数列中的恒成立问题

合集下载

解答恒成立问题的常规思路

解答恒成立问题的常规思路

知识导航恒成立问题在近几年的高考数学试题中占据了一席之地,是同学们需要重视并学习的重点内容.恒成立问题是一类综合性较强的问题,常与不等式、函数、导数、数列等知识相结合,重点考查了同学们分析、解决问题的能力.本文重点介绍三种常见的求解思路.一、分离参数分离参数法是解答含参恒成立问题的基本方法,主要通过变形把不等式中的参数和变量分离,然后运用导数法、函数的单调性等求得不含参数式子的最值,进而构造出满足不等式恒成立的条件,使问题获解.例1.已知函数f()x=ln x-a x,若f()x<x2在()1,+∞上恒成立,求a的取值范围.解:∵ln x-a x<x2,x>0,∴a>x ln x-x3,令g()x=x ln x-x3,则g'()x=1+ln x-3x2,令h()x=g'()x=1+ln x-3x2,∴h'()x=1x-6x=1-6x2x,∵h()x在[)1,+∞单调递减,h()x<h()1=-2,即g'()x<0,∴g()x在[)1,+∞单调递减,g()x<g()1=-1,∴a≥g()1=-1,f()x<x2在()1,+∞上恒成立时,a≥-1.解答本题的基本思路是,首先将不等式变形,使参数分离,然后对不含有参数的式子进行求导,通过分析其导函数的正负来讨论函数的单调性,进而求得不含有参数式子的最值,得到a的取值范围.二、数形结合数形结合法是解答恒成立问题的重要方法.在解题时,需首先将不等式变形,构造出一个或者两个简单的基本函数,然后绘制出函数的图象,通过分析函数的图象找出临界的位置关系,从而建立使不等式恒成立的关系式,使问题得解.在解答恒成立问题时灵活运用数形结合法,能快速找到解题的思路,显著提升解题的效率.例2.若存在正数x使2x(x-a)<1成立,则a的取值范围是.解:不等式2x(x-a)<1可变形为x-a<(12)x.在同一平面直角坐标系内作出直线y=x-a与y=(12)x的图象.由题意可得,在(0,+∞)上,直线有一部分在曲线的下方.由图象可知-a<1,所以a>-1.运用数形结合法能使解题过程变得更加直观、简洁,是求解恒成立问题经常采取的方法之一.在运用数形结合法解题时还应注意正确绘制函数的图象.三、利用函数的单调性虽然恒成立问题较为复杂,但我们可以结合不等式的结构特点构造合适的函数,将问题转化为函数问题,再讨论函数的单调性,建立使不等式恒成立的关系式,从而解题.我们可以利用函数单调性的定义,也可以利用导数来讨论函数的单调性.例3.已知函数f(x)=1-22x+1为奇函数.若对任意的t∈R,不等式f[t2-(m-2)t]+f(t2-m+1)>0恒成立,求实数m的取值范围.解:设任意x1,x2∈R,且x1<x2,∴f(x1)-f(x2)=1-22x1+1-1+22x2+1=2(2x1-2x2)(2x1+1)(2x2+1).∵x1<x2,∴2x1-2x2<0,(2x1+1)(2x2+1)>0,∴f(x1)<f(x2),∴f(x)为R上的单调递增函数.∵f(x)=1-22x+1为奇函数,且在R上为增函数,由f[t2-(m-2)t]+f(t2-m+1)>0恒成立可得f[t2-(m-2)t]>-f(t2-m+1)=f(m-t2-1),化简得2t2-(m-2)t-m+1>0,∴Δ=(m-2)2+8(m-1)<0,解得-2-22<m<-2+22,∴m的取值范围为(-2-22,-2+22).本题主要是利用函数单调性的定义来确定函数的单调性,然后利用函数的单调性建立关于t的不等式,再利用方程的判别式建立关于m的不等式,求得m的取值范围.解答恒成立问题的方法还有很多,如函数最值法、判别式法、导数法等,而以上三种方法是解答恒成立问题的常用方法.无论运用上述哪种方法解题,同学们都要注意首先将不等式合理进行变形,构造适当的函数模型,灵活运用导数、不等式、函数等知识,以及转化思想、数形结合思想解题.(作者单位:江苏省江阴市第一中学)37。

高中数学中的恒成立问题

高中数学中的恒成立问题

高中数学小课题——高中数学中的恒成立问题四川省宣汉县第二中学杜林课题论点:恒成立数学问题是有一定的难度、综合性强的题型。

下面从函数定义域不等式立体几何数列四大类中恒成立题型作具体剖析,以提高我们分析数学问题解决数学理论和实际应用题的能力;实际上有的恒成立是对所有实数成立,而有的针对一定义范围内都成立或者某种限制条件下都成立;解决恒成立题型能启发人们高瞻远瞩地看待问题。

数学课本中的公理定理推论公式等都可作为恒成立的结论:一次函数图象经过了一二三象限的则不会过第四象限,过了一二四象限的图象则不会过第三象限;二次函数图象开口向下时,则函数值在顶点处取最大值,开口向上时,在对称轴的右面呈递增的特性;奇函数都有f(0)=0成立(f(x)在x=0有定义);│f(x)│≥0在定义域内恒成立;指数函数的值恒为正;周期函数从任一起点的一个周期内的图象截下沿X轴依次存放则成整个定义域内的图象;等比数列相邻相同项数的和与积都成等比数列;立体几何图形中的面积和体积不变问题等等。

具体来说有下面的恒成立题型。

一、定义域中恒成立案例1 如若函数f(x的定义域为R,则a的取值范围是什么?(2007年高考)解:∵f(x x∈R,∴222x ax a--≥1恒成立,即x2-2ax-a≥0恒成立,∴△≤0即(2a)2-4×(-a) ≤0,解得-1≤a≤0.案例2 已知:a > 1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,求a的取值的集合为什么? (2008年高考)解:∵log a x+log a y=c,∴y=cax.∵a > 1, ∴y=ca x在x ∈[a,2a ]上递减,∴y max =c a a=a c-1,y min =2ca a =12a c-1,∵log a 2+2≤c ≤3时,而c 值只有1个, ∴c=3,即log a 2=1,有a=2. ∴a 的取值的集合为:{2}注:对于定义域问题,要注重各个基本函数的定义域条件,实际上是比较基础的,主要是认出题目反映出来的是哪个基本函数。

解决恒成立问题的方法

解决恒成立问题的方法

解决恒成立问题的方法【实用版3篇】目录(篇1)I.问题的提出1.恒成立问题的定义2.恒成立问题在数学中的应用II.解决方法1.分离参数法2.逆向思维法3.构造函数法4.数形结合法III.总结1.解决问题的方法总结2.对未来学习的建议正文(篇1)解决恒成立问题的方法:一、问题的提出恒成立问题是指在一个函数或方程中,某个变量在其定义域内始终存在,即无论自变量取何值,该变量始终满足函数或方程的条件。

恒成立问题在数学中具有重要的应用,例如在物理学中的应用,以及在解决实际问题中的数学建模问题。

二、解决方法1.分离参数法:将原问题中的参数与变量分离出来,转化为两个简单的一元一次方程或不等式,从而求解。

这种方法适用于参数和变量之间存在明显的函数关系的情况。

2.逆向思维法:从反面出发,通过分析问题的反面来得到解决问题的方法。

这种方法适用于一些存在多种情况的恒成立问题。

3.构造函数法:通过构造函数来解决问题。

通过对函数进行分析,从而得到函数的最值或者零点,进而得到原问题的解。

这种方法适用于一些存在复杂函数关系的情况。

4.数形结合法:通过将问题与图形相结合,从而直观地得到问题的解。

这种方法适用于一些存在复杂函数关系的情况。

三、总结解决恒成立问题的方法有很多种,每种方法都有其适用的范围和优缺点。

在未来的学习中,我们需要根据具体问题的特点选择合适的方法来解决问题。

目录(篇2)I.恒成立问题的定义II.恒成立问题的解决方法III.恒成立问题的应用正文(篇2)一、恒成立问题的定义恒成立问题是指在一个函数或方程中,某个量对于所有的自变量都存在,即无论自变量取何值,该量都保持不变。

二、恒成立问题的解决方法解决恒成立问题的方法有很多种,其中最常用的方法是分离变量和构造函数。

具体步骤如下:1.将原问题转化为一个函数或方程,将其中某个量分离出来作为自变量;2.构造函数或方程,将分离出来的量表示为函数的变量;3.对函数或方程进行求解,得到该量在所有自变量下的取值范围。

恒成立问题与有解问题的区别

恒成立问题与有解问题的区别

恒成立问题与有解问题的区别恒成立与有解问题一直是中学数学的重要内容。

它是函数、数列、不等式等内容交汇处的一个较为活跃的知识点,在近几年的高考试题中,越来越受到高考命题者的青睐,涉及恒成立与有解的问题,有时在同一套试题中甚至有几道这方面的题目。

本文就恒成立与有解问题做一比较。

1、恒成立问题恒成立问题与一次函数联系给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f 例1、对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。

分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。

显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。

略解:不等式即(x-1)p+x 2-2x+1>0,设f(p)= (x-1)p+x 2-2x+1,则f(p)在[-2,2]上恒大于0,故有: ⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或∴x<-1或x>3.恒成立问题与二次函数联系若二次函数y=ax 2+bx+c=0(a ≠0)大于0恒成立,则有⎩⎨⎧<∆>00a ,若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。

例2、设f(x)=x 2-2ax+2,当x ∈[-1,+∞)时,都有f(x)≥a 恒成立,求a 的取值范围。

专题04 数列中的存在性与恒成立问题(解析版)

专题04 数列中的存在性与恒成立问题(解析版)

