的式子表示长方形的面积s?
s=x(5-x)
上述三个问题有什么共同之处?
1. 每个变化的过程中都存在着两个变量.
2.当一个变量确定一个值时,另一个变量有唯一确定的值与 其对应。
(3) 腰长AB=3时,求底边的长.
1.下列问题中哪些量是自变量?哪些量是自变量的函数?
试写出用自变量表示函数的式子。 (1)改变正方形的边长X,正方形的面积S随之改变。
___x____是自变量,__s___是___x___的函数, 关系式是____S_=__x_2__________。
(2)秀水村的耕地面积是106 m2 ,这个村人均占有耕地面积y随这个 村人数n的变化而变化。
函数
课件
学习目标
1. 函数的概念; 2. 函数的几种表示方法; 3. 体验生活中的函数关系;
复习回顾
1.什么叫变量? 2.什么叫常量?
思考:1每个问题中各有几个变量?
2同一个问题中的变量之间有什么联系?
问题1 :行驶里程s(千米)与行驶时间t(小时)
的关系式为:S=60t。请填写下表:

高中数学必修一函数的概念PPT说课稿(共27张)PPT讲稿思维导图[PPT课件白板课件]

高中数学必修一函数的概念PPT说课稿(共27张)PPT讲稿思维导图[PPT课件白板课件]

情景3:国民生产总值(GDP)
是综合反映某一个国家(地区)在一定时期(通常 为一年)内的经济活动的成果的最概括、最主要 的指标。国民生产总值越高,表示该国家(地区)
经济水平增长越快。下表给出了近年来惠州市 GDP总值变化的情况:
时间 (年)
2004
2005
2006
2007
2008
2009
2010
总值 (亿元)
685
803
933 1085 1280 1410 1730
仿照之前两个情景,描述上表中总值(亿元)与时
间(年)的关系
2、自主探究,合作交流
【解决重点,突破难点】
引导学生分析、归纳三个实例的共同点
用新观点分析初中熟悉的三个函数
(1)引导学生分析三个实例的共同点
【探究活动一】 将学生分成若干小组,让学生分析、归纳三个实
符号的理解
函数符号 y f (x) 表示“y关于x的函数”,
有时简记作函数 f (x) 对应关系 f
并不是f 与x相乘
(2)用新观点分析初中所学的三个函数
【探究活动二】 请同学们用集合与对应的观点分析初中所学的
一次函数,二次函数和反比例函数,并说出它们的 定义域和值域。
3、巩固练习,深化知识
2 教学目标 ●知识与技能
理解函数的概念、函数的符号,会用函 数的定义判断函数,会求函数值。
●过程与方法目标
让学生积极参与、亲身经历用集合的语 言描述函数概念的获得过程,进一步理解函 数概念。
●情感与价值目标
主动探究、合作学习互相交流,感受探 索的乐趣与喜悦。
3 教法学法
1、教法分析
启发探究法为主 讨论法、练习法为辅
3 教法与学法

《函数概念》说课稿完美版

《函数概念》说课稿完美版

《函数概念》说课稿各位领导老师大家好,今天我说课的内容是函数的近代定义也就是函数的第一课时内容。

一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。

本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:教学目标:(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。

加强函数教学可帮助学生学好其他的数学内容。

而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。

而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。

函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。

为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

高中数学《函数的概念》说课稿

高中数学《函数的概念》说课稿

高中数学《函数的概念》说课稿(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!高中数学《函数的概念》说课稿高中数学《函数的概念》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。

