三相异步电动机Matlab仿真
MATLAB中的三相异步电动机仿真
目录前言 (1)1 异步电动机动态数学模型 (2)1.1电压方程 (2)1.2磁链方程 (3)1.3转矩方程 (5)1.4运动方程 (6)2 坐标变化和变换矩阵 (8)2.1三相--两相变换(3/2变换) (8)3 异步电动机仿真 (9)3.1异步电机仿真框图及参数 (9)3.2异步电动机的仿真模型 (12)4 仿真结果 (16)5 结论 (17)参考文献 (18)前言随着电力电子技术与交流电动机的调速和控制理论的迅速发展,使得异步电动机越来越广泛地应用于各个领域的工业生产。
异步电动机的仿真运行状况和用计算机来解决异步电动机控制直接转矩和电机故障分析具有重要意义。
它能显示理论上的变化,当异步电动机正在运行时,提供了直接理论基础的电机直接转矩控制(DTC),并且准确的分析了电气故障。
在过去,通过研究的异步电动机的电机模型建立了三相静止不动的框架。
研究了电压、转矩方程在该模型的功能,同相轴之间的定子、转子的线圈的角度。
θ是时间函数、电压、转矩方程是时变方程这些变量都在这个运动模型中。
这使得很难建立在αβ两相异步电动机的固定框架相关的数学模型。
但是通过坐标变换,建立在αβ两相感应电动机模型框架可以使得固定电压、转矩方程,使数学模型变得简单。
在本篇论文中,我们建立的异步电机仿真模型在固定框架αβ两相同步旋转坐标系下,并给出了仿真结果,表明该模型更加准确地反映了运行中的电动机的实际情况。
1 异步电动机动态数学模型在研究三相异步电动机数学模型时,通常做如下假设 1) 三相绕组对称,磁势沿气隙圆周正弦分布;2) 忽略磁路饱和影响,各绕组的自感和互感都是线性的; 3) 忽略铁芯损耗4) 不考虑温度和频率对电阻的影响异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。
1.1 电压方程三相定子绕组的电压平衡方程为(1-1)与此相应,三相转子绕组折算到定子侧后的电压方程为(1-2)式中 A u , B u , C u , a u , b u ,c u —定子和转子相电压的瞬时值;A i ,B i ,C i , a i , b i ,c i —定子和转子相电流的瞬时值;A ψ,B ψ,C ψ, a ψ, b ψ,c ψ—各相绕组的全磁链; Rs, Rr —定子和转子绕组电阻上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“ ’”均省略,以下同此。
运动控制系统课程设计异步电机矢量控制Matlab仿真实验
目录1 异步电动机矢量控制原理 (2)2 坐标变换 (3)2.1 坐标变换基本思路 (3)2.2 三相——两相坐标系变换(3/2变换) (4)2.3 旋转变换 (5)3 转子磁链计算 (6)4 矢量控制系统设计 (7)4.1 矢量控制系统的电流闭环控制方式思想 (7)4.2 MATLAB系统仿真系统设计 (8)4.3 PI调节器设计 (9)5 仿真结果 (10)5.1 电机定子侧的电流仿真结果 (10)5.2 电机输出转矩仿真结果 (11)心得体会 (13)参考文献 (14)异步电机矢量控制Matlab 仿真实验1 异步电动机矢量控制原理矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。
所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。
其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流i A 、i B 、i C ,通过3/2变换可以等效成两相静止正交坐标系上的交流i sα和i sβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流i sm 和i st 。
图1-1 异步电动机矢量变换及等效直流电动机模型在三相坐标系上的定子交流电流,,A B C i i i ,通过3/2变换可以等效成两相静止正交坐标系上的交流s i α和s i β再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流sm i 和st i 。
m 绕组相当于直流电动机的励磁绕组,sm i 相当于励磁电流,t 绕组相当于电枢绕组,st i 相当于与转矩成正比的电枢电流。
基于Matlab的三相异步电动机起动、调速和制动特性仿真
信息工程学院基于Matlab的三相异步电动机起动、调速和制动特性仿真摘要:异步电动机目前在日常生活中已得到广泛应用,其主要特点为结构简单、运行可靠、效率较高和成本较低。
为使其应用更加广泛且性能更加完善,有必要对其最基本的起动、制动和调速性能进行深入研究。
而随着电机研究的不断深入,仿真就成为对其进行研究的一个重要手段,其中Matlab软件以其方便、高效、直观的特点,广泛应用于异步电动机的仿真研究,方便快捷且节约资源,为解决一些复杂问题带来了极大的方便。
本文通过Matlab软件进行仿真,研究异步电动机起动、调速和制动的各种方法,以找到提高其性能的途径,并通过与理论相对比,验证了本文模型的有效性和正确性。
关键词:Matlab;仿真;异步电动机Simulation for Start-up ,Speed Control and Braking Character of Three-phase Asynchronous Motor Based onMatlabAbstract:Asynchronous motor has been widely used in our daily life at present, the main characteristics of simple structure, reliable operation, high efficiency and low cost. In order to make its application more widely and performance will be improved, it is necessary for the most basic starting, braking and speed regulating performance for further research. And with the research of motor, the