4.2黄金分割PPT课件
合集下载
4.2黄金分割课件使用版
越南
二
探索美
AC AB
AB AC BC 1、在图中,分别量出线段 、 、 的长度。
2、分别计算 3、
AC AB
与
BC AC
的值(精确到0. 1cm).
与
Bபைடு நூலகம் AC
相等吗?
A C B
黄
A
C
B
如图,点 C 把线段 AB 分成两条线段 AC 和 BC ,
如果
AC
AB
=
BC AC
(
长
全
短 长
)
AC2=AB
作法:
1、经过点B作BD⊥AB,使BD
1 2 AB .
2、连接AD,在DA上截取 DE=DB . 3、在AB上截取 AC=AE. 点C即为线段AB的黄金分割点.
思考:
1.如果设AB=2,那么 BD,AD,AC,BC分别等于多少 ? BD= 1 AD= 5 AC=
2.计算
AC AB
5 1
AC AB
这幅《蒙娜丽莎的 微笑》给了数以亿万计的 人们美的艺术享受,备受 推崇。意大利画家达芬奇 在创作中大量运用了黄金 矩形来构图。整个画面使 人觉得和谐自然,优雅安 宁。
找一找:画中有几个 黄金矩形?
建筑与黄金分割
文明古国埃及的 金字塔,形似方锥, 大小各异。但这些金 字塔底面的边长与高 这比都接近于0.618.
——以数学的视角感受美
一
发现美
摄影作品之美
你觉得哪张照片的构图最合理?更能体 现小松鼠若有所思的在凝视前方?
东方明珠塔, 塔高462.85米。 设计师将在 295米处设计 了一个上球体, 使平直单调的 塔身变得丰富 多彩,非常协 调、美观。
4.2黄金分割(公开课) 完整版课件PPT
法逐渐流行起来…。
观察 欣赏
应用 黄金分割
你知道芭蕾舞演员跳 舞时为什么要掂起脚 尖吗?
芭蕾舞演员的身段是苗条 的,但下半身与身高的比 值也只有0.58左右,演员 在表演时掂起脚尖,身高 就可以增加6-8cm.这时比 值就接近0.618了,给人以 更为优美的艺术形象.
∵ AC2 BC• AB ∴C点为AB的黄金分割点
∴BC= 15 5 5
试一试
应用 黄金分割
利用黄金分割求值:
问题3
A
B
DC
把窗台看成线段AB,现把原放置在窗台上点A处的一 盆花,移到该线段的黄金分割点上,若AB=2a米,试 计算这盆花移动后应离A点几米?
注意:一条线段有两个黄金分割点 分两种情况:
B
如图,点 C 把线段 AB 分成两条线段 AC 和 BC ,
如果 AC = BC
AB AC
或
AC2=AB ∙ BC
那么称线段 AB 被点 C 黄金分割(golden section), 点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比.
思考:黄金比是多少?
议一议
领悟 黄金分割
说一说
应用 黄金分割
判断黄金分割点:
作法:1、经过点B作BD⊥AB, 1
使BD=2 AB 2、连在接DAAD上, 截取 3、在ABD上E截=D取BAC=AE.
根据上述作图点C是线段AB的黄金分割点吗?
试一试
应用 黄金分割
判断黄金分割点:
作法:1、经过点B作BD⊥AB, 1
使BD=2 AB 2、连在接DAAD上, 截取
E
D
∟
A
CB
3、在ABD上E截=D取BAC=AE.
观察 欣赏
应用 黄金分割
你知道芭蕾舞演员跳 舞时为什么要掂起脚 尖吗?
芭蕾舞演员的身段是苗条 的,但下半身与身高的比 值也只有0.58左右,演员 在表演时掂起脚尖,身高 就可以增加6-8cm.这时比 值就接近0.618了,给人以 更为优美的艺术形象.
∵ AC2 BC• AB ∴C点为AB的黄金分割点
∴BC= 15 5 5
试一试
应用 黄金分割
利用黄金分割求值:
问题3
A
B
DC
把窗台看成线段AB,现把原放置在窗台上点A处的一 盆花,移到该线段的黄金分割点上,若AB=2a米,试 计算这盆花移动后应离A点几米?
注意:一条线段有两个黄金分割点 分两种情况:
B
如图,点 C 把线段 AB 分成两条线段 AC 和 BC ,
如果 AC = BC
AB AC
或
AC2=AB ∙ BC
那么称线段 AB 被点 C 黄金分割(golden section), 点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比.
思考:黄金比是多少?
议一议
领悟 黄金分割
说一说
应用 黄金分割
判断黄金分割点:
作法:1、经过点B作BD⊥AB, 1
使BD=2 AB 2、连在接DAAD上, 截取 3、在ABD上E截=D取BAC=AE.
根据上述作图点C是线段AB的黄金分割点吗?
试一试
应用 黄金分割
判断黄金分割点:
作法:1、经过点B作BD⊥AB, 1
使BD=2 AB 2、连在接DAAD上, 截取
E
D
∟
A
CB
3、在ABD上E截=D取BAC=AE.
