苏教版高中数学必修1导学案:1.2 子集、全集、补集
苏教版高中数学必修一子集、全集、补集教案(1)(1)
1.2子集、全集、补集(1)教学目标:1.使学生进一步理解集合的含义,了解集合之间的包含关系,理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系,能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境1.情境.将下列用描述法表示的集合改为用列举法表示:A={x|x2≤0},B={ x|x=(-1)n+(-1)n+1,n∈Z};C={ x|x2-x-2=0},D={ x|-1≤x≤2,x∈Z}2.问题.集合A与B有什么关系?集合C与D有什么关系?二、学生活动1.列举出与C与D之间具有相类似关系的两个集合;2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定.三、数学建构1.子集的含义:一般地,如果集合A的任一个元素都是集合B的元素,(即若a ∈A 则a ∈B ),则称集合A 为集合B 的子集,记为A ⊆B 或B ⊇A .读作集合A 包含于集合B 或集合B 包含集合A .用数学符号表示为:若a ∈A 都有a ∈B ,则有A ⊆B 或B ⊇A .(1)注意子集的符号与元素与集合之间的关系符号的区别: 元素与集合的关系及符号表示:属于∈,不属于∉;集合与集合的关系及符号表示:包含于⊆. (2)注意关于子集的一个规定:规定空集∅是任何集合的子集.理解规定 的合理性.(3)思考:A ⊆B 和B ⊆A 能否同时成立?(4)集合A 与A 之间是否有子集关系?2.真子集的定义:(1)A ⊆B 包含两层含义:即A =B 或A 是B 的真子集.(2)真子集的wenn 图表示(3)A =B 的判定(4)A 是B 的真子集的判定四、数学运用例1 (1)写出集合{a ,b }的所有子集;(2)写出集合{1,2,3}的所有子集;{1,3}⊂≠{1,2,3},{3}⊂≠{1,2,3},小结:对于一个有限集而言,写出它的子集时,每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n 个时,子集的个数为2n .例2 写出N ,Z ,Q ,R 的包含关系,并用Venn 图表示.例3 设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠∅,B ⊆A ,求a ,b 的值.小结:集合中的分类讨论.练习:1.用适当的符号填空.(1)a _{a };(2)d _{a ,b ,c }; (3){a }_{a ,b ,c }; (4){a ,b }_{b ,a };元素与集合是个体与群体的关系,群体是由个体组成;子集是小集体与大集体的关系.(5){3,5}_{1,3,5,7};(6){2,4,6,8}_{2,8};(7)∅_{1,2,3},(8){x|-1<x<4}__{x|x-5<0} 2.写出满足条件{a}⊆MÜ{a,b,c,d}的集合M.3.已知集合P = {x | x2+x-6=0},集合Q = {x | ax+1=0},满足QÜP,求a 所取的一切值.4.已知集合A={x|x=k+12,k∈Z},集合B={x|x=2k+1,k∈Z},集合C={x|x=12k+,k∈Z},试判断集合A、B、C的关系.五、回顾小结1.子集、真子集及对概念的理解;2.会用Venn图示及数轴来解决集合问题.六、作业教材P10-1,2,5.。
苏教版高中数学必修一子集、全集、补集教案二
1.2 子集、全集、补集(2)教学目标:1.使学生进一步理解集合及子集的意义,了解全集、补集的概念;2.能在给定的全集及其一个子集的基础上,求该子集的补集;3.培养学生利用数学知识将日常问题数学化,培养学生观察、分析、归纳等能力.教学重点:补集的含义及求法.教学重点:补集性质的理解.教学过程:一、问题情境1. 情境.(1)复习子集的概念;(2)说出集合{1,2,3}的所有子集.2.问题.相对于集合{1,2,3}而言,集合{1}与集合{2,3}有何关系呢?二、学生活动1.分析、归纳出全集与补集的概念;2.列举生活中全集与补集的实例.三、数学建构1.补集的概念:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为S ðA (读作“A 在S 中的补集”),即S ðA ={ x |x ∈S ,且x ∉A },S ðA 可用右图表示.2.全集的含义:如果集合S 包含我们研究的各个集合,这时S 可以看作一个全集,全集通常记作U .3.常用数集的记法:自然数集N ,正整数集N*,整数集Z ,有理数集Q ,实数集R .则无理数集可表示为R ðQ .四、数学运用1.例题.例1 已知全集S =Z ,集合A ={x |x =2k , k ∈Z},B ={ x |x =2k +1,k ∈Z},分别写出集合A ,B 的补集∁S A 和∁S B .例2不等式组⎩⎪⎨⎪⎧2x -1>13x -6≤0的解集为A ,S =R ,试求A 及S ðA ,并把它们表示在数轴上.例3 已知全集S ={1,2,3,4,5},A ={ x ∈S |x 2-5qx +4=0}.(1)若S ðA =S ,求q 的取值范围;(2)若S ðA 中有四个元素,求S ðA 和q 的值;(3)若A 中仅有两个元素,求S ðA 和q 的值.2.练习:(1)S ðA 在S 中的补集等于什么?即S ð(S ðA )= .(2)若S =Z ,A ={ x |x =2k ,k ∈Z},B ={ x |x =2k +1,k ∈Z},则S ðA = ,S ðB = .(3)S ð∅= ,S ðS = .五、回顾小结1.全集与补集的概念;2.任一集合对于全集而言,其任意子集与其补集一一对应.六、作业教材第10页练习3,4.。
高中数学 第一章 集合 1.2 子集、全集、补集 1.2.1 子集课堂导学案 苏教版必修1
1.2.1 子集课堂导学三点剖析一、正确理解子集、真子集的概念,准确掌握集合之间包含与相等关系【例1】 写出满足{a,b}A ⊆{a,b,c,d}的所有集合A.思路分析:由题设的包含关系知,一方面A 是集合{a,b,c,d}的子集,与此同时集合{a,b}又是A 的真子集,故A 中必含有元素a 、b,而c 、d 两个元素至少含有一个.解:满足条件的集合A 有{a,b,c},{a,b,d},{a,b,c,d}.温馨提示正确理解有关符号是解决此题的关键.本题是利用子集和真子集的定义解题,根据元素个数来进行分类讨论.二、运用集合间的相互关系解题【例2】 如果S={x|x=2n+1,n ∈Z},T={x|x=4k ±1,k ∈Z},那么( )A.S ⊆TB.T ⊆SC.S=TD.S ≠T解法一:由2n+1=⎩⎨⎧-=-=+.12,14,2,14k n k k n k (k ∈Z),所以S=T.解法二:S 为奇数集,而T 中元素是奇数,故T ⊆S ;又任取x ∈S ,则x=2n+1,当n 为偶数2k 时,x=4k+1∈T ,其中k ∈Z,当n 为奇数2k-1时,x=4k-1∈T ,故S ⊆T ,从而S=T. 答案:C温馨提示利用元素的特征来研究集合元素的构成,从而确定集合之间的关系是解集合问题的常用方法.三、有关子集性质的综合应用【例3】 若集合A={x|x 2+x-6=0},B={x|mx+1=0},且B A,求m 的值.思路分析:解带字母参数的问题,若满足题意的情况不唯一,一般都要对参数或主元素进行分类讨论.解:A={x|x 2+x-6=0}={-3,2},∵B A,当B=∅时,m=0适合题意.当B ≠∅时,方程mx+1=0的解为x=-m 1,则-m 1=-3或-m 1=2, ∴m=31或m=-21. 综上可知,所求m 的值为0或31或-21. 温馨提示此题中B A,一定不要忘记B 可以是空集,此种情况决不能丢掉.各个击破类题演练 1满足{1,2}A ⊆{1,2,3,4,5}的集合A 的个数为( )A.4个B.6个C.7个D.8个解析:根据题意求集合A 的个数可以转化为求集合{3,4,5}的非空子集的个数,即为23-1=7,故选C.答案:C变式提升 1已知集合A 中有m 个元素,若在A 中增加一个元素,则它的子集个数将增加_________个. 解析:子集个数应增加2m+1-2m =2m .答案:2m类题演练 2集合M={x|x=2k +41,k∈Z},N={x|x=4k +21,k∈Z},则( ) A.M=N B.M N C.M N D.M∩N=∅解析:M 中,x=2k +41=42k +41;N 中,x=4k +21=41+k +41.只要看42k 与41+k的关系即可,显然{42k }{41+k }.答案:B变式提升 2用适当的符号(∉、∈、=、、)填空.(1)0_________{0},0__________∅,∅__________{0};(2)∅_________{x|x 2+1=0,x∈R},{0}_________{x|x 2+1=0,x∈R}.答案:(1)∈ ∉ (2)=类题演练 3集合M={x|x 2+2x-a=0},若∅M ,则实数a 的范围是( )A.a ≤-1B.a ≤1C.a ≥-1D.a ≥1解:∅M ,即方程x 2+2x-a=0有至少一实数解,故Δ=22-4(-a)≥0,即a ≥-1.答案:C变式提升 3已知集合S={(x,y)|x-y=1},T={(x,y)|x+y=3},那么M={x|x ∈S,且x ∈T}为() A.x=2,y=1 B.(2,1) C.{2,1} D.{(2,1)}解析:由⎩⎨⎧=+=-,3,1y x y x 得⎩⎨⎧==,1,2y x 故选D.答案:D。
高中数学1.2子集、全集、补集教案1苏教版必修1