simulation has become an important means to study, the Matlab software, with its convenient, efficient and intuitive features, are widely used in the simulation research of asynchronous motor is convenient and save resources, to solve some complex problems has brought great convenience.Based on the Matlab software simulation, the asynchronous motor starting, speed and braking methods, in order to find ways to improve its performance, and compared with the theory, proves the correctness and the effectiveness of the model. Key words:Matlab; simulation; asynchronous motor1 设计目的和意义1.1 概述在科学技术发展迅速的当今社会,电机已经成为生活中必不可少的一部分,为人们的生产生活提供了极大的方便。
三相异步电机matlab电磁设计、温度场分析与ansoft磁场仿真学习资料
高温异步电机设计与性能分析High Temperature Induction Motor Design and PerformanceAnalysis学院:电气工程学院专业班级:学号:学生姓名:指导教师:(教授)2012年 6 月摘要Abstract目录摘要 (I)Abstract ............................................................................................................................ I I 目录 (I)第1章绪论 (1)1.1 引言 (1)1.2 课题背景及意义 (1)1.2.1课题研究背景、目的及意义 (1)1.2.2课题国内外研究现状及趋势 (4)第2章三相单鼠笼异步电动机电磁计算 (6)2.1 额定数据及主要尺寸 (6)2.1.1参数的选择 (6)2.1.2电机的主要尺寸 (7)2.1.3定子绕组的计算 (9)2.1.4定子槽型的计算 (10)2.1.5转子绕组的计算 (11)2.2 磁路计算 (13)2.3 参数计算 (18)2.3.1线圈长度计算 (18)2.3.2电机定子绕组漏抗计算 (19)2.3.3电机转子绕组漏抗的计算 (21)2.3.4有效材料的计算 (22)2.3.5空载特性 (24)2.4 工作性能计算 (26)2.4.1电负荷计算 (26)2.4.2电机损耗计算 (27)2.4.3主要性能计算确定 (29)2.5 起动性能计算 (30)2.5.1起动时定子参数 (30)2.5.2起动时转子参数 (31)2.5.3起动参数的确定 (33)2.6 MATLAB语言结构 (34)第3章异步电机通过matlab的温度场分析 (35)3.1 matlab在电机设计和仿真中的应用 (35)3.2温度对异步电机的性能影响 (36)3.2.1. 温升 (36)3.2.2 发热 (37)3.2.3 环境温度对电动机的影响 (38)3.3 异步电动机温度场特性仿真结果 (38)第4章异步电机的ansoft仿真 (40)4.1. ansoft maxwell的介绍 (40)4.1.1 三维静电场分析(3D Electrostatic Field) (40)4.1.2 三维直流磁场分析(3D DC Magnetic) (40)4.1.3 涡流场分析(Eddy Current Field) (40)4.1.4 瞬态场(Transient Field) (40)4.2 Maxwell 仿真一般步骤 (40)4.3 Maxwell的仿真结果与分析 (41)4.3.1建立电机模型 (41)4.3.2 Rmxprt导入至Maxwenll 2D有限元模块 (42)4.4本章小结 (43)第5章结论 (44)参考文献 (45)致谢 (48)附录 (49)5.1 附录1 (49)5.2 附录2 (61)第1章绪论1.1 引言随着四个现代化的发展,工业生产的自动化程度提高,还需要大量各种各样具有高性能的控制电机作为自动化系统的控制元件或执行元件。
异步电动机转差频率间接矢量控制matlab仿真(毕业设计)
太原理工大学毕业设计(论文)任务书异步电动机转差频率间接矢量控制matlab仿真摘要本文基于MATLAB 对异步电动机转差频率控制调速系统进行仿真研究。
首先分析了异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。
之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。
最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。
关键词:转差频率,矢量控制,异步电动机Induction Motor Slip Frequency Indirect Vector ControlMatlab SimulationAbstractThis paper focuses on the matlab simulation of the asynchronous motor speed regulation system.Firstly , this paper analyzes the main control method , basic composition and working principle of the induction motor slip frequency control technology.Secondly , this paper analysis the dynamic model of asynchronous motor and further introduces the coordinate transfer and the