75M3机械搅拌通风谷氨酸发酵罐的设计

合集下载

机械搅拌通风发酵罐设计

机械搅拌通风发酵罐设计

机械搅拌通风发酵罐设计(1). 设计题目50m3谷氨酸机械搅拌通风发酵罐系统的放大设计(2). 设计任务某厂在100L机械搅拌通风发酵罐中发酵生产谷氨酸生产试验,获得良好效果,拟放大到50m3生产罐,此发酵液为牛顿型流体,粘度m=2.0×10-3Pa·S,密度rL=1020kg/m3。

试验罐的尺寸为:直径D=375mm,搅拌叶轮Di=125mm,高径比H/D=2.4,液深HL=1.5D,4块档板的W/D=0.1,装液量为70L,通气强度VVm=1.0,使用两组圆盘六平直叶涡轮搅拌器,转速w=350r/min。

通过实验研究,表明此发酵为高耗氧的生物反应,现按体积溶氧系数相等之原则进行放大。

对生产罐的部份具体要求是:罐体材质为不锈钢,罐体上签证下封头为椭球体;用2组圆盘六平直叶涡轮搅拌器、搅拌转轴直径10cm;采用4组对称布置的竖式蛇管冷却器,蛇管材质为不锈钢管。

罐体表面加隔热层,故可不计罐体表面散热损失。

(3). 操作条件1)生产时,装料系数70%,发酵温度为32°C,保压为0.1Mpa(表压),罐内气体相对湿度为100%;进气压力为0.15Mpa(表压)、温度为25°C,相对湿度为70%;蛇管总传热系数K=3000KJ/(m2·h·°C),冷却水进口温度为-10°C,出口温度为25°C。

主酵阶段最大耗糖速度每小时为发酵液量的0.7%,糖分消耗中发酵占80%,呼吸占20%,1kg糖发酵时产生的呼吸热为15660KJ(或产生的发酵热为4860KJ)。

同实验罐。

罐内灭菌时蒸汽压力为0.25Mpa(表压)。

2)培养基制备工艺流程采用水解设备流程(参见《发酵设备》P55)。

以淀粉为原料,采用分批式操作,分两批在8小时内装完一个发酵罐。

每一批操作中,调浆操作耗时30分钟,调浆后,粉浆密度为1084kg/m3,粉浆比热容为3.6KJ/(kg·k),水解压力为0.25~0.26Mpa(表压),温度为95°C,水解维持时间约30min,水解液经过滤后用列管式冷却加拿大投资移民器(进水温度10°C,出水温度40°C)在60分钟内冷却到70°C后,送入一次中和罐,中和与脱色操作耗时30分钟。

年产6万吨味精厂谷氨酸机械搅拌通风发酵罐设计

年产6万吨味精厂谷氨酸机械搅拌通风发酵罐设计

生物工程与设备课程设计说明书年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计专业班级:生物工程作者学号:201106011158作者姓名:张晓勇指导老师:王君高王兰芝设计日期:2013年6月18日至2013年6月21日山东轻工业学院课程设计任务书食品与生物工程学院11 级生物工程专业学生张晓勇题目:年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计一、主要内容:1、物料恒算,计算发酵罐总容积;2、求发酵罐个数,取单罐公称容积200m3;3、公称容积200m3发酵罐设计(罐体尺寸、壁厚、搅拌器类型选择及尺寸设计、搅拌功率计算、搅拌轴直径计算、冷却面积计算与设计)二、基本要求1、编写计算设计说明书(有前言、设计参数、物料恒算、发酵罐工艺设计,设计体会)2、用CAD绘出发酵罐结构图。

三、设计参数1、糖酸转化率61%2、发酵产酸水平11%3、发酵周期32小时4、发酵罐充满系数为0.75、味精分子式187.13(C5H8NO4Na).H2O6、谷氨酸分子式147.13(C5H9NO4)7、谷氨酸密度取1.553g/cm3 8、残还原糖0.8%,干菌体1.7%9、谷氨酸提取率97.5%。

10、谷氨酸生产味精精制率为125%11、空罐灭菌压力0.25MPa 12、年工作日安330天计算四、主要参考资料〔1〕郑裕国《生物工程设备》化学工业出版社2007〔2〕高孔荣《发酵设备》轻工业出版社1991.10〔3〕梁世中《生物工程设备》轻工业出版社2002.2〔4〕化工设备设计全书编辑委员会编《搅拌设备设计》上海科学技术出版社1985〔5〕吴思方《发酵工厂工艺设计概论》中国轻工业出版社2007(6)化工工艺设计手册(7)于令信《味精工业手册》(8)张克旭《氨基酸发酵工艺学》轻工业出版社完成期限:自2013年6月18 日至2012 年 6 月21日指导教师:王君高王兰芝教研室主任:一、计算设计说明书前言机械搅拌式发酵设备和技术在整个制药、生物产品的开发过程中起着特别重要的作用。

m3谷氨酸发酵罐设计

m3谷氨酸发酵罐设计

江西科技师范学院生物工程专业《化工原理课程设计》说明书题目名称 2m3 产谷氨酸发酵罐的设计专业班级 2009 级生物工程(1)班学号学生姓名唐盼阙素云周婷指导教师常军博士2011 年 10 月 31 日目录一、设计方案的确定 (1)谷氨酸的生产工艺流程 (1)生产原料 (1)发酵菌株 (2)培养基的制备 (2)二、发酵罐主体设计计算 (2)发酵罐主要条件及主要技术指标 (2)罐体选型、几何尺寸的确定、罐体主要部件尺寸的设计计算 (3)发酵罐的选型 (3)发酵罐容积的确定 (3)发酵罐装液量的确定 (4)冷却装置的设计 (4)罐体选料 (5)罐体壁厚 (5)封头壁厚计算 (5)夹套直径 (6)挡板的设计 (6)搅拌器的设计 (6)搅拌器的计算 (6)搅拌轴功率的计算 (7)管道设计 (9)通风管管径计算 (9)进出物料管 (9)冷却水进出口管径 (10)管道接口 (10)仪表接口 (10)三、其他附件选型 (10)四、附录及图纸 (11)附录1计算结果汇总表 (11)附录2计算结果汇总表 (12)五、总结 (13)六、参考文献及资料 (14)一、设计方案的确定谷氨酸的生产工艺流程谷氨酸的生产主要包括以下工作:谷氨酸发酵的原料处理和培养基的配制;子培养;发酵工艺条件的控制;谷氨酸提取;谷氨酸的精制。