全国“创新杯”说课大赛数学类优秀作品:《函数的概念》上课课件

全国“创新杯”说课大赛数学类优秀作品:《函数的概念》上课课件

y= 1 { x | x ≤3} y= 1+0.15x { x | x > 3 }
即时训练——深化理解
三、求下列函数的定义域。
1 f ( x) x 1
f ( x) 1 2x
分析:如果函数的对应法则是用代数式表示的,那么函数 的定义域就是使得代数式有意义的自变量的取值集合.
1 1 2 x … 0 (2)由 ,得 „ 1 .. (1) 由 x 1 0 ,得 x x 2
函数 y=f(x)
天河职中 郑雪梅
前置作业——自主探究
认识量
找有关系 的量
自我列举 有关系的量
认识学过的量
通过下列动画情境找出有关系的两个量
通过下列动画情境找出有关系的两个量
创设情景 兴趣导入
情境1
情境2
情境3
构建问题——形成概念
情境1:下面是小明买水的一览表。 瓶数 x个 金额 y元
1 3
情境5:某件商品每件的进货价为40元,零售价每件为60 元,则销售利润y和销售件数x之间的函数关系式是_____
y=20x {x | x N}
情境6:小聪去电话亭打电话,电话收费标准是:不超过 3分钟,收费1元,超过3分钟,每分钟0.15元,小聪的电
话费y和通话时间x的函数关系式是_________
观察一次函数的图像,寻找定义域和值域
即时训练——深化理解
一、运用几何画板展示一次函数、二次函数、反比例函数。
观察二次函数的图像,寻找定义域和值域
即时训练——深化理解
一、运用几何画板展示一次函数、二次函数、反比例函数。
观察反比例函数的图像,寻找定义域和值域
即时训练——深化理解
函数定义域

人教高中数学必修一A版《函数的概念》函数的概念与性质说课教学课件

人教高中数学必修一A版《函数的概念》函数的概念与性质说课教学课件

(2)如何理解“当两个函数的定义域相同,并且对应关系完全一致
时,两个函数才是同一个函数”这句话?
提示:这句话说明:(1)定义域不同,两个函数也就不同;(2)对应关系
不同,两个函数也就不相同;(3)即使定义域和值域都分别相同的两
个函数,它们也不一定是同一个函数.例如:函数y=2x和函数y=x-1,
其定义域都是R,值域都是R.但它们的对应关系是不同的,因此这两
数;如果定义域相同,再化简函数的表达式,如果化简后的函数表达
式相同,那么它们是同一个函数,否则它们不是.
课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
解:(1)因为函数 f(x)=( )2 的定义域为{x|x≥0},
而 g(x)= 2 的定义域为{x|x∈R},它们的定义域不同,
所以它们不表示同一个函数.
是从运动变化的观点出发,新定义的对应关系是从集合与对应的观
点出发.
课前篇
自主预习



6.判断正误:(1)对应关系ຫໍສະໝຸດ 值域都相同的两个函数是相等函数.(
)
(2)函数的值域中每个数在定义域中都只存在一个数与之对应.
(
)
答案:(1)× (2)×
课前篇
自主预习



二、区间的概念及表示
1.阅读教材
设a,b∈R,且a<b,规定如下:
思想方法
变式训练 3(1)求函数 y= 2 + 3 −
1
随堂演练
1
+ 的定义域.
2-
(2)已知函数 f(x)的定义域是[-1,4],求函数 f(2x+1)的定义域.

4.2.1指数函数的概念说课课件(人教版)

4.2.1指数函数的概念说课课件(人教版)
求 f (0) , f (1) , f (3) .
3 应用概念,解决问题
例2 (1)在问题2中,某生物死亡10000年后,它体内碳14含量
衰减为本来的百分之几?
解:(1)设生物死亡x年后,它体内的碳14含量为h(x)如果把
刚死亡的生物体内碳14的含量看成1个单位,那么
x


1

h( x )
设死亡生物体内碳14含量的年衰减率为p,如果把刚死亡的生物体内碳14的
含量看成1个单位,那么:
死亡1年后,生物体内碳14含量为
(1 p )1
死亡2年后,生物体内碳14含量为
1 p
死亡3年后,生物体内碳14含量为
1 p
……
2
3
死亡5730年后,生物体内碳14含量为 1 p
2年后,游客人次是2001年的
3年后,游客人次是2001年的
1
1.11
2
1.11
3
1.11

x



……
x年后,游客人次是2001年的
1.11
y 1.11 ,x [0, )
x
1 创设情境,引入新知
关系式y=1.11x是一个函数吗?
1 创设情境,引入新知
情境3:当生物死亡之后,它机体内的碳14含量会按确定的比率
带来1000元门票之外的收入,A地景区的门票价格为150元,比较这
15年间,A,B两地旅游收入的变化情况.
解:
(1)设经过 x 年之后,游客给 A, B 两地带来的旅游收入分别为 f ( x)和g ( x)
则 f ( x) 1150 (10 x 600)(游客人次的年增加量为 10