basic principle of motor slip frequency vector control system. At the same time , the simulation work to prove its feasibility.Finally , according to analysis of the simulation results , the conclusions are as follows simply slip frequency control is always with poor load capacity , on the contrary the vector control applications can enhance the ability to regulate the motor of the torque and without voltage compensation.Key words : slip frequency , vector control , induction motor目录摘要 (I)Abstract (II)1绪论 (1)1.1现代交流调速技术的发展 (1)1.1.1异步电动机交流调速系统的类型 (2)1.1.2交流调速系统的发展趋势和动向 (2)1.2本文主要研究内容 (2)1.2.1转差频率控制的基本概念 (2)1.2.2基于异步电动机稳态模型控制的转差频率控制规律 (4)1.2.3基于异步电动机动态态模型控制的转差频率矢量控制规律 (5)2异步电动机转差频率间接矢量控制交流调速系统 (7)2.1异步电机的特点 (7)2.2三相异步电动机的多变量非线性数学模型 (7)2.2.1电压方程 (8)2.2.2磁链方程 (9)2.2.3转矩方程 (11)2.2.4电力拖动系统运动方程 (11)2.3矢量控制技术思想 (12)2.3.1坐标变换 (13)1.坐标变换的基本思想和原则 (13)2.三相-两相变换(3s/2s变换) (15)2.3.2交流异步电机在两相任意旋转坐标系上的数学模型 (18)2.3.3异步电机在两相静止坐标系( 坐标系)上的数学模型 (20)2.3.4异步电机在两相同步旋转系上的数学模型 (21)2.3.5三相异步电动机在两相坐标系上的状态方程 (21)2.4基于转差频率矢量控制调速系统的组成 (22)2.4.1基于转差频率间接矢量控制调速系统的工作原理 (22)2.4.2异步电动机转差频率间接矢量控制公式推导 (24)3主电路与控制电路 (25)3.1 SPWM逆变电路 (25)3.2控制电路的设计 (26)3.2.1转速PI调节器的设计 (26)3.2.2函数运算模块的设计 (28)4转差频率间接矢量控制的matlab仿真 (30)4.1仿真模型的搭建及参数设置 (30)4.1.1主电路模型 (30)4.1.2控制电路的模型搭建 (31)4.2仿真结果与分析 (33)4.2.1仿真波形图 (33)4.2.2仿真结果分析 (35)4.3本章总结 (35)参考文献 (36)致谢 (37)1绪论1.1现代交流调速技术的发展在工业化的进程中 ,电动机作为将电能转换为机械能的主要设备。
三相异步电机机械特性MATLAB仿真报告
评分:_________课程报告电机与拖动基础学院机自学院专业电气工程及其自动化学号 15122204学生姓名张紫靓课程电机与拖动基础电机与拖动基础报告一、固有机械特性及降压Matlab程序如下:固有机械特性:U1=220;m=3;p=3;f1=50;R1=2.08;R20=1.53;X1=3.12;X20=4.25;s=-0.4:0.0001:1.5;n0=60*f1/p;n=n0-s*n0;T=(m*p*U1^2*R20./s)./(2*pi*f1*((R1+R20./s).^2+(X1+X20)^2)); title('故有机械特性')xlabel('电动机转速n/(r/s)')ylabel('电动机转矩T/(N*M)')plot(T,n);plot(-T,-n);hold on;MATLAB仿真图像:降压:m=3;p=3;f1=50;R1=2.08;R20=1.53;X1=3.12;X20=4.25;s=0:0.0001:1.5;n0=60*f1/p;n=n0-s*n0;for k=1:3if k==1;U1=220;else if k==2;U1=200;else U1=150;endendT=(m*p*U1^2*R20./s)./(2*pi*f1*((R1+R20./s).^2+(X1+X20)^2)); title('故有机械特性')xlabel('电动机转速n/(r/s)')ylabel('电动机转矩T/(N*M)')plot(T,n);hold on;endMATLAB仿真图:二、定子串电阻程序:U1=220;m=3;p=3;f1=50;R20=1.53;X1=3.12;X20=4.25;s=0:0.0001:1.5;n0=60*f1/p;n=n0-s*n0;for k=1:3if k==1;R1=2.08;else if k==2;R1=5.08;elseR1=10.08;endendT=(m*p*U1^2*R20./s)./(2*pi*f1*((R1+R20./s).^2+(X1+X20)^2)); title('故有机械特性')xlabel('电动机转速n/(r/s)')ylabel('电动机转矩T/(N*M)')plot(T,n);hold on;endMATLAB仿真图:三、定子串电抗:程序:U1=220;m=3;p=3;f1=50;R1=2.08;R20=1.53;X20=4.25;s=0:0.0001:1.5;n0=60*f1/p;n=n0-s*n0;for k=1:3if k==1;X1=3.12;else if k==2;X1=6.12;elseX1=10.12;endendT=(m*p*U1^2*R20./s)./(2*pi*f1*((R1+R20./s).^2+(X1+X20)^2)); title('故有机械特性')xlabel('电动机转速n/(r/s)')ylabel('电动机转矩T/(N*M)')plot(T,n);hold on;endMATLAB仿真图:四、转子串电阻U1=220;m=3;p=3;f1=50;R1=2.08;X1=3.12;X20=4.25;s=0:0.0001:1.5;n0=60*f1/p;n=n0-s*n0;for k=1:5if k==1;R20=1.53;else if k==2;R20=3.53;else if k==3R20=5.53;else if k==4R20=7.53;else k==5R20=10.53;endendendendT=(m*p*U1^2*R20./s)./(2*pi*f1*((R1+R20./s).^2+(X1+X20)^2)); title('故有机械特性')xlabel('电动机转速n/(r/s)')ylabel('电动机转矩T/(N*M)')plot(T,n);hold on;endMATLAB仿真图:。