发酵法生产谷氨酸的工艺流程如下:图1 谷氨酸生产工艺流程图生产原料谷氨酸生产时发酵原料的选择原则:首先考虑菌体生长繁殖的营养;考虑到有利于谷氨酸的大量积累;还要考虑原料丰富,价格便宜;发酵周期短,产品易提取等因素。

目前谷氨酸生产上多采用尿素为氮源,采用分批流加,以生物素为生长因子。

国内大多数厂家用淀粉为发酵原料,主要有玉米、小麦、甘薯、大米等,其中甘薯的淀粉最为常用。

少数厂家用糖蜜为发酵原料,主要有甘蔗糖蜜、甜菜糖蜜。

发酵菌株现有谷氨酸生产菌分属于棒状杆菌属、短杆菌属、小杆菌属及节杆菌属。

目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。

生物工程设备课程设计--75M3赖氨酸发酵罐设计

生物工程设备课程设计--75M3赖氨酸发酵罐设计

《生物工程设备与原理》课程设计说明书题目: 75M3赖氨酸发酵罐设计院系:生命科学与工程学院专业班级:75M3赖氨酸发酵罐设计任务书一、目的任务识的基础上,培养学生综合运用这些知识分析和解决工程实际问题的能力以及协作攻关的能力,为在学生掌握所学的工程制图、化工原理、生物工艺学、生物工程设备与原理等课程的基础知识和专业知生物工程工厂设计专业课程的学习和毕业论文(设计)打下基础。

二、设计题目与参数75m3的赖氨酸发酵罐设计设计参数和技术特性指标:罐内压力0.15 MPa;夹套或蛇管压力0.25 MPa;工作温度:罐内小于或等于120℃,蛇管或夹套小于等于150℃.工作介质:罐内轻微腐蚀性,蛇管或夹套蒸汽(灭菌);发酵温度32℃传热面积按1.5m2/m3装料量设计。

搅拌器转速为100转/分,搅拌器型式自定。

H/D取1.7-2.5;装料系数η取0.6~0.8;通风管通风比(通气速率/发酵液体积)取0.5~1.0vvm;发酵液密度为1076kg/m3,最大粘度3×10-3N·s/m2;冷却水初始水温25℃.三、设计任务及设计要求:进行发酵罐的所有部件的计算及整体结构设计,完成设计说明书。

(1)进行罐体及夹套(或内部蛇管)设计计算(2)进行搅拌装置设计:搅拌器的选型设计;选择轴承、联轴器,罐内搅拌轴的结构设计,搅拌轴计算和校核;(3)搅拌器功率(不通气功率、通气功率)、电机功率计算、传动系统的设计计算:传动设计采用V带传动;(4)密封装置的选型设计(5)选择支座形式并计算(6)手孔或人孔选型(7)选择(进料管、取样管、冷却水进出口接管、排气管、进气管等)接管、管法兰、设备法兰。

(8)设计机架结构(9)设计凸缘及安装底盖结构(10)空气分布管、视镜的选型设计(11)绘制发酵罐器装配图(A3号图纸)。

(12)每人撰写总结1份。

装料量75 m3的(赖氨酸)发酵罐设计设计说明书目录1设计方案的拟定 (1)2罐体结构设计 (2)2.1罐体几何尺寸的计算 (2)2.2罐体几何尺寸的验算 (3)2.3装料量及装料高度 (3)2.4罐体材料 (3)2.5罐体厚度 (3)2.6封头壁厚的计算 (4)2.7罐体压力计算 (4)3蛇管冷却装置 (5)3.1 冷却方式 (5)3.2冷却面积计算 (5)3.3蛇管设计主要尺寸及固定 (5)3.4蛇管进出口设计 (6)4.搅拌器设计计算......................................................‥ (7)4.1搅拌器选型和主要尺寸 (7)4.2桨叶分布 (7)4.3搅拌器的结构形式与安装 (7)4.4搅拌器轴功率的计算 (8)4.5搅拌轴设计 (9)4.6搅拌轴临界转速的校核 (11)5 通风发酵罐的传动装置设计 (11)5.1电机的选择 (11)5.2减速机选型 (11)5.3 V带设计内容及步骤 (12)5.4联轴器 (16)5.5 机架 (16)5.6凸缘法兰 (17)5.7安装底盖 (18)6 其它部件选型 (19)6.1密封装置 (19)6.2 法兰选择 (20)6.3无菌空气通风管设计 (21)6.4手孔及人孔 (22)6.5支座 (22)6.6视镜 (25)6.7 液面计 (26)6.8仪表接口 (27)6.9消泡器 (27)7.工艺设计计算结果汇总及主要尺寸说明 (28)1设计方案的拟定本文对北京棒杆菌AS1.563为原料合成赖氨酸的主要反应设备作了设计和计算,包括发酵罐的容积及主要部件尺寸的确定,搅拌器的选型及功率计算,冷却设备的计算等。

发酵罐的设计范文

发酵罐的设计范文

发酵罐的设计范文发酵罐是用来进行微生物发酵过程的设备,广泛应用于食品、医药、饲料、酒精等行业。

它的设计对于保证发酵过程的顺利进行具有重要意义。

首先,在设计发酵罐时,需要考虑容器的材质选择。

常见的发酵容器材质有玻璃、不锈钢、塑料等。

其中,不锈钢是目前最常用的材料,因为它具有良好的耐腐蚀性能和机械强度,能够适应不同的发酵工艺和条件。

此外,不锈钢材质还易清洗,能够保证发酵过程的卫生安全。

其次,发酵罐的设计应考虑容器的形状和尺寸。

一般而言,发酵罐的形状可以是圆柱形、椭圆形或立方形,尺寸则根据实际需要而定。

圆柱形发酵罐具有较小的基底面积,体积利用率较高,适用于大规模的发酵过程;而椭圆形发酵罐能够减小搅拌时的死角和液流的旋转,有利于发酵物料的均匀混合;立方形发酵罐则容易进行工艺控制和操作。