《黄金分割与数学》课件
《黄金分割与数学》PPT 课件
学习黄金分割,领略数学之美。
概述
黄金分割的概念
介绍黄金分割的起源和基本概念,引出后续内 容。
黄金分割的历史背景
探索黄金分割在古代文化和艺术中的应用,展 示其在数学中的重要性。
黄金比例
定义和应用
解释黄金比例的概念和数学定义,并展示其在自然 界和艺术设计中的广泛应用。
计算方法
定义和应用
探索黄金矩形在建筑设计中的优雅和均衡性,以及 如何使用它来创造美丽的比例。
性质和特点
详细解释黄金矩形的数学特性,比较其与其他比例 的区别和优点。
黄金螺旋
ቤተ መጻሕፍቲ ባይዱ
1
定义和应用
介绍黄金螺旋在自然界和工程设计中的广泛应用,说明其与黄金比例的关系。
2
产生原理和计算方法
详细解释黄金螺旋的产生原理和如何使用黄金螺旋公式进行计算。
详细解释如何计算黄金比例,包括使用黄金数和黄 金比例公式。
黄金分割点
1
定义和应用
介绍黄金分割点的概念和在艺术设计中的重要性,以及如何运用它来创造平衡美 感。
2
互动演示
展示通过黄金分割点计算器演示如何准确计算黄金分割点。
3
实例分析
以著名艺术作品为例,解读黄金分割点在视觉设计中的应用和效果。
黄金矩形
结语
应用总结
总结黄金分割的应用领域,从建筑到艺术,从 设计到自然界,它无处不在。
未来前景
展望黄金分割在未来的应用前景,探讨其对数 学发展和创新的推动作用。
学习黄金分割,领略数学之美。
概述
黄金分割的概念
介绍黄金分割的起源和基本概念,引出后续内 容。
黄金分割的历史背景
探索黄金分割在古代文化和艺术中的应用,展 示其在数学中的重要性。
黄金比例
定义和应用
解释黄金比例的概念和数学定义,并展示其在自然 界和艺术设计中的广泛应用。
计算方法
定义和应用
探索黄金矩形在建筑设计中的优雅和均衡性,以及 如何使用它来创造美丽的比例。
性质和特点
详细解释黄金矩形的数学特性,比较其与其他比例 的区别和优点。
黄金螺旋
ቤተ መጻሕፍቲ ባይዱ
1
定义和应用
介绍黄金螺旋在自然界和工程设计中的广泛应用,说明其与黄金比例的关系。
2
产生原理和计算方法
详细解释黄金螺旋的产生原理和如何使用黄金螺旋公式进行计算。
详细解释如何计算黄金比例,包括使用黄金数和黄 金比例公式。
黄金分割点
1
定义和应用
介绍黄金分割点的概念和在艺术设计中的重要性,以及如何运用它来创造平衡美 感。
2
互动演示
展示通过黄金分割点计算器演示如何准确计算黄金分割点。
3
实例分析
以著名艺术作品为例,解读黄金分割点在视觉设计中的应用和效果。
黄金矩形
结语
应用总结
总结黄金分割的应用领域,从建筑到艺术,从 设计到自然界,它无处不在。
未来前景
展望黄金分割在未来的应用前景,探讨其对数 学发展和创新的推动作用。
《黄金分割》课件PPT
因为矩形ABCD相似于矩形 BCFE则
推证
A
E
B
BE BC BC=AE BE AE BC AB AE AB
→ AE²=AB×BE
D
BC BE 或 BC AB
F
C
因此,点E是AB的黄金分割点,
是黄金比
即宽与长的比是黄金比,这样的矩形称之 为黄金矩形。
方法总结 :
证黄金分割点即证
长² =全×短
长=
5 -1 2
全
短= 3 -
5全
●
2
Q
P N
M
如图,点P是线段MN的黄金分割点(MP>NP), (1)可得比例式
3- 5 5 -1 (2)若MN=1,则MP=____,NP=_____. 2 2
MP 等积式 ______, MP2=MN×PN MN
15 - 5 5 5 5 -5 (3)若MN=10,则MP=______,NP=______.
微笑》给了数以亿万计的 人们美的艺术享受。意大 利画家达芬奇在创作中大 量运用了黄金矩形来构图 。整个画面使人觉得和谐 自然,优雅安宁。
找一找:画中有几个 黄金矩形?
七 延伸美
科学研究表明,当人的下肢长与身高 之比为0.618时,看起来最美.某成年女 士身高为153cm,下肢长为92cm,她的高 跟鞋鞋跟最佳高度约为______cm(结果 精确到0.1cm).