异步电机调压调速系统的matlab仿真代码
异步电机调压调速系统的matlab仿真代码异步电机是一种常见的电动机类型,广泛应用于各个领域的工业控制系统中。
在工业生产中,对异步电机的调压调速系统进行仿真设计可以帮助工程师们更好地理解电机的工作原理,并且优化控制算法,提高电机的性能和效率。
本文将根据异步电机调压调速系统的需求,介绍如何使用Matlab进行仿真设计。
异步电机调压调速系统主要包括三个部分:电机模型、调速控制器和电源电压。
首先,我们需要建立电机的模型。
在Matlab中,我们可以使用Simulink来搭建电机模型。
在搭建电机模型之前,我们需要明确电机的参数,例如额定功率、额定转速、定子电阻、定子电感、转子电阻、转子电感等。
根据这些参数,我们可以使用Simulink中的“Synchronous Machine”模块来搭建电机模型。
通过调整模块的参数,我们可以设定电机的额定功率和转速。
此外,我们还可以通过添加噪声、扰动等,模拟电机在实际工况下的运行情况。
接下来,我们需要设计调速控制器。
常见的调速控制算法有PID控制、模糊控制、自适应控制等。
在Matlab中,我们可以使用Simulink中的“PID Controller”模块来实现PID控制算法。
在使用PID控制器模块之前,我们需要根据电机的特性调整控制器的参数,例如比例系数、积分时间和微分时间。
通过不断调整参数和观察仿真结果,我们可以优化控制器的性能,实现电机的稳定调速。
最后,我们需要模拟电源电压对异步电机的影响。
在实际应用中,供电电压的波动会对电机的转速和输出功率产生影响。
在Matlab中,我们可以通过添加波动的直流电压源来模拟这种影响。
通过调整电压源的幅值和频率,我们可以观察电压波动对电机转速和输出功率的影响。
这对于调压调速系统的设计和优化非常重要。
在完成上述步骤后,我们可以对整个异步电机调压调速系统进行仿真。
通过控制器和电源电压的输入,我们可以观察电机的转速、输出功率和电流等参数的变化情况。
异步电动机变频调速系统的MATLAB建模与仿真
基金项目:福建省自然科学基金项目(2008J04016)作者简介:陈四连(1984- ),女,硕士研究生,研究方向为控制系统的控制策略;林瑞全(1971- ),男,副教授,硕士生导师,博士,研究方向为控制系统的控制策略; 丁旭玮(1987- ),男,硕士研究生,研究方向为控制系统的控制策略。
异步电动机变频调速系统的MATLAB建模与仿真摘 要:为了研究异步电动机正弦脉宽调制变频调速系统在不同频率作用下的速度响应曲线,分别利用MATLAB 软件中的SIMULINK、S-function 以及微分方程编辑器(DEE)等功能模块建立两相静止坐标系下的异步电动机仿真模型。
仿真结果表明,以上三种不同的建模方法效果是一样的,均是较为方便高效的异步电动机仿真方法。
关键词:异步电动机;正弦脉宽调制;SIMULINK 建模;S-function 建模;DEE 建模中图分类号:TM921.51 文献标识码:A 文章编号:1007-3175(2009)11-0032-04陈四连,林瑞全,丁旭玮(福州大学 电气工程与自动化学院,福建 福州 350108)CHEN Si-lian LIN Rui-quan, DING Xu-wei(College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China )Abstract: In order to study speed response curves of asynchronous motor under different frequency actions, SIMULINK in MAT-LAB ,S-function and differential equation editor(DEE) etc functional Modular were used to establish asynchronous motor simula-tion model under two-phase stationary coordinate system. Simulation results show that the effects of the above three methods for modeling are the same and they are highly effective asynchronous motor simulation methods.Key words: asynchronous motor; sinusoidal pulse width modulation; SIMULINK modeling; S-function modeling; differential equation editor modelingMATLAB Modeling and Simulation of Frequency Control System forAsynchronous Motor在变频调速系统中异步电机是一个非线性、强耦合、高阶次的控制对象,如果忽略其非线性、强耦合、高阶次的条件,近似求出线性单变量动态结构,得到的控制系统的动态性能往往不高[1-2]。
基于MATLAB的三相鼠笼式交流异步电动机制动仿真
基于MATLAB的三相鼠笼式交流异步电动机制动仿真
三相鼠笼式交流异步电动机是一种常见的工业电动机,具有结构简单、运行可靠、接线便捷等特点。
为了更好地了解鼠笼式交流异步电动机的制
动过程,可以使用MATLAB软件进行仿真研究。
首先,我们需要建立鼠笼式交流异步电动机的数学模型。
这个模型是
基于电动机的物理特性和电路等参数建立的,可以描述电动机的运行情况。