专题4 数列中的存在性与恒成立问题1.(2021·湖北·襄阳四中模拟预测)已知正项数列{}n a 的前n 项和n S 满足()2*41,nna S n N +=∈.数列{}nb 满足2*1221,n n b b n n n N ++=++∈(1)求数列{}n a 的通项公式;(2)试问:数列{}n n b S -是否构成等比数列(注:n S 是数列{}n a 的前n 项和)?请说明理由;(3)若11,b =是否存在正整数n,使得211155(1)1111nnk k k k k kkk b b b ==+-≤≤++∑成立?若存在求所有的正整数n ;否则,请说明理由.【答案】(1)21n a n =-;(2)不构成,理由见解析;(3)存在,10n =. 【解析】 【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到{}n a 是等差数列,即可得解;(2)首先求出n S ,则2n n n b S b n -=-,即可得到11n n b S ++-,再由1n n b b ++,即可得到11()n n n n b S b S ++-=--,即可得证;(3)由(2)可得2k b k =,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,利用裂项相消法可得到4211((1)(1))12nk k f f n k k ==-+++∑,同理,有24211((1)(1)),21,*12(1)11((1)(1)),2,*2nk k f f n n m m N k k k f f n n m m N =⎧++=-∈⎪+⎪-=⎨++⎪-+=∈⎪⎩∑,再由题意求出n 的值; 【详解】解:(1)由于2(1),4n n a S n N *+=∈,故2111(1)14a S a +=⇒=;2n ≥时22114(1),4(1)n n n n S a S a --=+=+;作差得,221114(1)(1)()(2)0n n n n n n n a a a a a a a ---=+-+⇔+--=.由于{}n a 是正项数列,故12n n a a --=,{}n a 是等差数列,21n a n =-;所以222(1)(211)44n n a n S n +-+=== (2)由于22111,(1)n n n n n n b S b n b S b n +++-=--=-+,2221221(1)n n b b n n n n ++=++=++,故11()n n n n b S b S ++-=--.由于1111b S b -=-,所以 当11b ≠时,111n n n nb S b S ++-=--,数列{}n n b S -构成等比数列;当11b =时,数列{}n n b S -不构成等比数列.(3)若11b =,由(2)知2k b k =,于是,所求不等式即2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑.设21()1f k k k =-+,则21(1).1f k k k +=++ 故224222222111121(1)(1)12(1)2(1)(1)nn n k k k k k k k k k k k k k k k k k ===++--+==+++-++-+∑∑∑()11()(1)2nk f k f k ==-+∑ 1((1)(1))2f f n =-+ 同理,有22242221111(1)(1)(1)(1)12(1)(1)nnkkk k k k k k k k k k k k k ==++++-+-=-++++-+∑∑ ()11((1)(1)),21,*12(1)()(1)12((1)(1)),2,*2k k nf f n n m m N f k f k f f n n m m N =⎧++=-∈⎪⎪=∑-++=⎨⎪-+=∈⎪⎩由于11155((1)(1))(1)222111f f n f ++>=>,故而只能有2,*n m m N =∈.于是,2424211155(1)11111nnkk k k kk k k k ==+-≤≤++++∑∑ 1551((1)(1))((1)(1)),(2,*)21112f f n f f n n m m N ⇔-+≤≤-+=∈ 155((1)(1)),(2,*)2111f f n n m m N ⇔-+==∈ 21111,(2,*)10n n n m m N n ⇔++==∈⇔=综上所述,所有符合条件的正整数n 只有10n = 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.2.(2021·全国·模拟预测)从①()()126n n n a a S ++=,且12a <;①11a =,()1122n n n a a a n -++=≥,且存在2m ≥,*m ∈N 使得5m S =,()()11111311m m m S m S m -+++-=-;①若1n n a a d --=(常数),且()*162+⋅=+∈N n n n n a S a ,12a <,这三个条件中任选一个,补充在下面题目的横线中,并解答.已知各项均为正数的数列{}n a 的前n 项和为n S ,______. (1)求数列{}n a 的通项公式; (2)设12nn n a b -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,32n a n =-;(2)118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭. 【解析】 【分析】(1)选①:根据n S 与n a 的关系式可求出数列{}n a 的通项公式;选①:根据题意可得出数列{}n a 是等差数列,数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,从而可求出数列{}n a 的通项公式;选①:令1n =,可求出1a ;然后根据n S 与n a 的关系式可求出数列{}n a 的公差,从而可求出数列{}n a 的通项公式;(2)根据(1)中求出的数列{}n a 的通项公式,然后利用错位相减法可求出数列{}n b 的前n 项和n T . (1)选①:当n =1时,()()111126a a a ++=,因为12a <,所以解得11a =; 当2n ≥时,因为()()126n n n a a S ++=,所以()()111126n n n a a S ---++=,两式相减,得2211336n n n n n a a a a a ---+-=,即()()1130n n n n a a a a --+--=,因为0n a >,所以13n n a a --=,所以数列{}n a 是首项为1,公差为3的等差数列, 故()13132n a n n =+-=-.选①:由()1122n n n a a a n -++=≥,知数列{}n a 是等差数列, 因为()111122nn n na dS n a dnn -+-==+, 所以数列n S n ⎧⎫⎨⎬⎩⎭是首项为1a ,公差为2d 的等差数列,所以11211m m m S S S m m m -++=-+,即111011m m S S m m m-++=-+, 所以21311110m m m-=-,又因为2m ≥,*m ∈N ,所以解得m =2; 设等差数列{}n a 的公差为d ,则2125S a d =+=,因为11a =,所以解得d =3,所以()13132n a n n =+-=-. 选①:因为1n n a a d --=,所以数列{}n a 是等差数列, 因为162+⋅=+n n n a a S ,所以()11622n n n S a n a --⋅=+≥,两式相减,得()116n n n n a a a a +-=-,即()622n n a a n d ⋅≥=,又0n a >,所以d =3.当n =1时,11262⋅=+S a a ,即()111623a a a ⋅+=+,因为12a <,所以解得11a =, 故()13132n a n n =+-=-,即32n a n =-. (2)由(1)得()1113222n n n n a b n --⎛⎫==-⋅ ⎪⎝⎭,所以()01211111147322222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()123111111473222222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,得()2111111133222222n nn T n -⎡⎤⎛⎫⎛⎫⎛⎫=+⨯+++--⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11112213112n -⎛⎫- ⎪⎝⎭=+⋅--()()113243422n n n n ⎛⎫⎛⎫-⋅=-+⋅ ⎪ ⎪⎝⎭⎝⎭,则118(34)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭.3.(2021·上海静安·一模)对于数列{}n a :若存在正整数0n ,使得当0n n ≥时,n a 恒为常数,则称数列{}n a 是准常数数列.现已知数列{}n a 的首项1a a =,且11,n n a a n *+=-∈N .(1)若32a =,试判断数列{}n a 是否是准常数数列; (2)当a 与0n 满足什么条件时,数列{}n a 是准常数数列?写出符合条件的a 与0n 的关系;(3)若()(,1)*∈+∈N a k k k ,求{}n a 的前3k 项的和3k S (结果用k 、a 表示).【答案】(1)取02n =时,n a 恒等于12,数列{}n a 是准常数数列;(2)答案见解析; (3)2322k k a ⎛⎫-++ ⎪⎝⎭.【解析】 【分析】 (1)将32a =代入已知条件,即可求出()122n a n =≥; (2)根据已知条件,对a 进行分类讨论,分别写出答案即可;(3)由()(,1)*∈+∈N a k k k 和11n n a a +=-分别求出2a ,3a ,…,k a ,1k a +,2k a +,…,31k a -,3k a 的值,将前k 项放在一起,后2k 项中,从1k +项起,每相邻两项的和为定值,这样即可求解3k S .(1)由132a =得,231122a =-=,当2n ≥时,n a 恒等于12,数列{}n a 是准常数数列,取02n =即可;(2)①11,11=1,1n n n n nn a a a a a a +-≥⎧=-⎨-+<⎩,①1n a ≥时,1+≠n n a a ,而当1n a <时,若存在0n ,当0n n ≥时,1n n a a +=,则必有12n a =, 若01a <<时,则211a a =-,3211a a a a =-==,此时只需2111a a a =-=,112a =, 故存在12a =,12n a =,取01n =(取大于等于1的正整数也可以),数列{}n a 是准常数数列. 若11a a =≥,不妨设[),1a m m ∈+,m *∈N ,则[)10,1m a a m +=-∈, 2111m m a a a m ++=-=-+,若21m m a a ++=,则1a m a m -+=-,所以221m a =-或12a m =+,取01n m =+,当0n n ≥时,12n a =(0221a n =-,取大于等于12a +的0n 皆可)若10a a =<,不妨设(],1a l l ∈-+,l *∈N ,则(]1,a l l -∈-,所以(]21,1a a l l =-+∈+,321a a a =-=-,41a a =--,…,()(]210,1l a a l +=---∈,所以()32111l l a a a l ++=-=----⎡⎤⎣⎦,若32l l a a ++=,则221a l =-+或12a l =-+, 取02n l =+,当0n n ≥,12n a =( 0232n a -+=,取大于等于32a -+的0n 皆可以) 存在a 和0n :112a =,12n a =,01n ≥;112a m =+,01n m ≥+;112a m =-+, 02n m ≥+(其中m N *∈,n *∈N ),(a 为某个整数m 加上12时,数列{}n a 是准常数数列).(3)①()(,1)*∈+∈N a k k k ,且11n n a a +=-,①21a a =-,32a a =-,…,()1k a a k =--,()10,1k a a k +=-∈,2111k k a a k a ++=-=+-,321k k a a a k ++=-=-, 4311k k a a k a ++=-=+-,…,31k a a k -=-,31k a k a =+-.所以312312313k k k k k k S a a a a a a a a ++-=+++⋅⋅⋅++++⋅⋅⋅+()()()()1231234313k k k k k k k a a a a a a a a a a ++++-=+++⋅⋅⋅++++++⋅⋅⋅++ ()()()121a a a a k k =+-+-+⋅⋅⋅+--+()1112k ka k k +-=+--2322k k a ⎛⎫=-++ ⎪⎝⎭.4.(2021·四川自贡·一模(理))已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,________,28b =,1334b b -=.在以下三个条件中任选一个①530S =,①425S a =,①3523a a b -=,补充在上面横线上,并作答.(1)求数列{}n a ,{}n b 的通项公式;(2)是否存在正整数k .使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)条件选择见解析,2n a n =,11162n n b -⎛⎫=⨯ ⎪⎝⎭(2)存在,且k 的最小值为4 【解析】 【分析】(1)根据已知条件求得等差数列{}n a 的首项和公差,求得等比数列{}n b 的首项和公比,从而求得数列{}n a ,{}n b 的通项公式.(2)先求得,n k S T ,由34k T >求得k 的最小值. (1)设等比数列{}n b 的公比为q ,0q >,则1211834b q b b q =⎧⎨-=⎩解得11216q b ⎧=⎪⎨⎪=⎩,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭. 31411622a b ⎛⎫==⨯= ⎪⎝⎭,设等差数列{}n a 的公差为d ,若选①,则()1510101030,2,2122n a d d d a n n +=+===+-⨯=.若选①,则()()()11465,8652,2,2122n a d a d d d d a n n +=++=+==+-⨯=. 若选①,则()()()1113248,228,2,2122n a d a d a d d a n n +-+=+===+-⨯=. (2)由于12,2n a a n ==,所以()2212n nS n n n +=⋅=+, 1111n S n n =-+, 所以111111311223114k T k k k =-+-++-=->++,11,14,341k k k >+>>+,所以正整数k 的最小值为4. 5.(2022·天津·南开中学二模)已知数列{an }的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an }前n 项和为Sn ,且满足S 3=a 4,a 3+a 5=2+a 4 (1)求数列{an }的通项公式; (2)求数列{an }前2k 项和S 2k ;(3)在数列{an }中,是否存在连续的三项am ,am +1,am +2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数m 的值;若不存在,说明理由.【答案】(1)*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)213k k -+ (3)存在,1 【解析】 【分析】(1)设等差数列的公差为d ,等比数列的公比为q ,由已知条件列方程组求得,d q 后可得通项公式; (2)按奇数项与偶数项分组求和;(3)按m 分奇偶讨论,利用122m m m a a a ++=+,寻找k 的解. (1)设等差数列的公差为d ,等比数列的公比为q , 则a 1=1,a 2=2,a 3=1+d ,a 4=2q ,a 5=1+2d . ①S 3=a 4,①1+2+(1+d )=2q ,即4+d =2q ,又a 3+a 5=2+a 4,①1+d +1+2d =2+2q ,即3d =2q ,解得d =2,q =3. ①对于k ①N *,有a 2k -1=1+(k -1)•2=2k -1,故*12,21,.23,2n n n n k a k N n k -=-⎧⎪=∈⎨⎪⋅=⎩ (2)S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=[1+3+…+(2k -1)]+2(1+3+32+…+3k -1)=()2213(121)13213kk k k k -+-+=-+-.(3)在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1,下面说明理由若am =a 2k ,则由am +am +2=2am +1,得2×3k -1+2×3k =2(2k +1). 化简得4•3k -1=2k +1,此式左边为偶数,右边为奇数,不可能成立. 若21m k a a -=,则由am +am +2=2am +1,得(2k -1)+(2k +1)=2×2×3k -1 化简得k =3k -1,令()*13k k k T k N -=∈,则111120333k k k k k k k kT T +-+--=-=<. 因此,1=T 1>T 2>T 3>…,故只有T 1=1,此时k =1,m =2×1-1=1.综上,在数列{an }中,仅存在连续的三项a 1,a 2,a 3,按原来的顺序成等差数列,此时正整数m 的值为1. 6.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,①等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16n T <.【答案】(1)选择条件见解析,21n a n =+ (2)证明见解析 【解析】 【分析】(1)根据选择条件求解(2)数列求和后证明,使用裂项相消法 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,①25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ①13a =,21n a n =+;若选①,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+; (2) ①()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ①11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ①16n T <,得证 7.(2022·浙江绍兴·模拟预测)已知数列{}n a 是公差不为0的等差数列,11a =,且1a ,2a ,4a 成等比数列;数列{}n b 的前n 项和是n S ,且21n n S b =-,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式; (2)设1n n n c +m ,使得()22221232313n m n n a c c c c x b +-++++>对任意*n ∈N 恒成立?若存在,求m 的最小值;若不存在,请说明理由.【答案】(1)n a n =,12n n b -=;(2)存在,5﹒ 【解析】 【分析】(1)设等差数列{}n a 的公差为()0d d ≠,根据1a ,2a ,4a 成等比数列求出d 即可求其通项公式;根据n S 与n b 关系即可求{}n b 的通项公式通项公式; (2)利用裂项相消法求{2nc }前m 项和,设()2313n n n a d b +-=,根据1n n d d +-正负判断{n d }单调性,求出其最大项,{2nc }前m 项和大于该最大值即可求出m 的范围和最小值. (1)设等差数列{}n a 的公差为()0d d ≠,①1a ,2a ,4a 成等比数列,①2214a a a =. ①()2113d d +=+,解得1d =,①()11n a a n d n =+-=.当1n =时,11121b S b ==-,①11b =.当2n ≥时,1122n n n n n b S S b b --=-=-,①12n n b b -=.①{}n b 是以1为首项,以2为公比的等比数判,①12n n b -=.(2)由题意得n c =()()22222211111n n c n n n n +==-++. ①22212m c c c +++()()2222222211111111122311m m m m =-+-++-+--+()2111m =-+.设()()123133132n n n n a n d b ++--==,则()()()1212312313314222n n n n n n n n d d ++++----=-=,①当1n =,2,3时,1n n d d +>;当4n =时,45d d =;当5n ≥时,1n n d d +<, ①数列{}n d 的最大项为453132d d ==, ①()21311321m ->+,整理得()2132m +>,①存在正整数m ,且m 的最小值是5.8.(2022·辽宁辽阳·二模)①{}2nn a 为等差数列,且358a =;①21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①①两个条件中任选一个,补充在下面的问题中,并解答. 在数列{}n a 中,112a =,________. (1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由. 【答案】(1)212n nn a -=; (2)存在,3p =,4q =,2r =﹒ 【解析】 【分析】(1)若选①,则可根据等差数列性质求出{}2nn a 的公差d ,根据等差数列通项公式可求2n n a ,从而求得n a ;若选①,则可证明等比数列概念求出21n a n ⎧⎫⎨⎬-⎩⎭的公比,根据等比数列通项公式可求21n a n -,从而求得n a ; (2)根据n a 通项公式的特征,采用错位相减法即可求其前n 项和,将其化为n n r S p qa +=-形式即可得p 、q 、r 的值. (1) 若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,①()1222121nn a a n n =+-=-,即212n nn a -=. 若选①:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a⨯-==⨯-, ①11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭, 即212n nn a -=; (2) 21321222n nn S -=+++,231113212222n n n S +-=+++, 则两式相减得,23111111212222222n nn n S +-⎛⎫=+⨯+++- ⎪⎝⎭ 12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,①2332n nn S +=-. ①()22221233343422n n n n n n S a +++-+=-=-⨯=-, ①存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.9.(2021·河北衡水中学三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】 【分析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求和法求出n S 的值. 【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=. (2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦, 和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=, 故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列. 从而()()1112121224122nn n n n n n n n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--. 所以()21242n n n n S ++=--. 【点睛】方法点睛:数列求和方法:(1)等差等比公式法(2)错位相减法(3)分组求和法(4)倒序相加法(5)裂项相消法.10.(2022·浙江·模拟预测)已知递增的等差数列{}n a 满足:11a =,且5813,,a a a 成等比数列.数列{}n b 满足:()32n n S b n *=+∈N ,其中n S 为{}n b 的前n 项和.(1)求数列{}{},n n a b 的通项公式; (2)设n n c T =为数列{}n c 的前n 项和,是否存在实数λ,使得不等式n n T S λ≤≤对一切n *∈N 恒成立?若存在,求出λ的值;若不存在,说明理由.【答案】(1)21n a n =-,()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)存在,12λ= 【解析】 【分析】(1)设{}n a 的公差为(0)d d >,根据5813,,a a a 成等比数列,由2(17)(14)(112)d d d +=++求解,由()32n n S b n *=+∈N ,利用数列的通项与前n 项和的关系求解;得()1132*--=+∈n n S b n N ,(2)由(1)23n n b S +=,得到()min 12n S =,nc 12=,利用裂项相消法求得n T ,再由不等式n n T S λ≤≤对一切n *∈N 恒成立求解. (1)解:设{}n a 的公差为(0)d d >, 则2(17)(14)(112)d d d +=++, 所以2,21n d a n ==-. 