AC BC 解:由, 得, AB AC
AC² =AB· BC
长 的值 全
A
x
1 -x
C B
设AB=1,AC=X,则BC=1-X ∴ X 2 1 (1 X ) 即:X2+X-1=0 解这个方程,得 所以,黄金比
推证
A
E
B
BE BC BC=AE BE AE BC AB AE AB
→ AE²=AB×BE
D
BC BE 或 BC AB
F
C
因此,点E是AB的黄金分割点,
是黄金比
即宽与长的比是黄金比,这样的矩形称之 为黄金矩形。
方法总结 :
证黄金分割点即证
长² =全×短
长=
5 -1 2
全
短= 3 -
5全
●
2
Q
P N
M
如图,点P是线段MN的黄金分割点(MP>NP), (1)可得比例式
3- 5 5 -1 (2)若MN=1,则MP=____,NP=_____. 2 2
MP 等积式 ______, MP2=MN×PN MN
15 - 5 5 5 5 -5 (3)若MN=10,则MP=______,NP=______.
微笑》给了数以亿万计的 人们美的艺术享受。意大 利画家达芬奇在创作中大 量运用了黄金矩形来构图 。整个画面使人觉得和谐 自然,优雅安宁。
找一找:画中有几个 黄金矩形?
七 延伸美
科学研究表明,当人的下肢长与身高 之比为0.618时,看起来最美.某成年女 士身高为153cm,下肢长为92cm,她的高 跟鞋鞋跟最佳高度约为______cm(结果 精确到0.1cm).
AC BC 解:由, 得, AB AC
AC² =AB· BC
长 的值 全
A
x
1 -x
C B
设AB=1,AC=X,则BC=1-X ∴ X 2 1 (1 X ) 即:X2+X-1=0 解这个方程,得 所以,黄金比
4.2黄金分割课件
D
五角星给人庄严、雄健、和谐之美.
心动 不如行动
自己找出 黄金分割点
• 如图,已知线段AB按 照如下方法作图:
1.经过点B作BD⊥AB,使
BD = 1 AB.
2.连接AD2,在AD上截 取DE=DB.
3.在AB上截取AC=AE.
思考:1.如果设AB=2,那么BD,AD,AC,BC分别等于多少?
2.计算 AC, BC
那么我们可以惊奇地发现, BC = AB 。点E是AB的
BE
BC
黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗?
1.知道了什么是黄金分割、黄金比、黄金 矩形、奇妙的0.618
2.了解了自然界及社会生活中广泛存在 的黄金分割现象. 3.会运用黄金分割知识解决简单的计算和 作图问题.
AB AC
3.点C是线段AB的黄金分割点吗?
B C
A
好好算算哦!
我的净身高158厘米,下半身95厘米, 我应该选择多高的高跟鞋看起来更 美呢?
蝴蝶身长与双翅展开后的长度之比, 以及普通树叶的宽与长之比也接近 于0.618。
文明古国埃及的金字塔,形似方锥, 大小各异。但这些金字塔底面的边 长与高之比都接近于0.618.
著名画家达•芬奇的蒙娜丽莎构图就完美的体现了 黄金分割在油画艺术上的应用。通过上面两幅图 片可以看出来,蒙娜丽莎的头和两肩在整幅画面 中都完美的体现了黄金分割,使得这幅油画看起 来是那么的和谐和完美.
巴台农神庙
A
E
B
D
F
C
如果把图中用虚线表示的矩形画成如图所示的矩形
ABCD,以矩形ABCD的宽为边在其内部作正方形AEFቤተ መጻሕፍቲ ባይዱ,
AC 与 BC 有什么关系? AB AC
五角星给人庄严、雄健、和谐之美.
心动 不如行动
自己找出 黄金分割点
• 如图,已知线段AB按 照如下方法作图:
1.经过点B作BD⊥AB,使
BD = 1 AB.
2.连接AD2,在AD上截 取DE=DB.
3.在AB上截取AC=AE.
思考:1.如果设AB=2,那么BD,AD,AC,BC分别等于多少?
2.计算 AC, BC
那么我们可以惊奇地发现, BC = AB 。点E是AB的
BE
BC
黄金分割点吗?矩形ABCD的宽与长的比是黄金比吗?
1.知道了什么是黄金分割、黄金比、黄金 矩形、奇妙的0.618
2.了解了自然界及社会生活中广泛存在 的黄金分割现象. 3.会运用黄金分割知识解决简单的计算和 作图问题.
AB AC
3.点C是线段AB的黄金分割点吗?
B C
A
好好算算哦!
我的净身高158厘米,下半身95厘米, 我应该选择多高的高跟鞋看起来更 美呢?
蝴蝶身长与双翅展开后的长度之比, 以及普通树叶的宽与长之比也接近 于0.618。
文明古国埃及的金字塔,形似方锥, 大小各异。但这些金字塔底面的边 长与高之比都接近于0.618.
著名画家达•芬奇的蒙娜丽莎构图就完美的体现了 黄金分割在油画艺术上的应用。通过上面两幅图 片可以看出来,蒙娜丽莎的头和两肩在整幅画面 中都完美的体现了黄金分割,使得这幅油画看起 来是那么的和谐和完美.