中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
苏教版高中数学必修一子集、全集、补集教案
1.2子集、全集、补集学习目标:1.了解集合之间的包含、相等关系的含义;理解子集、真子集的概念;能利用Venn 图表达集合间的关系;了解全集与空集的含义.2.类比实数的大小关系引入集合的包含与相等关系.3.从分析具体的集合入手,通过对集合及其元素之间关系的分析,得到子集与真子集的概念.4.渗透特殊到一般的思想,注意利用Vene图,从“形”的角度帮助分析.5.通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点. 教学重点:子集与空集的概念;用Venn图表达集合间的关系.教学难点:弄清元素与子集、属于与包含之间的区别.教学方法:尝试指导法教学过程:一、情境设置1.复习元素与集合的关系——属于与不属于的关系,填以下空白:⑴0 N;⑶-1.5 R2.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(板书课题:子集、全集、补集)二、学生活动问题1.观察下列各组集合,A与B具有怎样的关系?如何用数学语言来表达这种关系?⑴A={-1,1}, B={-1,0,1,2}⑵A=N,B=R⑶A={x|x为高一⑶班的男生},B={y|y为高一⑶班的团员}⑷A={x|x为高一年级的男生},B={y|y为高一年级的女生}生:⑴、⑵集合A是集合B的部分元素构成的集合,⑶A中有些元素在B中,有些元素不在B中,⑷集合A与集合B没有相同元素三、建构数学1.集合与集合之间的“包含”关系;子集的定义:如果集合A的任何一个元素都是集合B的元素,则称集合A是集合B的子集(subset),记为A⊆B或B⊇A,读作:A包含于(is contained in)集合B”,或“集合B包含(contains)集合A”.用Venn图表示两个集合间的“包含”关系A⊆B或B⊇A问题2.⑴A⊆A;⑵Φ⊆A;⑶Φ⊆Φ.生:根据集合子集的定义,上面三个式子都成立.任何一个集合是它本身的子集,空集是任何集合的子集.S B A 问题3. A ⊆B 与B ⊇A 能否同时成立?你能举出一个例子吗?如:A ={1,2,3},B ={3,2,1}或A =B =R.2.集合与集合之间的 “相等”关系;若A ⊆B 或B ⊇A ,则A =B.3.真子集的概念若集合A ⊆B ,存在元素x ∈B 且x ∉A ,则称集合A 是集合B 的真子集(proper subset )。
高中数学苏教版高一必修1学案 第1章1.2子集、全集、补集
1.2 子集、全集、补集1.了解集合之间包含关系的意义.2.理解子集、真子集的概念.3.了解全集的意义,理解补集的概念.1.子集(1)如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),则称集合A是集合B的子集,记为A B(或B⊇A).读作“集合A包含于集合B”或“集合B包含集合A”.(2)A B可用Venn图表示为:(3)根据子集的定义,我们知道A A,也就是说任何集合是它本身的子集.(4)对于空集,我们规定A,即空集是任何集合的子集(其中A为任意集合,包含).“∈”与“”的区别.符号“∈”表示元素与集合之间的从属关系,即个体与总体之间的关系;而符号“”表示集合与集合之间的包含关系,即部分与总体之间的关系.如0∈{0},但不能写成0{0},但∈{},此时式子左边的“”表示一个元素,又{},此时式子左边的“”表示空集,它是任何一个集合的子集.【做一做1】{1,3}________{1,3,5,6},{x|x是菱形}________{x|x是正方形}.(填“”或“⊇”)答案:⊇2.真子集(1)如果A B,并且A≠B,这时称集合A是集合B的真子集,记为A B(或B A).读作“A真包含于B”或“B真包含A”.如:{1}{1,2,3}.(2)A B可用Venn图表示为:(3)根据真子集的定义,我们知道空集是任何非空集合的真子集,即A(其中A为任意非空集合,不包含).A B有三种可能:①A是;②A是B的一部分,即A B;③A与B是同一集合.【做一做2】用适当的符号表示下列各组对象之间的关系.(1)0__________;(2)0__________{0,1};(3){0,1}__________{1,0};(4){0,1}__________{0,1,-1}.答案:(1)(2)∈(3)=(4)3.补集、全集(1)设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记为S A(读作“A在S中的补集”),即S A={x|x∈S,且x A}.(2)S A可用下图中的阴影部分表示.(3)如果集合S中包含我们所要研究的各个集合,这时S可以看做一个全集,全集通常记作U.在有关补集的运算中,若元素有有限个,则可通过画Venn图来求之;若元素有无限个,如不等式解集的补集,则可通过画数轴而求之.【做一做3-1】已知全集U={x|x≥3},则集合A={x|x>5}的补集U A=________.答案:{x|3≤x≤5}【做一做3-2】已知全集U={不大于10的正整数},写出集合A={x|x=2n,n∈N*,n≤5}的补集U A=__________.答案:{1,3,5,7,9}1.对真子集的理解剖析:(1)集合A是集合B的真子集的前提是集合A必须是集合B的子集.(2)在集合B中至少有一个元素不在集合A中.(3)空集是任何非空集合的真子集.(4)真子集也具有传递性,即若集合C是集合B的真子集,集合B是集合A的真子集,则集合C是集合A的真子集.(5)任何一个集合是它本身的子集,而不是它本身的真子集.2.对补集与全集概念的理解剖析:(1)全集是相对于所研究问题而言的一个相对概念,它含有与所研究问题有关的各个集合的全部元素,因此,全集因研究的问题而异.例如在研究实数问题时,常常把实数集R看做全集,而在研究平面几何问题时,整个平面可以看做一个全集.(2)补集必须要有全集的限制,即必须在全集的基础上才能够求得补集,同一个集合在不同全集下的补集是不同的.例如,设集合A={1,2,3},若全集U={1,2,3,4,5,6,7},则U A={4,5,6,7};若全集U ={1,2,3,4,5,8,9,10},则U A ={4,5,8,9,10}.(3)补集既是集合之间的一种关系,又是集合的一种运算,利用定义可直接求出已知集合的补集,应注意补集符号的书写.(4)求补集必须做到了解“是什么”“为什么”“怎样做”.“是什么”即全集是什么;“为什么”即要了解补集是为了求什么的运算;“怎样做”是在求补集时,如何去求“剩余元素”的集合.题型一 子集的概念【例1】已知集合A ={1,2},B ={1,2,3,4,5},且A M B ,写出满足上述条件的集合M :________________________________________________________________________________________________________________________________________________. 解析:要解决这个问题,关键是要搞清满足条件A M B 的集合M 是由哪些元素组成的.∵AM ,∴M 中一定含有A 的全部元素1,2,且至少含有一个不属于A 的元素.又∵M B ,∴M 中的元素除了含有元素1,2外,还有元素3,4,5中的1个、2个或3个.故求M 的问题转化为研究集合{3,4,5}的非空子集的问题,显然所求集合M 有23-1=7(个),按元素的多少把它们一一列举出来即可.答案:{1,2,3}、{1,2,4}、{1,2,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,2,3,4,5} 反思:求有限集的子集个数问题,有以下结论:结论1:设集合A ={a 1,a 2,…,a n }(n ∈N *),则集合A 的子集个数为2n;非空子集个数为2n -1;真子集个数为2n -1;非空真子集个数为2n-2.结论2:设m ,n ∈N *,m <n ,B ={a 1,a 2,…,a n },则:①满足条件{a 1,a 2,…,a m }A B的集合A 的个数是2n -m;②满足条件{a 1,a 2,…,a m }A B 的集合A 的个数是2n -m -1; ③满足条件{a 1,a 2,…,a m }A B 的集合A 的个数是2n -m -1; ④满足条件{a 1,a 2,…,a m }AB 的集合A 的个数是2n -m -2.【例2】设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠,B A ,求a ,b 的值.分析:由B ≠,B A ,可见B 是A 的非空子集.而A 的非空子集有三个:{-1}、{1}和{-1,1}.所以B 要分三种情况讨论.解:由BA ,知B 中的所有元素都属于集合A .又B ≠,故集合B 有三种情况:B ={-1},B ={1}或B ={-1,1}.当B ={-1}时,B ={x |x 2+2x +1=0},故a =-1,b =1;当B ={1}时,B ={x |x 2-2x +1=0},故a =b =1;当B ={-1,1}时,B ={x |x 2-1=0},故a =0,b =-1.综上所述,可知a ,b 的值为⎩⎨⎧ a =-1,b =1或⎩⎨⎧ a =1,b =1或⎩⎨⎧a =0,b =-1.反思:利用分类讨论的思想,考虑到集合B 的所有可能的情况,这是处理集合与其子集之间关系的常用方法.题型二 补集的概念及运算【例3】已知全集U ={1,3,x 3+3x 2+2x }和它的子集A ={1,|2x -1|},如果UA ={0},则x 的值是多少?