当1n =时,11b =;当2n ≥时,由()32n n S b n *=+∈N ,得()1132*--=+∈n n S b n N ,两式相减得:12n n b b -=-, 所以{}n b 是以1为首项,以12-为公比的等比数列,所以()112n n b n -*⎛⎫=-∈ ⎪⎝⎭N(2)23n n b S +=,显然()2min 12n b b ==-, 所以()min 12n S =, 由21n a n =-得==n c1122==,故1112222n T ⎛=+++ ⎝, 112⎛= ⎝. 显然12n T <恒成立,且当n →∞时,12n T →,所以存在唯一实数12λ=.11.(2022·江西·二模(理))已知等差数列{}n a 中,12a =,公差0d >,其前四项中去掉某一项后(按原来的顺序)恰好构成一个等比数列. (1)求d 的值. (2)令11n n n b a a +=,数列{}n b 的前n 项和为n S ,若212n S λλ<--对n +∀∈N 恒成立,求λ取值范围. 【答案】(1)2; (2)12λ≤-或32λ≥.【解析】 【分析】(1)根据给定条件,写出等差数列{}n a 前4项,按去掉的项讨论求解作答.(2)由(1)求出等差数列{}n a 的通项,再利用裂项相消法求出n S 并讨论其单调性,列式计算作答. (1)等差数列{}n a 的前四项为2,2,22,23d d d +++,若去掉第一项,则有2(22)(2)(23)d d d +=++,解得0d =,不符合题意, 若去掉第二项,则有2(22)2(23)d d +=+,解得0d =,或12d =-,不符合题意,若去掉第三项,则有2(2)2(23)d d +=+,解得0d =(舍去),或2d =, 若去掉第四项,则有2(2)2(22)d d +=+,解得0d =,不符合题意, 所以2d =. (2)由(1)知22(1)2na n n =+-=,11(2(22411))1n n b n n n ==+-+,于是得1111111111[(1)()()()](1)422334141n S n n n =-+-+-++-=-++,显然数列{}n S 是递增数列,恒有14n S <,因212n S λλ<--对n +∀∈N 恒成立,于是有21124λλ--≥,解得12λ≤-或32λ≥,所以λ取值范围是12λ≤-或32λ≥.12.(2022·浙江·效实中学模拟预测)已知等差数列{}n a 中,公差0d ≠,35a =,2a 是1a 与5a 的等比中项,设数列{}n b 的前n 项和为n S ,满足()*41n n S b n =-∈N .(1)求数列{}n a 与{}n b 的通项公式;(2)设n n n c a b =,数列{}n c 的前n 项和为n T ,若118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,求实数λ的取值范围.【答案】(1)21n a n =-,13nn b ⎛⎫=- ⎪⎝⎭(2)2485λ-≤≤ 【解析】 【分析】(1)对于等差数列{}n a 直接列方程322155a a a a =⎧⎨=⋅⎩求解,数列{}n b 根据11,1,2n n n S n b S S n -=⎧=⎨-≥⎩求解;(2)利用错位相减法可得1411883nn n T +⎛⎫=-+- ⎪⎝⎭,根据题意讨论得:当n 是奇数时,min8341n n λ⎛⎫⋅-≤ ⎪+⎝⎭;当n 是偶数时,min 8341n n λ⎛⎫⋅≤ ⎪+⎝⎭,再通过定义证明数列8341n n ⎧⎫⋅⎨⎬+⎩⎭的单调性,进入确定相应情况的最值. (1)①322155a a a a =⎧⎨=⋅⎩ 则()()12111254a d a d a a d +=⎧⎪⎨+=⋅+⎪⎩,解得112a d =⎧⎨=⎩或150a d =⎧⎨=⎩(舍去)①()12121n a n n =+-=-. 又①41n n S b =-,当1n =时,1141b b =-,则113b =-,当2n ≥时,1141n n S b --=-,则14n n n b b b -=-,即113n n b b -=-, 则数列{}n b 是以首项113b =-,公比为13-的等比数列,①1111333n nn b -⎛⎫⎛⎫⎛⎫=-⋅-=- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. (2)()1213nn c n ⎛⎫=-- ⎪⎝⎭,()()123111111135232133333n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()()23411111111352321333333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⨯-+⋅⋅⋅+--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()231411111221333333n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+---- ⎪ ⎪⎡⎤⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎥⎣⎦()111111111112123633623n n n n n -++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-----=--+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=①1411883nn n T +⎛⎫=-+- ⎪⎝⎭①118n T λ⎛⎫+≤ ⎪⎝⎭对任意的*n ∈N 恒成立,即411183n n λ+⎛⎫-≤ ⎪⎝⎭对任意的*n ∈N 恒成立 ①当n 是奇数时,411183n n λ+-⋅≤任意的*n ∈N '恒成立 ①8341nn λ⋅-≤+对任意的*n ∈N 恒成立①当n 是偶数时,411183n n λ+⋅≤对任意的*n ∈N 恒成立 ①8341nn λ⋅≤+对任意的*n ∈N 恒成立令8341nn c n ⋅=+,()()()11164138383045414541n n n n n n c c n n n n ++-⋅⋅-=-=>++++对任意的*n ∈N 恒成立 ①{}n c 为递增数列 ①当n 是奇数时,则245λ-≤,即245λ≥-①当n 是偶数时,则8λ≤ ①2485λ-≤≤. 13.(2022·浙江省临安中学模拟预测)各项均为正数的数列{}n a 的前n 项和为n S ,21122n n n S a a =+,数列{}n b 为等比数列,且1224,==b a b a . (1)求数列{}n a 、{}n b 的通项公式;(2)记()232,3,nn n n n n b n a a c n b +⎧-⋅⎪⋅⎪=⎨⎪⎪⎩为奇数为偶数,n T 为数列{}n c 的前n 项和,对任意的n *∈N .2λ≥n T 恒成立,求2n T 及实数的λ取值范围.【答案】(1)n a n =,2nn b =(2)212211214n n n T n +=--+,1712λ≤【解析】 【分析】(1)先求出1a ,再当2n ≥时,由21122n n n S a a =+,得21111122n n n S a a ---=+,两式相减化简可得11n n a a --=,从而可得数列{}n a 是公差为1,首项为1的等差数列,则可求出n a ,从而可求出12,b b ,进而可求出n b , (2)当n 为奇数时,利用裂项相消求和法可求出1321n c c c -++⋯+,当n 为偶数时,利用等比数列的求和公式求出242n c c c ++⋯+,从而可求出2n T ,进而可求出实数的λ取值范围 (1)①21122n nn S a a =+①, ①21111122a a a =+,①10a ≠,①11a = 当2n ≥时,21111122n n n S a a ---=+①, 由①-①得221111112222n n n n n a a a a a --+-=- ①2211n n n n a a a a --+=-,又0n a >,①11n n a a --=,①数列{}n a 是公差为1,首项为1的等差数列. ①n a n =①122b a ==,244==b a ,数列{}n b 为等比数列, ①2,2n n q b ==(2)n 为奇数时,212121(65)222(21)(21)2121-+--⋅==-+-+-+k k k k k c k k k k①131321272(65)21335(21)(21)-⨯-⋅++⋯+=++⋯+⨯⨯-+nn n c c c n n 133521211212122222222221335212112121-+++⎛⎫⎛⎫⎛⎫=-++-++⋯+-+=-+=- ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭n n n n n n n n n 为偶数时,223324==k k kc ①2421231133314411444414⎛⎫⨯- ⎪⎝⎭++⋯+=++⋯+==--n n n n c c c①()()2121213212422121211214214++-=++⋯++++⋯+=-+-=--++n n n n n n n T c c c c c c n n①0n c >,①{}2n T 单调递增, ①221712≥=n T T ,①1712λ≤ 14.(2022·江苏·阜宁县东沟中学模拟预测)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n = (2)最小值为23【解析】 【分析】(1)设等差数列的公差为d ,由33n n a a =及等差数列的通项公式得到1a d =,则n a nd =,再根据等比中项的性质得到方程,求出d ,即可得解;(2)由(1)可得11121212n n n c +⎛⎫=- ⎪++⎝⎭,利用裂项相消法求和得到n R ,即可得到23n R <,从而求出λ的取值范围,即可得解; (1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅,所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)由(1)可得()()()()1111122112121212121212n n n a n n n n a a n n c +++++⎛⎫===- ⎪++++++⎝⎭,所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为2315.(2022·山东潍坊·模拟预测)已知{}n a 和{}n b 均为等差数列,111a b ==,312a a a =+,542b b a =+,记{11max n c b na =-,22b na -,…,}n n b na -(n=1,2,3,…),其中{1max x , 2x ,⋯,}s x 表示1x ,2x ,⋯,sx 这s 个数中最大的数.(1)计算1c ,2c ,3c ,猜想数列{}n c 的通项公式并证明;(2)设数列()()132n n c c ⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n S ,若24n S m m <-+对任意n *∈N 恒成立,求偶数m 的值.【答案】(1)10c =,21c =-,32c =-,1n c n =-,证明见解析 (2)2m = 【解析】 【分析】(1)设等差数列{}n a ,{}n b 的公差分别为1d ,2d ,利用111a b ==,312a a a =+,542b b a =+,利用通项公式可得11122d d +=+,211d d =+,可得n a ,n b .根据10c =,21c =-,32c =-.猜想数列{}n c 的通项公式1n c n =-,证明数列{}k k b na -为单调递减数列,即可得出结论.(2)1111(3)(2)(1)(2)12n nc c n n n n ==---++++,利用裂项求和方法即可得出n S ,根据24n S m m <-+对任意*n N ∈恒成立即可得出m 的取值范围.(1)解:设等差数列{}n a 和{}n b 的公差为1d 、2d , 那么()()()11221121114131d d d d d ⎧+=++⎪⎨+=+++⎪⎩,解得1212d d =⎧⎨=⎩,①n a n =,21n b n =-,那么,111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-,猜想{}n c 的通项公式为1n c n =-,当3n ≥时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<,所以数列{}k k b na -关于*N k ∈单调递减, 所以{}112211max ,,,1n n n c b na b na b na b na n =---=-=-;(2) 解:()()()()()()111113221123121n n c c n n n n n n ===---++++----⎡⎤⎡⎤⎣⎦⎣⎦,所以1111111123341222⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭n S nn n , 因为24n S m m <-+对任意n *∈N 恒成立,所有2142m m -+≥,解得4422m +≤≤,所以2m =. 16.(2022·天津·耀华中学一模)设数列{}()*n a n ∈N 是公差不为零的等差数列,满足369a a a +=,25796a a a +=.数列{}()*n b n ∈N 的前n 项和为n S ,且满足423n n S b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1b ,11x ,2b 成等差数列;在2b 和3b 之间插入2个数21x ,22x ,使2b ,21x ,22x ,3b 成等差数列;……;在n b 和1n b +之间插入n 个数1n x ,2n x ,…,nn x ,使n b ,1n x ,2n x ,…,nn x ,1n b +成等差数列.(i )求()()()11212231323312n n n nn T x x x x x x x x x =++++++++++;(ii )是否存在正整数m ,n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )n T 123343n n +⎛⎫=- ⎪⎝⎭;(ii )存在;(9,2)和(3,3).【解析】 【分析】(1)设}n a {的公差为d ,根据题意列式求出1a 和d 即可求出n a ;根据11n n n b S S ++=-可求出n b ; (2)(i )根据等差中项的性质得到()123411357(21)2n n n T b b b b n b nb +=+++++-+,再根据错位相减法可求出n T ;(ii )根据n T 和{}n a 的通项公式得到23213n n m +=-,推出211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,推出{}n c 的单调性,根据单调性可知,只有2c 和31,13c ⎡⎫∈⎪⎢⎣⎭,由此可求出结果.(1)设}n a {的公差为d ,0d ≠,则()111211125846648a d a d a d a d a d a d +++=+⎧⎪⎨+++=+⎪⎩,解得11a d ==, 所以1(1)11n a a n d n n =+-=+-=. 由423n n S b +=得11423b b +=,得112b =, 11423n n S b +++=,所以114()2()330n n n n S S b b ++-+-=-=,所以11422n n n b b b +++=,即113n n b b +=,所以11123n n b -⎛⎫=⨯ ⎪⎝⎭.综上所述:n a n =;11123n n b -⎛⎫=⨯ ⎪⎝⎭.(2)(i )依题意得12112b b x +=,2321222()2b b x x ++=,343132333()2b b x x x +++=, 45414243444()2b b x x x x ++++=,,123n n n nn x x x x ++++1()2n n n b b ++=, 所以()()()11212231323312n n n nn T x x x x x x x x x =++++++++++2334451122()3()4()()22222n n b b b b b b n b b b b ++++++=+++++()123411357(21)2n n b b b b n b nb +=+++++-+012311111111111111()3()5()7()(21)()()2232323232323n n n n -⎛⎫=⨯+⨯⨯+⨯⨯+⨯⨯++-⋅⨯+⋅⨯ ⎪⎝⎭012311111111()3()5()7()(21)()()4333333n n n n -⎛⎫=+⨯+⨯+⨯++-⋅+⋅ ⎪⎝⎭令0123111111()3()5()7()(21)()33333n n R n -=+⨯+⨯+⨯++-⋅,则1234111111()3()5()7()(21)()333333n n R n =+⨯+⨯+⨯++-⋅,所以13n n R R -=12311111112()()()()(21)()33333n n n -⎛⎫+++++--⋅ ⎪⎝⎭, 所以1111()213312(21)()13313n n n R n -⎛⎫- ⎪⎝⎭=+⨯--⋅-, 所以113(1)()3n n R n -=-+⋅,所以11()43n n n T R n ⎛⎫=+⋅ ⎪⎝⎭1113433n n n n -+⎛⎫=-+ ⎪⎝⎭123343n n +⎛⎫=- ⎪⎝⎭,(ii )假设存在正整数m ,n ,使12m n m a T a +=,即12313432n n m m ++⎛⎫-= ⎪⎝⎭,即23213n n m+=-成立, 因为210m->,所以2m >,所以3m ≥,所以211,13m ⎡⎫-∈⎪⎢⎣⎭,令233n nn c +=,则1125253233(23)3n n n nn c n n c n ++++==++2512544n n n +=<+++, 所以数列{}n c 单调递减,1513c =>,279c =,313c =,当4n ≥时,4111813n c c ≤=<,所以由27219c m ==-,得9m =;由31213c m==-,得3m =, 所以存在正整数m ,n ,使12m n ma T a +=,且所有的正整数对(,)m n 为:(9,2)和(3,3). 17.(2022·天津河北·一模)设数列{}n a 的前n 项和14n n S -=, (1)求数列{}n a 的通项公式; (2)令19(3)(3)nn n n a b a a +=++,记数列{}n b 前n 项和为n T ,求n T ;(3)利用第二问结果,设λ是整数,问是否存在正整数n ,使等式13758n n T a λ++=成立?若存在,求出λ和相应的n 值;若不存在,说明理由.【答案】(1)21,134,2n n n a n -=⎧=⎨⨯≥⎩;(2)171841n --+(3)当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立,当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立. 【解析】 【分析】(1)直接由n a 与n S 的关系求解;(2)将(1)中求得的结果代入n b ,化简后利用裂项相消法求和; (3)将λ表示为含n 的等式,利用λ是整数,找出符合条件的n 即可. 【详解】(1)令n =1得,111a S ==;当n 2≥时,2134n n n n a S S --=-=⨯,所以21,134,2n n n a n -=⎧=⎨⨯≥⎩ (2)当2n ≥时,234n n a -=⨯,此时22119934(3)(3)(343)(343)n n n n n n n a b a a ---+⨯⨯==++⨯+⨯+ 21114141n n --=-++,又111293(3)(3)8a b a a ==++①213,1811,24141n n n n b n --⎧=⎪⎪=⎨⎪-≥⎪++⎩.故1138T b ==,当2n ≥时,2221323131111()()841414141n T ----=+-+-+++++ 32211111()()41414141n n n n ----+-+-++++171841n -=-+.(3)若1n =, 则等式13758n n T a λ++=为37858λ+=,52λ=不是整数,不符合题意; 若2n ≥,则等式13758n n T a λ++=为11717841548n n λ---+=+⨯,11154554141n n n λ---⨯==-++ ①λ是整数, ①141n -+必是5的因数, ①2n ≥时1415n -+≥ ①当且仅当2n =时,1541n -+是整数,从而4λ=是整数符合题意.综上可知,当4λ=时,存在正整数2n =,使等式13758n n T a λ++=成立, 当4,λ≠时,不存在正整数n 使等式13758n n T a λ++=成立 【点睛】本题考查了数列的通项与前n 项和的关系,考查了裂项求和法,考查了分析问题解决问题的能力及逻辑思维能力,属于难题.18.(2022·四川达州·二模(理))已知数列{}n a 满足11a =,12n n a a +=+,n S 为{}n a 的前n 项和. (1)求{}n a 的通项公式;(2)设()1nn n b S =-,数列{}n b 的前n 项和n T 满足20n T mn ->对一切正奇数n 恒成立,求实数m 的取值范围.【答案】(1)21n a n =-; (2)1m <-. 【解析】 【分析】(1)利用等差数列的定义可得数列{}n a 是首项为1,公差为2的等差数列,即求; (2)由题可得当 n 为奇数时,()12n n n T +=-,进而可得21122n n n T m <=--对一切正奇数n 恒成立,即得. (1)①11a =,12n n a a +=+, ①12n n a a +-=,①数列{}n a 是首项为1,公差为2的等差数列, ①()12121n a n n =+-=-; (2)由题可得()21212n n n S n +-==,①()()211nnn n b S n =-=-,①()221121n n b b n n n ++=-++=+,n 为奇数, ①当 n 为奇数,且3n ≥时,()22222123451nn T n =-+-+-++-()()()221212372322n n n n n n n -⋅+=+++--=-=-, 当1n =时,11T =-也适合, 故当 n 为奇数时,()12n n n T +=-, 又20n T mn ->对一切正奇数n 恒成立,①2111222n T m n n n n+<=-=--对一切正奇数n 恒成立, 又11122n--≥-, ①1m <-.19.(2022·天津市宁河区芦台第一中学模拟预测)设数列{}n a 的前n 项和为n S ,且满足()*N n n a S n -=∈321.(1)求数列{}n a 的通项公式;(2)记()()n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩12123,为奇数,为偶数,数列{}n b 的前2n 项和为2n T ,若不等式()nnn n nT n λ⎛⎫-<+⋅- ⎪+⎝⎭2241132941对一切*N n ∈恒成立,求λ的取值范围. 【答案】(1)13-=n n a (2)⎛⎫- ⎪⎝⎭3546,. 【解析】【分析】(1)利用n a 与n S 的关系即可求解;(2)根据裂项相消法和错位相减法求出数列{}n b 的前2n 项和为2n T ,再将不等式的恒成立问题转化为求最值问题即可求解.(1)由题意,当1n = 时,1113211a a a -=⇒=, 当2n ≥ 时, 11321n n a S ---=,所以()n n n n a a S S -----=113320, 即 13n n a a -=, ∴ 数列{}n a 是首项为1,公比为3的等比数列,11133n n n a --∴=⨯=故数列{}n a 的通项公式为13-=n n a . (2)()()12123n n n n n b n n a ⎧⎪-+⎪=⎨⎪⎪⎩,为奇数,为偶数,由 (1),得当n 为偶数时,13n n n n nb a -==, 当n 为奇数时, 11142123n b n n ⎛⎫=- ⎪-+⎝⎭,设数列{}n b 的前2n 项中奇数项的和为n A ,所以n nA n n n ⎛⎫=-+-+⋯+-=⎪-++⎝⎭11111114559434141, 设数列{}n b 的前2n 项中偶数项的和为n B , n n B n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1321111242333①n n B n +⎛⎫⎛⎫⎛⎫=⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭352111112429333②,由-①②两,得()n n n n n n B n ++-⎛⨯⎫⎛⎫=⨯+⋯-⎛⎫=-⨯ ⎪++-⎪⎝⎭⨯ ⎪ ⎝⎭⎝⎭-21211321111139281111229332331319, 整理得()nn n B +⎛⎫=-⋅ ⎪⎝⎭38927132329,故,()nn n n n n T A B n +⎛⎫=+=+-⋅ ⎪+⎝⎭23892714132329,n nn n n T n ⎛⎫⎛⎫∴+⋅-=-⋅ ⎪ ⎪+⎝⎭⎝⎭2241272713294132329.∴ 不等式()nnn n n T n λ⎛⎫-<+⋅-⎪+⎝⎭2241132941对一切*N n ∈恒成立, 即不等式()nnλ⎛⎫-<-⋅ ⎪⎝⎭27271132329对一切*N n ∈恒成立,()xf x ⎛⎫=-⋅ ⎪⎝⎭2727132329在R 上是单调增。