巴台农神庙
A
E
B
D
F
C
如果把图中用虚线表示的矩形画成如图所示的矩形
ABCD,以矩形ABCD的宽为边在其内部作正方形AEFቤተ መጻሕፍቲ ባይዱ,
AC 与 BC 有什么关系? AB AC
北师大版4.2_黄金分割课件
黄金身材比例
人 体肚 脐 不 但是 黄 金 点美 化身型,有时还是医疗效果黄 金点,许多民间名医在肚脐上 贴药治好了某些疾病。人体最 感舒适的温度是23℃(体温), 也是正常人体温(37℃)的黄 金点(23=37×0.618)。这说 明医学与0.618有千丝万缕联系 ,尚待开拓研究。人体还有几个 黄金点:肚脐上部分的黄金点 在咽喉,肚脐以下部分的黄金 点在膝盖,上肢的黄金点在肘 关节。上肢与下肢长文明古国埃及的金字塔,形似方锥,大小各异。 但这些金字塔底面的边长与高这比都接近于0.618.
读一读
耐人寻味的0.618
打开地图,你就会发现那些好茶产地 大多位于北纬30度左右。特别是红茶中的 极品“祁红”,产地在安徽的祁门,也恰 好在此纬度上。这不免让人联想起许多与 北纬30度有关的地方。奇石异峰,名川秀 水的黄山,庐山,九寨沟等等。衔远山, 吞长江的中国三大淡水湖也恰好在这黄金 分割的纬度上。
正五角星形,有庄严雄健之美.
A
C
B
度量C到点A、B的距离,
AC AB
与
BC AC
相等吗?
A
C B
A C B
如图,点 C 把线段 AB 分成两条线段 AC 和 BC ,
如果
AC
AB
=
BC AC
AC = BC
AB AC
AC2=AB
∙ BC
那么称线段 AB 被点 C 黄金分割(golden 点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的比叫做黄金比.
实际 应用
知识的升华
1.据有关测定,当气温处于人体正常体温的黄金 比值时,人体感到最舒适。因此夏天使用空调时 室内温度调到什么温度最适合。 2.在人体下半身与身高的比例上,越接近0.618, 越给人美感,遗憾的是,即使是身体修长的芭蕾 舞演员也达不到如此的完美。某女士身高1.68米, 下半身1.02米,她应该选择多高的高跟鞋看起来 更美呢?
(公开课)4.2黄金分割课件
当植物的枝干的夹角 137°28′时,通风和采光 能达到最好效果
137 28 ≈0.618 360 137 28
2021/6/21
14
叶子中的黄金分割
图中主叶 脉与叶柄 和主叶脉 的长度之 和比约为 0.618
2021/6/21
15
动物中的黄金分割
2021/6/21Fra bibliotek16打开地图,你就会发现那些好茶产 地大多位于北纬30度左右。特别是 红茶中的极品“祁红”,产地在安 徽的祁门,也恰好在此纬线上。这 不免让人联想起许多与北纬30度有 关的地方。奇石异峰,名川秀水的 黄山,庐山,九寨沟,中国三大淡 水湖等等也恰好在这黄金分割的纬 度线上。
2021/6/21
26
美术与黄金分割
著名油画《蒙娜丽莎》的构 图就完美的体现了黄金分割 在油画艺术上的应用.蒙娜 丽莎的头和两肩在整幅画面 中都完美的体现了黄金分割, 使得这幅油画看起来是那么 的和谐和完美.
A
D
F
E
达·芬奇的
《蒙娜丽莎》
B
C
2021/6/21
27
世界艺术珍品——维纳 斯女,神她是西元前一 百多年希腊雕塑鼎盛时 期的代表作,她的上半 身和下半身的比值接近 0.618.
共鸣箱的一个端点
正好是整个琴身的
黄金分割点。
C
2021/6/21
25
AE AB
=
BE AE
。
在现在生活中,黄金比例也一直被使用着,
例如国旗、明信片、报纸、邮票,我们常接触
的书本、报纸、杂志、门窗、橱柜、书桌、电
影银幕、电视屏幕等等,以及许多家用器物,
其长宽之比均接近黃金比。据统计黄金比也是
八年级数学下册《4.2黄金分割》课件-北师大版
4.2黄金分割 05.3.MPG.MPG
巴台农神庙 胡夫金字塔 巴黎圣母院
维纳斯
活动一:探索身边的”黄金分割”
为什么翩翩起舞 的芭蕾舞演员要掂 起脚尖? 为什么身 材苗条的时装模特 还要穿高跟鞋?为什 么她们会给人感到 和谐、平衡、舒适, 美的感觉?
黄金身材比例
活动一:探索身边的”黄金分割”
2.进一步理解线段的比、成比例线 段等相关内容。
3.通过作图找到一条线段的黄金 分割点,并利用已学知识给予了 说明。
1. p113习题4.3/1.2. 2.预习 p114-117 做、练 。
§4.2 黄金分割
学习目标:
1.知道黄金分割的定义.