分析:思路一:由UA ={0}求得x 的值,再验证其是否符合隐含条件A U 以及是否满足集合元素的互异性.思路二:充分挖掘A U,0∈U,0A 这些隐含条件,利用集合的性质直接列方程组解题.解法一:由U A ={0},得0∈U ,但0A ,U ={0,1,3}.∴x 3+3x 2+2x =0. 解得x 1=0,x 2=-1,x 3=-2.当x 1=0时,|2x 1-1|=1,不满足集合元素的互异性; 当x 2=-1时,|2x 2-1|=3,3∈U ; 当x 3=-2时,|2x 3-1|=5,5U . 因此所求的x 的值为-1.解法二:由已知,有0∈U ,且0A ,因此 ⎩⎨⎧x 3+3x 2+2x =0,|2x -1|=3.解得x =-1. 反思:本题易错点在于不能充分挖掘补集的含义找出集合A 、UA 与全集U 的关系,另外易忽略集合中元素的互异性,不能检验结论的正确性.题型三 巧用数形结合思想【例4】已知集合A ={x |x <3},B ={x |x <a }.(1)若A B ,求a 的取值范围; (2)若BA ,求a 的取值范围;(3)若R A R B ,求a 的取值范围.分析:解与不等式有关的集合问题,通常可以借助数轴来进行探究. 解:(1)因为A B ,所以A 是B 的子集,如图①,可得a ≥3.(2)因为BA ,所以B 是A 的子集,如图②,可得a ≤3.(3)因为R A ={x |x ≥3},R B ={x |x ≥a },R A RB ,所以RA 是RB 的真子集,如图③,可得a <3.反思:本题第(3)小题RARB 等价于AB ,这可从Venn 图来判断.对于补集来说,下列结论必须记牢:S(SA )=A ,S=S ,SS =.1已知集合M ={-1,1},则满足N M 的集合N 的个数是________.解析:若集合M 中的元素有n 个,则集合M 的子集个数为2n. 答案:42下列四种说法:①={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的个数为________.解析:只有④正确. 答案:1 3已知集合M ={x |5<x <10},集合P ={x |x <m +1},且M P ,则实数m 的取值范围是__________.解析:由题意得m +1≥10,所以m ≥9. 答案:m ≥9已知全集U ={2,0,3-a 2},U 的子集P ={2,a 2-a -2},U P ={-1},求实数a 的值. 分析:根据补集的定义及元素的互异性列出方程组,然后解得a 的值. 解:由已知,得-1∈U ,且-1P,0∈P ,因此⎩⎨⎧3-a 2=-1,a 2-a -2=0.解得a =2.因此实数a 的值为2. 5已知集合A ={x |mx +1=0},B ={x |x 2-2x -3=0},且AB ,求m 的值.分析:集合的包含关系在解题中应用广泛,但解题时绝不能忽略A =的情形.解:因为B ={x |x 2-2x -3=0}={-1,3},且A B ,所以A =或A ={-1}或A ={3}.当A =时,m =0;当A ={-1}时,m =1;当A ={3}时,m =-13.综上所述,m 的值为0或1或-13.。
江苏省昆山市高中数学苏教版必修一教案1.2《子集、全集、补集》
子集、全集、补集(一)教学目标:使学生理解子集、真子集概念,会判断和证明两个集合包含关系,会判断简单集合的相等关系;通过概念教学,提高学生逻辑思维能力,渗透等价转化思想;渗透问题相对论观点. 教学重点:子集的概念,真子集的概念.教学难点:元素与子集,属于与包含间的区别;描述法给定集合的运算.教学过程:Ⅰ.复习回顾1.集合的表示方法列举法、描述法2.集合的分类有限集、无限集由集合元素的多少对集合进行分类,由集合元素的有限、无限选取表示集合的方法.故问题解决的关键主要在于寻求集合中的元素,进而判断其多少.Ⅱ.讲授新课[师]同学们从下面问题的特殊性,去寻找其一般规律.幻灯片(A):我们共同观察下面几组集合(1)A={1,2,3},B={1,2,3,4,5}(2)A={x|x>3},B={x|3x-6>0}(3)A={正方形},B={四边形}(4)A=∅,B={0}(5)A={直角三角形},B={三角形}(6)A={a,b},B={a,b,c,d,e}[生]通过观察上述集合间具有如下特殊性(1)集合A的元素1,2,3同时是集合B的元素.(2)集合A中所有大于3的元素,也是集合B的元素.(3)集合A中所有正方形都是集合B的元素.(4)A中没有元素,而B中含有一个元素0,自然A中“元素”也是B中元素.(5)所有直角三角形都是三角形,即A中元素都是B中元素.(6)集合A中元素A、B都是集合B中的元素.[师]由上述特殊性可得其一般性,即集合A都是集合B的一部分.从而有下述结论.幻灯片(B):1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A.记作A B(或B A),这时我们也说集合A是集合B的子集.[师]请同学们各自举两个例子,互相交换看法,验证所举例子是否符合定义.[师]当集合A不包含于集合B,或集合B不包含集合A时,则记作A B(或B A).如:A={2,4},B={3,5,7},则A B.[师]依规定,空集∅是任何集合子集.请填空:∅_____A(A为任何集合).[生]∅⊆A [师]由A ={正三角形},B ={等腰三角形},C ={三角形},则从中可以看出什么规律? [生]由题可知应有A ⊆B ,B ⊆C.这是因为正三角形一定是等腰三角形,等腰三角形一定是三角形,那么正三角形也一定是三角形.故A ⊆C.[师]从上可以看到,包含关系具有“传递性”.(1)任何一个集合是它本身的子集[师]如A ={9,11,13},B ={20,30,40},那么有A ⊆A ,B ⊆B.师进一步指出:如果A ⊆B ,并且A ≠B ,则集合A 是集合B 的真子集.这应理解为:若A ⊆B ,且存在b ∈B ,但b ∉A ,称A 是B 的真子集.A 是B 的真子集,记作A B (或B A )真子集关系也具有传递性若A B ,B C ,则A C.那么_______是任何非空集合的真子集.[生]应填∅2.例题解析[例1]写出{a 、b }的所有子集,并指出其中哪些是它的真子集.分析:寻求子集、真子集主要依据是定义.解:依定义:{a ,b }的所有子集是∅、{a }、{b }、{a ,b },其中真子集有∅、{a }、{b }. 注:如果一个集合的元素有n 个,那么这个集合的子集有2n 个,真子集有2n -1个. [例2]解不等式x -3>2,并把结果用集合表示.解:由不等式x -3>2知x >5所以原不等式解集是{x |x >5}[例3](1)说出0,{0}和∅的区别;(2){∅}的含义Ⅲ.课堂练习1.已知A ={x |x <-2或x >3},B ={x |4x +m <0},当A ⊇B 时,求实数m 的取值范围.分析:该题中集合运用描述法给出,集合的元素是无限的,要准确判断两集合间关系.需用数形结合.解:将A 及B 两集合在数轴上表示出来要使A ⊇B ,则B 中的元素必须都是A 中元素即B 中元素必须都位于阴影部分内那么由x <-2或x >3及x <-m 4 知 -m 4<-2即m >8 故实数m 取值范围是m >82.填空:{a } {a },a {a },∅ {a },{a ,b } {a },0 ∅,{0} ∅,1 {1,{2}},{2} {1,{2}},∅ {∅}Ⅳ.课时小结1.能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集.2.清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.Ⅴ.课后作业(一)课本P10习题1.2 1,2补充:1.判断正误(1)空集没有子集()(2)空集是任何一个集合的真子集()(3)任一集合必有两个或两个以上子集()(4)若B⊆A,那么凡不属于集合a的元素,则必不属于B ()分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x∉A时也必有x∉B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念.空集是任一非空集合的真子集,一个含有n个元素的子集有2n,真子集有2n-1个.则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2即a={x|-1<x<3,x∈Z}={0,1,2}真子集:∅、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个3.(1)下列命题正确的是()A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为()①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}⊆{1,0,2}④∅∈{0,1,2} ⑤∅∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是()A.a MB.a∉MC.{a}∈MD.{a}M解:(1)该题要在四个选择支中找到符合条件的选择支.必须对概念把握准确,并不是所有有限集都是无限集子集,如{1}不是{x|x=2k,k∈Z}的子集,排除A.由于∅只有一个子集,即它本身,排除B.由于1不是质数,排除D.故选C.(2)该题涉及到的是元素与集合,集合与集合关系.①应是{1}⊆{0,1,2},④应是∅⊆{0,1,2},⑤应是∅⊆{0}故错误的有①④⑤,选C.