恒成立问题的几种常见解法

恒成立问题的几种常见解法
三、方程思想
五、函数思想
例2中。已知f(X)=X2+ax+1>10对一切X∈(0.1/2)恒成立甘 方程f(X)=O的根有且仅有下列3种情况: (1)无实根§△<0.解得一2<a<2
△≥0
例2中,设f(×)=x2+a)(+1。则f(x)/>0对X∈(0,士]恒成立,
从而在(0.百1]上有[f(x)]min/>0。(1)当一百a≤O时,即当a≥
computer room,library,multimedia
room等等,都是学生很想学
到的语言。 二、挖掘生活化的英语课程资源 所谓英语课程资源。是指学生生活中与英语学习密切相关的 有利于学生学习的所有要素。英语教材的编写已经充分考虑到要 接近学生的生活,我们应充分挖掘教材自身的生活因素,同时我们 还要开发教材以外的生活课程资源。如:我们可以以课本为依托, 根据内容。找到合适的切入点。把身边的、世界的、近期发生的事情 通过图片、投影、照片展示等多种方法引入到教学中来,使学生在 学习的同时能感受到所学知识与外界相联系,能够用简单的句式 表达自己的思想,从而体会到学习英语的成就感。
2即当一1≤a<0时,原不等式恒成立。(3)当一告>÷时。即当
a<一1时,在f(x)在(o,÷]上是减函数“.当X----÷时,[f(x)]rain=
虿a 4-i5一o a、7-虿5
(3)两个大于}或等于}的实根甘
一虿a;互1一
f(丢)=了1+虿a+1/>0 解得一争≤a≤一2,综合(1)(2)(3),得a≥一争。
×e(o,}]成立;当△=a2—4>0时,x2+ax+1≥o的解集为(一oo
二鱼二≤王三.]u[二学,+。)。要使不等式×2+ax+1≥。
需(O'士](-。华’]U
at

恒成立问题

恒成立问题
答案:a≥0
2
y loga x
三、数形结合法
2 1 【例5】若不等式 3x loga x 0 在 x 0, 内恒成立,求实数a的取值范围。

3
1 分析与解: 由题意知 : 3x 2 loga x 0 在 x 0, 内恒成立。 3
在同一坐标系内分别作出
1 2
例3.不等式 <1对一切实数x恒成立,求实数m的 取值范围。 解:由4x2+6x+3=(2x+ )2+
>0,对一切实数x恒成立,从而,原 不等式等价于 2x2+2mx+m<4x2+6x+3, (x∈R) 即:2x2+(6-2m)x+(3-m)>0对一切实 数x恒成立。 则 △=(6-2m)2-8(3-m)<0 解得:1<m<3 故实数m的取值范围是(1,3)。
2.不等式x2-3>ax-a对一切3≤x≤4恒成立,则实数a的取值范围