2.会找一条线段的黄金分割点.
3.会判断某一点是否为一条线段的黄金 分割点.
自学指导:看课本109-111页内容,思考并解决 下列问题。 1、什么叫做黄金分割,黄金比例? 2、做一做中的点c是黄金分割点吗?如何找到一 条线段的黄金分割点? 3、黄金比例的比的关系有什么特点?
A
DC
B
如图,乐器上的一根弦AB=80cm,两 个端点A,B固定在乐器板面上,支撑点 C是靠近点B的黄金分割点,支撑点D是 靠近点A的黄金分割点.试确定支撑点C到 端点B的距离以及支撑点D到端点A的距 离。
A
D
C
B
矩形的宽与长的比为0.618, 这样的矩形称之为黄金矩形.
请欣赏古建筑巴特农神庙中 的黄金矩形.
A
CB
如图,点C把线段AB分成两条线段AC
和BC,如果 AC BC ,那么称线段AB AB AC
被点C黄金分割,点C叫做线段AB的黄
金分割点,AC与AB的比叫做黄金比.
A
C
黄金分割课件
• 人体比例
人体的某些部分之间的比例接近黄金分割率,如人的身高与肚脐到脚底的距离之间的比例 约为0.618。
• 疾病诊断
在某些疾病诊断中,医生会使用黄金分割理论来评估患者的生理指标是否处于正常范围内 。例如,糖尿病患者的血糖水平是否处于30%:70%的比例关系。
06
黄金分割的未来展望与发 展趋势
黄金分割的深入研究与应用拓展
04
黄金分割在自然界中的应 用
植物生长中的黄金分割
01
02
总结词:自然界中,许 多植物的生长比例都符 合黄金分割的规律,这 种比例能使得植物生长 得更加健康和美丽。
详细描述
03
04
05
1. 植物的分支和干径比 :许多植物的分支和干 径之间的比例符合黄金 分割,这样的比例使得 植物能够更好地传递养 分和水分,促进植物的 生长。
黄金分割作为数学的一个重要分支,与物理学、化学、生物学等学科的交叉研究将有助于深入理解其 原理和应用。
艺术与科学的交融
黄金分割在艺术领域的应用也将进一步探索其与科学技术的结合点,推动艺术与科学的深度融合。
黄金分割在人工智能与大数据时代的创新应用
人工智能
人工智能在处理大数据和模式识别等问 题上具有优势,结合黄金分割将有助于 提高解决问题的效率和精度。
图像处理与设计
在计算机图形学和设计中, 黄金分割被广泛应用于图像
处理和设计元素的布局。
• 网格系统
使用黄金分割网格系统可以 创建具有视觉吸引力和平衡
感的图像和界面设计。
• 艺术与插图
黄金分割在艺术和插图中也很受欢迎,因 为它可以帮助设计师在画面中实现自然、 和谐的布局和比例。
数据结构与算法
在计算机科学中,黄金分割也出现在一些 数据结构和算法的设计中。
人体的某些部分之间的比例接近黄金分割率,如人的身高与肚脐到脚底的距离之间的比例 约为0.618。
• 疾病诊断
在某些疾病诊断中,医生会使用黄金分割理论来评估患者的生理指标是否处于正常范围内 。例如,糖尿病患者的血糖水平是否处于30%:70%的比例关系。
06
黄金分割的未来展望与发 展趋势
黄金分割的深入研究与应用拓展
04
黄金分割在自然界中的应 用
植物生长中的黄金分割
01
02
总结词:自然界中,许 多植物的生长比例都符 合黄金分割的规律,这 种比例能使得植物生长 得更加健康和美丽。
详细描述
03
04
05
1. 植物的分支和干径比 :许多植物的分支和干 径之间的比例符合黄金 分割,这样的比例使得 植物能够更好地传递养 分和水分,促进植物的 生长。
黄金分割作为数学的一个重要分支,与物理学、化学、生物学等学科的交叉研究将有助于深入理解其 原理和应用。
艺术与科学的交融
黄金分割在艺术领域的应用也将进一步探索其与科学技术的结合点,推动艺术与科学的深度融合。
黄金分割在人工智能与大数据时代的创新应用
人工智能
人工智能在处理大数据和模式识别等问 题上具有优势,结合黄金分割将有助于 提高解决问题的效率和精度。
图像处理与设计
在计算机图形学和设计中, 黄金分割被广泛应用于图像
处理和设计元素的布局。
• 网格系统
使用黄金分割网格系统可以 创建具有视觉吸引力和平衡
感的图像和界面设计。
• 艺术与插图
黄金分割在艺术和插图中也很受欢迎,因 为它可以帮助设计师在画面中实现自然、 和谐的布局和比例。
数据结构与算法
在计算机科学中,黄金分割也出现在一些 数据结构和算法的设计中。
4.2黄金分割Microsoft PowerPoint 演示文稿
知识&回顾 ☞ 1.如果ab=cd,那么下列各式成立的是( B ) a c b c A. B. b d d a a b d a C. c d D. c b 6 . 2.若x是4和9的比例中项,则x的值为 ± a a+b = 3 3.若 = 2 ,则 . b b 4.判断对错: a c a c 如果 = (a + b 构0,c + d 0), 那么 = (1)
BD = 1
AD =
5
AC =
5 - 1 BC = 3 - 5
●
(2)计算 AC BC , 的值. AC2, AB BC的值. AB AC AC 5 1 BC 5 1 , AB 2 AC 2 (3)点C是线段AB的黄金分割点吗?为什么?