(3)M={x|3<x<4},a=π因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}M.选D.4.判断如下a与B之间有怎样的包含或相等关系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z}(2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}解:(1)因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.(2)因A ={x |x =2m ,m ∈Z },B ={x |x =4n ,n ∈Z },又 x =4n =2·2n在x =2m 中,m 可以取奇数,也可以取偶数;而在x =4n 中,2n 只能是偶数.故集合A 、B 的元素都是偶数.但B 中元素是由A 中部分元素构成,则有B A .评述:此题是集合中较抽象题目.注意其元素的合理寻求.5.已知集合P ={x |x 2+x -6=0},Q ={x |ax +1=0}满足Q P ,求a 所取的一切值. 解:因P ={x |x 2+x -6=0}={2,-3}当a =0时,Q={x |ax +1=0}=∅,Q P 成立.又当a ≠0时,Q ={x |ax +1=0}={-1a }, 要Q P 成立,则有-1a =2或-1a =-3,a =-12 或a =13. 综上所述,a =0或a =-12 或a =13评述:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a =0,ax +1=0无解,即Q 为空集情况.而当Q =∅时,满足Q P .6.已知集合A ={x ∈R |x 2-3x +4=0},B ={x ∈R |(x +1)(x 2+3x -4=0},要使A P ⊆B ,求满足条件的集合P .解:由题A ={x ∈R |x 2-3x +4=0}=∅B ={x ∈R |(x +1)(x 2+3x -4)=0}={-1,1,-4}由A P ⊆B 知集合P 非空,且其元素全属于B ,即有满足条件的集合P 为:{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}评述:要解决该题,必须确定满足条件的集合P 的元素.而做到这点,必须化简A 、B ,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.已知A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 共有多少个?解:因A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},由此,满足A ⊆B ,有∅,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32个.又满足A ⊆C 的集合A 有∅,{0},{2}{4},{8},{0,2},{0,4},{0,8}{2,4},{2,8},{4,8},{0,2,4},{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=8×2=16个.其中同时满足A ⊆B ,A ⊆C 的有8个∅,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.由此得到解题途径.有如下思路:题目只要A 的个数,而未让说明A 的具体元素,故可将问题等价转化为B 、C 的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8 (个)8.设A ={0,1},B ={x |x ⊆A },则A 与B 应具有何种关系?解:因A ={0,1},B ={x |x ⊆A }故x 为∅,{0},{1},{0,1},即{0,1}是B 中一元素.故A ∈B.评注:注意该题的特殊性,一集合是另一集合的元素.9.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},(1)若B ⊆A ,求实数m 的取值范围. (2)当x ∈Z 时,求A 的非空真子集个数.(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.解:(1)当m +1>2m -1即m <2时,B =∅满足B ⊆A .当m +1≤2m -1即m ≥2时,要使B ≤A 成立,需⎩⎨⎧m +1≥-22m -1≤5,可得2≤m ≤3 综上m ≤3时有B ⊆A(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}所以,A 的非空真子集个数为:28-2=254(3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又没有元素x 使x ∈A 与x ∈B 同时成立.则①若B =∅即m +1>2m -1,得m <2时满足条件.②若B =∅,则要满足条件有:⎩⎨⎧m +1≤2m -1m +1>5 或⎩⎨⎧m +1≤2m -12m -1<2解之m >4 综上有m <2或m >4评述:此问题解决:(1)不应忽略∅;(2)找A 中的元素;(3)分类讨论思想的运用.(二)1.预习内容:课本P 92.预习提纲:(1)求一个集合补集应具备的条件.(2)能正确表示一个集合的补集.子集、全集、补集(二)教学目标:使学生了解全集的意义,理解补集的概念;通过概念教学,提高学生逻辑思维能力和分析、解决问题能力;渗透相对的观点.教学重点:补集的概念.教学难点:补集的有关运算.教学过程:Ⅰ.复习回顾1.集合的子集、真子集如何寻求?其个数分别是多少?2.两个集合相等应满足的条件是什么?Ⅱ.讲授新课[师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.请同学们由下面的例子回答问题:幻灯片(A):看下面例子A={班上所有参加足球队同学}B={班上没有参加足球队同学}S={全班同学}那么S、A、B三集合关系如何?[生]集合B就是集合S中除去集合A之后余下来的集合.即为如图阴影部分由此借助上图总结规律如下:幻灯片(B):1.补集一般地,设S是一个集合,A是S的一个子集(即A⊆S),由S中所有不属于A的元素组成的集合,叫做S中集合A的补集(或余集).记作C S A,即C S A={x|x∈3且x∉a}上图中阴影部分即表示A在S中补集C S A2.全集如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.[师]解决某些数学问题时,就可以把实数集看作全集U,那么有理数集Q的补集C U Q 就是全体无理数的集合.举例如下:请同学们思考其结果.幻灯片(C):举例,请填充(1)若S={2,3,4},A={4,3},则C S A=____________.(2)若S={三角形},B={锐角三角形},则C S B=___________.(3)若S={1,2,4,8},A=∅,则C S A=_______.(4)若U={1,3,a2+2a+1},A={1,3},C U A={5},则a=_______(5)已知A={0,2,4},C U A={-1,1},C U B={-1,0,2},求B=_______(6)设全集U={2,3,m2+2m-3},a={|m+1|,2},C U A={5},求m.(7)设全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求C U A、m.师生共同完成上述题目,解题的依据是定义例(1)解:C S A={2}评述:主要是比较A及S的区别.例(2)解:C S B={直角三角形或钝角三角形}评述:注意三角形分类.例(3)解:C S A=3评述:空集的定义运用.例(4)解:a2+2a+1=5,a=-1± 5评述:利用集合元素的特征.例(5)解:利用文恩图由A及C U A先求U={-1,0,1,2,4},再求B={1,4}.例(6)解:由题m2+2m-3=5且|m+1|=3解之m=-4或m=2例(7)解:将x=1、2、3、4代入x2-5x+m=0中,m=4或m=6当m=4时,x2-5x+4=0,即A={1,4}又当m=6时,x2-5x+6=0,即A={2,3}故满足题条件:C U A={1,4},m=4;C U B={2,3},m=6.评述:此题解决过程中渗透分类讨论思想.Ⅲ.课堂练习课本P10练习1,2,3,4Ⅳ.课时小结1.能熟练求解一个给定集合的补集.2.注意一些特殊结论在以后解题中的应用.Ⅴ.课后作业(一)课本P10习题1.2 3,43.解:因有一组对边平行的四边形是梯形.故S集合是由梯形、平行四边形构成,而A ={x|x是平行四边形},那么C S A={x|x是梯形}.补充:1.判断下列说法是否正确,并在题后括号内填“”或“”:(1)若S={1,2,3},A={2,1},则C S A={2,3} ()(2)若S={三角形},A={直角三角形},则C S A={锐角或钝角三角形} ()(3)若U={四边形},A={梯形},则C U A={平行四边形} ()(4)若U={1,2,3},A=∅,则C U A=A ()(5)若U={1,2,3},A=5,则C U A=∅()(6)若U={1,2,3},A={2,3},则C U A={1} ()(7)若U是全集且A⊆B,则C U A⊆C U B ()解:紧扣定义,利用性质求解相关题目.(2)(5)(6)正确,其余错误.在(1)中,因S={1,2,3},A={2,1},则C S A={3}.