通常,鼠笼式交流异步电动机的数学模型可以分为电磁部分和机械部分两
部分。
在电磁部分,我们可以利用磁动势方程描述电动机的电磁特性。
首先,我们可以根据电动机的电路参数计算出定子电压、电流和电动势等相关参数。
然后,根据电动势方程,我们可以计算出电动机的磁链和电磁转矩。
在机械部分,我们可以利用转矩方程描述电动机的机械特性。
根据载
荷特性和电动机的转速、转矩、惯性等参数,我们可以计算出电动机的机
械转矩和转速。
在建立了鼠笼式交流异步电动机的数学模型之后,我们可以使用MATLAB软件进行仿真研究。
根据实际需求,我们可以设置不同的仿真条
件和参数,如电机参数、工作状态、负载特性等。
然后,我们可以运行仿
真程序,得到电动机在不同工况下的运行情况和性能指标。
通过仿真研究,我们可以得到电动机的速度-转矩特性曲线、电流-转
矩特性曲线、功率-转矩特性曲线等数据,从而更好地理解电动机的工作
原理和性能。
总之,基于MATLAB的三相鼠笼式交流异步电动机制动仿真可以帮助研究人员深入了解电动机的运行特性和性能,提供了一种快捷有效的研究方法。
同时,这种仿真方法也可以用于电动机的设计优化和性能改进。
基于MATLAB的异步电机变频调速系统的仿真与分析
基于MATLAB的异步电机变频调速系统的仿真与分析1. 引言1.1 研究背景异步电机是一种常见的电动机类型,在工业和家用电器中广泛应用。
随着电力系统的发展和电动机技术的进步,对异步电机的变频调速系统进行研究已成为一个热门领域。
变频调速系统可以根据实际需要调整电机转速,实现节能、精准控制和适应不同工况需求的目的。
随着现代工业的自动化程度不断提高,对电机的调速要求也越来越高。
传统的电压调速和机械调速方式已经无法满足实际需求,因此异步电机变频调速系统逐渐成为工业界的主流选择。
在此背景下,研究基于MATLAB的异步电机变频调速系统的仿真与分析具有重要意义。
通过对异步电机原理、变频调速系统设计和MATLAB仿真模型搭建等方面的研究,可以更好地了解和掌握这一技术,为实际应用提供理论支持和指导。
本文将对异步电机变频调速系统进行深入探讨,旨在为相关领域的研究和应用提供有益的参考和借鉴。
1.2 研究意义异步电机是工业中常用的电动机之一,其性能直接影响到生产效率和能源消耗。
变频调速系统能够实现电机转速控制,提高电机的运行稳定性和效率,减少能耗,降低维护成本。
基于MATLAB的异步电机变频调速系统的仿真与分析具有重要的研究意义。
通过仿真可以快速、灵活地模拟电机的工作情况,预测电机在不同工况下的性能表现,为设计和优化电机调速系统提供有力的依据。
通过仿真分析可以深入了解变频调速系统在不同参数和工况下的工作特性,为实际应用中的系统调试和优化提供指导。
对异步电机变频调速系统的研究可以推动电机控制技术的发展,促进工业生产的智能化和节能化,具有重要的社会和经济意义。
基于MATLAB的异步电机变频调速系统的仿真与分析不仅具有理论研究意义,还具有实际应用价值,对推动电机控制技术的发展和提高工业生产效率具有重要意义。
1.3 研究目的研究目的是为了探讨基于MATLAB的异步电机变频调速系统的仿真与分析,从而更深入地了解异步电机的工作原理和变频调速系统的设计方法。
异步电动机直接转矩控制系统的MATLAB仿真
异步电动机直接转矩控制系统的MATLAB仿真一、本文概述随着电力电子技术和控制理论的不断发展,异步电动机直接转矩控制系统(Direct Torque Control, DTC)已成为电动机控制领域的重要研究方向。
该控制系统以其快速响应、高鲁棒性和简单的结构特性,在电力驱动、工业自动化、新能源汽车等领域具有广泛的应用前景。
本文旨在通过MATLAB仿真平台,对异步电动机直接转矩控制系统进行深入研究和探讨。
本文将首先介绍异步电动机直接转矩控制的基本原理和主要特点,包括其与传统矢量控制方法的区别和优势。
随后,将详细阐述异步电动机的数学模型,以及DTC系统中转矩和磁链的控制策略。
在此基础上,利用MATLAB/Simulink仿真软件,构建异步电动机DTC系统的仿真模型,并对仿真模型中的关键参数和模块进行详细设计。
本文的重点在于通过仿真实验,分析异步电动机DTC系统的动态性能和稳态性能,探讨不同控制参数对系统性能的影响。
将针对仿真结果中出现的问题和不足,提出相应的改进措施和优化策略,以提高DTC系统的控制精度和稳定性。
本文将对异步电动机直接转矩控制系统的未来发展趋势和应用前景进行展望,为相关领域的研究人员和工程师提供参考和借鉴。
二、异步电动机直接转矩控制系统理论基础异步电动机直接转矩控制系统(Direct Torque Control, DTC)是一种高效的电机控制策略,旨在直接控制电机的转矩和磁链,从而实现快速动态响应和优良的控制性能。
与传统的矢量控制相比,DTC具有算法简单、易于数字化实现、对电机参数变化不敏感等优点。
异步电动机DTC系统的理论基础主要建立在电机转矩和磁链的直接控制上。
在DTC中,通过检测电机的定子电压和电流,利用空间矢量脉宽调制(Space Vector Pulse Width Modulation, SVPWM)或滞环比较器(Hysteresis Comparator)等控制手段,直接计算出所需的电压矢量,以实现对转矩和磁链的快速调节。
三相的异步电动机变频调速系统设计的及仿真
三相的异步电动机变频调速系统设计的及仿真引言:在现代工业生产中,电动机作为一种重要的动力设备,广泛应用于各种机器和设备中。
为了满足不同工艺和运行要求,需要调节电动机的运行速度。
传统的方法是通过改变电源的频率来达到调速的目的。
然而,这种方法存在一定的局限性,无法实现精确的调速效果。
因此,引入变频调速系统成为了提高电机调速性能的有效手段。
本文将对三相异步电动机变频调速系统的设计及仿真进行详细介绍。
一、系统设计:1.变频器设计:变频器是变频调速系统的核心部分,用于将输入电源的频率和电压变换成适合电动机工作的频率和电压。
变频器由整流器、滤波器和逆变器组成。
整流器将输入的交流电变换成直流电,滤波器用于平滑输出电压,逆变器将直流电转换成可控的交流电输出。
变频器还包括控制模块,用于实现调速功能。
2.控制系统设计:控制系统包括速度传感器、PID控制器和功率放大器。
速度传感器用于实时测量电机转速,PID控制器根据设定转速和实际转速之间的差异,调节变频器的输出频率和电压,以实现电机的准确调速。
二、系统仿真:为了验证设计的可行性和调速性能,可以使用MATLAB/Simulink进行系统仿真。