根据实际需要选择合适的形状和尺寸,以满足发酵工艺的要求。

同时,发酵罐的设计还需要考虑气体供应和排出的设施。

发酵过程中,微生物需要氧气进行呼吸,因此罐体需要有合适的进气装置,以保证微生物的正常生长。

常见的进气装置有机械式搅拌、气体通道等。

同时,还需要考虑废气的排出,避免微生物产生过量气体而影响发酵过程。

此外,温度和酸碱度是影响发酵过程的关键因素,因此在设计发酵罐时需要考虑温度和酸碱度的控制设备。

发酵罐通常会设置恒温装置,以保持适宜的发酵温度。

常见的恒温设备有水浴、电热传导等。

对于酸碱度的控制,可以通过添加酸碱溶液等方式进行调节。

最后,发酵罐的设计还需要考虑搅拌和控制系统。

搅拌过程有助于增加氧气传递、混合反应物料和促进产物的分散。

搅拌系统通常包括电机、搅拌桨和传动装置等。

对于控制系统,需要设置相应的传感器和控制器,以对温度、酸碱度、溶解氧等过程参数进行监测和控制。

总之,发酵罐的设计是一项复杂而重要的任务,需要考虑容器材质选择、形状尺寸、气体供应排出、温度酸碱度控制以及搅拌控制系统等方面。

只有合理设计,才能满足发酵过程的要求,保证产品的质量和产量。

75M3机械搅拌通风谷氨酸发酵罐的设计

75M3机械搅拌通风谷氨酸发酵罐的设计

课程设计75M3机械搅拌通风谷氨酸发酵罐的设计课程名称生物工程设备 _______________学生学院轻工化工学院 _______________专业班级生物工程一班 _______________学号____________________学生姓名十_____________________指导教师__________________2010 年6 月20 日广东工业大学课程设计任务书75M 3机械搅拌通风谷氨酸发酵罐的设计轻工化工学院 生物工程一班 、课程设计的内容1、 通过查阅机械搅拌通风发酵罐的有关资料,熟悉基本工作原理和特点2、 进行工艺计算3、 主要设备工作部件尺寸的设计4、 绘制装配图5、 撰写课程设计说明书二、 课程设计的要求与数据设计75M 3机械通风发酵罐,应用TG866菌株发酵生产谷氨酸,产物是次级代谢产物, 非牛顿型流体,三级发酵。

发酵罐高径比为 2.6,生产场地为南方某地,蛇管冷却,初 始水温:20 C三、 课程设计应完成的工作1 •课程设计说明书(纸质版和电子版) 各1份2 •设备装配图(A3号图纸)1张题目名称学生学院 专业班级 姓 名 学 号四、课程设计进程安排五、应收集的资料及主要参考文献[1] 郑裕国•生物工程设备[M].北京:化学工业出版社,2007.[2] 李功样,陈兰英,崔英德.常用化工单元设备的设计[M].广州:华南理工大学出版社,2006.[3] 陈英南,刘玉兰.常用化工单元设备的设计[M].杭州:华东理工大学出版社,2005.[4] GB/T 14690-1993-1993,技术制图比例[S].北京:中国标准出版社,1993.⑸梁世中.生物工程设备[M].北京:中国轻工业出版社,2007.[6] 田洪涛.现代发酵工艺原理[M].北京:化学工业出版社,2007.[7] JBT4746-2002,钢制压力容器用封头[S].北京:中国标准出版社,2002.发出任务书日期:2012年6月11日指导教师签名:计划完成日期:2012年6月22 日基层教学单位责任人签章:主管院长签章:课程设计考核表摘要本次设计的是一台75M3机械搅拌发酵罐,发酵生产谷氨酸。

谷氨酸发酵罐的设计(1)

谷氨酸发酵罐的设计(1)
,
,
以 下均 以 我 厂
发酵
远 远超 出 了环 境 保 护 法 的 规 定
度 不够 精确
然 噪音 低
,
且 因 加 工精
,
根据 压 力 容 器 受 内压 容 器 的 设
。 ‘
,
因 此 维 修频 繁
,

进 口 减 速机 虽
,
但价 格 昂 贵
且备 件 购 买 不 便
,
二 声一 二 井石 一 一一 云 十 乙 」 甲一
从 而 使 罐 内能 保持 一 定 的适 合微

若 下 档 用 六 弯叶
断 地 向下 压
,
,
用 以打 碎 空 气 泡
,
,
而上 档
改成 螺旋 浆 推 进 式搅拌 器 发 挥 出来
,
将上 而 的 液 体 不
生 物 生 长 的 温度
谷 氨 酸 发 酵 罐 通 常采 用 罐
,
从 而使搅 拌 叶 的 搅 拌 效果充分
长 所消 耗 的 氧
的 时间越 长
,
筒 体越 长
氧在 筒 体 中 停 留
,
则 不仅增 加 了 冷 却 面 积
,

满 足 了 谷氨 酸
溶氧 就越充 分
,
但 筒 体长
,
,

,
发 酵 的 工艺要 求
的 作用
同 时 对 筒体 也 起 到 了 加 强

缩 空 气 的 压 力 要 求 就越 高
均 匀混合
,
顶料 与 底 料 不 易 操作 不 便
以满 足 微 生 物 发 酵 过 程 甲 对 氧 的
内装 冷 却 列 管 的 方 担
在 南 方 由于 夏 季 温 度

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

课程设计任务书一、课程设计的内容1、通过查阅机械搅拌通风发酵罐的有关资料,熟悉基本工作原理和特点。

2、进行工艺计算3、主要设备工作部件尺寸的设计4、绘制装配图5、撰写课程设计说明书二、课程设计的要求与数据高径比为2.5,南方某地,蛇管冷却,初始水温18℃,出水温度26℃1.应用基因工程菌株发酵生产赖氨酸,此产物是初级代谢产物。