(2)若S={三角形},则由A={直角三角形}得C S A={锐角或钝角三角形}.(3)由梯形及平行四边形构成的图形集合不一定是四边形的全部.如既不是梯形,也不是平行四边形.(4)因U={1,2,3},A=∅,故C U A=U.(5)U={1,2,3},A=5,则C U A=∅.(6)U={1,2,3},A={2,3},则C U A={1}.(7)若U是全集且A=B,则C U A⊇C U B.评述:上述题目涉及补集较多,而补集问题解决前提必须考虑全集,故一是先看全集U,二是由A找其补集,应有A∪(C U A)=U.2.填空题(1)A={x∈R|x≥3},U=R,C U A=_____________________.(2)A={x∈R|x>3},U=R,C U A=_____________________.(3)已知U中有6个元素,C U A=∅,那么A中有_______个元素.(4)U=R,A={x|a≤x≤b},C U A={x|x>9或x<3=,则a=_______,b=_________ 解:由全集、补集意义解答如下:(1)由U=R及A={x|x≥3},知C U A={x|x<3=(可利用数形结合).对于(2),由U=R 及A={x|x>3},知C U A={x|x≤3},注意“=”成立与否.对于(3),全集中共有6个元素,A的补集中没有元素,故集合A中有6个元素.对于(4),全集为R因A={x|a≤x≤B},其补集C U A={x|x>9或x<3},则A=3,B=9.3.已知U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},求C U A、C U B. 解:因x∈N,x≤10时,x=0、1、2、3、4、5、6、7、8、9、10A={小于10的正奇数}={1,3,5,7,9},B={小于11的质数}={2,3,5,7},那么C U A={0,2,4,6,8,10},C U B={0,1,4,6,8,9,10}.4.已知A={0,2,4,6},C U A={-1,-3,1,3},C U B={-1,0,2},用列举法写出B. 解:因A={0,2,4,6},C U A={-1,-3,1,3},故U=A∪(C U A)={0,1,2,3,4,6,-3,-1}而C U B={-1,0,2},故B={-3,1,3,4,6}.5.已知全集U={2,3,a2-2a-3},A={2,|a-7|},C U A={5},求a的值.解:由补集的定义及已知有:a2-2a-3=5且|a-7|=3,由a2-2a-3=5有a=4或a=-2,当a=4时,有|a-7|=3,当a=-2时|a-7|=9(舍)所以符合题条件的a=4评述:此题和第4题都用C U A={x|x∈5,且x∉A},有U中元素或者属于A,或者属于C U A.二者必居其一,也说明集合A与其补集相对于全集来说具有互补性,这一点在解题过程中常会遇到,但要针对全集而言.6.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,4,8},求N-M的表达式.分析:本题目在给出新定义的基础上,应用定义解决问题.要准确把握定义的实质,才能尽快进入状态.解:由题所给定义:N-M={x|x∈N,且x∉M}={8}评述:从所给定义看:类似补集但又区别于补集,A-B与C A B中元素的特征相同,后者要求B⊆A.而前者没有这约束,问题要求学生随时接受新信息,并能应用新信息解决问题.7.已知集合M={x2+x-2=0},N={x|x<a},使M C R N的所有实数a的集合记为A,又知集合B={y|y=-x2-4x-6},试判断A与B的关系.分析:先找M中元素,后求B中元素取值范围.解:因x2+x-2=0的解为-2、1,即M={-2,1},N={x|x<a},故C R N={x|x≥a},使M C R N的实数a的集合A={a|a≤-2},又y =-x 2-4x -6=-(x +2)2-2≤-2那么B ={y |y ≤-2},故A =B8.已知I =R ,集合A ={x |x 2-3x +2≤0},集合B 与C R A 的所有元素组成全集R ,集合B 与C R A 的元素公共部分组成集合{x |0<x <1或2<x <3},求集合B .解:因a ={x |x 2-3x +2≤0}={x |1≤x ≤2},所以C R A ={x |x <1或x >2} B 与C R A 的所有元素组成全集R,则A ⊆B .B 与C R A 的公共元素构成{x |0<x <1或2<x <3},则{x |0<x <1或2<x <3}⊆B在数轴上表示集合B 为A 及{x |0<x <1或2<x <3}的元素组成,即B ={x |0<x <3}.评述:研究数集的相互关系时,可将题设通过数轴示意,借助直观性探究,既易于理解.又能提高解题速度.上面提到的所有元素与公共元素是后面将要研究的交集、并集,就是B ∪C R A =R B A ⊆⇒,B ∩C R A ={x |0<x <1或2<x <3}.9.设U ={(x ,y )|x ,y ∈R },A ={(x ,y )|y -3x -2=1},B ={(x ,y )|y =x +1},求C U A 与B 的公共元素.解:a ={(x ,y )|y =x +1,x ≠2},它表示直线y =x +1去掉(2,3)的全体,从而C U A ={(2,3)},而B ={(x ,y )|y =x +1}表示直线y =x +1上的全体点的集合.如图所示,C U A与B 的公共元素就是(2,3).评述:关于点集问题通常将其转化为直角坐标平面上的图形的问题来加以研究可以得到直观形象,简捷明了的效果.(二)1.预习内容:课本P 10~P 112.预习提纲:(1)交集与并集的含义是什么?能否说明?(2)求两个集合交集或并集时如何借助图形.。
高中数学苏教版必修1第1章1.2第1课时子集、真子集
1.2子集、全集、补集第 1 课时子集、真子集学习目标:1.理解会合间包括与相等的含义、能辨别给定会合间能否有包括关系. (要点 )2.能经过剖析元素的特色判断会合间的关系.(难点 )3.能依据会合间的关系确立一些参数的取值.(难点、易错点 )[自主预习·探新知]1.子集的观点及其性质(1)子集定义假如会合 A 的随意一个元素都是会合 B 的元素 (若 a∈A,则 a∈B),那么会合 A 称为会合 B 的子集符号表示A? B(或 B? A)读法会合 A 包括于会合 B(或会合 B 包括会合 A)图示(2)子集的性质①A? A,即任何一个会合是它自己的子集.②?? A,即空集是任何会合的子集.③若 A? B,B? C,则 A? C,即子集具备传达性.(3)会合相等若 A? B 且 B? A,则 A=B.2.真子集的观点及性质(1)真子集的观点假如 A? B,而且 A≠B,那么会合 A 称为会合 B 的真子集,记为 A B 或,读作“ A 真包括于 B”或“ B 真包括 A”.(2)性质①?是任一非空会合的真子集.②若 A B,B C,则 A C.[ 基础自测 ]1.思虑辨析(1){2,3} ? { x|x 2-5x +6=0} . ( )(2)?? {0} . ()(3)?? { ?} .()[ 分析 ] (1)x 2-5x + 6= 0 的根为 x = 2,3,故(1)正确.因?是任何会合的子集,故 (2)(3)正确.[ 答案](1)√ (2)√ (3)√2.{1 ,a} ? {1,2,3} ,则 a =________.[ 分析 ] 由于 {1 ,a} ? {1,2,3} ,因此 a 必然是会合 {1,2,3} 中的一个元素,故a =2 或 3.[ 答案] 2 或 3.会合 = { x|x 2- 1= 0} ,B ={ -1,0,1} ,则 A 与 B 的关系是 ________. 3 A【导学号 :48612021】[ 分析]∵ x 2 - = , ∴ =±, ∴ = ,- 1} .1 0x 1A {1明显 A B.[ 答案]A B[合作研究·攻重难]会合关系的判断指出以下各对会合之间的关系:(1)A = { -1,1} ,B ={ x ∈ N |x 2 =1} ;(2)A = { -1,1} ,B ={( - 1,- 1),(-1,1),(1,- 1),(1,1)} ;(3)P = { x|x =2n , n ∈ Z } ,Q = { x|x =2(n -1),n ∈Z } ;(4)A = { x|x 是等边三角形 } , B ={ x|x 是三角形 } ;(5)A = { x|-1<x<4} , B = {x|x -5<0} .[思路研究 ]剖析会合中元素及元素的特色,用子集、真子集及会合相等的观点进行判断.[解 ] (1)用列举法表示会合B={1} ,故 B A.(2)会合 A 的代表元素是数,会合 B 的代表元素是实数对,故 A 与 B 之间无包括关系.(3)∵ Q 中 n∈Z,∴n- 1∈Z,Q 与 P 都表示偶数集,∴P=Q.(4)等边三角形是三边相等的三角形,故A B.(5)会合 B= { x|x<5} ,用数轴表示会合A, B,如下图,由图可发现A B.[ 规律方法 ]判断两个会合A,B的关系,应由会合中元素下手,依照会合间关系的定义得出结论 .由 A B 可推出 A? B,但由 A? B 推不出 A B.[ 追踪训练 ]1.以下各组的会合中,两个会合之间拥有包括关系的是________,此中 A 为 S 真子集的是 ________.(填序号 )(1)S={ -2,- 1,1,2} ,A={ -1,1} ;(2)S=R, A= { x|x≤0,x∈R} ;(3)S={ x|x 为江苏人 } ,A={ x|x 为中国人 } .[ 分析] (1)中 A? S,且 A S;(2)中 A? S 且 A S;(3)中 S? A 且 S A.