具体的仿真流程如下:1. 搭建电机模型:根据电机的参数和等效电路,搭建电机的MATLAB/Simulink模型,包括电机的输入端口、输出端口和机械负载。
2. 设计控制系统:在Simulink中添加速度传感器、PID控制器和功率放大器,并与电机模型连接起来。
3.设定仿真参数:设置电机的参数、控制系统的参数和仿真时间等参数。
4.进行仿真实验:根据实际需求,设置不同的转速设定值,观察电机的响应情况,如稳态误差和调速时间等。
5.优化系统性能:根据仿真结果,调整参数和控制策略,优化系统的调速性能,如减小稳态误差和调速时间。
三、结论:三相异步电动机变频调速系统是一种能够实现精确调速的调速方案。
通过合理设计和仿真验证,可以得到一个性能稳定、调速精度高的变频调速系统。
基于MATLAB的三相异步电动机的建模与仿真研究
《基于MATLAB的三相异步电动机的建模与仿真研究》工作特性,然后对基于基于MATLAB的三相异步电动机的建模与仿真进行了重点分析,以供广大读者参考。
【关键词】MATLAB 三相异步电动机建模仿真1 MATLAB简介MATLAB是矩阵实验室(Matrix Laboratory)的简称,可以为三相异步电动机提供数值计算能力、专业水平的符号计算功能、可视化建模和仿真等功能。
矩阵是MATLAB的基本数据单位,其指令表达形式类似于数学和工程中用到的,所以相比较C语言而言,MATLAB的结算问题能力更便捷。
目前的MATLAB包含了数百种以上的内部函数主包和三十多种工具包,后者又可以分为学科工具包和功能性工具包,从而实现处理可视化建模仿真、实时控制、文字处理等各项功能。
MATLAB还有着很强的开放性,其内部的主包和工具包都属于可读可修改文件,从而方便用户将源程序的修改加入到自己编写的程序中。
2 异步电动机基本原理和工作特性三相异步电动机主要由定子和转子构成,二者之间有一个比较小的空气隙。
当对称三相绕组接到对称三相电源以后,空气隙就可以建立同步转速和旋转磁场。
旋转磁场会切割转子导体,而后者就会产生感应电势,再加上转子绕组属于闭合状态,所以电流会从转子导体中通过。
电流和旋转磁场之间会产生电磁力,并作用于转子导体,其方向与旋转磁场方向保持一致。
异步电动机工作特性是指在额定电压和额定频率的情况下,电动机转速、定子电流、功率因数、电磁转矩等方面的关系。
首先从转速特性方面来看,在空载状态下,转子电流接近零,所以处于同步转速状态下,而随着负载的增加,转速会逐渐下降,因此转速特征是一条稍向下倾斜的曲线。
其次从定子电流特性方面来分析,如果处于空载状态下,定子电流就全部是励磁电流;并且随着负载的增加,定子电流也会增加。
最后从功率因数特性的方面来看,异步电动机的功率因数处于滞后状态,如果处于空载情况下,电动机的功能因素就比较低;随着负载的增加,电动机的功率因数也会提高,直到额定负载状态下会达到最大值。
基于MATLAB的异步电机仿真系统
基于MATLAB的异步电机仿真系统摘要:本文开展了对基于matlab的异步电机仿真系统的研究,主要介绍了异步电机的数学模型的构建,各个模块方程,坐标变换模型,坐标变换推导,异步电机各个子模块的构建,包括磁链生成模块,电流生成模块,运动方程模块,电磁转矩生成模块,旋转电动势子模块,在matlab中用simulink对上述模块经行仿真,为构建三相静止异步电机模型做好准备。
根据异步电机在两相同步旋转坐标系下的数学模型,利用simulink软件包中的基本模块,采用模块化方法给出异步电动机的多用仿真模型,并进行了仿真计算。
仿真结果表明电机不但具有良好的动、静态性能,而且只要简单地修改模型参数,便可以改变电机的类型,实现多用。
关键词:matlab,坐标变换,异步电机,仿真模型1.引言随着生产技术的不断发展,直流拖动的薄弱环节逐步显露出来。
近年来,交流电动机的控制技术取得了突破性的进展,提出对交流电机的转矩直接进行控制。
其突出的优点是:电机制造成本低,结构简单,维护容易,可以实现高压大功率及高速驱动,适宜在恶劣条件下工作,并能获得和直流电机控制系统相媲美或更好的控制性能。
但是交流电机是一个复杂的、多变量、强耦合的非线性系统,在设计交流调速系统时完全用解析法是相当复杂的也是行不通的。
构造实验系统进行分析研究是通常采用的办法,但由实验来分析研究,耗时长、投资大,且不便于分析系统的各种性能。
因此,采用数字仿真的方法是必要的。
通过matlab的simulink仿真环境建立异步电机模型,从而进行仿真,仿真方法简单,结果一致,仿真时间也大大缩短,是一种理想的异步电机仿真研究方法。
2. 异步电机的数学模型及坐标变换仿真模型2.1 三相静止坐标系的数学模型异步电机的数学模型是一种高阶、非线性、强耦合的多变量系统。
异步电机在三相静止坐标系的数学模型可用如下方程描述:电压方程为,其中是定子和转子相电压的瞬时值;是定子和转子相电流的瞬时值;是各相绕组的全磁链。
基于MATLAB的异步电动机调速系统设计与仿真 (修改稿)
电能是人们日常生产生活不或缺的能源,并且在生活被浪费最多的能源也是电能,因此,充分有效利用电能并节省电力尤为重要,隐藏着非常巨大的技术发展空间。立足于节省控制能量这一方面,节省电动机控制能量扮演了一个非常重要的角色。各种类型的电动机是电能主要的使用者和生产者,我国电动机的年耗电量占了工业用电总量的80%以上。在电动机的运行维护过程中,功率电动机控制的效率很低,并且在其使用的过程中严重地浪费了大量的功率。近年来,我国在电机节能控制方面的投资增加,就是因为有巨大的潜力存在于电机调速的市场。
关于评价交流调速技术的优劣,不同的需求有不同的标准。但普遍的共识是:(1)工作效率不能低;(2)调速平滑即无级调速;(3)调速范围要大;(4)调速产生的负面影响(如谐波、功率因数等)小;(5)成本不能太高。[10]
在对交流旋转速度的调整控制系统中,变频系统的调速技术是最佳且最稳定的交流旋转速度调整控制系统性能。对变频系统调速控制技术的开发与研究应用是目前在电机控制领域最有发展希望且实用的技术研究工作。用于控制交流频率的转换器完全可以是一整个的变频控制系统,频率变换行业的整个市场的发展潜力非常大。这里所说的"频率变换行业"不仅局限于交流频率变换器本身,还广泛地涵盖了与交流频率变换器系统控制技术密切相关的所有领域和行业。如交流速度的调整控制系统及系统控制、电力电子重要部件的控制系统驱动与安全保护、相关集成电路的批量生产与工业技术应用等。
电机实验仿真.