牛顿型流体,二级发酵。

学号末尾数为0 : 15M3发酵罐;1号:50M3发酵罐;2号: 200 M3发酵罐2.应用基因工程菌株发酵生产柠檬酸,此产物是初级代谢产物。

牛顿型流体,二级发酵。

3号: 60M3发酵罐;4号 75M3发酵罐; 5号 100 M3发酵罐3.应用黑曲霉菌株发酵生产糖化酶,此产物是初级代谢产物。

非牛顿型流体,三级发酵。

6号: 15M3发酵罐; 7号: 20 M3发酵罐; 8号: 40 M3发酵罐; 9号:200 M3发酵罐(公称体积)三、课程设计应完成的工作1.课程设计说明书(纸质版和电子版)各1份2.设备装配图(A2号图纸420*594mm)1张四、课程设计进程安排五、应收集的资料及主要参考文献[1]郑裕国. 生物工程设备[M]. 北京:化学工业出版社,2007[2]李功样, 陈兰英, 崔英德. 常用化工单元设备的设计[M]. 广州:华南理工大学出版社,2006[3]陈英南, 刘玉兰. 常用化工单元设备的设计[M]. 杭州:华东理工大学出版社,2005[4]王福源主编.现代发酵技术(第二版)[M]. 北京:中国轻工业出版社,2004[5]潘红良,郝俊文主编.过程设备机械设计. 杭州:华东理工大学出版社,2006[6]吴思方主编.发酵工厂工艺设计概论[M]. 北京:中国轻工业出版社,2005[7]郑裕国主编,薛亚平副主编.生物工程设备[M].北京:化学工业出版社,2007[8] 黄福源主编,生物工艺技术[M] .北京:中国轻工业出版社,2006摘要本文对黑曲霉菌株为原料生产柠檬酸的生产流程和主要反应设备作了设计和计算。

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

目录1 设计任务书: (1)2 设计概述与设计方案简介: (1)2.1味精生产工艺概述 (2)2.2 味精工厂发酵车间的物料衡算 (4)2.21 工艺技术指标及基础数据 (4)2.22 谷氨酸发酵车间的物料衡算 (3)2.3 机械搅拌通风发酵罐 (3)2.31 通用型发酵的几何尺寸比例 (4)2.32 罐体 (4)2.33 搅拌器和挡板 (4)2.34 消泡器 (4)2.35 联轴器及轴承 (5)2.36 变速装置 (5)2.37 空气分布装置 (5)2.38 轴封 (5)2.4 气升式发酵罐 (5)2.5 自吸式发酵罐 (5)2.6 高位塔式生物反应器 (6)3 工艺及主要设备、辅助设备的设计计算 (6)3.1发酵罐 (6)3.11发酵罐的选型 (6)3.12生产能力、数量和容积的确定 (6)3.13 主要尺寸的计算: (6)3.14冷却面积的计算 (7)3.2搅拌器计算 (7)3.21搅拌轴功率的计算 (8)3.3设备结构的工艺计算 (9)3.4 设备材料的选择[10] (11)3.5发酵罐壁厚的计算 (11)3.6接管设计 (12)3.7支座选择 (12)4设计结果汇总表 (13)5 设计评述 (13)6 参考资料 (13)致谢 (14)1 设计任务书:食品发酵工程课程设计任务书2 设计概述与设计方案简介:谷氨酸是一种氨基酸, 其用途非常广泛,可用于食品、医学、化妆品等。

谷氨酸生产,始于1910年日本的味之素公司用水解法生产谷氨酸。

1956年日本协和发酵公司分离得到谷氨酸棒杆菌,使发酵法生产谷氨酸成为可能,由于发酵法生产氨基酸具有生产能力大、成本低、设备利用率高等特点,使氨基酸工业得到突飞猛进的发展[1]。

我国1958年开始研究,1965年在上海天厨味精厂投产。

目前我国谷氨酸的年产量已达170万吨,产销量占世界第一位。

经过几十年的发展,在该行业诸多工程人员的努力研究下,使我国谷氨酸生产四大收率指标(糖化收率、发酵糖酸转化率和产酸率、提取收率、精制收率)均达到历史最好水平。

谷氨酸发酵罐设计CAD图纸

谷氨酸发酵罐设计CAD图纸

谷氨酸发酵罐设计+CAD图纸摘要:发酵技术大规模用于工业生产,源于上世纪对青霉素等药物的发明,之后扩展到化工、食品、制药、能源等工业领域,已经成为当今世界工业生产最为重要的生物技术之一。

参照有关标准和参考资料对50m3发酵罐的筒体壁厚、封头壁厚等进行了设计,采用传热学理论对发酵罐的传热面积进行了计算;对传动装置进行了设计计算和选型之后,进行了搅拌装置的设计;采用等面积法对按照标准无法免于补强的开孔接管进行了补强面积的计算;最后完成对支座的校核和选型等。