.
【解析】因为x2-3>ax-a对一切3≤x≤4恒成立,
x2 3 所以a< 在x∈[3,4]恒成立, x 1
令g(x)=
x2 3 而g(x)= 在x∈[3,4] x 1 2 2 2 单调递增x , 3 x 1 2 x 1 2 x 1 2 x 1 x 1 x 1
故k的取值范围是(-∞,-2)∪(3,+∞)。
1 已知函数f x 3 sin x , 若f x 2 sin x a 2 a sin x 对任意x 0, 都成立,则实数 a的取值范围是 2
1 解 : 因为f x sin x sin x , 令g x sin x 1 sin x , 又因为x 0, , 所以g x sin x sin x 2 1 2 2, 所以只需2 a a成立,解该 sin x 不等式 - 1 a 2

专题 数列不等式 (解析版)

专题  数列不等式 (解析版)

数列不等式(典型题型归类训练)目录一、典型题型题型一:数列不等式恒成立题型二:数列不等式能成立(有解)问题二、专题 数列不等式专项训练一、 典型题型题型一:数列不等式恒成立1(23-24高二下·河南南阳·期中)记数列a n 的前n 项和为S n ,已知a 1=-1,且a n +1+-1 n ⋅a n =8-2n .(1)令b n =a 2n ,求数列b n 的通项公式;(2)若对于任意的n ∈ℕ*,2n +1⋅λ-6n +1+S 2n +1≥0恒成立,求实数λ的取值范围.【答案】(1)b n =9-4n (2)98,+∞.【分析】(1)分类讨论n 是奇数和偶数,利用递推公式计算即可;(2)先利用等差数列求和公式分组求和,再分离参数,令c n =n 22n ,判定其单调性,计算即可.【详解】(1)令n =2k -1,则a 2k -a 2k -1=10-4k ①,令n =2k ,则a 2k +1+a 2k =8-4k ②,②-①,得a 2k +1+a 2k -1=-2,又因为a 1=-1,所以可得a 2k -1=-1,代入①式,得a 2k =9-4k ,所以b n =9-4n .(2)S 2n +1=S 奇 +S 偶 ,其中S 奇=-1 ⋅n +1 =-n +1 ,S 偶=b 1+b 2+⋯+b n =5n +n n -12×-4 =7n -2n 2,所以S 2n +1=-2n 2+6n -1.由2n +1⋅λ-6n +1+S 2n +1≥0,可得λ≥n 22n 恒成立.设c n =n 22n ,则c n +1-c n =n +1 22n +1-n 22n =-n 2+2n +12n +1,当1-2<n<1+2,即n=1,2时,c n+1-c n>0,c n<c n+1,当n>1+2,即n≥3时,c n+1-c n<0,c n>c n+1,所以c1<c2<c3>c4>c5>⋯,故c nmax=c3=98,所以λ≥98,即实数λ的取值范围为98,+∞.2(2024·广东韶关·二模)记R上的可导函数f x 的导函数为f x ,满足x n+1=x n-f x nf x nn∈N*的数列x n称为函数f x 的“牛顿数列”.已知数列x n为函数f x =x2-x的牛顿数列,且数列a n满足a1=2,a n=lnx nx n-1,x n>1.(1)求a2;(2)证明数列a n是等比数列并求a n;(3)设数列a n的前n项和为S n,若不等式(-1)n⋅tS n-14≤S2n对任意的n∈N∗恒成立,求t的取值范围.【答案】(1)4(2)证明见解析,a n=2n(3)-9≤t≤253【分析】(1)求出导函数,化简数列递推式,根据对数运算及递推式求解即可;(2)对递推式变形结合对数运算求得a n+1a n=2,利用等比数列定义即可证明,代入等比数列通项公式求解通项公式;(3)先利用等比数列求和公式求和,再把恒成立问题转化为(-1)n⋅t≤S n+14S n对任意的n∈N∗恒成立,令g x =x+14x,x∈0,+∞,利用导数研究函数的单调性,然后根据单调性求解函数最值,根据n的奇偶性分别求解范围即可.【详解】(1)因为f x =x2-x,则f x =2x-1,从而有x n+1=x n-f x nf x n=x n-x2n-x n2x n-1=x2n2x n-1,由a1=2,a n=lnx nx n-1,则2=lnx1x1-1,则x1x1-1=e2,解得x1=e2e2-1则有x2=x212x1-1=e4e4-1,所以a2=lnx2x2-1=2lnx1x1-1=4;(2)由x n+1=x2n2x n-1,则x n+1x n+1-1=x2n2x n-1x2n2x n-1-1=x2nx2n-2x n+1=x nx n-12,所以a n+1=lnx n+1x n+1-1=lnx nx n-12=2ln x n xn-1=2a n(x n>1),故a n+1a n=2(非零常数),且a1=2≠0,所以数列a n是以2为首项,2为公比的等比数列,所以a n=2×2n-1=2n;(3)由等比数列的前n项和公式得:S n=21-2n1-2=2n+1-2,因为不等式(-1)n⋅tS n-14≤S n2对任意的n∈N∗恒成立,又S n>0且S n单调递增,所以(-1)n⋅t≤S n+14S n对任意的n∈N∗恒成立,令g x =x+14x,x∈0,+∞,则g x =1-14x2=x2-14x2,当x∈0,14时,g x <0,g x 是减函数,当x∈14,+∞时,g x >0,g x 是增函数,又2=S1<14<S2=6,且g2 =9,g6 =253,g6 <g2 ,则g x min=g6 =253,当n为偶数时,原式化简为t≤S n+14S n,所以当n=2时,t≤253;当n为奇数时,原式化简为-t≤S n+14S n,所以当n=1时,-t≤9,所以t≥-9;综上可知,-9≤t≤25 3 .3(23-24高二下·贵州贵阳·期中)已知数列a n满足:a n+1=13a n+13n+1,且a1=-23.设a n 的前n项和为T n,b n=3n⋅a n.(1)证明:b n是等差数列;(2)求T n;(3)若不等式T n+34≤ta n对n∈N*恒成立,求实数t的取值范围.【答案】(1)证明见解析(2)T n=-34-n2-34⋅13 n(3)-12≤t≤-18【分析】(1)根据等差数列的定义证明(2)由已知得a n=b n3n=13n⋅n-3,再通过错位相减法求解出T n;(3)不等式化简为t n-3≥3-2n4,把问题转化为t n-3≥3-2n4对n∈N*恒成立,然后分别求出当1≤n<3、n=3和n>3时,t满足的条件即可【详解】(1)因为b n=3n⋅a n,所以b n+1=3n+1⋅a n+1,b n+1-b n=3n+1⋅a n+1-3n⋅a n=3n+113a n+13 n+1-3n⋅a n=1,且b1=-2,所以b n是以-2为首项,且公差为1的等差数列,即b n=n-3.(2)由(1)知,b n=n-3,所以a n=b n3n=13n⋅n-3.则T n=-2⋅131+-1 ⋅13 2+0⋅13 3+⋯+n-4⋅13n-1+n-3⋅13n,于是13T n=-2⋅132+-1 ⋅13 3+0⋅13 4+⋯+n-4⋅13n+n-3⋅13n+1,两式相减得23T n =-23+132+133+134+⋯+13n-n -3 ⋅13n +1=-23+191-13 n -11-13-n -3 ⋅13n +1=-12-n 3-12 ⋅13n,因此T n =-34-n 2-34 ⋅13n.(3)由T n +34≤ta n ,得-n 2-34 ⋅13 n ≤t n -3 ⋅13n ,依题意,t n -3 ≥3-2n4对n ∈N *恒成立,当1≤n <3时,t ≤3-2n 4n -3 =-12-34×1n -3,-12-34×1n -3≥-18,则t ≤-18;当n =3时,不等式恒成立;当n >3时,t ≥3-2n 4n -3=-12-34×1n -3,-12-34×1n -3<-12,则t ≥-12,于是-12≤t ≤-18,综上,实数t 的取值范围是-12≤t ≤-18.4(23-24高二下·吉林长春·阶段练习)设正项数列a n 的前n 项之和b n =a 1+a 2+⋯+a n ,数列b n 的前n 项之积c n =b 1b 2⋯b n ,且b n +c n =1.(1)求证:1c n为等差数列,并分别求a n 、b n 的通项公式;(2)设数列a n ⋅b n +1 的前n 项和为S n ,不等式S n >1λ+λ-136对任意正整数n 恒成立,求正实数λ的取值范围.【答案】(1)证明见解析,a n =1n n +1,b n =nn +1(2)12<λ<2【分析】(1)利用已知关系可得b n =c n c n -1,代入b n +c n =1,化简可证1c n 为等差数列,从而求得a n ,b n的通项公式;(2)由(1)得a n ⋅b n +1=1n n +2,利用裂项相消可得S n =34-121n +1+1n +2 ,利用数列的单调性求出S n ≥S 1=13,解不等式即可求出正实数λ的取值范围.【详解】(1)由题意知:当n ≥2时,b n =c n c n -1,代入b n +c n =1得cn c n -1+c n =1,所以1c n -1c n -1=1.由b 1=c 1b 1+c 1=1,得b 1=c 1=12,所以1c n是以2为首项,1为公差的等差数列,所以1c n=n+1,c n=1n+1,b n=1-c n=nn+1,当n≥2时,a n=b n-b n-1=nn+1-n-1n=1n n+1,当n=1时,a1=b1=12也符合上式,所以a n=1n n+1.(2)由(1)得a n⋅b n+1=1n n+1⋅n+1n+2=1n n+2,所以S n=11×3+12×4+13×5+⋯+1n-1n+1+1n n+2=121-13+12-14+13-15+⋯+1n-1-1n+1+1n-1n+2=34-121n+1+1n+2.显然S n单调递增,所以S n≥S1=1 3 .由题意得1λ+λ-136<13,即1λ+λ<52,又λ>0,所以λ的取值范围为12<λ<2.5(2024·湖南·二模)已知a n是各项都为正数的等比数列,数列b n满足:b n=2log2a n+1,且b1= 1,b4=7.(1)求数列a n,b n的通项公式;(2)若对任意的n∈N*都有2λa n≥b n-2,求实数λ的取值范围.【答案】(1)a n=2n-1;b n=2n-1(2)λ≥38【分析】(1)利用题设条件求得a1,a4,再利用等比数列的通项公式求得a n,进而求得b n;(2)将问题转化为λ≥2n-32n 恒成立,再利用作差法求得f(n)=2n-32n的最大值,从而得解.【详解】(1)因为b n=2log2a n+1,b1=1,b4=7,所以b1=1=2log2a1+1,则a1=1,b4=7=2log2a4+1,则a4=8,因为a n是各项都为正数的等比数列,所以q3=a4a1=8,即q=2,所以a n=2n-1,则b n=2log2a n+1=2n-1+1=2n-1.(2)因为2λa n≥b n-2恒成立,所以λ≥b n-22a n=2n-32n恒成立,设f(n)=2n-32nn∈N*,则f n+1-f n =2n-12n+1-2n-32n=5-2n2n+1,当n≤2时,f(n+1)-f(n)>0,则f(3)>f(2)>f(1);当n ≥3时,f (n +1)-f (n )<0,则f (3)>f (4)>f (5)>⋯;所以f (n )max =f (3)=38,则λ≥38.6(23-24高二上·山东烟台·期末)设数列a n ,b n 的前n 项和分别为S n ,T n ,a 1=-2,b 1=1,且4S n +1=3S n -8,b n +1=43b n -2a n +1(n ∈N *).(1)求a n 的通项公式,并证明:34n -1b n 是等差数列;(2)若不等式(6nλ-54)43n-(n +3)(T n -9)≤0对任意的n ∈N *恒成立,求实数λ的取值范围.【答案】(1)a n =-2×34n -1,证明见解析;(2)(-∞,3].【分析】(1)根据给定条件,结合a n =S n -S n -1(n ≥2)求出a n 的通项,再利用等差数列的定义推理即得.(2)利用错位相减法求和得,T n =(3n -9)43n+9,由给定不等式得,λ≤n 2+92n =n 2+92n ,再求出n2+92n的最小值即可.【详解】(1)数列a n 中,4S n +1=3S n -8,当n ≥2时,4S n =3S n -1-8,两式相减得,a n +1=34a n,又4S 2=3S 1-8,即4(a 1+a 2)=3a 1-8,而a 1=-2,解得a 2=-32,则a 2=34a 1,所以数列a n 为等比数列,a n =-2×34n -1;由b n +1=43b n -2a n +1,b 1=1,得b n +1=43b n +134n⇒34nb n +1-34n -1b n =1,因此数列34n -1b n 是以34b 1=1为首项、1为公差的等差数列.(2)由(1)得,34n -1b n =1+(n -1)×1=n ,即b n =n 43n -1,则T n =1×43+2×431+3×432+⋯+n ×43n -1,于是43T n =1×431+2×432+3×433+⋯+(n -1)×43r -1+n ×43n,两式相减得,-13T n =43+431+432+433+⋯+43n -1-n 43n=343n-1-n 43n,因此T n =(3n -9)43n+9,又(6nλ-54)43n-(n +3)(T n -9)≤0,即(6nλ-54)43n≤(n +3)(3n -9)43n,于是λ≤n 2+92n =n 2+92n ,而n 2+92n ≥2n 2⋅92n=3,当且仅当n =3时等号成立,则λ≤3,所以实数λ的取值范围为(-∞,3].【点睛】思路点睛:涉及数列不等式恒成立问题,可以变形不等式,分离参数,借助函数思想求解即可.题型二:数列不等式能成立(有解)问题1(2024·云南·一模)已知a n 为等比数列,记S n 、T n 分别为数列a n 、b n 的前n 项和,S 5=62,S 10=2046,2T n =nb n +n ,b 2=3.(1)求a n 、b n 的通项公式;(2)是否存在整数c ,使b 1a 1+b 2a 2+⋯+bn a n<c 对任意正整数n 都成立?若存在,求c 的最小值;若不存在,请说明理由.【答案】(1)a n =2n ,b n =2n -1;(2)存在,c 的最小值为3.【分析】(1)利用等比数列求和公式得首项和公比的方程组,得a n =2n ,利用数列的和与通项的关系得n -1 b n +1=nb n -1,结合nb n +2=n +1 b n +1-1得b n 是等差数列即可求解;(2)错位相减法求和得C n =b 1a 1+b 2a 2+⋯+bn a n,再利用数列性质求最值即可求解.【详解】(1)设等比数列a n 的公比为q ,根据已知得q ≠1,且S 5=a 11-q 51-q =62S 10=a 11-q 101-q =2046解方程组得a 1=2,q =2.∴a n 的通项公式为a n =a 1q n -1=2×2n -1=2n .∵2T n =nb n +n ,∴2T 1=2b 1=b 1+1,解得b 1=1,且2T n +1=n +1 b n +1+n +1.∴2T n +1-2T n =n +1 b n +1+n +1-nb n -n ,即2b n +1=n +1 b n +1+n +1-nb n -n .∴n -1 b n +1=nb n -1且nb n +2=n +1 b n +1-1,则nb n +2-n -1 b n +1=n +1 b n +1-nb n ,整理得b n +2+b n =2b n +1,故b n 是以1为首项,2为公差的等差数列,故b n =1+2n -1 =2n -1.∴b n 的通项公式为b n =2n -1.(2)设C n =b 1a 1+b 2a 2+⋯+b n a n =12+322+⋯+2n -12n ,则12C n =122+323+⋯+2n -12n +1.∴C n -12C n =12C n =12+222+223+⋯+22n -2n -12n +1=12+2×14×1-12n-11-12-2n-12n+1,∴C n=3-2n+32n.∵C n=3-2n+32n <3恒成立,且C4=3-1116>2,∴存在整数c,使b1a1+b2a2+⋯+b na n<c对任意正整数n都成立,且c的最小值为3.2(23-24高二上·江苏盐城·期末)已知正项数列a n的前n项和为S n,且2S n=a n+1;数列b n是单调递增的等比数列,公比为q,且b2,b4的等差中项为10;b1,b5的等比中项为8.(1)求a n,b n的通项公式;(2)设c n=a n,n为奇数1b n,n为偶数,T n为数列c n 的前n项和,若存在n∈N*使得T2n-2n2+n≥λb n成立,求实数λ的最大值.【答案】(1)a n=2n-1,b n=2n(2)18【分析】(1)利用a n与S n的关系可得a n,利用等比数列性质及等差中项、等比中项性质可得b n;(2)分组求和可得T2n,可将原不等式转化为λ≤1312n-18n,计算即可得.【详解】(1)由2S n=a n+1可得4S n=a n+12,当n≥2时,4S n-1=a n-1+12,两式相减得4a n=a n2-a n-12+2a n-a n-1,∴a2n-a2n-1=2a n+a n-1,即a n+a n-1a n-a n-1=2a n+a n-1.∵a n>0,∴a n-a n-1=2(n≥2),即可得a n是等差数列.由2S1=a1+1,得2a1=a1+1,∴a1=1,即a n=1+(n-1)×2=2n-1.由题意得b2+b4=20b1b5=64,即b2+b4=20b2b4=64,解得b2=4b4=16或b2=16b4=4,∵b n是递增的等比数列,∴b2=4b4=16,所以b1q=4b1q3=16,得b1=2q=2,∴b n=2×2n-1=2n,即a n=2n-1,b n=2n;(2)由(1)得:T2n=a1+a3+⋯+a2n-1+b2+b4+⋯+b2n=2n2-n+131-14n若存在n∈N*使得T2n-2n2+n≥λb n成立,等价于存在n∈N*使得λ≤1312n-18n能成立,设d n=1312n-18n,则d n-d n-1=1312n-18n-1312n-1-18n-1=1378n-12n<0,∴d n是递减数列,故d n的最大值为d1=1 8,因此λ的最大值为1 8 .3(2024·云南曲靖·一模)已知数列a n的前n项和为S n,且S n=2a n-n.(1)求数列a n的通项公式;(2)若数列b n满足b n=a n+1a n a n+1,其前n项和为T n,求使得T n>20232024成立的n的最小值.【答案】(1)a n=2n-1;(2)10.【分析】(1)根据a n,S n关系及递推式可得a n+1=2(a n-1+1),结合等比数列定义写出通项公式,即可得结果;(2)应用裂项相消法求T n,由不等式能成立及指数函数性质求得n≥10,即可得结果.【详解】(1)当n≥2时,a n=S n-S n-1=(2a n-n)-(2a n-1-n+1)=2(a n-a n-1)-1,所以a n=2a n-1+1,则a n+1=2(a n-1+1),而a1=S1=2a1-1⇒a1=1,所以a1+1=2,故{a n+1}是首项、公比都为2的等比数列,所以a n+1=2n⇒a n=2n-1.(2)由b n=a n+1a n a n+1=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,所以T n=1-13+13-17+17-115+⋯+12n-1-12n+1-1=1-12n+1-1,要使T n=1-12n+1-1>20232024,即12n+1-1<12024⇒2n+1>2025,由210<2025<211且n∈N*,则n+1≥11⇒n≥10.所以使得T n>20232024成立的n的最小值为10.4(23-24高三上·山东·阶段练习)已知正项数列a n的前n项和为S n,2S n=a n+1;数列b n是递增的等比数列,公比为q,且b2,b4的等差中项为10,b1,b5的等比中项为8.(1)求a n,b n的通项公式;(2)设c n=-a n,n为奇数3b n,n为偶数,T n为c n 的前n项和,若T2n+2n2-n+3≥λb n能成立,求实数λ的最大值.【答案】(1)a n=2n-1,b n=2n(2)158【分析】(1)利用S n,a n的关系式即可求得a n是等差数列,可得a n=2n-1;再利用等比数列定义即可求得b 1=2,q =2,可得b n =2n ;(2)采用分组求和并利用等差、等比数列前n 项和公式即可求得T 2n =-2n 2+n +1-14n,不等式能成立等价于λ≤4×12n-18nmax ,利用单调性可求得λ≤158.【详解】(1)由2S n =a n +1可得4S n =a n +1 2,当n ≥2时,4S n -1=a n -1+1 2,两式相减得4a n =a n 2-a n -12+2a n -a n -1 ,∴a n 2-a 2n -1=2a n +a n -1 ,即a n +a n -1 a n -a n -1 =2a n +a n -1 .∵a n >0,∴a n -a n -1=2(n ≥2),即可得a n 是等差数列.由2S 1=a 1+1,得2a 1=a 1+1,∴a 1=1,即a n =1+n -1 ×2=2n -1.由题意得b 2+b 4=20b 1b 5=64,即b 2+b 4=20b 2b 4=64,解得b 2=4b 4=16 或b 2=16b 4=4 .∵b n 是递增的等比数列,∴b 2=4b 4=16,所以b 1q =4b 1q 3=16 ,得b 1=2q =2,∴b n =2×2n -1=2n .所以a n 和b n 的通项公式为a n =2n -1,b n =2n .(2)由(1)得:T 2n =-a 1+a 3+a 5+⋯+a 2n -1 +b 2+b 4+b 6+⋯+b 2n =-1+5+9+⋯+4n -3 +3122+124+126+⋯+122n=-1+4n -3 n2+3141-14n1-14=-2n 2+n +1-14n.T 2n +2n 2-n +3≥λb n 能成立,等价于4-14n ≥λ×2n 能成立,化简得λ≤4×12n-18n能成立,即λ≤4×12n-18nmax.