实验十、三相异步电动机仿真实验1、实验目的及要求本实验给出了三相笼型异步电动机的仿真实验示例,要求根据该范例设计三相绕线型异步电动机的仿真实验电路,并进行相关实验项目的测试。
2、实验设备MATLAB/Simulink仿真软件3、实验内容及操作步骤1. SIMULINK仿真模型建立(1)打开MATLAB软件,在软件的左上角找到Simulink模块单击打开。
(2)点击左上角new model,或从左上角File-New-Model中建立一个Simulink仿真文件,新建立的仿真文件名字默认为untitled。
(3)在Simulink模块里寻找需要模块的方法有2种,以单相电压源(AC Voltage Source)模块为例,可在左边libraries-SimpowerSystems-Electrical Sources中找,或在Enter search term里进行搜索,在搜索区输入AC Voltage Source模块拖入Simulink仿真文件,或右击AC Voltage Source模块Add to untitled。
在已经知道所要使用的模块时,使用直接搜索的方法更为快捷方便。
(4)连接各个模块,建立仿真模型。
2. 三相笼型异步电动机直接起动实验(1)建立仿真电路及模块参数设置根据Simulink仿真模型建立过程建立仿真模型。
鼠标双击各模块可以对模块的参数进行设置。
异步电机模块(Asynchronous Machine SI Units)。
由于选用了预选模型(Preset model)15,所以其他的参数不必设置。
示波器(scope)。
双击scope2,在弹出窗口中点击左上角按钮,弹出一个设置窗口,将Number of axes设置为2.单相电压源(AC Voltage Source)。
通过设置峰值电压参数(Peak amplitude)来改变输出电压值。
由于Ua、Ub、Uc相位互差120°,所以Ua、Ub、Uc相位(Phase)分别为0°、240°、120°。
matlab的三相异步电机 仿真实验
三相异步电机实验
院系:
班级:
姓名:
学号:
一、实验目的:
1.进一步的学习和了解MATLAB的功能;
2.三相异步电机的了解;
3.了解三相异步电动机直接启动的情况。
二、实验内容:
完成三相异步电机接额定电压直接启动情况下的动态仿真。
电机参数如下:,额定线电压380V,,
,定子电阻为3.478Ω,定子漏感为0.01254H,转子电阻为2.546Ω,转子漏感为0.01226H,励磁电感为0.3229H,转动惯量为0.0131,极对数为2。
三、实验过程:
1.搭建的电路实验图如下:
2.三相异步电机的具体参数截图如下:
三.仿真结果:
第一个示波器:三相异步电机定子启动电流
第二个示波器:电磁转矩
第三个示波器:转速
当异步电机直接接额定电压启动时,启动电流较大,最大电流峰值超过额定情况的5倍。
由于1s之前电机空载,所以当电机转速稳态时的空载同步转速为1500rpm,电磁转矩为0,空载电流有效值为2A。
当1s时突加额定转矩后,电流增大,电机转速降为额定转速,在稳态时电磁转矩仍然与负载转矩相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国石油大学胜利学院综合课程设计总结报告
题目:三相异步电机直接启动特性实验模型
学生姓名:潘伟鹏
系别:机械与电气工程系
专业年级: 2012级电气工程专业专升本2班
指导教师:王铭
2013年 6 月 27日
一、设计任务与要求
普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。
过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。
但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。
本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。
参考:
电力系统matlab仿真类书籍
电机类教材
二、方案设计与论证
三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。
由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。
它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。
三相异步电机电磁转矩的表达式为:
(1-1)式中——转矩常数
——每级下磁通
——转子功率因数
式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。
该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。
从三相异步电动机的转子等值电路可知,
(1-2)
(1-3)将式(1-2)、(1-3)代入(1-1)得:
(1-4)
一:我们做如下分析:
1.当s=0时,,M=0,说明电
动机的理想空载转速为同步转速。
2.当s很小时,有,
,说明电磁转矩T近似与s呈
线性关系,即随着M的增加,略有下降。
因而,类似直流电动机的机械特性,是一条下倾的直线。
3.当s很大时,有,,说明电磁转矩M近似与s成反比,
即M增加时n反而升高。
4.当s=1时,n=0,=常数,此即三相异步电机的启动转矩。
从上述可见,三相异步电动机的机械特性由两段组成:当s较小(n较高)时,n与M近似呈线性关系;当s较大(n较低)时,n随M增大而升高。
将两部分机械特性圆滑连接,既得三相异步电动机机械特性,如图1-1所示。
5.