发酵罐是发酵工艺中关键设备,本文对发酵罐的设计理论进行研究,具有一定的工程意义。

30579 毕业论文关键词:发酵罐;结构设计;搅拌轴;开孔补强Abstract:Fermentation technology became population from the invention of medicines such as penicillin, and then has been widely used in many industry fields which are chemical industry,food,pharmacy,energy et al.Now,fermentation is the most important technology in the biological industry. .According to the standards and other reference,thicknesses of the cylinder and thespherical heads have been calculated for a fermentation tank whose capacity is 50m3.Theoretical and experiment formulas have been used to analyze the heat transfer areas for the fermentation tank;after calculating and choosing transmission,then finishing the design of agitation equipment;area replacement method has been used for calculating the reinforcement area of the five openings which do not agree with the principles of exemption for reinforcement.Fermentation tank is the key equipment in the fermentation process,and studies of the design theory and strength for the fermentation tank in this paper is of a significant sense for biological engineering源自Key words:Fermentation tank;Structure design;Stirring shaft;Reinforcement目录1 绪论 11.1 课题背景及研究现状 11.1.1 发酵罐概述 11.1.3 发酵罐的结构设计与密封 21.1.4 谷氨酸发酵罐现状 31.1.5 搅拌桨的设计 31.1.6 新型发酵罐的研制 32谷氨酸发酵罐结构设计 42.1 主要设计参数 42.2 发酵罐及封头设计 52.2.1 发酵罐内径设计 52.2.3 发酵罐筒体设计 62.2.4 封头的设计 72.2.5 发酵罐的稳定性校核 82.3 冷却面积确定 82.3.1 冷却方式 92.3.2 冷却面积 92.3.3 冷却蛇管总长度 103发酵罐传动装置的选型与尺寸设计 10 3.1 电机的选型 103.2 减速机的选型 123.3 凸缘法兰的选型 133.4 安装底盖的选择 133.5 机架的选型 143.6 轴封装置设计 153.6.1 轴封装置的选型 154 发酵罐搅拌装置的选型与尺寸设计 174.1 搅拌轴的直径计算 184.1.1 搅拌轴直径的初步计算 184.1.2 轴的强度校核 184.2 联轴器的计算 194.3 搅拌装置的设计 205 发酵罐其它附件的选型及尺寸 21 5.1 罐体法兰联接结构的设计 215.1.1 法兰的选型 215.1.2 垫片的选型 225.2开孔和接管设计 225.2.1人孔和视镜 225.2.2接口管 24 :5.3 管法兰 335.3.1 管法兰的类型与密封面形式 33 5.3.2 管法兰的密封垫片 345.4支座 356结论 39致谢 40参考文献 411 绪论1.1 课题背景及研究现状1.1.1 发酵罐概述发酵罐,指工业上用来进行微生物发酵的装置。

年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计

年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计

生物工程与设备课程设计说明书题目:年产6万吨味精厂谷氨酸生产机械搅拌通风发酵罐设计作者姓名专业班级指导教师计算设计说明书 前言谷氨酸发酵是通气发酵,该生产工艺和设备具有很强的典型型,本设计对味精发酵生产工艺及主要设备作简要介绍,以期有助于了解通气搅拌发酵工艺和主要设备的有关知识。

搅拌通风发酵罐: 1.发酵罐的径高比例适当2.发酵罐能够承受一定的压力3.合理有效的搅拌通风装置4.快捷有效的冷却装置5.罐体内表面高度抛光6.搅拌轴轴封应严密,严防泄漏,以免造成染菌损失。

一.设计内容 1、物料衡算2、发酵罐个数的确定3、发酵罐结构设计二.设计参数1、糖酸转化率61%2、发酵产酸水平11%3、发酵周期32小时4、发酵罐充满系数为0.75、味精分子式187.13(C5H8NO4Na ).H2O6、谷氨酸分子式147.13(C5H9NO4)7、谷氨酸密度取1.553g/cm38、残还原糖0.8%,干菌体1.7%9、谷氨酸提取率97.5%。

10、谷氨酸生产味精精制率为125%11、空罐灭菌压力0.25MPa12、年工作日安330天计算13、取01L P V =(kw )三.工艺计算1、日产味精量60000181.82(/)330G T d == 2、日产发酵液量181.821356.233(/)1.2597.5%11%G T d ==⨯⨯ 3.发酵液密度3312511086586516.770.8952.5/1.5 1.5531.050/m T T m ρρ=++=++== 4、日需发酵液体积3050.1233.135664.1291m V ==5、取发酵罐公称容积2003m ,充满系数取0.7,有效体积1403m6、需发酵罐个数个3.12241403264.1291==⨯⨯N故取13个发酵罐发酵罐工艺设计四.发酵罐尺寸设计1、罐体尺寸计算取罐高径比为2,用标准椭圆封头,已知罐公称容积为2003m231()200461(2)200464.9()V D H D D D m ππ=+=+=== 23525105015(100.055)213()6D mmmmm π==⨯=++⨯=0取发酵罐直径发酵罐高H 封头直角边取发酵罐公称容积V=4发酵罐总高度H=10+2(0.05+5/4)=12.6(m )封头体积:22315()0.7855(0.05)17.34()466D V D h m π=+=⨯+= 发酵罐全容积:V=213+17.34=230.34(m3)2、需发酵罐个数 发酵罐公称容积2003m ,发酵全容积2133m ,取充满系数取0.7,有效体积即149.13m发酵罐个数:55.11241.1493265.1291=⨯⨯=N 故取发酵罐12个3、罐体壁厚计算选用不锈钢0Cr19Ni9 其[]130t MPa σ=[]122t P DC C P δσϕ⨯=++-P —设计压力,取最大工作压力的1.1倍,灭菌压力即最大工作压力。

生物工程设备课程设计--75M3酶解发酵罐设计

生物工程设备课程设计--75M3酶解发酵罐设计

生物工程设备课程设计--75M3酶解发酵
罐设计
一、设计背景
本生物工程设备课程设计的目的是掌握酶解发酵罐的设计原理和方法,为生物制药企业提供高质量的生产设备。

本次课程设计要设计容积为75m3的酶解发酵罐。

二、设计要求
1. 酶解发酵罐容积为75m3,有效直径不小于5m。

2. 设计压力为0.2MPa,最高使用温度为120℃。

3. 材料为316L不锈钢。

4. 设计要满足GMP要求。

三、设计方案
1. 选择有效直径为5.6m,总高度为19m的罐体结构,下封头采用标准半球形封头,上盖采用锥形封头。

这样设计可以保证罐体在压力和温度的作用下不会发生变形,符合设计要求。

2. 选择内衬316L不锈钢材料,提高罐体的耐腐蚀性,同时也符合GMP要求。

3. 设计罐体配有搅拌器,搅拌器可控制转速,保证发酵物质的均匀混合,提高反应效率。

另外,配备发酵锅加热器和冷却器,保证反应体系的温度控制,提高反应效果。

4. 选择集中控制系统,实现自动控制,可记录反应过程中的各种参数。

四、设计结论
本文针对生物工程设备酶解发酵罐的设计要求,提出了一种适合75m3容积的酶解发酵罐的设计方案,并且符合GMP要求。

该设计方案可满足生物制药企业75m3酶解发酵罐的生产需要。

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计机械搅拌通风发酵罐是一种用于发酵有机物质的设备。

它又被称为机械通风式发酵罐,常用于有机肥料生产、沼气发酵、生物质能源发酵等领域。

设计一台高效的机械搅拌通风发酵罐需要考虑以下因素:1. 设计容积机械搅拌通风发酵罐的设计容积需要考虑到原料预处理后的固态密度,发酵过程中的充分膨胀及发酵物料的密实度。