[ 答案 ] (1)(2)(3) (1)(2)有关子集个数的计数问题(1)写出会合 M={1,2,3} 的子集,并说明此中真子集的个数为多少.(2)若会合 {1,2} ? M {1,2,3,4} ,试写出知足条件的全部的会合M.【导学号:48612022】[思路研究 ]对于确立子集或(个数)的题目,能够将子集逐个列举出来再计数.[解 ] (1)按子集中包括元素的个数来写:含元素个数子集子集个数0 ? 11 {1}{2}{3} 32 {1,2}{1,3}{2,3} 33 {1,2,3} 1此中真子集有 7 个.(2)M 中必有 1,2 两个元素,但 3,4 能够没有,也能够只有一个,但不可以两个都在M中.M 的可能状况为 {1,2} ,{1,2,3} , {1,2,4} .[ 规律方法 ] 1.求解有限会合的子集问题,要点有三点(1)确立所求会合;(2)合理分类,依照子集所含元素的个数挨次写出;(3)注意两个特别的会合,即空集和会合自己.2.一般地,若会合 A 中有 n 个元素,则其子集有 2n个,真子集有 2n- 1 个,非空真子集有 2n-2 个.[ 追踪训练 ]2.会合 M 知足 {4,5} ? M? {1,2,3,4,5} ,则这样的 M 共有 ________个.[ 分析 ]易知M中必含有4,5两个元素,但1,2,3无关紧要,故M的个数与{1,2,3} 的子集的个数同样,共8 个.[ 答案] 8 个会合之间的包括关系[研究问题 ]1.A? B 的意义是什么?若M={ x|x≤ 2} ,N={ x|x≤ 1} ,则 N? M 建立吗?[ 提示 ] A? B 表示会合 A 中全部的元素都在会合 B 中.借助数轴表示出M,N 两会合,易见N? M.2.若会合 M= { x|x≤1} , N= { x|x<1} ,则 M? N 建立吗?[ 提示]不建立,由于1∈M但1∈/N,故M? N错误.3.会合 M={ x|2a<x<a+1} 可能是空集吗?此时 a 应知足什么条件?[ 提示 ] M 能够是空集,此时只要要2a≥a+1,即 a≥1.已知会合A={ x|- 3≤ x≤ 4} ,B={ x|2m- 1<x<m+ 1} ,且 B? A,求实数 m 的取值范围 .【导学号:48612023】[思路研究 ]议论会合B→ 列对于m的不等式组→ 求m的取值范围[解]∵B? A,(1)当 B=?时, m+ 1≤ 2m- 1,解得 m≥ 2.-3≤2m-1,(2)当 B≠?时,有m+1≤4,2m- 1<m+1,解得- 1≤m<2,综上得 m≥- 1.母题研究: (变条件 )若将本例中的“ B? A”改为“ A? B”,务实数m 的范围.[解]∵A? B- 3>2m-1∴4<m+12m-1<m+ 1∴不存在这样的 m,使得 A? B.[ 规律方法 ] 1.对于用不等式给出的会合,已知会合的包括关系求有关参数的范围 (值)时,常采纳数形联合的思想,借助数轴解答.2.两个易错点(1)当 B? A 时,应分 B= ? 和 B≠? 两种状况议论;(2)列不等关系式时,应注意等号能否建立.[当堂达标·固双基].设x, y∈R, A={( x, y)|y=x} ,B=,y=1 ,则 A,B 的关系是1 x y x________.[ 分析] ∵ B=,y =,=,且≠,故x y x=1 {( x y)|y x x 0} B A.[ 答案] B A2.会合 A={ -1,0,1}的子集中,含有元素0 的子集共有 ________个[ 分析] 依据子集定义,会合 A 的子集为 ?,{ -1} ,{0} ,{1} ,{ -1,0} ,{ -1,1} ,{0,1} ,{ -1,0,1} ,明显含有元素 0 的子集共有 4 个.[ 答案] 43.已知会合 A= {0,1,2} ,B={1 ,m} .若 B? A,则实数 m 的值是 ________.[ 分析] 由于 B? A,那么 m∈{0,2} ,因此 m 的值是 0 或 2.[ 答案] 0 或 24.知足条件 {1,2,3} M {1,2,3,4,5,6} 的会合 M 的个数是 ________.【导学号:48612024】[ 分析] 会合 M 能够是 {1,2,3,4} , {1,2,3,5} , {1,2,3,6} , {1,2,3,4,5} ,{1,2,3,4,6} ,{1,2,3,5,6} .[ 答案] 65.已知会合 A= {1,3 ,- x3} ,B= { x+2,1} ,能否存在实数x,使得 B 是 A的子集?若存在,求出会合A,B;若不存在,请说明原因.[解]由于B是A的子集,因此 B 中元素必是 A 中的元素,若x+2=3,则x=1,切合题意.若x+2=-x3,则x3+x+2=0,因此 (x+1)(x2- x+ 2)= 0.由于 x2-x+2≠0,因此 x+1= 0,因此 x=- 1,此时 x+ 2= 1,会合 B 中的元素不知足互异性.综上所述,存在实数x=1,使得 B 是 A 的子集,此时 A={1,3 ,- 1} ,B={1,3} .7/7。
苏教版数学高一《子集、全集、补集》精品导学案
江苏GSJY 高中数学(必修1)第一章《集合》课时强化训练三——《子集、全集、补集》②(附答案)一.填空题1.已知M ={x|x ≥22,x ∈R},a =π,给定下列关系:①a ∈M ;②{a}M ;③a M ;④{a}∈M ,其中正确的是________(填序号).2.已知集合A {2,3,7},且A 中至多有1个奇数,则这样的集合共有________个3.设集合A ={2,x ,y},B ={2x ,y 2,2},且A =B ,则x +y 的值为________.4.已知非空集合P 满足:①P ⊆{1,2,3,4,5},②若a ∈P ,则6-a ∈P ,符合上述条件的集合P 的个数是________.5.集合M ={x|x =6-2n ,n ∈N +,x ∈N}的子集有________个.6.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则实数a 的取值是________.7.已知集合A ={x|0<x<2,x ∈Z},B ={x|x 2+4x +4=0},C ={x|ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则a ∶b ∶c 等于________.8.已知集合A ={-1,2},B ={x|x 2-2ax +b =0},若B ≠∅,且B A ,则实数a ,b 的值分别是________.9.以下表示正确的有________(填序号).①{0}∈N ;②{0}⊆Z ;③∅⊆{1,2};④Q R.10.集合A ={x|0≤x<3且x ∈Z}的真子集的个数是________.11.设集合M ={x|-1≤x<2},N ={x|x -k ≤0},若M ⊆N ,则k 的取值范围是________.12.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.二.解答题13.已知集合M ={x|x =m +16,m ∈Z},N ={x|x =n 2-13,n ∈Z},P ={x|x=p 2+16,p ∈Z}.试确定M ,N ,P 之间满足的关系.课时强化训练三《子集、全集、补集》②参考答案一.填空题1. 解析:a ∈M 显然成立,从而{a }M 也成立,③中元素与集合之间的关系不应用“”符号,④中集合与集合之间的关系不应用“∈”符号,故①②正确.答案:①②2.解析:(1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7};(2)若A 中没有奇数,则A ={2}或∅.答案:63.解析:因为A =B ,所以⎩⎪⎨⎪⎧ y =y 2,x =2x ,或⎩⎪⎨⎪⎧ x =y 2,y =2x ,解得⎩⎪⎨⎪⎧ x =0,y =0,或⎩⎪⎨⎪⎧x =0,y =1,或⎩⎨⎧ x =14,y =12.经检验,当⎩⎪⎨⎪⎧x =0,y =0,时, A ={2,0,0}与集合中元素互异性矛盾,舍去,其余符合题意.所以x +y =1或34. 答案:1或344.解析:由a ∈P ,6-a ∈P ,且P ⊆{1,2,3,4,5}可知,P 中元素在取值方面应满足的条件是1,5同时选;2,4同时选;3单独选,可一一列出满足条件的全部集合P 为{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,5,2,4},{1,2,3,4,5}共7个.答案:75.解析:令x ≥0,得6-2n ≥0,∴n ≤3,又n ∈N +,解得n =1,2,3,∴x =4,2,0.∴集合M ={x |x =6-2n ,n ∈N +,x ∈N }={4,2,0}的子集有23=8个.答案:86.解析:∵集合A 有且仅有2个子集,∴A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时,方程化为2x =0,此时A ={0},符合题意.当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1,得a =±1.此时A ={-1},或A ={1},符合题意.故a =0,或a =±1.答案:0或±17 解析:由于A ={1},B ={-2},C ={x |ax 2+bx +c =0},若A ⊆C ,B ⊆C ,则C ={1,-2}.由根与系数的关系得,-b a =-1,c a=-2. ∴a ∶b ∶c =1∶1∶(-2).答案:1∶1∶(-2)8.解析:∵A ={-1,2},B ≠∅,且B A ,∴B ={-1},或B ={2}.当B ={-1}时,有⎩⎪⎨⎪⎧Δ=(2a )2-4b =0,(-1)2-2a ·(-1)+b =0, 解得⎩⎪⎨⎪⎧ a =-1,b =1. 