设d n =4×12n-18n,则d n +1-d n =4×12n +1-18n +1-4×12n+18n=-2×12n+78×18n=12n78×14n-2<0,∴d n 是递减数列,故d n 的最大值为d 1=158.∴λ≤158,因此λ的最大值为158.5(23-24高三上·河北张家口·阶段练习)已知正项数列a n 的前n 项和为S n ,且a n =12S n+1n∈N*.数列b n的前n项和为T n,数列c n的前n项和为A n,数列b n=2na n-a n n∈N*,c n+1n n+1=1a n,n∈N*.(1)求数列a n的通项公式及T n;(2)若对任意n∈N*,存在x0∈-1,1使得A n≤2x0-m成立,求实数m的取值范围.【答案】(1)a n=2n,n∈N*;T n=6+2n-3⋅2n+1;(2)-∞,14980.【分析】(1)利用S n,a n的关系式可求得数列a n的通项公式为a n=2n,n∈N*,由错位相减法求和即可得T n =6+2n-3⋅2n+1;(2)易知A n=1n+1-12n,由数列的函数特性可知A n≤A4=15-116=1180,根据题意只需满足2-m≥1180即可求得m≤149 80.【详解】(1)由a n=12S n+1n∈N*,可得S n=2a n-2n∈N*,当n=1时,a1=S1=2a1-2,得a1=2;当n≥2时,a n=S n-S n-1=2a n-2-2a n-1+2,即a n=2a n-1,可得a n是以a1=2为首项,2为公比的等比数列,所以a n=2n,n∈N*;当n=1时,a1=2符合a n=2n,所以数列a n的通项公式为a n=2n,n∈N*;b n=2na n-a n=2n-1a n=2n-1⋅2n,则数列b n的前n项和为T n=1⋅2+3⋅22+5⋅23+⋅⋅⋅+2n-1⋅2n,2T n=1⋅22+3⋅23+5⋅24+⋅⋅⋅+2n-1⋅2n+1,相减可得:-T n=2+222+23+⋅⋅⋅+2n-2n-1⋅2n+1=2+2⋅41-2n-11-2-2n-1⋅2n+1=-6+2n+2-2n-1⋅2n+1所以T n=6+2n-3⋅2n+1;(2)由c n+1n n+1=1a n,n∈N*得c n=12n-1n-1n+1,可得A n=12+14+⋅⋅⋅+12n-1-12+12-13+⋅⋅⋅+1n-1n+1=121-12n1-12-1-1n+1=1n+1-12n,由c1=0,c2>0,c3>0,c4>0,当n≥5时,2n>n n+1,即有c n<0,可得A n≤A4=15-116=1180,又x∈-1,1时,y=2x-m的最大值为2-m,对任意n∈N*,存在x0∈-1,1,使得A n≤2x0-m成立,即2-m ≥1180即可,解得m ≤14980;所以实数m 的取值范围为-∞,14980二、 专题 数列不等式专项训练1(23-24高二下·辽宁大连·阶段练习)设数列a n 的前n 项和为S n ,已知a 1=5,a 2=25,S n +1+5S n -1=6S n n ≥2 ,T n 是数列2log 5a n -1 的前n 项和.(1)求数列a n 的通项公式;(2)求满足1-1T 21-1T 31-1T 4⋯1-1T n1-1T n +1≥10232025的最大正整数n 的值.【答案】(1)a n =5n (2)95【分析】(1)利用S n -S n -1=a n 得到数列a n 是等比数列,根据等比数列的通项公式求解;(2)先求出b n ,进而可得T n ,求出1-1T n +1代入不等式左边整理化简,然后解不等式即可.【详解】(1)因为S n +1+5S n -1=6S n n ≥2 ,所以S n +1-S n =5S n -5S n -1,即a n +1=5a n ,又a 2=25=5a 1≠0,所以数列a n 是以5为首项,5为公比的等比数列,所以a n =5n ;(2)由(1)得2log 5a n -1=2log 55n -1=2n -1,所以T n =1+2n -1 n2=n 2,则1-1T n +1=1-1n +1 2=n ⋅n +2 n +12,则1-1T 21-1T 31-1T 4⋯1-1T n1-1T n +1=1×322×2×432×3×542×⋯×n -1 n +1 n 2×n n +2 n +1 2=n +22n +1 ,所以n +22n +1≥10232025,又n ∈N ∗,解得n ≤95,所以正整数n 的最大值为95.2(2024·四川南充·二模)在数列a n 中,S n 是其前n 项和,且3S n -a n =64.(1)求数列a n 的通项公式;(2)若∀n ∈N +,λ-1<S n ≤4λ+4恒成立,求λ的取值范围.【答案】(1)a n =32×-12n -1(2)7,17【分析】(1)由a n =S 1,n =1S n -S n -1,n ≥2,作差得到a n =-12a n -1,从而得到a n 是以32为首项,-12为公比的等比数列,即可求出其通项公式;(2)由(1)求出S n ,再根据指数函数的性质求出S n 的最值,即可得解.【详解】(1)因为3S n -a n =64,当n =1时,3S 1-a 1=64,解得a 1=32;当n ≥2时,3S n -1-a n -1=64,所以3S n -a n -3S n -1+a n -1=0,所以a n =-12a n -1;所以a n 是以32为首项,-12为公比的等比数列,所以a n =32×-12n -1.(2)由(1)可得S n =a n +643=6431--12n=6431-12 n,n 为偶数6431+12 n,n 为奇数,又y =12x在R 上单调递减,则y =-12x在R 上单调递增,所以当n 为偶数时,6431-12n≥6431-122=16,当n 为奇数时,6431+12n≤6431+12=32,所以当n =1时S n 取得最大值为32,当n =2时S n 取得最小值为16,因为∀n ∈N +,λ-1<S n ≤4λ+4恒成立,所以λ-1<1632≤4λ+4,解得7≤λ<17,所以λ的取值范围为7,17 .3(2024·全国·模拟预测)已知数列a n 的前n 项和为S n ,且a 2=3,2S n =n a n +2 .(1)求数列a n 的通项公式;(2)若存在n ∈N *,使得1a 1a 2+1a 2a 3+⋯+1a n a n +1≥λa n +1成立,求实数λ的取值范围.【答案】(1)a n =n +1;(2)-∞,116.【分析】(1)当n =1时,求得a 1=2,当n ≥3时,得到2S n -1=n -1 a n -1+2 ,两式相减化简得到a nn -1-a n -1n -2=-21n -2-1n -1,结合叠加法,即可求得数列a n 的通项公式;(2)由(1)得到1a n a n +1=1n +1-1n +2,求得1a 1a 2+1a 2a 3+⋯+1a n a n +1=12-1n +2,解法1:根据题意,转化为λ≤n 2n +2 2,结合n 2n +2 2=12n +4n +4 ,结合基本不等式,即可求解;解法2:根据题意,转化为λ≤12n +2-1n +22,结合二次函数的性质,即可求解.【详解】(1)解:当n =1时,2S 1=2a 1=a 1+2,解得a 1=2,当n ≥3时,2S n =n a n +2 ,2S n -1=n -1 a n -1+2 ,两式相减可得,n -2 a n -n -1 a n -1=-2,则a n n -1-a n -1n -2=-21n -2-1n -1 ,a n -1n -2-a n -2n -3=-21n -3-1n -2 ,⋯,a 32-a 21=-21-12叠加可得,a n n -1-a 21=4-2nn -1,则a n =n +1,而n =1,2时也符合题意,所以数列a n 的通项公式为a n =n +1.(2)解:由(1)知a n =n +1,可得1a n a n +1=1n +1 n +2=1n +1-1n +2,故1a 1a 2+1a 2a 3+⋯+1a n a n +1=12-13+13-14+⋯+1n +1-1n +2=n2n +2;解法1:由1a 1a 2+1a 2a 3+⋯+1a n a n +1≥λa n +1,可得n2n +2≥λn +2 ,即λ≤n 2n +2 2,即则λ≤n 2n +2 2 max ,又由n 2n +2 2=12n +4n +4≤116,当且仅当n =2时取等号,故实数λ的取值范围为-∞,116.解法2:由1a 1a 2+1a 2a 3+⋯+1a n a n +1=12-1n +2≥λn +2 ,可得λ≤12n +2 -1n +22=-1n +2-14 2+116,当n +2=4,即n =2时,12n +2 -1n +2 2max=116,则λ≤116,故实数λ的取值范围为-∞,116.4(23-24高二下·云南玉溪·阶段练习)已知S n 是等差数列a n 的前n 项和,且a 2=3,S 5=25.(1)求数列a n 的通项公式;(2)若对任意n ∈N *,m ≥a 131+a 232+⋅⋅⋅+a n3n ,求m 的最小整数值.【答案】(1)a n =2n -1(2)1【分析】(1)根据等差数列的通项公式及求和公式列出方程组求解即可;(2)根据错位相减法求出和,即可得解.【详解】(1)设a n 的公差为d ,因为a 2=3,S 5=25,所以a 1+d =35a 1+10d =25,解得a 1=1d =2 ,所以an =2n -1;(2)因为a n=2n-1,所以a n3n=2n-13n,令T n=a131+a232+⋅⋅⋅+a n3n=13+332+533+⋅⋅⋅+2n-13n,所以13T n=132+333+534+⋅⋅⋅+2n-13n+1,两式相减得23T n=13+232+⋅⋅⋅+23n-2n-13n+1=231-13n1-13-13-2n-13n+1=23-2n+23n+1,所以T n=1-n+1 3n.因为n+13n>0,所以T n<1,所以m≥1,故m的最小整数值为1.5(2024高三·全国·专题练习)已知数列a n的前n项和为S n,且关于x的方程nx2+2S n x+n+ 1=0,n∈N*有两个相等的实数根.(1)求a n的通项公式;(2)若b n=a n+1⋅2a n,数列b n的前n项和为T n,且T n≥4nλ对任意的n∈N*恒成立,求实数λ的最大值.【答案】(1)a n=2n(2)3【分析】(1)利用方程有等根可知判别式为0,求出S n=n2+n,根据a n,S n关系即可得出通项公式;(2)利用错位相减法求出T n,再分离参数后求解即可.【详解】(1)由关于x的方程nx2+2S n x+n+1=0,n∈N*有两个相等的实数根,可得Δ=4S n-4n n+1=0,即S n=n2+n,n∈N*,当n=1时,a1=S1=2.当n≥2时,a n=S n-S n-1=n2+n-n-12-n-1=2n.当n=1时,上式也成立,所以a n=2n.(2)由(1)可知,b n=a n+1⋅2a n=2n+1⋅4n,T n=3×41+5×42+⋅⋅⋅+2n+1⋅4n,①4T n=3×42+5×43+⋅⋅⋅+2n+1⋅4n+1,②①-②得:-3T n=3×41+2×42+⋅⋅⋅+2×4n-2n+1×4n+1=12+2×161-4n-11-4-2n+1⋅4n+1=-8n+43×4n+43,所以T n=83n+49⋅4n-49.又T n≥4nλ对任意的n∈N*恒成立,即83n+49⋅4n-49≥λ4n对任意的n∈N*恒成立,故λ≤83n+49-49×4nmin,因为数列83n +49 -49×4n 在n ∈N *时单调递增,所以83n +49-49×4nmin=3,当且仅当n =1时取得最小值.所以实数λ的最大值为3.6(2024·天津红桥·一模)已知S n 为数列a n 的前n 项和,且满足S n =2a n +r ,其中r ∈R ,且r ≠0.(1)求数列a n 的通项公式;(2)设b n =(-1)n +1S n r ,若对任意的n ∈N *,都有2n -1i =1b i <m <2ni =1b i ,求实数m 的取值范围.【答案】(1)a n =-r ⋅2n -1(2)-1<m <2【分析】(1)利用a n ,S n 的关系式求解即可;(2)由题意有2n -1i =1b imax<m <2ni =1b imin,利用分组求和法分别求出2n -1i =1b i ,2ni =1b i ,再根据数列的单调性分别求出2n -1i =1b imax,2n i =1b imin,即可得解.【详解】(1)由S n =2a n +r ,当n =1时,a 1=S 1=2a 1+r ,所以a 1=-r ≠0,当n ≥2时,a n =S n -S n -1=2a n -2a n -1,所以a n =2a n -1,所以数列a n 是以2为公比的等比数列,所以a n =-r ⋅2n -1;(2)由(1)得S n =-r 1-2n1-2=r 1-2n ,则b n =(-1)n +1Sn r=(-1)n +11-2n =(-1)n +1+-2 n ,故2n -1i =1b i =b 1+b 2+⋯+b 2n -1=1+-21--2 2n -1 1--2 =--2 2n +13,2ni =1b i =b 1+b 2+⋯+b 2n =0+-21--2 2n 1--2 =--2 2n +1-23,而2n -1i =1b i =--2 2n +13=-4n +13随n 的增大而减小,所以2n -1i =1b imax =-41+13=-1,2ni =1b i =--2 2n +1-23=2⋅4n -23随n 的增大而增大,所以2ni =1b imin=2×41-23=2,因为对任意的n ∈N *,都有2n -1i =1b i <m <2ni =1b i ,所以-1<m <2.7(23-24高二下·湖南长沙·开学考试)已知a n 为等差数列,b n 为等比数列,a 1=b 1=1,a 5=5a 4-a 3 ,b 5=4b 4-b 3 .(1)求a n 和b n 的通项公式;(2)求数列1a n ⋅a n +2的前n 项和T n ;(3)记d n =3n -2⋅(-1)n λb n (λ∈R ),对任意的n ∈N +,恒有d n +1>d n ,求λ的取值范围.【答案】(1)a n =n ,b n =2n -1(2)34-12n +2-12n +4(3)-32,1 【分析】(1)根据等比数列和等差数列的通项公式求出公比和公差,即可求解;(2)利用裂项相消即可求和;(3)由d n +1>d n 恒成立,得到3n -1>(-2)n -1λ恒成立,分离参数,分别讨论n 为奇数和偶数时λ的范围,从而得到答案.【详解】(1)因为a n 为等差数列,且a 1=1,a 5=5a 4-a 3 ,所以a 1+4d =5a 1+3d -a 1-2d ,解得:d =1,即a n =n ;因为b n 为等比数列,且b 1=1,b 5=4b 4-b 3 ,所以b 1q 4=4b 1q 3-b 1q 2 ,解得:q =2,即b n =2n -1(2)由(1)可知1a n ⋅a n +2=1n (n +2)=121n -1n +2 ,所以T n =121-13 +1212-14 +1213-15 +1214-16 +⋯121n -1-1n +1+121n -1n +2 =121+12-1n +1-1n +2 所以T n =34-12n +2-12n +4(3)由(1)得d n =3n -2⋅(-1)n λb n =3n -(-2)n λ,由于对任意的n ∈N +,恒有d n +1>d n ,即3n +1-(-2)n +1λ>3n -(-2)n λ,则3n -1>(-2)n -1λ恒成立,当n 为奇数时,则λ<32n -1恒成立,由于32n -1≥1,故当λ<1时,对所有奇数n 恒有d n +1>d n ;当n 为偶数时,则λ>-32n -1恒成立,由于32n -1≥32,则-32n -1≤-32,即当λ>-32时,对所有偶数n 恒有d n +1>d n ;综上,当λ∈-32,1 时,对任意的n ∈N +,恒有d n +1>d n8(23-24高三下·湖南湘潭·阶段练习)设各项都不为0的数列a n 的前n 项积为T n ,T n =2n n -12⋅a n,a1=2.(1)求数列a n的通项公式;(2)保持数列a n中的各项顺序不变,在每两项a k与a k+1之间插入一项2a k+1-a k(其中k=1,2,3,⋅⋅⋅),组成新的数列b n,记数列b n的前n项和为S n,若S n>2023,求n的最小值.【答案】(1)a n=2n(2)17【分析】(1)利用a n与T n的关系得到a n-1=2n-1,再检验a1即可得解;(2)利用并项求和法与等比数列的求和公式求得S2n,再依次求得S16,S18,S17,从而得解.【详解】(1)因为T n=2n n-12⋅a n,当n≥2时,T n-1=2(n-1)(n-2)2⋅a n-1,两式相除可得a n=2n-1a na n-1,因为a n≠0,所以a n-1=2n-1,又a1=2,所以a n=2n.(2)依题意,S2n=a1+2a2-a1+a2+2a3-a2+⋯+a n+2a n+1-a n=a1+a2+⋯+a n+2a2-a1+a3-a2+⋯+a n+1-a n=a1+a2+⋯+a n+2a n+1-a1=a1+a2+⋯+a n+2a n+1-2a1=21-2n1-2+2n+2-4=3⋅2n+1-6,易知S2n随着n增大而增大,当n=8时,S16=3⋅28+1-6=1530<2023,当n=9时,S18=3⋅29+1-6=3066>2023,而S17=S16+b17=S16+a9=1530+512=2042>2023,综上,n的最小值为17.9(2014高一·全国·竞赛)对于给定的m,n∈N*,若m≥n,定义C n m=m m-1⋯m-n+1n n-1⋯2×1.已知数列a n满足a1=1,当n≥2时,C2n S n+1=n-13n+22S n-n2-1S n-1,其中S n为数列a n的前n项和.(1)求a n的通项公式;(2)计算数列a n的前n项和S n,是否存在k∈N*,使得任意n≥k,都有S n>2014?若存在,求出k的最小值;若不存在,请说明理由.【答案】(1)a n=n⋅2n-1(2)存在,9【分析】(1)根据a n =S 1,n =1S n-Sn -1,n ≥2求出a n +1a n =2n +1 n,利用累乘法求出答案;(2)错位相减法求和得到S n =n -1 ⋅2n +1,结合单调性求出答案.【详解】(1)根据C n m 的定义可得C 2n =n n -1 2,而n -1 3n +2 2=n 2-1+C 2n ,∴C 2n S n +1=n -1 3n +22S n -n 2-1 S n -1=C 2n S n +n 2-1 S n -S n -1 ,∴C 2n S n +1-S n=n 2-1 S n -S n -1 ,即a n +1a n =n 2-1C 2n=2n +1 n .已知a 1=1,利用“迭乘”原理得a n +1=a n +1a n ⋅a n a n -1⋅⋯⋅a 2a 1⋅a 1=2n +1 n ⋅2n n -1⋅⋅⋅⋅⋅2×21⋅1=n +1 ⋅2n .故通项公式a n =n ⋅2n -1,经检验当n =1时,也满足此式,综上,通项公式为a n =n ⋅2n -1;(2)存在k =9.理由如下:由(1)知S n =a 1+a 2+⋯+a n =1+2×21+3×22+⋯+n ⋅2n -1,①2S n =2+2×22+3×23+⋯+n -1 ⋅2n -1+n ⋅2n ,②用②-①可得S n =-1-2+22+23+⋯ +2n -1+n ⋅2n -1=-1-21-2n -11-2+n ⋅2n -1=n -1 ⋅2n +1.显然S n 是单调递增的,又S 8=1793,S 9=4097,故存在k =9,使得任意n ≥k ,都有S n >2014.10(23-24高三下·重庆·阶段练习)已知正项数列a n 的前n 项和为S n ,且满足a 1=1,2S n =a n a n +1,数列b n 为正项等比数列,b 2=a 4且b 2,3b 1,b 3依次成等差数列.(1)求a n ,b n 的通项公式;(2)设c n =1a n b n,c n 的前n 项和为T n ,问是否存在正整数k 使得k 24<T n <k +124n ≥4 成立,若存在,求出k 的值;若不存在,请说明理由.【答案】(1)a n =n ,b n =2n (2)存在,k =16【分析】(1)根据a n =S 1,n =1S n-Sn -1,n ≥2,作差得到a n +1-a n -1=2,从而得到a n 的奇数项、偶数项分别为等差数列,从而求出其通项公式,设等比数列b n 的公比为q ,利用等差中项的性质及等比数列通项公式求出q ,即可求出b n 的通项公式;(2)由(1)可得c n =1n ×2n ,则T n =12+12×22+13×23+⋯+1n ×2n ,利用放缩法证明T n <1724,即可得解.【详解】(1)因为a 1=1,2S n =a n a n +1,当n =1时,2S1=a 1a 2,所以a 2=2;当n≥2时,2S n-1=a n a n-1,所以2S n-2S n-1=a n a n+1-a n a n-1,即2a n=a n a n+1-a n-1.∵a n>0,可得a n+1-a n-1=2n≥2,所以a n的奇数项是以1为首项,2为公差的等差数列,偶数项是以2为首项,2为公差的等差数列,所以a2n-1=2n-1,a2n=2n,综上可得a n=n;设等比数列b n的公比为q,因为b2,3b1,b3依次成等差数列,所以b2+b3=6b1,∴b21+q=6b2q,所以q2+q-6=0,解得q=2或q=-3.因为b n为正项等比数列,故q=2,由b2=a4=4,则b1=b2q=2,所以b n=2n.(2)由(1)可得c n=1a nb n =1n×2n,所以T n=12+12×22+13×23+⋯+1n×2n,则T3=12+12×22+13×23=1624,当n=4时,T4=12+12×22+13×23+14×24>T3=1624;当n>4时,T n=12+12×22+13×23+14×24+⋯+1n×2n<12+12×22+13×23+13×24+⋯+13×2n=16 24+13124+125+⋯+12n=16 24+13×1241-12n-31-12=16 24+13181-12n-3<1724.所以存在k=16,使得k24<T n<k+124n≥4.。