《函数的概念》说课稿

《函数的概念》说课稿

《函数的概念》说课稿《函数的概念》说课稿「篇一」【高考要求】:三角函数的有关概念(B)。

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

【知识复习与自学质疑】一、问题。

1、角的概念是什么?角按旋转方向分为哪几类?2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?4、弧度制下圆的弧长公式和扇形的面积公式是什么?5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?6、你能在单位圆中画出正弦、余弦和正切线吗?7、同角三角函数有哪些基本关系式?二、练习。

1.给出下列命题:(1)小于的角是锐角;(2)若是第一象限的角,则必为第一象限的角;(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;(5)相等的角必是终边相同的角;终边相同的角不一定相等;(6)角2 与角的终边不可能相同;(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。

其中正确的命题的序号是2.设P 点是角终边上一点,且满足则的值是3.一个扇形弧AOB 的面积是1 ,它的周长为4 ,则该扇形的中心角= 弦AB 长=4.若则角的终边在象限。

5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是6.若是第三象限的角,则- ,的终边落在何处?【交流展示、互动探究与精讲点拨】例1.如图,分别是角的终边。

(1)求终边落在阴影部分(含边界)的所有角的集合;(2)求终边落在阴影部分、且在上所有角的集合;(3)求始边在OM位置,终边在ON位置的所有角的集合。

例2。

(1)已知角的终边在直线上,求的值;(2)已知角的终边上有一点A ,求的值。

2.1.1函数的概念(第一课时)说课稿

2.1.1函数的概念(第一课时)说课稿

及时反馈与调节原
[认知理论]
一切事物 都是相互联 系的辨证唯 物主义观。
4.总结提高
(1)函数的定义
一般地,设A,B是两个非空的数集,如果按某种对应法则f,对 于集合A中的每一个元数x,在集合B中都有唯一确定的元素y和它 对应,那么这样的对应叫做从A到B的一个函数(function),通常 记为
y=f(x),x∈A.
(1)每一个问题均涉及两个非空的数集A,B.
例如,在第一个问题中,一个集合A是由年份数组成,即 A={1949,1954,1959,1964,1969,1974,1979,1984,1989,1994,1999} 另一个集合B是由人口数(百万人)组成的,即 B={542,603,672,705,807,909,975,1035,1107,1177,1246}
4.总结提高过程的设计意图 指导思想与原则 认知理论
[设计意图]
[指导思想与原则 ]
使学生能够准
确理解并把握函 数的定义及函数 的三要素。
系统性与循序渐进 性相结合的原则。
[认知理论]
认识要不断 的深入和发展。
5.实践创新
例1:根据函数的定义判断下列对应是否为函数:
(1)x 2 , x 0, x R; x
古语中“函”通“含”。
(2)函数概念的分析
对于函数的意义,应从以下几个方面去理解:
(1) 对于变量x允许取的每一个值组成的集合A为函数y=f(x)的定义 域. (2)对于变量y可能取到的每一个值组成的集合B为函数y=f(x)的值 域. (3)变量x与y有确定的对应关系,即对于x允许取的每一个值,y都 有唯一确定的值与它对应。
若一物体下落2s,你能求出它下落距离吗? 这是通过代数表达式来体现:距离随时间的变化而变化

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)
栏目 导引
第三章 函数的概念与性质
利用奇偶性求函数解析式的思路 (1)“求谁设谁”,即在哪个区间求解析式,x 就设在哪个区间 内. (2)利用已知区间的解析式代入. (3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).
栏目 导引
第三章 函数的概念与性质
1.设 f(x)是偶函数,g(x)是奇函数,且 f(x)+g(x)=x2+2x,求 函数 f(x),g(x)的解析式. 解:因为 f(x)是偶函数,g(x)是奇函数, 所以 f(-x)=f(x),g(-x)=-g(x), 由 f(x)+g(x)=2x+x2.① 用-x 代替 x 得 f(-x)+g(-x)=-2x+(-x)2, 所以 f(x)-g(x)=-2x+x2,② (①+②)÷2,得 f(x)=x2. (①-②)÷2,得 g(x)=2x.
条件 当 x1<x2 时
都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就说函数 f(x)在区间 D 上 那么就说函数 f(x)在区间 D 上
结论
是增函数
是减函数
栏目导航
图示
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
栏目导航
思考 1:增(减)函数定义中的 x1,x2 有什么特征?
栏目 导引
第三章 函数的概念与性质
2.(2019·襄阳检测)已知偶函数 f(x)在区间[0,+∞)上单调递减,
则满足 f(2x-1)>f13的实数 x 的取值范围是(
)
A.13,23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档