当B ={2}时,有⎩⎪⎨⎪⎧Δ=(2a )2-4b =0,22-2a ×2+b =0, 解得⎩⎪⎨⎪⎧a =2,b =4.综上所述,a =-1,b =1;或a =2,b =4.答案:a =-1,b =1或a =2,b =49.解析:元素与集合之间为从属关系,集合与集合之间为包含关系,由于{0}⊆N ,Q ⊆R ,故①④不正确,②③正确.答案:②③10.解析:A ={x |0≤x <3且x ∈Z }={0,1,2},所以其真子集的个数是23-1=7. 答案:711.解析:N ={x |x ≤k },又M ⊆N ,所以k ≥2.答案:k ≥212.解析:∵B ⊆A ,∴4∈A ,∴m =4.答案:4二.解答题13.解:集合M ={x |x =m +16,m ∈Z }. 关于集合N :①当n 是偶数时,令n =2m (m ∈Z ).N ={x |x =m -13,m ∈Z }. ②当n 是奇数时,令n =2m +1(m ∈Z ).N ={x |x =2m +12-13,m ∈Z }={x |x =m +16,m ∈Z }. 从而,得M N .关于集合P :①当p =2m (m ∈Z )时,P ={x |x =m +16,m ∈Z }. ②当p =2m -1(m ∈Z )时,P ={x |x =2m -12+16,m ∈Z }={x |x =m -13,m ∈Z }. 从而,得N =P .总之,M N =P .14.解:(1)当m +1>2m -1,即m <2时,B =∅,满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,需⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,可得2≤m ≤3. 综上所述,m ≤3时有B ⊆A .(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}.∴A 的非空真子集个数为:28-2=254.(3)∵x ∈R ,且A ={x |-2≤x ≤5}.B ={x |m +1≤x ≤2m -1},又不存在元素x ,使x ∈A 与x ∈B 同时成立.则①若B =∅,即m +1>2m -1,得m <2时满足条件.②若B ≠∅,则要满足的条件有: ⎩⎪⎨⎪⎧ m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解之得m >4. 综上,当m <2或m >4时满足条件.15.解:因为B 是A 的子集,所以B ⊆A ,B 的元素必是A 的元素.(1)若x +2=3,则x =1,符合题意;(2)若x +2=-x 3,x 3+x +2=0,则x 3+1+x +1=0,(x +1)(x 2-x +1)+(x +1)=0,即(x +1)(x 2-x +2)=0.因为x 2-x +2≠0,所以x +1=0,x =-1.此时x +2=1,B 中元素不满足互异性,所以不符合题设.综上所述,当x =1时,A ={1,3,-1},B ={1,3}.。
苏教版高中数学必修一§§1.2 子集·全集·补集(1).doc
§§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b }⊆{a ,b }.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}. 求(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U ={x|x 是三角形},P ={x|x 是直角三角形}则U C P = .3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】⊂ ≠6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U . 8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ð,U C ð.(2)若}{A x x D ∈=,说明D B A ,,的关系.(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b }⊆{a ,b }.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y )|x+y <0,xy >0}和N ={(x,y )|x <0,y <0},那么M 与N 的关系为______________.6.集合A ={x |x =a 2-4a +5,a ∈R },B ={y |y =4b 2+4b +3,b ∈R } 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B ={(x,y )|y -3=x -2},A ={(x,y )|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a },C={x 2+(a+1)x-3,1}. 求(1)当A ={2,3,4}时,求x 的值;(2)使2∈B ,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.⊂ ≠(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U ={x|x 是三角形},P ={x|x 是直角三角形}则U C P = .3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M ={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U . 8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U =R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ð,U C ð.(2)若}{A x x D ∈=,说明D B A ,,的关系.。
2019年高中数学 1.2子集、全集、补集(1)教案 苏教版必修1
1.2 子集、全集、补集(1)教学目标:1.使学生进一步理解集合的含义,了解集合之间的包含关系,理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系,能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境1.情境.将下列用描述法表示的集合改为用列举法表示:A={x|x2≤0},B={ x|x=(-1)n+(-1)n+1,n∈Z};C={ x|x2-x-2=0},D={ x|-1≤x≤2,x∈Z}2.问题.集合A与B有什么关系?集合C与D有什么关系?二、学生活动1.列举出与C与D之间具有相类似关系的两个集合;2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定.三、数学建构1.子集的含义:一般地,如果集合A的任一个元素都是集合B的元素,(即⊆⊇若a∈A则a∈B),则称集合A为集合B的子集,记为A B或B A.读作集合A包含于集合B或集合B包含集合A.用数学符号表示为:若a∈A都有a∈B,则有A⊆B或B⊇A.(1)注意子集的符号与元素与集合之间的关系符号的区别:元素与集合的关系及符号表示:属于∈,不属于;∉集合与集合的关系及符号表示:包含于.⊆(2)注意关于子集的一个规定:规定空集∅是任何集合的子集.理解规定的合理性.(3)思考:A B 和B A 能否同时成立?⊆⊆(4)集合A 与A 之间是否有子集关系?2.真子集的定义:(1)A ⊆B 包含两层含义:即A =B 或A 是B 的真子集.(2)真子集的wenn 图表示(3)A =B 的判定(4)A 是B 的真子集的判定四、数学运用例1 (1)写出集合{a ,b }的所有子集;(2)写出集合{1,2,3}的所有子集;{1,3}{1,2,3},{3}{1,2,3},⊂ ≠⊂ ≠小结:对于一个有限集而言,写出它的子集时,每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n 个时,子集的个数为2n .例2 写出N ,Z ,Q ,R 的包含关系,并用Venn 图表示.例3 设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠∅,B ⊆A ,求a ,b 的值.小结:集合中的分类讨论.练习:1.用适当的符号填空.(1)a _{a };(2)d _{a ,b ,c };(3){a }_{a ,b ,c };(4){a ,b }_{b ,a };(5){3,5}_{1,3,5,7};(6){2,4,6,8}_{2,8};(7)∅_{1,2,3},(8){x |-1<x <4}__{x |x -5<0}2.写出满足条件{a }⊆M {a ,b ,c ,d }的集合M .Ü3.已知集合P = {x | x 2+x -6=0},集合Q = {x | ax +1=0},满足Q P ,求a 所Ü元素与集合是个体与群体的关系,群体是由个体组成;子集是小集体与大集体的关系.取的一切值.4.已知集合A ={x |x =k +,k ∈Z},集合B ={x |x =+1,k ∈Z},集合122kC ={x |x =,k ∈Z},试判断集合A 、B 、C 的关系.12k +五、回顾小结1.子集、真子集及对概念的理解;2.会用Venn 图示及数轴来解决集合问题.六、作业教材P10习题1,2,5.。