AC BC 2 = (AC = AB • BC) 是.因为通过计算发现 AB AC
A D
C
B
40 3 - 5)cm (
实际应用
3.如图,电视节目主持人在主持节目时, 站在舞台的黄金分割点处最自然得体, 若舞台AB长为20m,试计算主持人应走到 离A点至少多少m处是比较得体的位置? (结果精确到0.1m) 7.6m
实际 应用
468
?
4.上海东方明珠电视 塔高468m,上球体是塔 身的黄金分割点,它到 塔底部的距离大约是 多少米(精确到0.1m)? 468×0.618≈289.2m
E
B
F
C
BC AB AE AB 解 : 1 Q , BC AE , ,点E是AB的黄金分割点; BE BC BE AE
BC AB 2 .Q , 矩形ABCD的宽与长的比是黄金比, BE BC 这时的矩形ABCD称黄金矩形.
如图,设AB是已知线段,在AB上作正方形 ABCD ;取AD的中点E,连接EB ; 延长DA至F,使EF=EB ; 以线段AF为边作正方形AFGH .点H就是AB的黄金分割点 . 任意作一条线段,用上述方法作出这条线段的黄金分 G F 割点,你能说说这种方法的道理吗?
黄金分割理论课件
黄金分割在室内设计中的应用
空间布局
装饰元素
黄金分割与美学
总结词
详细描述
黄金分割与人类认知
总结词
详细描述
黄金分割与宇宙奥秘
总结词
黄金分割与宇宙的关联
VS
详细描述
在自然界和宇宙中,黄金分割的规律广泛 存在。从微观粒子到宏观星系,黄金分割 都扮演着重要的角色,揭示着宇宙的奥秘 和规律。
• 黄金分割理论概述 • 黄金分割的数学原理
黄金分割的定 义
黄金分割
是一种比例关系,即将一条线段分割成两部分,使得较长部分与整体的比值等于 较短部分与较长部分的比值,其比值为1:1.618。
黄金分割的数学表达式
假设线段AB的长度为a,点C将线段AB分割为AC和CB,其中AC/AB = CB/AC, 则有AC = (1/2) * (1 + 1.618) * a = 0.618 * a。
黄金分割的应用领域
艺术领域
、 。
建筑领域
摄影领域 其他领域
黄金分割的几何意 义
黄金分割的几何意义在于它揭示了长度的最优分割比例。在一条线段上,如果较长部分与较短部分之比等于整条线段与较长 部分之比,即长段与短段的比值等于全长与长段的比值,那么这个比值约为1.618,被称为黄金分割比。
在自然界和人类创造物中,黄金分割比广泛存在。例如,许多植物的叶片和花瓣、动物的身体比例以及许多艺术作品和建筑 都遵循黄金分割的比例,给人以美的感受。
黄金分割与斐波那契数列
黄金分割与分形几何
黄金分割在绘画中的应用
黄金分割在建筑中的应用
总结词 详细描述 总结词
详细描述 总结词 详细描述
黄金分割在音乐中的应用
总结词
黄金分割优秀课件
不要强制使用黄金比例
有些场景不适用黄金分割规则,比如某些图表数据,需要根据内容合理使用黄金比例。
结论和总结
本次PPT详细阐述了黄金比例的定义与原理、应用、与课件PPT设计的关系、 常见误区及注意事项。希望可以帮助到您更好地设计出优秀的课件PPT,为 学习者提供更好的视觉体验和学习效果。
黄金线段与比值
黄金线段是一条平分长方形 的线段,它的比例是1:1.618。
黄金四边形
黄金四边形是一个特殊的矩 形,它的长、宽比例等于黄 金比例。
黄金螺旋线
黄金螺旋线是在一个黄金矩 形内画出的每个正方形的对 角线所组成的一条螺旋线。
黄金分割在设计中的应用
黄金分割在设计中的应用非常广泛,包括商标设计、网站设计、海报、装饰等等。在这些应用中,黄金分割比 例可以提高视觉美感和平衡感。
黄金分割优秀课件PPT
黄金分割是一个神奇的数学概念,它在建筑和设计中已经被广泛运用。这个 PPT将介绍如何使用黄金分割来制作精美的课件PPT。
黄金分割的定义与原理
黄金分割是一种比例关系,其比值约为1:1.618。它在数学、自然界和艺术中都有广泛应用。黄金分割的原理 是通过一条线段、两个长度的比值,使小比例与大比例的和等于全长与大比例的比例。
1
黄金分割
使用黄金分割能够使课件内容更加好看,
课件思路
2
满足视觉观感,并让学习者更专注。
明确课件的目标,着重突出重点,而不
是只关注某些细节。
3
重点区分