通常,机械搅拌通风发酵罐设计的容积应该在15~100m3之间。

2. 结构设计机械搅拌通风发酵罐的结构设计需要考虑到其承受能力、外部环境的要求以及运输的方便性。

常用的材料有钢材、玻璃钢、混凝土等,强度越高的材料越适合用于制作机械搅拌通风发酵罐。

另外,罐体需要具有重量轻、强度高、隔热性好、抗腐蚀和易清洗等特点。

3. 搅拌系统设计机械搅拌通风发酵罐的搅拌系统需要具有均匀、高效、节能等特点。

常用的搅拌方法有机械式搅拌和气力式搅拌,其中机械式搅拌通常是通过叶轮或圆盘搅拌器进行搅拌,气力式搅拌则是通过喷射压缩空气来实现搅拌。

搅拌器应避免对发酵物料的损害,杜绝沉淀现象,同时要保证罐内发酵物料的均匀性。

机械搅拌通风发酵罐的通风系统设计应考虑到通风量、风机的型号和数量、排气要求等因素。

罐内氧气的供应和二氧化碳的排放是保证酵素的正常活动和防止罐体产生过高压力的重要手段。

通风系统应该灵活,能够随时调整通风量大小以适应发酵过程中不同的需求。

机械搅拌通风发酵罐的控制系统设计应考虑到参数监测、温度控制、气气体控制等方面。

为了保证罐内发酵物料的均匀性和质量,应安装相应的检测仪器并设定最优参数。

同时,为了保证工作效率和生产安全,控制系统还应能够实现远程监控和故障自诊断及报警等功能。

机械搅拌通风发酵罐的设计需要从多个角度出发,并针对具体应用领域进行优化。

在实际生产应用中,还需要根据特定的发酵物料和生产工艺进行相应的调整和优化,提高发酵效率和生产质量。

发酵罐类型及结构

发酵罐类型及结构

第一节通风发酵罐及结构通风发酵罐又称好气性发酵罐,如谷氨酸、柠檬酸、酶制剂、抗生素、酵母等发酵用的发酵罐。

好气性发酵需要将空气不断通入发酵液中,以供微生物所消耗的氧。

常用通风发酵罐有以下几种类型:(1)机械搅拌发酵罐(2)气升式发酵罐(3)自吸式发酵罐(4)伍式发酵罐(5)文氏管发酵罐一、机械搅拌通风发酵罐机械搅拌通风发酵罐是发酵工厂最常用类型。

它是利用机械搅拌器的作用,使空气和发酵液充分混合,促使氧在发酵液中溶解,以保证供给微生物生长繁殖、发酵所需要的氧气。

1、机械搅拌通风发酵罐的基本要求一个性能优良的机械搅拌通风发酵罐必须满足以下基本要求:(1)发酵罐应具有适宜的径高比;发酵罐的高度与直径之比一般为1.7~4倍左右,罐身越长,氧的利用率较高(2)发酵罐能承受一定压力;(3)发酵罐的搅拌通风装置能使气液充分混合,保证发酵液必须的溶解氧;(4)发酵罐应具有足够的冷却面积;(5)发酵罐内应尽量减少死角,避免藏垢积污,灭菌能彻底,避免染菌;(6)搅拌器的轴封应严密,尽量减少泄漏。

2、机械搅拌发酵罐的结构机械搅拌通风发酵罐是一种密封式受压设备,其主要部件包括:罐身、轴封、消泡器、搅拌器、联轴器、中间轴承、挡板、空气分布管、换热装置和人孔以及管路等。

(1)罐体发酵罐的罐体由圆柱体及椭圆形或碟形封头焊接而成,小型发酵罐罐顶和罐身采用法兰连接,材料一般为不锈钢。

为了便于清洗,小型发酵罐顶设有清洗用的手孔。

中大型发酵罐则装没有快开入孔及清洗用的快开手孔。

罐顶还装有视镜及灯镜。

在发酵罐的罐顶上的接管有:进料管、补料管、排气管、接种管和压力表接管。

在罐身上的接管有冷却水进出管、进空气管、取样管、温度计管和测控仪表接口。

图6-1搅拌通风发酵罐的结构示意图(2)罐体的尺寸比例罐体各部分的尺寸有一定的比例,罐的高度与直径之比一般为1.7~4左右。

发酵罐通常装有两组搅拌器,两组搅拌器的间距S约为搅拌器直径的三倍。

对于大型发酵罐以及液体深度H L较高的,可安装三组或三组以上的搅拌器。

机械搅拌通风发酵罐的设计

机械搅拌通风发酵罐的设计

课程设计报告题目:学院专业班级姓名学号指导老师年月日目录第一章前言青霉素是一类抗生素的总称。

自从被发现以来,就被人们广泛应用于医疗行业。

是用应得最多的一类抗生素,从此很多医学难题迎刃而解。

也使人们致力于青霉素及其相关技术的研究。

青霉素是一种高效、低毒、临床应用广泛的重要抗生素。

它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生。

它的出现开创了用抗生素治疗疾病的新纪元。

通过数十年的完善,青霉素针剂和口服青霉素已能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。

继青霉素之后,链霉素、氯霉素、土霉素、四环素等抗生素不断产生,增强了人类治疗传染性疾病的能力。

青霉素发酵是通气发酵[2],该生产工艺和设备具有很强的典型性,本设计对味青霉素发酵罐的选型及计算作简要介绍,以期有助于了解通气发酵工艺和主要设备的有关知识。

第二章绪论2.1 青霉素的概述.青霉素(Benzylpenicillin / Penicillin)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。