高中数学必修1苏教版导学案:第3课时子集、全集、补集
第3课时子集、全集、补集【问题导学】观察下列各组中的三个集合,哪两个集合之间具有包含关系?它们之间除具有包含关系外还有什么关系?① S={1, 2,3,4,5}, A={1,2}, B={3,4,5}② S=R, A={x|1≤x≤2}, B={x|x<1,或x>2}③ S={x|x为地球人}, A={x|x为中国人}, B={x|x为外国人}【知识要点】1.补集的概念:符号表示:图形表示:_____________________________________________________________ 2.全集的概念:_________________________________________________________练习:(1)全集U={0,1,2,3,4,5},A={0,2,3},则UA=_____________(2)全集U={0,1,2},且UA={2},则A=____________(3)若U=Z,A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},U A=_______,UB=_______.(4)S S=__________, (5)S∅=_______例1.不等式组22030xx->⎧⎨-≤⎩的解集为A,U=R,试求A及UA,并把它们分别表示在数轴。
例2.已知全集U,集合A={1,3,5,7},U A={2,4,6},UB={1,4,6},求集合B.P={6},求实数a的值例3.设全集U={2, 3, a2+3a-4},P={|2a-6|, 3},U例4若集合M={x|x2+2x+a=0}至少有一个元素为非负实数,求实数a的取值范围。
【反馈练习】A=____________1.已知全集U={x|1≤x≤5},A={x|1≤x<2},则U2.设全集U={x|x≤4且x∈N},集合M={2,a-5},M U, U M={0,1,3},则a=____________P,求实数a的取值范围3.设全集U=R, M={x|3a<x<2a+5}, P={x|-2≤x≤1}, 若MU。
苏教版高中数学必修一子集、全集、补集教案(2)
一.课题:子集、全集、补集(1)二.教学目标:1.理解子集、真子集概念.2.会判断和证明两个集合包含关系.3.理解“⊃≠”、“⊇”的含义.三.教学重、难点:1.子集的概念、真子集的概念;2.元素与子集、属于与包含间区别、描述法给定集合的运算.四.教学过程:(一)复习:集合的表示方法、集合的分类.(二)新课讲解:我们共同观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A=ø,B={0}.学生通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而给出:1.子集(1)定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A)这时我们也说集合A是集合B的子集.请学生各自举两个例子,互相交换看法,验证所举例子是否符合定义.注意:若集合A不包含于集合B,或集合B不包含集合A,则记作A⊄B(或B⊃A).例如:A={2,4},B={3,5,7},则A⊄B.依规定,空集ø是任何集合子集.请填空øA,A为任何集合.(∅⊆A.)例如:由A={正四棱柱},B={正棱柱},C={棱柱},则从中可看出什么规律.答:由上可知应有:A⊆B,B⊆C,即可得出A⊆C.这就是说,包含关系具有“传递性”,对A⊃≠B,B⊃≠C同样有A⊃≠C.(1)任何一个集合是它本身的子集.如A={9,11,13},B={20,30,40},有A⊆A,B⊆B.指出,如果A⊆B,并且A≠B,则集合A是集合B的真子集.由此是任何非空集合的真子集.(∅)(2)集合相等.两个集合相等,应满足:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.用式子表示:如果A⊆B,同时B⊇A,那么A=B.例如:A={x|x=2m+1,m∈Z},B={x|x=2n-1,n∈Z},有A=B.2.例题解析:例1:写出{a,b}的所有的子集,并指出其中哪些是它的真子集.解:依定义知:{a,b}的所有子集是ø、{a}、{b}、{a,b}.其中真子集有ø、{a}、{b}.例2:解不等式x-3>2,并把结果用集合表示。
1.2子集、全集、补集(1)教案(苏教版高一必修1).doc
1.2子集、全集、补集(1)教学目标:1.了解集合之间包含关系的意义.2.理解子集、真子集的概念3.渗透数形结合、分类等数学思想方法教学重点:了集,真了集的概念教学难点:正确理解集合间的包含关系教学过程:一、问题情境观察中国地图,看看江苏省在什么地方,再看一看中国的区域。
请问江苏省区域与中国的区域有何关系?如果把江苏省的区域用集合A表不,中国的区域用集合B表不,则集合A在集合B内,即集合A中的每个元素都在集合B内,再看下面两个集合之间的关系。
(1)A= {x | x是江苏人} , B= {x | x是中国人}(2)A-{-l,l}, A = {-1,0,1,2};(3) A = N,B = R(4)本班所有姓王的同学组成的集合A与本班所有同学组成的集合B间的关系.二、讲解新课1.子集.(1)概念:如果集合A中的任意一个元素都是集合B中的元素,那么称集合A为集合B的了集(subset),记作A^B或Bp 4,读作“集合A包含于集合B”或“集合B包含集合A” .简记为:若aeA,则awB ,称A^B (即A是B的了集) 当集合A不是集合B的子集时,记作A^/B或直諂,读作“集合A不包含于集合B”或“集合B不包含集合A”A匸B还可以用Venn图表示. 能否再举一些子集的事例?⑵性质:4匸4 ,即:任何一个集合是它本身的子集.(自反性)若A^B, ByC ,则AcC (传递性)A^B,与BcA同时成立,那么4,B中的元素是一样的,即A = B.(反对称性)对于0,我们规定:0cA.即空集是任何集合的子集.例]、写出集合{a,纠的所有子集.解析:按子集元素个数的多少分别写出来,这样才能不重不漏,特别注意0和本身。
同是子集,能否区分它们的不同?2.真子集。
如果A c B且4鼻3,这时集合A称为集合B的真子集(proper subset)・记作:A^B (或B ^A)读作:A真包含于B (或B真包含A)・问题归结为写出集合A 的所有说以集合为元素组成集说明集合的元素呈多样性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2子集、全集、补集导学案
一、自学准备与知识导学
问题:观察下列两组集合,说出集合A与集合B的关系(共性)
(1)A={-1,1},B={-1,0,1,2}
(2)A=N,B=R
(3)A={x x为北京人},B= {x x为中国人}
概念:
1.子集
如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的_______,记作:
A B或
B A, 读作A B或B A
由定义可知,A_______A.也就是说,任何一个集合是它本身的__________
规定:空集是任何集合的__________.
?
思考:如何用文氏图表示A B
2.真子集
对于两个集合A与B,如果 A B并且 A B,我们就说集合A是集合B 的,记作:A B或B A, 读作A B或B A 二、学习交流与问题研讨:
例1写出{a,b}的所有子集,并指出其中哪些是它的真子集.
小组讨论:(1)集合{}1234,,,a a a a 的所有子集的个数是多少?
(2)集合{}n a a a ,,21 的所有子集的个数是多少?
练习:P9 T1
思考:A B ⊆与B A ⊇能否同时成立?
例2下列各组的3个集合中,哪2个集合之间具有包含关系?
(1)
(2)
(3)
.
思考:观察例2中每一组的3个集合,它们之间还有什么关系?
3.补集:
设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的______,记为_________, 读作:_________________, 即: s C A =
. 4.全集:
如果集合S 包含我们所要研究的各个集合,那么这时S 可以看做一个______,全集通常记作___.
例3、不等式组210360
x x ->⎧⎨
-≤⎩的解集为A ,U=R ,试求A 及u C A ,并把他们分别表示在数轴上.
练习:P9 T2、3
思考:元素与集合、集合与集合之间各是什么关系?
练习:P10 T4、5、6
三、练习检测与拓展延伸
1.判断下列表示是否正确:
⊆{a } (2) {a }∈{a,b } (3) {a,b } ⊆{b,a }
(1) a
2.指出下列各组中集合A与B之间的关系.
(1) A={-1,1},B=Z; (2) A={1,3,5,15},B={x|x是15的正约数};
(3) A = N*,B=N; (4) A ={x|x=1+a2,a∈N*}, B={x|x=a2-4a+5,a∈N*}
3.以下各组是什么关系,用适当的符号表来.
(1) ∅与{0} (2) {-1,1}与{1,-1}(3) {(a,b)} 与{(b,a)}(4) ∅与{0,1,
∅}
⊆M⊆{1,2,3,4,5},则这样的集合M有多少个?
4.已知{1,2 }
C A___________ 5.若U=Z,A={x|x=2k,k∈Z},B={x|x=2k+1,k∈Z},则
U
C B_________:
U
C A={5},求实数a,b的值.
6.设全集是数集U={2,3,a2+2a-3},已知A={b,2},
U
四、课后反思。