为了使学习者更快地理解复杂信息,请 在PPT中使用醒目的区分重点。
黄金分割在优秀课件PPT中的应用实例
以下是一些黄金比例被用于设计优秀课件PPT的实例。
提高视觉让学习者更 专注
有些场景不适用黄金分割规则,比如某些图表数据,需要根据内容合理使用黄金比例。
结论和总结
本次PPT详细阐述了黄金比例的定义与原理、应用、与课件PPT设计的关系、 常见误区及注意事项。希望可以帮助到您更好地设计出优秀的课件PPT,为 学习者提供更好的视觉体验和学习效果。
黄金线段与比值
黄金线段是一条平分长方形 的线段,它的比例是1:1.618。
黄金四边形
黄金四边形是一个特殊的矩 形,它的长、宽比例等于黄 金比例。
黄金螺旋线
黄金螺旋线是在一个黄金矩 形内画出的每个正方形的对 角线所组成的一条螺旋线。
黄金分割在设计中的应用
黄金分割在设计中的应用非常广泛,包括商标设计、网站设计、海报、装饰等等。在这些应用中,黄金分割比 例可以提高视觉美感和平衡感。
黄金分割优秀课件PPT
黄金分割是一个神奇的数学概念,它在建筑和设计中已经被广泛运用。这个 PPT将介绍如何使用黄金分割来制作精美的课件PPT。
黄金分割的定义与原理
黄金分割是一种比例关系,其比值约为1:1.618。它在数学、自然界和艺术中都有广泛应用。黄金分割的原理 是通过一条线段、两个长度的比值,使小比例与大比例的和等于全长与大比例的比例。
1
黄金分割
使用黄金分割能够使课件内容更加好看,
课件思路
2
满足视觉观感,并让学习者更专注。
明确课件的目标,着重突出重点,而不
是只关注某些细节。
3
重点区分
为了使学习者更快地理解复杂信息,请 在PPT中使用醒目的区分重点。
黄金分割在优秀课件PPT中的应用实例
以下是一些黄金比例被用于设计优秀课件PPT的实例。
提高视觉让学习者更 专注
《黄金分割与数学》课件
1.B 在代数中,黄金分割常被用于解决一些与
比例、分式和不等式相关的问题。
1.C 黄金分割还可以用于研究函数的性质和图像 ,以及解决一些代数方程和不等式的问题。
1.D 黄金分割在代数中的应用,有助于我们更好
地理解数学中的比例和分式问题,以及它们 在解决实际问题中的应用。
黄金分割在微积分中的应用
微积分是数学中的一门基础学 科,黄金分割在微积分中也具
有广泛的应用。
在微积分中,黄金分割被用于 研究函数的极值、曲线的长度
和面积等问题。
黄金分割还可以用于解决一些 与积分和微分相关的问题,以 及研究函数的性质和图像。
黄金分割在微积分中的应用, 有助于我们更好地理解数学中 的连续性和可微性问题,以及 它们在实际问题中的应用。
黄金分割的数学模型
03
黄金分割的几何模型
01
黄金分割的几何定义
黄金分割是一种比例关系,其中较长的线段是较短线段 与整个线段的比例等于较长线段与较长线段之和的比例 。
02
黄金分割的应用
黄金分割在自然界和艺术中广泛存在,如植物生长、建 筑设计、音乐和绘画等领域。
03
黄金分割的几何证明
通过构造相似三角形和利用相似三角形的性质,可以证 明黄金分割的正确性。
05 黄金分割的历史与发展
黄金分割的历史背景
1 2
古希腊数学家发现黄金分割
黄金分割的起源可以追溯到古希腊时期,数学家 们通过研究发现了黄金分割的美学原理。
中世纪欧洲的黄金分割研究
在中世纪欧洲,艺术家和数学家开始将黄金分割 应用于艺术和建筑中,创造出了许多经典作品。
3
文艺复兴时期的黄金分割
文艺复兴时期,艺术家们重新发掘了黄金分割的 价值,并将其广泛应用于绘画、雕塑和建筑等领 域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年10月2日
20
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
21
AC AB
和
BC AC
的值分别是
多少? 它们相等吗?(保留一位有效数字)
(3)结合图形观察比例式 有什么特点?
= AC BC
AB AC
2020年10月2日
7
●
●●
●
A
DC
B
如图,点 C 把线段 AB 分成两条线段
AC 和 BC ,
如果
AC AB
=
BC AC
(全长
短 长
)
那么称线段 AB 被点 C 黄金分割
2020年10月2日
找一找:画中有几个 黄金矩形?