由上述公式可得三相异步电动机直接起动时,起动电流较大,可达额定电流的 5~7 倍,同时会引起电网电压波动,该方法只适合于小容量轻负载的异步电
动机的起动。
二:异步电动机直接启动的电路图如图1-2:
M
n
图1-1 三相异步电动机机械特性
图1-2
三、电路设计与参数计算
MATLAB简介
八十年代以来,计算机仿真成为交流电机及其调速系统分析,研究和设计的有利工具。
应用计算机的仿真技术,我们可以用软件建立起电机及其传动、控制的仿真模型,再以这个模型在计算机内人为模拟的环境或条件下的运行研究,替代真实电机在实际场合下的运行实验,既可得到可靠的数据,又节约了研究的时间及费用。
MATLAB 语言具有以下特点:1功能强大、2界面友好、编程效率高3扩展性强
启动SIMULINK只需在MATLAB的命令窗口键人“SIMULNIK”命令,此时出现一个SIMULINK 窗口。
这个窗口包含7个模块库,它们分别是信号源模块库(sources)、输出模块库(Sinks)、离散模块库(Diserete)、线性模块库(Linear)、非线性模块库(Nonlinear)、连接与接口模块库(Connections)和扩展模块库(Extrax)。
1、仿真电路设计和参数
应用MatLab/simulink 建立三相异步电动机直接起动仿真模型如图1 所示。
主要包括三相异步电动机模块(Asynchronous Machine)、电源模块(Power Source)、选择器模块(Selector)和测量模块(Machinemeasurement)等。
其中,异步电机模块参数设置如下:Pn =110 KW,Un =400 V,fn =50 Hz, Un =1 487 r/min, 定子电阻Rs=0.02155Ω,定子电感Ls=0.000 226H,转
子电阻Rr=0.012 31Ω,转子电感Ls=0.000 226H,漏抗X1+X’2=0.254Ω,励磁互感L m=0.010
38H,转动惯量J=2.3kg·m,摩擦系数F=0.05421N·m·s,极对数p=2。
2、原理图(含仿真模块名称与型号)
图2三相异步电动机直接起动模型
3、元件清单
元件序号元件
符号
元件
型号
主要参数数量备注
1 U 3-Phase
Programmable
Voltage
Source
400v 1
2 M Asynchronous
Machine
SI Units
110kw 400v 1
3 V Voltage
Measurement
1
4 Constant 500 1
5 Machines
Measurement
Demux
1
6 Selector ia 2
7 Scope 2
8Gain 10
四、仿真过程与仿真结果
根据原件清单使用matalab6.5连线仿真结果如下
五、调试优化转子电流定子电流转速
机械转矩
(1)静态调试图如下,负载为零时。
转子电流
定子电流
转速
机械转矩(2)动态调试图,带负载运行时
转子电流
定子电流
转速
机械转矩
六、仿真正确性验证
(1)转子电流验证
带入上述已知参数,利用M语言程序画出如下的转速与转子电流特性图;
可得电流与转速的曲线关系Y/X(转子电流(A)/转速(r/min)):
由上图曲线变化可得知电流随转速的增加而下降,异步电动机直接起动电流达到额定电流的6--7倍,当转速达到1500r/min时电流大约为300A,经过验证所得结果与理论值相同。
(2)机械转矩验证
将电机参数和数据代入电磁转矩公式,利用M语言程序画出如下的转速与机械转矩特性图;
Y/X(转速/机械转矩)
由图可知电机刚启动时起动转矩能达到额定转矩的1.25倍以上,与仿真图相符。
七、结论与心得
经过两个个星期的学习与仿真,使我在整个电机设计过程中,学到了不少东西,更深一步掌握了MatLab在电机电路设计的原理,深入了解了我们专业的基础课程。
本次的实验目的是通过解决比较简单的实际问题,巩固和加深在《电机学》课程中所学的理论知识和实验技能。
训练学生综合运用学过的电机及拖动
基础知识,在教师指导下完成查找资料,选择、论证方案,科学实验,分析结果等工作,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力,为后续课程的学习、毕业设计和毕业后的工作打下一定的基础。
加强了理论知识与实践统一的能力,加强了自己动手操作的能力。
与此同时,也培养了我们的团队精神,有助于我们更快的适应社会,适应工作。
我相信通过这次课程设计会给我以后的学习生活中更大的帮助。
最后感谢在这次训练中给予我帮助的的老师和同学。
八、参考文献
[1] 顾绳谷.电机及拖动基础[M].4版.北京:机械工业出版社,2007
[2] 李维,matlab在电气中的应用.北京:中国电力出版社,2007
[3] 汤蕴缪.电机学[M].北京:机械工业出版社,2000.
[4] 刘启新,电机与拖动基础北京中国电力出版社,2007.2
[5] 唐孝镐.实心砖子异步电机及其应用.机械工业出版社,1991.3。