专题09 数列中不等式恒成立问题【解析版】

专题09 数列中不等式恒成立问题【解析版】

第二章 数列与不等式专题09 数列中不等式恒成立问题【压轴综述】纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列中不等式恒成立问题,是数列不等式的综合应用问题的命题形式之一. 主要有两类:一是证明不等式恒成立,二是由不等式恒成立确定参数的值(范围). 以数列为背景的不等式恒成立问题,或不等式的证明问题,多与数列求和相联系,最后利用函数的单调性求解,或利用放缩法证明.本专题通过例题说明此类问题解答规律与方法.(1)数列与不等式的综合问题,如果是证明题,要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;如果是解不等式,往往采用因式分解法或穿根法等.(2)如用放缩法证明与数列求和有关的不等式,一般有两种方法:一种是求和后再放缩;一种是放缩后再求和.放缩时,一要注意放缩的尺度,二要注意从哪一项开始放缩.【压轴典例】例1.(2019·浙江高考真题)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩, 则数列{}n a 的通项公式为22n a n =- .其前n 项和()()02212n n n S nn +-⨯==-.则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列,即:()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,据此有:()()()()()()()()2222121112121n n n n nn n n n b b n n n n n n b n n b b ++++=-++++++-+, 故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+. (2)结合(1)中的通项公式可得:2n C ==<=<=,则()()()12210221212n C C C n n n +++<-+-++--=例2. (2018·浙江高考模拟)数列满足,,……,(1)求,,,的值; (2)求与之间的关系式;(3)求证: 【答案】(1),,,;(2);(3)详见解析.【解析】 (1),,, ;(2)!;(3)证明:由(2)可知,所以. 所以时不等式成立,而时不等式显然成立,所以原命题成立.例3.(2019·河南高考模拟(理))已知数列}{nb 的前n 项和为nS,2n n S b +=,等差数列}{na 满足123b a =,157b a +=(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)证明:122313n n a b a b a b ++++<.【答案】(Ⅰ)1n a n =+,112n n b -⎛⎫= ⎪⎝⎭;(Ⅱ)详见解析.【解析】 (Ⅰ)2n n S b += ∴当1n =时,1112b S b ==- 11b ∴=当2n ≥时,1122n n n n n b S S b b --=-=--+,整理得:112n n b b -=∴数列{}n b 是以1为首项,12为公比的等比数列 112n n b -⎛⎫∴= ⎪⎝⎭设等差数列{}n a 的公差为d123b a =,157b a += 11346a d a d +=⎧∴⎨+=⎩,解得:121a d =⎧⎨=⎩()()112111n a a n d n n ∴=+-=+-⨯=+(Ⅱ)证明:设()212231111231222nn n n T a b a b a b n -⎛⎫⎛⎫=++⋅⋅⋅+=⨯+⨯+⋅⋅⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()23111112312222n n T n +⎛⎫⎛⎫⎛⎫∴=⨯+⨯+⋅⋅⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭两式相减可得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅+-+⋅=-+⋅+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=- 332n n n T +=-即12231332n n n n a b a b a b -+++⋅⋅⋅+=-302nn +> 122313n n a b a b a b -∴++⋅⋅⋅+< 例4.(2016高考浙江理)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a-≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【答案】(I )证明见解析;(II )证明见解析. 【解析】 (I )由112n n a a +-≤得1112n n a a +-≤,故 111222n n n n n a a ++-≤,n *∈N , 所以11223111223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111222n -≤++⋅⋅⋅+ 1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n m n n n n m m nmnn n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤. ①否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则00340002log 23322244n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤.例5.(2019·河北石家庄二中高考模拟(理))已知等比数列{}n a 满足1,23428n n a a a a a +<++=,且32a +是24,a a 的等差中项.()1求数列{}n a 的通项公式;()2若1,2log n n n b a a = 12···+b n n S b b =++,对任意正整数n ,()10n n S n m a +++<恒成立,试求m 的取值范围.【答案】(1)2nn a =;(2)(],1-∞-.【解析】()1设等比数列{}n a 的首项为1a ,公比为q .依题意,有()32422a a a +=+,代入23428a a a ++=,得38a =.因此2420a a +=即有311220,8,q a q a q a q ⎧+=⎪⎨=⎪⎩,解得122q a =⎧⎨=⎩或11,232,q a ⎧=⎪⎨⎪=⎩ 又{}n a 数列单调递增,则122q a =⎧⎨=⎩故2nn a =.()2122log 2?2n n nn b n ==-, 232122232++2,n S n ∴-=⨯+⨯+⨯⋅⋅⋅⨯ ① ()23412122232122n n n S n n +-=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯,②-①②,得()23112122222?2?212n n n n n S n n ++-=+++⋅⋅⋅+-=-- 112?22n n n ++=--.()10n n S n m a +++<,11112?22?2?20n n n n n n m ++++∴--++<对任意正整数n 恒成立,11•222n n m ++∴<-对任意正整数n 恒成立,即112n m <-恒成立. 1112n ->-,1m ∴≤-,即m 的取值范围是(],1-∞-. 例6.(2019·江苏高考模拟)已知在数列{a n }中,设a 1为首项,其前n 项和为S n ,若对任意的正整数m ,n 都有不等式S 2m +S 2n <2S m+n (m≠n)恒成立,且2S 6<S 3. (1)设数列{a n }为等差数列,且公差为d ,求1a d的取值范围; (2)设数列{a n }为等比数列,且公比为q (q >0且q≠1),求a 1⋅q 的取值范围. 【答案】(1)1a d<﹣3;(2)a 1⋅q >0 【解析】在数列{a n }中,设a 1为首项,其前n 项和为S n ,若对任意的正整数m 、n 都有不等式S 2m +S 2n <2S m+n (m≠n)恒成立, (1)设{a n }为等差数列,且公差为d , 则:2ma 1+2(21)2m m -d+2na 1+2(21)2n n -d <2[(m+n )a 1+()(1)2m n m n ++-d],整理得:(m ﹣n )2d <0,则d <0,由2S 6>S 3,整理得:9a 1+27d >0, 则a 1>﹣3d ,所以d <0,1a d<﹣3; (2)设{a n }为等比数列,且公比为q (q >0且q≠1), 则()()()2m 2n m+n 111a 1q a 1q 2a 1q 1q1q1q---+<---,整理得1a 1q-(2q m+n ﹣q 2m ﹣q 2n)<0, 则:﹣1a 1q -(q m ﹣q n )2<0,所以1a 1q ->0,由2S 6>S 3,则:2q 6﹣q 3﹣1<0 解得:﹣12<q 3<1,由于q >0,所以:0<q <1,则:a 1>0.即有a 1⋅q >0. 例7. (2017·高考模拟(理))已知数列{}n a 前n 项和n S ,点()()*,n n S n N ∈在函数21122y x x =+的图象上.(1)求{}n a 的通项公式;(2)设数列21n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,不等式1log (1)3n a T a >-对任意的正整数恒成立,求实数a 的取值范围.【答案】(1)n a n =;(2)1(0,)2. 【解析】 (1)点(),n n S 在函数()21122f x x x =+的图象上,21122n S n n ∴=+.① 当2n ≥时,()()21111122n S n n -=-+-,② ①-②得n a n =.当1n =时,111a S ==,符合上式.()*n a n n N ∴=∈.(2)由(1)得()2112n n a a n n +=+11122n n ⎛⎫=- ⎪+⎝⎭, 13242111n n n T a a a a a a +∴=+++111111123242n n ⎛⎫=-+-++- ⎪+⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭. ()()11013n n T T n n +-=>++,∴数列{}n T 单调递增,{}n T ∴中的最小项为113T =.要使不等式()1log 13n a T a >-对任意正整数n 恒成立,只要()11log 133a a >-,即()log 1log a a a a -<. 解得102a <<, 即实数a 的取值范围为10,2⎛⎫ ⎪⎝⎭.例8.(2019·天津高考模拟(理))已知单调等比数列{}n a 中,首项为12,其前n 项和是n S ,且335441,,2a S S a S ++成等差数列,数列{}nb 满足条件(nb 123n12.a a a a =(Ⅰ) 求数列{}n a 、{}n b 的通项公式; (Ⅱ) 设 1n n nc a b =-,记数列{}n c 的前n 项和 n T .①求 n T ;②求正整数k ,使得对任意*n N ∈,均有 k n T T ≥. 【答案】(Ⅰ) 1()2nn a =;(1)n b n n =+;(Ⅱ)①见解析;②见解析. 【解析】(Ⅰ)设11n n a a q -=. 由已知得 53344122S a S a S =+++ 即 5341222S a S =+ 进而有()543122S S a -=. 所以53122a a =,即214q = ,则12q =±,由已知数列{}n a 是单调等比数列,且11.2a = 所以取12q =,数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. ∵(12312nb na a a a =, ∴232222n ⨯⨯⨯⨯=()12222n n nb += 则()1n b n n =+.数列{}n b 的通项公式为()1n b n n =+. (Ⅱ)由(Ⅰ)得()11121n n n n c a b n n =-=-+ ①设n n p a =,{}n p 的前n 项和为n P .则2111112222n n nP =+++=-. 又设1111n n q b n n ==-+,{}n q 的前n 项和为n Q . 则1111111122311n Q n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 所以n n n T P Q =-= 112n-1111112n n n ⎛⎫--=- ⎪++⎝⎭②令1111112212n n n nT T n n ++-=--+=++ ()()()()11122212n n n n n n ++++-++.由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.【压轴训练】1.(2018·郑州模拟)已知数列{}n a 满足123n a a a a ⋯=2n 2(n ∈N *),且对任意n ∈N *都有12111......nt a a a ++<,则实数t 的取值范围为 ( ) 1.(.)3A +∞ 1.[.)3B +∞ 2.(.)3C +∞ 2.[.)3D +∞ 【答案】D 【解析】因为数列{}n a 满足123n a a a a ⋯=2n 2,所以n=1时, 12a =,当n ≥2时, 2123121n a a a a n -⋯=-(),可得: 212n n a -= ,所以2n 1n 11,a 2-=当n=1时,也适合212n n a -=, 数列n 1{}a 为等比数列,首项为12,公比为14,所以 n n12n 11(1)11121224(1)1a a a 33414-⋯+++==-<,-因为对任意n ∈N *都有 12111......n t a a a ++<,则t 的取值范围为2[.).3+∞ 2.(广东省华南师范大学附属中学、广东实验中学、广雅中学、深圳中学2019届高三上期末)等差数列的前n 项和为,,,对一切恒成立,则的取值范围为__ __.【答案】【解析】,,所以,,,,由得, 由函数的单调性及知,当或时,最小值为30,故. 3.设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25. (1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)nk (a n +4)对所有的正整数n 都成立,求实数k 的取值范围. 【答案】(1)a n =3n -4. (2)⎝⎛⎭⎪⎫-7,294. 【解析】(1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25,∴a 1=-1,d =3.∴{a n }的通项公式a n =3n -4. (2)由题意知S n =-n +3nn -2,2S n +8n +27=3n 2+3n +27,a n +4=3n ,则原不等式等价于(-1)nk <n+1+9n对所有的正整数n 都成立.∴当n 为奇数时,k >-⎝ ⎛⎭⎪⎫n +1+9n 恒成立;当n 为偶数时,k <n +1+9n恒成立.又∵n +1+9n≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n在n =3上取最小值7,当n 为偶数时,n +1+9n 在n =4上取最小值294,∴不等式对所有的正整数n 都成立时,实数k 的取值范围是⎝ ⎛⎭⎪⎫-7,294.4.(2019·湖北黄冈调研)数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2.【答案】(1) 2·2n n a n -=. (2)证明:见解析. 【解析】(1)由题设得a n +1n +1=12·a nn, 又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)证明:b n =a n 4n -a n =4n2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2. 5.(2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7. (1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值. 【答案】(1)31()2n n a -=.(2)8.【解析】(1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2a 1+a 1q +a 1q 2=7,解得⎩⎪⎨⎪⎧a 1=4q =12或⎩⎪⎨⎪⎧a 1=1q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n)1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8).又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.6. (2019·临川一中实验学校高考模拟(理))已知正项数列{}n a 的前n 项和为n S ,满足()2212n n n S a a n *+=+∈N .(1)求数列{}n a 的通项公式;(2)已知对于N n *∈,不等式1231111nM S S S S ++++<恒成立,求实数M 的最小值; 【答案】(1)12n n a +=;(2)229. 【解析】(1)1n =时,2111212a a a +=+,又0n a >,所以11a =,当2n ≥时,()2212n n n S a a n *+=+∈N()2111212n n n S a n a --*-+=+∈N ,作差整理得:()()1112n n n n n n a a a a a a ---+=+-, 因为0n a >,故10n n a a ->+,所以112n n a a --=, 故数列{}n a 为等差数列,所以12n n a +=. (2)由(1)知()34n n n S +=,所以()14411333nS n n n n ⎛⎫==- ⎪++⎝⎭, 从而1231111nS S S S ++++ 411111111111=134253621123n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦411111411111221323123361239n n n n n n ⎛⎫⎛⎫=++---=---< ⎪ ⎪++++++⎝⎭⎝⎭. 所以229M ≥,故M 的最小值为229.7. 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.【答案】(1)a n =3n . (2) 32∞[,+).【解析】(1)设公差为d ,由题意得:⎩⎪⎨⎪⎧a 1+d =6,2a 1+7d =27,解得⎩⎪⎨⎪⎧a 1=3,d =3,∴a n =3n . (2)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1, ∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1, ∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是32∞[,+).8. 已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围.【答案】(1)当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)(-3,+∞).【解析】 (1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为22595424n a n n n =-+=(-)-, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以322k <,即得k >-3.所以实数k 的取值范围为(-3,+∞).9.(2013·江西卷)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n)=0. (1)求数列{a n }的通项公式a n ; (2)令221(2)n n n n a b ++=,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有564nT <. 【答案】(1)2n a n =.(2)见解析.10.(2016年高考四川理)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q>0,*n N ∈ .(Ⅰ)若2322,,2a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且253e = ,证明:121433n nn n e e e --++⋅⋅⋅+>.【答案】(Ⅰ)1=n n a q -;(Ⅱ)详见解析. 【解析】(Ⅰ)由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列.从而1=n n a q -.由2322+2a a a ,,成等比数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q+q -=, 由已知,0q >,故 =2q . 所以1*2()n n a n -=?N .(Ⅱ)由(Ⅰ)可知,1n n a q -=.所以双曲线2221ny x a -=的离心率n e =由53q =解得43q =. 因为2(1)2(1)1+k k q q -->1*k q k -?N (). 于是11211+1n n n q e e e q q q --++鬃?>+鬃?=-, 故1231433n n n e e e --++鬃?>. 11. 设函数()ln 1f x x px =-+ (1)求函数()f x 的极值点;(2)当0p >时,若对任意的0x >,恒有()0f x ≤,求p 的取值范围;(3)证明:222222222ln 2ln 3ln 4ln 21(,2)2342(1)n n n n N n n n --+++⋅⋅⋅+<∈≥+ 【答案】(1)1x p=; (2)[1,)+∞; (3)见解析. 【解析】(1)∵ ()ln 1f x x px =-+,∴()f x 的定义域为(0,)+∞,11'()pxf x p x x-=-=,当0p ≤时,'()0f x >,()f x 在(0,)+∞上无极值点,当0p >时,()f x 有唯一极大值点1x p=; (2)由(1)可知,当0p >时,()f x 在1x p =处却极大值11()ln f p p=,此极大值也是最大值,要使()0f x ≤恒成立,只需11()ln0f p p=≤,解得1p ≥,故p 的取值范围为[1,)+∞;(3)令1p =,由(2)可知,ln 10x x -+≤,即ln 1x x ≤-,222222222222222ln 1ln 2ln 3ln 111ln 11112323n n n n n n n n n -≤-⇒≤⇒+++≤-+-++-=222111111(1)()(1)()232334(1)n n n n n --++⋅⋅⋅+<--++⋅⋅⋅+⨯⨯⨯+ =11111111(1)()(1)()2334121n n n n n ---+-+⋅⋅⋅+-=---++2212(1)n n n --=+. 12.(2019·大庆模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n )在曲线y =12x 2+52x 上,数列{b n }满足b n +b n+2=2b n +1,b 4=11,{b n }的前5项和为45.(1)求{a n },{b n }的通项公式; (2)设c n =1a n -b n -,数列{c n }的前n 项和为T n ,求使不等式T n >k54恒成立的最大正整数k 的值. 【答案】(1)a n =n +2.b n =2n +3. (2)8.【解析】(1)由已知得S n =12n 2+52n ,当n =1时,a 1=S 1=12+52=3;当n ≥2时,a n =S n -S n -1=12n 2+52n -12(n -1)2-52(n -1)=n +2, 当n =1时,符合上式. 所以a n =n +2.因为数列{b n }满足b n +b n +2=2b n +1, 所以数列{b n }为等差数列.设其公差为d ,则⎩⎪⎨⎪⎧b 1+3d =11,5b 1+10d =45,解得⎩⎪⎨⎪⎧b 1=5,d =2,所以b n =2n +3. (2)由(1)得,c n =1a n -3b n -=1n +n -=1n +n -=14⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =14⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =14⎝ ⎛⎭⎪⎫1-12n +1.因为T n +1-T n =14⎝ ⎛⎭⎪⎫12n +1-12n +3=1n +n +>0,所以{T n }是递增数列,所以T n ≥T 1=16,故要使T n >k 54恒成立,只要T 1=16>k54恒成立,解得k <9,所以使不等式成立的最大正整数k 的值为8.13.(2019·重庆一中高三月考(文))设函数()223(0)xf x e ax a a =-+>,对于x R ∀∈,都有()5f x a≥成立.(Ⅰ)求实数a 的取值范围; (Ⅱ)证明:*1232ln(),23n n n en e n N n n n n+++++++>+∈L (其中e 是自然对数的底数). 【答案】(Ⅰ)(]0,1(Ⅱ)见证明 【解析】(Ⅰ)()22()xf x e a x R '=-∈Q ,∴当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,)(x f ∴在(ln ,)a +∞上单调递增,在(,ln )a -∞上单调递减.x R ∀∈,()5f x a ≥都成立,min ()5f x a ∴≥.又min ()(ln )2ln 5f x f a a a a ==-+,所以由2ln 55a a a a -+≥,得ln 0a a -≥.01a ∴<≤;a ∴的取值范围是(]0,1.(Ⅱ)当1a =时,()5f x a ≥,即2235x e x -+≥.1x e x ∴≥+.∴当1x >-时,ln(1)x x ≥+.令()*1x n N n =∈,则11ln n n n +⎛⎫≥ ⎪⎝⎭.且1n =时,1ln 2>. 11123411ln ln ln ln 23123n n n +⎛⎫⎛⎫⎛⎫⎛⎫∴++++>++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L L2341ln ln(1)123n n n +⎛⎫=⨯⨯⨯⨯=+ ⎪⎝⎭L ,1111ln(1)23n n ∴++++>+L .123223n n n n n n n +++++++L 1111112n n n n ⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 11111ln(1)1ln (1)23n e n n ⎛⎫=+++++>++=+ ⎪⎝⎭L ;即()*1232ln (1)23n n n e n n N n n n n+++++++>+∈L 恒成立. 14. 已知函数f(x)=log k x(k 为常数,k>0且k≠1),且数列{f(a n )}是首项为4,公差为2的等差数列. (1)求证:数列{a n }是等比数列;(2)若b n =a n ·f(a n ),当k时,求数列{b n }的前n 项和S n ;(3)若c n =a n lga n ,问是否存在实数k ,使得{c n }中的每一项恒小于它后面的项?若存在,求出k 的取值范围;若不存在,说明理由.【答案】 (1)略 (2)S n =n·2n +3(3)(0,3)∪(1,+∞) 【解析】 (1)由题意知f(a n )=4+(n -1)×2=2n +2,即log k a n =2n +2, ∴a n =k2n +2,∴2(1)2212(1)n n n n a k k a k++++==.∵常数k>0且k≠1,∴k 2为非零常数.∴数列{a n }是以k 4为首项,k 2为公比的等比数列. (2)由(1)知,b n =a n f(a n )=k2n +2·(2n +2), 当k时,b n =(2n +2)·2n +1=(n +1)·2n +2.∴S n =2·23+3·24+4·25+…+(n +1)·2n +2,① 2S n =2·24+3·25+…+n·2n +2+(n +1)·2n +3.②②-①,得S n =-2·23-24-25-…-2n +2+(n +1)·2n +3=-23-(23+24+25+…+2n +2)+(n +1)·2n +3,∴33332(12)21?2?2.12()n n n n S n n --++=--++= (3)存在.由(1)知,c n =a n lga n =(2n +2)·k2n +2lgk ,要使c n <c n +1对一切n∈N *成立,即(n +1)lgk<(n +2)k 2lgk对一切n∈N *成立.①当k>1时,lgk>0,n +1<(n +2)k 2对一切n∈N *恒成立;②当0<k<1时,lgk<0,n +1>(n +2)k 2对一切n∈N *恒成立,只需21()2min n n k ++<, ∵11122n n n +=-++单调递增,∴当n =1时,1()2min n n ++=23. ∴k 2<23,且0<k<1,因此0<k<3.综上所述,存在实数k∈(0,315.(2019·江苏高三月考(理))已知正项数列中,用数学归纳法证明:.【答案】见解析. 【解析】当时,,,所以,时,不等式成立;假设()时,成立,则当时,,所以,时,不等式成立.综上所述,不等式成立.16.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n n n n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时, 11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111n n a a +⎧⎫-⎨⎬⎩⎭也为递减数列,所以当2n ≥时,111n n a a +- 22112a a ⎛⎫≤- ⎪⎝⎭ 154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n n n n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭ 当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <。

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题
f 2—2 x x≤ 一3


f A= 0 f A=0 ̄ f A=1
i B : 0 或l B : 1 i ‘ 】 3 : 0 ‘
因此 满 足条 件 的 数 列 有 三 个 ,它们 的 前 n 项 和分别为S =
O, S = n, S = n 。 故 其对


所以, 当a ≥4 时, 方 程x 。 一 a l x l + 4 = O 在x ∈E - 2 , 2 3 上 有解 . 点评 : 本题通过 “ 分离变量a ” 求值 域 , 方法 简单易行 , 在 以
后 的学 习 中经 常 遇 到 这 一 方 法 . 例2 : ( 2 0 1 3 重庆. 理. 1 6 ) 若 关于X 的不 等式I x 一 5 I + l x + 3 I < a 无 解。 则实数a 的 取 值 范 围 是 . 分析 : 要 使I x 一 5 1 + l x + 3 1 < a 无解 , 只要求I x 一 5 1 + l x + 3 1 < a 有 解 时 实数a 的范围 , 然 后 求a 的补集 即可. 要使 I x 一 5 1 + l x + 3 1 < a 有解, 则 至 少 有 一 个 或 一 个 以上 的X 值使 要I x 一 5 1 + l x + 3 1 < a 成 立 , 因此 只 要求 a 大 于代 数 式 I x 一 5 1 + 1 x + 3 1 的 最小 值.
a = I x l + I ≥2 、 / ・ 二= 4 ( 当且仅当I x l = 2 时取到“ = ” ) , 此时
x l V I x l
= A
厂—
x = ± 2 ∈[ 一 2 , 2 ] .
上式对一切正整数k 恒成立的充要条件是{ 2 A B = 0 , 解之得

高中数学恒成立问题主要类型

高中数学恒成立问题主要类型

高中数学恒成立问题主要类型
一、函数恒成立问题
函数恒成立问题主要涉及函数的基本性质和导数等相关知识。

在解决这类问题时,学生需要理解函数的单调性、最值、奇偶性等性质,并能够运用导数进行求解。

二、不等式恒成立问题
不等式恒成立问题涉及到不等式的基本性质和解题技巧。

这类问题要求学生能够分析不等式的结构,灵活运用基本不等式和放缩法等技巧,判断不等式是否恒成立。

三、数列恒成立问题
数列恒成立问题主要考查学生对数列的基本性质和递推公式的掌握。

这类问题要求学生能够判断数列的性质,如等差数列、等比数列等,并能够运用数列的递推公式进行求解。

四、三角函数恒成立问题
三角函数恒成立问题涉及到三角函数的性质和图像。

学生需要理解三角函数的周期性、奇偶性等性质,掌握同角三角函数关系、诱导公式等基础知识,运用这些知识解决三角函数恒成立的问题。

五、导数恒成立问题
导数恒成立问题主要涉及导数的计算和应用。

学生需要掌握导数的定义和计算方法,理解导数的几何意义,掌握利用导数研究函数的单调性、极值和最值等知识,解决导数恒成立的问题。

六、方程恒成立问题
方程恒成立问题主要考查学生对一元二次方程的解法和判别式的掌握。

学生需要理解一元二次方程的解法,掌握判别式的应用,运用这些知识解决方程恒成立的问题。

七、集合恒成立问题
集合恒成立问题主要考查学生对集合的基本概念和运算的掌握。

学生需要理解集合的表示法、集合之间的关系和运算等知识,运用这些知识解决集合恒成立的问题。

“恒成立”问题的解法

“恒成立”问题的解法

(2)恒成立问题与二次函数联系:
【例2】若函数 f(x) 2x22axa1的定义域为 R , 则实数 a 的取值范围为______________
解:已知函数的定义域为 R ,即 2x22axa 10 在 R 上恒成立,也即 x22axa0 恒成立,所以有 (2a)24(a)0 解得 1a0.
(2)恒成立问题与二次函数联系:
a 7 又 Q a 4 a 不存在.
⑵当
3
2
a 2
2
,即
4a4时,g(a)f(a 2)a42a30
6a2又 Q4a44a2
⑶当 a 2 ,即 a 4 时,g (a )f(2 ) 7 a 0a7 2
又 Qa4 7a4综上所述,7a.2
2.变变量量分分离离法法
将含参数的恒成立式子中的参数分离出来,化成形如: a f (x) 或 a f (x) 或 a f (x) 恒成立的形式.
2. 变量分离法:
【例4】 当 x(1, 2) 时,不等式 x2mx40
恒成立,则 m 的取值范围是
.
解:当 x(1,2) 时,由 x2mx40
得 m x 2 4 .令 f (x)x2 4x4
x
x
x
则易知 f ( x ) 在 (1 , 2 ) 上是减函数,
所以 f(x)maxf(1)5,∴ m 5 .
类型2:设 f(x)a2x b xc(a0),f (x) 0
在区间 [ , ] 上恒成立问题:
(1)当 a0 时,f(x)0在 x [,]上恒成立
2ba或 2ba或 2ba,
f()0 0
f()0
f(x)0在 x [,]上恒成立
f f
() ()
0 0
(2)恒成立问题与二次函数联系:

高中数学恒成立问题方法总结

高中数学恒成立问题方法总结

高中数学恒成立问题方法总结高中数学恒成立问题方法总结前言高中数学中常有恒成立问题,即判断某个等式或不等式是否在一定情况下恒成立。

这类问题需要掌握一定的数学知识和解题技巧,下面总结了一些常用的方法。

正文1. 代入法将恒成立问题中的未知数代入不同的值,观察等式或不等式是否始终成立。

通过选择不同的数值,可以对问题进行测试,以确定是否恒成立。

2. 辅助线法对于几何图形中的恒成立问题,可以利用辅助线的方法进行分析。

通过引入辅助线,可以将问题转化为更简单的形式,从而判断恒成立性。

3. 推理法利用已知条件和数学推理,进行逻辑推导和演绎,求解恒成立问题。

例如,通过运用数学公式、定理以及逻辑推理,可以得出结论。

4. 反证法假设恒成立的结论不成立,推导出矛盾,从而得出恒成立的结论。

这种方法常用于证明等式或不等式的恒成立性,尤其是在缺乏直接证明的情况下。

5. 数学归纳法对于涉及数列或递推关系的恒成立问题,可以使用数学归纳法进行解决。

首先证明基本情况下结论成立,然后假设某个情况成立,推导出下一个情况也成立,从而证明恒成立。

6. 全局分析法对于复杂的恒成立问题,可以采用全局分析的方法,通过综合考虑多个因素,观察整体趋势和规律,得出恒成立结论。

结尾高中数学恒成立问题需要深入理解数学知识,掌握解题技巧。

通过代入法、辅助线法、推理法、反证法、数学归纳法和全局分析法等方法,我们可以更好地解决这类问题,提升数学思维能力和解题能力。

希望以上总结对于解决高中数学恒成立问题有所帮助。

7. 对称性分析法在某些问题中,可以利用对称性进行分析。

通过观察等式或不等式在对称情况下的表现,可以推断出恒成立的结论。

例如,如果等式关于某个点对称,那么等式两边在该点处的取值应相等。

8. 变量替换法对于一些复杂的恒成立问题,可以通过变量替换的方法进行简化。

通过引入新的变量或表达式来代替原先的复杂表达式,可以化繁为简,从而更方便地判断恒成立性。

9. 利用特殊值分析法对于恒成立问题,有时可以通过特殊值进行分析。

恒成立及应用

恒成立及应用

恒成立及应用恒成立及应用是指在数学中,如果一个条件或一个等式对于所有情况都成立,那么我们可以说这个条件或等式是恒成立的。

在数学推理中,我们常常使用恒成立的条件或等式来进行推导和证明。

恒成立的条件或等式可以应用于各种数学问题中。

以下是恒成立及应用的一些具体例子:1. 一次函数的性质:对于y = ax + b这样的一次函数,恒有a = (y2-y1)/(x2-x1)成立,其中(x1, y1)和(x2, y2)是直线上的两个点。

这个恒等式可以用来求解两点确定的直线的斜率,从而有助于研究直线的性质。

2. 三角函数的性质:在三角函数中,有很多恒成立的等式,如正弦定理、余弦定理等。

这些等式可以用于求解三角形的边长、角度等问题,帮助我们理解和推导各种三角函数的性质。

3. 矩阵运算的性质:在线性代数中,有许多恒成立的矩阵等式,如矩阵的加法和乘法的结合律、分配律等。

这些恒等式可以用于简化矩阵运算,推导矩阵的性质,解线性方程组等。

4. 等价命题的推导:在逻辑学中,有许多恒成立的等价命题,例如“非(A 并且B)”等价于“(非A) 或者(非B)”。

这些恒等式可以帮助我们推导出复杂逻辑表达式的简化形式。

5. 无限级数的求和:在微积分中,有很多恒成立的等式用于计算无限级数的求和,如等比数列求和公式、调和级数等。

这些等式可以用于研究级数的性质,计算数值近似等。

此外,恒成立的条件或等式还可以应用于数学证明中。

当我们想要证明一个数学定理时,如果能够找到一个恒成立的等式或条件,那么我们可以通过对等式或条件进行变形,推导出我们想要证明的结论。

这种方法常见于数学的证明过程中,是一种重要的证明策略。

在实际生活中,恒成立及应用也有许多实际应用。

例如,在建筑和工程中,我们常常需要使用几何和三角学等数学知识来计算建筑物的尺寸、角度等。

此时,我们可以应用恒成立的等式来解决问题。

另外,在统计学和概率论中,恒成立的条件或等式可以用于建立数学模型,研究概率分布、估计参数等。

恒成立问题解法总结

恒成立问题解法总结
∈R 。
当 ∈[ ,)q, *) 一1o u ( 式等价于 。 ≤ 同理可求得( )l=4 所 以 。 。 l I i , ≤4

设 _ ) /一 一4 , ( =一 +0 原 题意 厂 = ̄ ( x g ) , 转化 为当 E [ , ] , 一4 0 时 函数 g( 始 终 在 函数 ) , ) ( 图象 的上方 , 如图 , 易得 n>2 2 ( —2 在解 综 合 性 较 强 的 恒 成立 问 题 时 , 以 题 为 本 , 应 、 、gx = x a ()-+ 关键 在 于抓 住恒 成立 的本 \ 质 特 征 , 体 问 题 具 体 分 具 2、 析 , 拘 泥 于一 种 方法 , 不 求 2 ~ ~ 、 解时不要受表面现 象诱惑 , 要 透 过 现 象 深 入 本 质 , 思 奇 妙想才能又好又快得 出正确答案 。这也是数学精 神 的生动具体表现 , 只有切 实领会 了每 种解法 的实 质 才能够灵活应用 , 获得最优解法 , 从而 得到事半 功倍 的效 果 。 ( 作者单位 : 江苏省 海安县 实验 中学)
所以 o , ≥2 答案选 B 。
二 、 离 变 量 法 分 例 2 20 (08江 苏卷 ) ( = 3 x+1 于 E 厂 ) —3 对 [ ,] 一11总有 厂 ≥0成立 , n=— — 。 ( ) 则

四 、 形 结 合 法 数
例 4不等式 ̄ — x+ <0对 于 E[ , /一 4 一4 0 恒成立 , 。的取值范 围— — 。 ] 求 分析 : 此题变量虽 已分 离 , 但是左边部分 的最小 值处 理比较困难 , 若把此不 等式进行 合理变形后 , 能 非常容易地作 出不 等号两边 函数 图象 , 则可 以通 过 画图直接判断得出结果 , 其对于选择题 、 尤 填空题这 种方法更显方便快捷 。 解 : 等 式  ̄ 2 十 不 /一 —4

数列中的不等式恒成立

数列中的不等式恒成立

数列中的不等式恒成立不等式的恒成立问题是学生较难理解和掌握的一个难点,以数列为载体的不等式恒成立问题的档次更高、综合性更强,是高三第二轮复习中不可多得的一个专题.例1:(2003年新教材高考题改编题)设0a 为常数,数列}a {n 的通项公式为012121351a )(])([a n n n n n n ⋅-+⋅-+=-)N n (+∈,若对任意1≥n 不等式1->n n a a 恒成立,求0a 的取值范围.解:01111231523132a )()(a a n n n n n n n ----⨯-+⨯-+⨯=-,故1->n n a a 等价于20123151--<--n n )()a ()(. ①⑴当 ,,k ,k n 2112=-=时,①式即为 512351320+<-k )(a ,此式对,,k 21=恒成立,故315123513120=+<-⨯)(a .(注意0a 小于最小值,为什么不能等于?)⑵当 ,,k ,k n 212==时,①式即为2201223151--<--k k )()a ()(,即512351220+⨯->-k )(a ,此式对 ,,k 21=恒成立,05123512120=+⨯->-⨯)(a .综上,①式对任意+∈N n 成立,有3100<<a .故0a 的取值范围为),(310.评析:本题有三个亮点:处理数列中相邻两项的大小问题(即数列的单调性问题)采用作差比较,从而可把问题作整体处理;处理不等式恒成立时,用了求解此类问题的三大方案之一 ——分离参数法(另两种是:函数法与数形结合法);最后转化为指数函数的单调性.例2:已知等比数列}x {n 的各项为不等于1的正数,数列}y {n 满足)a ,a (a log y n x n 102≠>=⋅. 设174=y ,117=y .试判断,是否存在正整数M 时,使当M n >时,1>n x 恒成立,若存在,求出相应的M ;若不存在,说明理由.解:不难得n y n 225-=,又由n a n x log y 2=得2n y n a x =.①当10<<a ,且12>n 时,102=>=a a x n y n ;②当1>a ,且12>n 时,102=<=a ax n y n .故当10<<a 时,存在12=M ,使当M n >时,1>n x 恒成立;当1>a 时,不存在M ,使得当M n >时,1>n x 恒成立.评析:本题是一道“不难”的难题,说它简单是因为解题思路明晰,过程简洁;说它是难题是由于它的背景并不单纯,来头很大:探索性的数列中的不等式恒成立问题.例3:已知0>a ,1≠a ,数列}a {n 是首项为a ,公比为a 的等比数列,令)N n (a lg a b n n n +∈=.(Ⅰ)求数列}b {n 的前n 项和n S ; (Ⅱ)求当1>a 时,求nnn b S lim∞→; (Ⅲ)若数列}b {n 中的每一项总小于它后面的项,求a 的取值范围. 解:(Ⅰ)由题设n n n a a a a =⋅=-1,∴a lg na a lg a b n n n n ==,故)na a a (a lg a S n n 12321-++++= /n )a a a (a lg a +++= 2/n )a a a (a lg a --=+11)na na a ()a (a lg a n n n 1211++---=. (Ⅱ)∵n n b S )a n na ()a (a n +---=11112,且1>a ,∴1-=∞→a a b Slim nn n .(Ⅲ)令n n b b >+1,则01111>+-=-+=-++]a )a (n [a lg a a lg na a lg a )n (b b n n n n n ,∵0>n a ,∴只需01>+-]a )a (n [a lg .①当1>a 时,0>a lg ,得01>+-a )a (n ,解得aa n ->1;②当10<<a 时,0<a lg ,得01<+-a )a (n ,解得aa n ->1. 为了使n n b b >+1对任何正整数n 都成立,只须aa -1小于n 的最小值1,令11<-a a ,解得1>a 或210<<a . 评析:⑴一个等差数列和一个等比数列对应项的乘积的求和,一般用错位相减法,但那仅仅是一般情况,对于象本题这种系数和方次之间的关系所具有的导数的“影子”,使我们联想到求导的逆过程,把系数放入指数里用导数.这种思维的深刻性已不可同日而语.⑵本题是一道综合性极强的好题,它的第三小题是数列不等式恒成立求参数的取值范围,转化为解不等式或求函数的最值,这是高中数学中有关确定参数范围题目的涅磐.例4:数列{n a }的前n 项和为bn an S n +=2,其中a 、b 是常数,且0>a ,1>+b a ,+∈N n .(Ⅰ)求{n a }的通项公式,并证明11>>+n n a a ;(Ⅱ)令1+=a log c n a n ,试判断数列{n c }中任意相邻两项的大小.解(Ⅰ):当1=n 时,b a S a +==11;当2≥n 时,a b an S S a n n n -+=-=-21,∴a b an a n -+=2,+∈N n .∵n n a a -+102212>=-+--++=a )a b an (a b )n (a ,∴n n a a >+1,又∵112>+≥+-=b a b a )n (a n ,故11>>+n n a a .另02>='a a n ,故n a 是n 的增函数,∴当1=n 时,n a 最小,最小值为11>+=b a a ,∴1>n a .(Ⅱ)若1=a 时,1=n c ,任两项相等;若1≠a ,则a log a log c c n n a a n n -=-++11na n a n n aa log a log a a log ⨯=++11.∵11>>+n n a a ,∴101<<+n n a a ,若1>a ,则01<+n n a a alog ,01>+n a a log ,0>n a a log ,此时01<-+n n c c ,即n n c c <+1;若10<<a ,则01>+n n a a alog ,01<+n a a log ,0<n a a log ,此时01>-+n n c c ,即n n c c >+1.综上,10<<a 时,n n c c >+1,即相邻两项中,后一项较大;1=a 时,1=n c ,相邻两项相等;1>a 时,n n c c <+1,即相邻两项中,后一项较小;评析:数列中的不等式恒成立的变形题是数列的单调性问题,再变异还可成为不等式的证明题,但形散神不散,处理思路是一脉相承的.。

数列中恒成立问题的求解思想

数列中恒成立问题的求解思想
SS . s

一 —
Байду номын сангаас.因为 }
为 等 比数 列 , 以 点 为 定 值 , 而 { } 所 从

求 出a 的值 ; 果 不存 在 . 说 明 理 由. 如 请
解 析 ( ) 1 因为 = u  ̄ c …%= n- , z a 2( ) 1 n 所 e a= l ( ) 当 g l = | 2 ≥2 ,n r = 时 a= L
1, 1
为 等 差 数 列.设 数 列 { } 公 差 为d 则 的 ,


设 的 4 8 一 d‘ +( 2) S 一 。 S

2 -1 d +( n )

3 d,
 ̄ d - Y= 2 = 2 = 2,l”一 d 2 .因 此
S: n + 3 . 所 以 当 n l 或 n 1 一 2 n = 1 = 2时 , 5取
投 箱:j v,3 O; 稿邮 sk i 6 C r x@ p F ’
数学教学通讯( 教师版 )
试 研 试 探 题 究> 题 究
数列 中恒成立问题的求解思想
王劲 松 江 苏连 云 港响 水 中学 2 40 260
燧 : 篆 因 以 数 想 拓探 列文 列 l 要三 三 篝 ’可 函 思 点 、数本 数 恒 涓 主 姜 此 用 的 观 展究 ,就 中 摘
值 由 =一 () , , 于“4了} : 一 了4 1
小 到 大 的 顺 序 依 次 取 值 时 . 对 应 的一 所
系 列 函数 值 . 即 数 列 是 一 种 特 殊 的 函
数 . 因 此 可 以用 函 数 的 思 想 观 点 拓 展 、
了1 简起 , ( 4 } 为便见 詈} I 设
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用初等 函数的单 调性
an1 an
3.已知数列
的前
项和为
,且有 .

(Ⅰ)求数列 (Ⅱ)若 (Ⅲ)若
的通项公式; ,求数列 的前 项和 ; 中的
,且数列
每一项总小于它后面的项,求实数 的取值范围.
设数列
的各项都是正数,且对任意 的通项公式; ( 成立.
,都有
,其中
为数列
的前 n 项和.
(I)求数列 (II)设
b2n1 16 . 3
变式:()求 1 b1 b2 b3
b2 n 1 m恒成立的
正整数m的最小值;
变式:(2)求b1 b2 b3 正整数m的最大值;
m b2 n1 恒成立的 4
例 2. 已知数列 {an } 是首项为 a1 1 , 公比 q 1 的等比 4 4 数列,设 bn 2 3log 1 an (n N ) ,数列 {cn } 满足
为非零整数,
),试确定
的值,使得对任意
;都有
(1)求数列 bn an , bn an 的通项公式; (2)设 Sn 为数列 bn 的前 n 项的和,若对任意 n N ,
*
都有 p(Sn 4n) 1,3 ,求实数 p 的取值范围.
2,3
数列中的恒成立问题
恒成立问题分离参数ຫໍສະໝຸດ 最值问题 转化 判断数列单调性
4
cn an bn . (Ⅰ)求 {bn } 的通项公式; (Ⅱ) 若 cn ≤ 1 m 2 m 1 对一切正整数 n 恒成立,求 4 实数 m 的取值范围.
3n 变式: (1)cn n5 3n (2)cn (n 5)( n 6)
bn 4 例 3.在数列 an , bn 中, a1 3, b1 5, an 1 , 2 an 4 bn 1 . 2
数列中的恒成立问题
恒成立问题
分离参数
最值问题 转化 判断数列单调性
利用初等 函数的单 调性
an1 an
例 1.
已知 {an } 为递减的等比数列,且 {a1, a2 , a3} {4, 3, 2,0,1,2,3,4} . (Ⅰ)求数列 {an } 的通项公式;
1 ( 1)n (Ⅱ)当 bn an 时,求证: b1 b2 b3 2
相关文档
最新文档