15
叶子中的黄金分割
图中主叶 脉与叶柄 和主叶脉 的长度之 和比约为 0.618
2020年10月2日
16
美丽的蝴蝶
0.618随处 可见!
2020年10月2日
17
人与黄金分割
人体肚脐不但是黄金点美化
身型,有时还是医疗效果黄金点,
许多民间名医在肚脐上贴药治好
形AEFD,那么我们可以惊奇
地发现
BC BE
AB BC
。
D
1.点E是AB的黄金分割点吗?
EB
F
C
2.矩形ABCD宽与长的比是黄金比吗?
2020年10月2日
12
1.点E是AB的黄金分割点吗?
2.矩形ABCD宽与长的比是黄金比吗?
A
推证
BC BE
ABBC=AE BC
AE BE
AB AE
AABE
BE AE
2020年10月2日
2
一 发现美
摄影作品之美
你觉得哪张照片的构图
最合理?更能体现小松鼠
若有所思的在凝视前方?
2020年10月2日
3
2020年10月2日
4
2020年10月2日
5
古巴
智利
2020年10月2日
越南
土耳其
中国
苏里南
6
二 探索美 A C B
(1)测量五角星上C点到A、 B点的距离。
(2)请你再计算一下
D
E
B
F
C
因此,点E是AB的黄金分割点,AABE
(
BC AB
)是黄金比
即宽与长的比是黄金比,这样的矩形称之
为黄金矩形。 2020年10月2日
13
方法总结 :
证黄金分割点即证
长短 全长
5 1 2
2020年10月2日
14
五 欣赏美
黄金矩形的“迷人面容”----蒙娜
丽莎的微笑。
这幅《蒙娜丽莎的 微笑》给了数以亿万计的 人们美的艺术享受,备受 推崇。意大利画家达芬奇 在创作中大量运用了黄金 矩形来构图。整个画面使 人觉得和谐自然,优雅安 宁。
了某些疾病。人体最感舒适的温
度是23℃(体温),也是正常人体
温 ( 37℃ ) 的 黄 金 点
( 23=37×0.618 ) 。 这 说 明 医
学与0.618有千丝万缕联系,尚待
开拓研究。人体还有几个黄金点:
肚脐上部分的黄金点在咽喉,肚
脐以下部分的黄金点在膝盖,上
肢的黄金点在肘关节。上肢与下
肢长202度0年1之0月2比日 均近似0.618.
——以数学的视角感受美
2020年10月2日
1
教学目标:
1.什么是黄金分割和黄金矩形,如
何去确定黄金分割点或黄金比。 2.在实际操作过程中增强学生的实
践意识和自信心。 3.通过建筑、艺术上的实例了解黄
金分割,体会其中的文化价值。
重点:找黄金分割点和判断一个点是 否是线段的黄金分割点。
难点:了解黄金分割的意义并会运用。
求作其黄金分割点.
作法:
1、经过点B作
BD⊥AB,
使B
D
1 2
A
B
.
2、连接AD,在DA上截取 DE=DB .
3、在AB上截取 AC=AE.
2020年点10月2C日即为线段AB的黄金分割点.
Байду номын сангаас
11
四 应用美
这是古希腊的巴台农神庙,
如果把图中用蓝线表示的矩
形画成矩形ABCD,并以矩形
ABCD的宽为边在内部作正方 A
(golden section),点 C 叫做线段 AB 的
黄金分割点, AC 与 AB 的比叫做黄金比.
A:C A B51:10.61:18
2020年10月2日
2
8
幸运闯关
M
P
N
如图,点P是线段MN的黄金分割点(MP>NP),
(1)可得比例式 MMNP_PM_NP __NM_PP__MM,NP __._
18
六 留住美
谈谈你对黄金分割的收获与体会。
1.一条线段,一个矩形
2.两个分点,两个数字
3.三个等量,三步作出线段的黄金分 割点
4.美中有数学,数学中有美
2020年10月2日
19
七 延伸美
科学研究表明,当人的下肢长与身高 之比为0.618时,看起来最美.某成年女 士身高为153cm,下肢长为92cm,她的高 跟鞋鞋跟最佳高度约为______cm(结果 精确到0.1cm).
(1)若AB=2,BD=1,则AD=__5__,AC=__5___1_,
AC AB
5 2
1
则C是线段AB的_黄__金__分__割_点.
(2)若AB=2a,BD=a 则C点呢?
AC
若A BBD
2020年10月2日
__12__A_B
则C即为AB的黄金分割点.
10
用尺规作图找出黄金分割点
如图,已知线段AB,
(2)若MN=1,则MP≈_0_._6_1_8,NP≈_0_._3_8_2.
(3)若MN=5,则MP≈__3_._0_9_,NP≈__1_._9_1_.
(4)若MN=a,则MP≈0_._6_1_8_a_,NP≈_0_._3_8_2_a.
2020年10月2日
9
三 创造美
E
D
∟
如图,已知线段AB,DB⊥AB A C B 于B,在DA上截取DE=DB,在AB上截取AC=AE,