青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。

青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。

2.2 青霉素的应用青霉素类抗生素的毒性很小,由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,是化疗指数最大的抗生素。

临床应用:主要控制敏感金黄色葡糖球菌、链球菌、肺炎双球菌、淋球菌、脑膜炎双球菌、螺旋体等引起感染,对大多数革兰氏阳性菌(如金黄色葡萄球菌)和某些革兰氏阴性细菌及螺旋体有抗菌作用。

青霉素针剂和口服青霉素能分别治疗肺炎、肺结核、脑膜炎、心内膜炎、白喉、炭疽等病。

工业应用:可用于生产柠檬酸、延胡索酸、葡萄糖酸等有机酸和酶制剂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计75M3机械搅拌通风谷氨酸发酵罐的设计课程名称生物工程设备学生学院轻工化工学院专业班级生物工程一班学号学生姓名***指导教师***2010 年 6 月20 日广东工业大学课程设计任务书题目名称75M3机械搅拌通风谷氨酸发酵罐的设计学生学院轻工化工学院专业班级生物工程一班姓名***学号一、课程设计的内容1、通过查阅机械搅拌通风发酵罐的有关资料,熟悉基本工作原理和特点。

2、进行工艺计算3、主要设备工作部件尺寸的设计4、绘制装配图5、撰写课程设计说明书二、课程设计的要求与数据设计75M3机械通风发酵罐,应用TG866菌株发酵生产谷氨酸,产物是次级代谢产物,非牛顿型流体,三级发酵。

发酵罐高径比为 2.6,生产场地为南方某地,蛇管冷却,初始水温:20℃三、课程设计应完成的工作1.课程设计说明书(纸质版和电子版)各1份2.设备装配图(A3号图纸)1张[1] 郑裕国. 生物工程设备[M]. 北京:化学工业出版社,2007.[2] 李功样,陈兰英,崔英德. 常用化工单元设备的设计[M]. 广州:华南理工大学出版社,2006.[3] 陈英南,刘玉兰. 常用化工单元设备的设计[M]. 杭州:华东理工大学出版社,2005.[4] GB/T 14690-1993-1993,技术制图比例[S].北京:中国标准出版社,1993.[5] 梁世中. 生物工程设备[M]. 北京: 中国轻工业出版社,2007.[6] 田洪涛. 现代发酵工艺原理[M]. 北京: 化学工业出版社,2007.[7] JBT4746-2002,钢制压力容器用封头[S].北京:中国标准出版社,2002.发出任务书日期:2012 年 6 月11 日指导教师签名:计划完成日期:2012 年 6 月22 日基层教学单位责任人签章:主管院长签章:课程设计考核表摘要本次设计的是一台75M3机械搅拌发酵罐,发酵生产谷氨酸。

发酵罐主要由罐体和冷却装置、搅拌装置、传动装置、轴封装置、人孔和其它的一些附件组成。

罐体材料为A3钢为材料,内涂环氧树脂防腐,厚度为10mm。

采用标准椭圆封头,壁厚为16mm,与发酵罐采用双面缝焊接方式连接。

发酵罐的高9360mm,直径为3600mm,罐内采用二层,六弯叶涡轮式搅拌器。

搅拌轴直径为1200mm,由130KW电动机驱动,并采用轴封与罐体密封。

冷却装置为76×3.5mm的冷却蛇管342m,分6组安装在罐内。

最后绘制了该发酵罐的装配图。

关键词:机械搅拌发酵罐,封头,搅拌器,端面轴封,冷却装置目录1 设计方案的拟定 (1)2罐体主要尺寸的确定 (2)2.1 罐体体积 (2)2.2罐体总高度 (3)3 罐体主要部件尺寸的设计计算 (4)3.1 罐体 (4)3.2 罐体壁厚 (4)3.3 封头壁厚的计算 (4)3.4 搅拌器 (5)3.5 人孔和视镜 (5)3.6 接口管的选择 (6)3.6.1 排料管的选择计算 (6)3.6.2 气管直径的选择 (6)3.6.3 仪表接口 (7)3.7 管道接口 (7)3.8 支座的选择 (8)4 冷却装置的确定 (9)4.1 冷却方式 (9)4.2 装液量 (10)4.3 冷却水耗量 (10)4.4 冷却面积 (10)5 搅拌器轴功率的计算 (11)5.1不通气条件下的轴功率P0 (11)5.2通气搅拌功率Pg的计算 (12)5.3电机及变速装置选用 (12)6 结束语 (14)7 参考文献 (14)1 设计方案的拟定我设计的是一台75M3机械搅拌通风发酵罐,发酵生产谷氨酸。

L-谷氨酸是生物机体内按代谢的基本氨基酸之一,也是连接糖代谢与氨基酸代谢的枢纽之一,在代谢上具有比较重要的意义。

L-谷氨酸单钠盐,俗称味精,具有强烈的鲜味,是一种十分重要的调味品,广泛应用于烹调和食品加工。

目前国内谷氨酸发酵的主要菌种有:○1天津短杆菌及其诱变株FM8209、FM-415、CMTC-6282、TG863、TG866、S9144、D85等菌株;○2钝齿棒杆菌AS1.542及其诱变菌株B9、B9-17-36、F-263等菌株;○3北京棒杆菌AS.1299及其诱变菌株7338、D110、WTH-1等菌株。

综合温度、PH等因素选择菌株,该菌种最适发酵温度为32-37,pH为7.0-7.5。

主要生产工艺过程为如下:原料液的处理与培养基配制;种子制备与扩大培养;发酵;谷氨酸提取与精制。

其具体过程如图1:味精生产总工艺流程图发酵罐主要由罐体和冷却蛇管,以及搅拌装置,传动装置,轴封装置,人孔和其它的一些附件组成。

这次设计就是要对75m3发酵罐的几何尺寸进行计算;考虑压力,温度,腐蚀因素,选择罐体材料,确定罐体外形、罐体和封头的壁厚;根据发酵微生物产生的发酵热、发酵罐的装液量、冷却方式等进行冷却装置的设计、计算;根据上面的一系列计算选择适合的搅拌装置,传动装置,和人孔等一些附件的确定,完成整个装备图,完成这次设计。

这次设计包括一套图样,主要是装配图,还有一份说明书。

而绘制装配图是生物工程设备的机械设计核心内容,绘制装配图要有合理的选择基本視图,和各种表达方式,有合理的选择比例,大小,和合理的安排幅面。

说明书就是要写清楚设计的思路和步骤表 1-1发酵罐主要设计条件项目及代号 参数及结果 备注发酵菌种 工作压力 设计压力 发酵温度 设计温度 冷却方式 培养基发酵液密度 发酵液粘度TG866 0.4MPa 0.4MPa 35℃ 120℃ 蛇管冷却玉米浆,马铃薯淀粉,豆饼粉ρ=1050Kg/m 3 μ=1.3×10-3N*s/m 2根据参考文献[6]选取 由工艺条件确定 由工艺条件确定 由参考文献[6]确定 由工艺条件确定 由工艺条件确定 由参考文献[6]确定 由工艺条件确定 由工艺条件确定 由工艺条件确定2罐体主要尺寸的确定2.1 罐体体积根据工艺参数和高径比确定各部几何尺寸;高径比H/D=2.6则H=2.6 初步设计:设计条件给出的是发酵罐的公称体积(75m 3)公称体积V --罐的筒身(圆柱)体积和底封头体积之和全体积V 0--公称体积和上封头体积之和封头体积()214h )6b V D D π=+封(()23040.15V D H D π=+ (近似公式)假设H 0/D=2.0,根据设计条件罐的公称体积为75m 3 由公称体积的近似公式()23040.15V D H D π=+ V=0.785×D 2×2D+0.15D 3=75,解得D=3519mm ,取整为3600mm ,2.2罐体总高度H=2.6D=2.6×3600=9360mm查阅文献[7] ,当公称直径DN=3600mm 时,标准椭圆封头的曲面高h a =900mm ,直边高度h b =40mm ,总深度为H f =940mm ,容积()214h )6b V D D π=+封(=0.785×0.362×(0.04+1/6×0.36)=6.5111mm可得罐直筒高度 H 0=H-2×940=7480mm则此时H 0/D=7480/3600≈2,与前面的假设相近, 故可认为D=3600是合适的 发酵罐的公称体积V=0.785×3.62×7.48+6.5111=82.61m 3 全体积V 0=0.785×3.62×7.48+6.5111×2=89.12 m 3 搅拌叶直径D i =1/3×D=1/3×3600=1200mm 搅拌叶间距S=3D I =3×1200=3600mm 底搅拌叶至底封头高度C= D I =1200mm表2-1 75m 3发酵罐的几何尺寸项目及代号 参数及结果 备注 公称体积m 3 75 设计条件 全体积m 3 59.12 计算 罐体直径mm 3600 计算 发酵罐总高度mm 9360 计算 发酵罐筒体高度mm 7480 计算 搅拌叶直径mm 1200 计算 椭圆封头半轴长mm 900 计算 椭圆封头直边高度mm 40 计算 底搅拌叶至底封头高度 1200 计算 搅拌叶间距mm3600计算3 罐体主要部件尺寸的设计计算3.1 罐体考虑压力,温度,腐蚀因素,选择罐体材料和封头材料,封头结构、与罐体连接方式因谷氨酸是为偏酸性,故选用使用A3钢为材料,内涂环氧树脂防腐。

封头设计为标准椭圆封头因为D>500mm ,所以采用双面缝焊接的方式与罐体连接。

3.2 罐体壁厚[]10.43600()39.58()221370.80.4pD C mm mm pδσϕ⨯=+=+≈-⨯⨯-取整为δ1=10mm D -罐体直径(mm )p -耐受压强 (设计压力取0.4MPa)φ - 焊缝系数,双面焊取0.8,无缝焊取1.0[σ ] -罐体金属材料在设计温度下的许用应力(不锈钢焊接压力容器许用应力为150℃,137MPa )C -腐蚀裕度,当δ -C<10mm 时,C =3mm 3.3 封头壁厚的计算[]20.43600 2.3()315.12-0.52137-0.50.4KPD C mm mm P δσ⨯⨯=+=+=⨯⨯取整δ2=16mm D -罐体直径(mm ) p -耐受压强 (取0.3MPa) K -开孔系数,取2.3φ - 焊缝系数,双面焊取0.8,无缝焊取1.0[σ ] -设计温度下的许用应力(不锈钢焊接压力容器许用应力为150℃,137MPa)C -腐蚀裕度,当δ-C<10mm时,C=3mm3.4 搅拌器六弯叶涡轮式搅拌器采用涡轮式搅拌器,选择搅拌器种类和搅拌器层数,根据d确定h和b的值尺寸:六弯叶涡轮式搅拌器已标准化,称为标准型搅拌器;叶径: d=1/3D=1/3×3600=1200盘径: di= 0.75 d=0.75×1260=945叶高: h = 0.3d=0.3×1260=378叶长: b = 0.25 d=0.25×1260=3153.5 人孔和视镜本次设计只设置了1个人孔,查阅文献,选取标准号HG21518-95、公称压力为2.5MPa、直径为500mm、高度为393mm的人孔,开在顶封头上,位于左边轴线离中心轴1380mm处。

本次设计设置了1个视镜,标准号HG21505-1992,直径为DN=100mm,高度为52mm,开在顶封头上,位于右边轴线离中心轴1380mm处,与人孔位于同一水平线上3.6 接口管的选择3.6.1 排料管的选择计算设装料系数为75%,3小时内排空,则有: 罐实际醪料量为 89.13×75%=66.85 m 3 物料体积流量31/366.85/(36003)0.0062/Q V h m s ==⨯=取流速v=1m/s 则排料管截面积F=Q/v=0.0062/1=0.0062(m 3) 又排料管截面积F=0.785d 2,算得d=0.089(m)取 φ108×4mm 无缝管,108mm>89mm,可以满足工艺要求。

相关文档
最新文档