立方体的表面积A
常用体积和表面积计算公式
圆角方钢
2 a(边宽)
钢板、扁钢、带钢
20 a(边宽)
圆角扁钢
2 d(外径)
圆钢、圆盘条、钢丝
20 a(对边距离)
六角钢 八角钢 钢管
8 16 d(外径) 200 b(边宽)
等边角钢
25
不等边角钢
100 h(高度)
200 b(腿宽) 68 200
10 d(腰厚) 4.5 20
20 t(平均腿厚) 7.6 25
3.14 18.84 9.42 17.20 23.00
2 1
12.56
长度
密度
重量计算(kg)
1
7.85
0.6156
1
7.85
1.884
1
7.85 0.15026156
不可用
1
7.85
2.466156
1 1
7.85 7.85
50.98575 94.75735
0.435078 1.664913
1 1
7.85 -460.58148 7.85 -8.1954
1 r1(端边圆角半径) 2 F(断面积) 141.8584 1
7.85 46.856964
7.85 1.11358844
30
2599.56 F(断面积) -58672.8 -1044
1
7.85 20.406546
不可用 不可用 不可用
r(内面圆角半径) r1(端边圆角半径) 300 300 400 400
a(边宽) 7 a(边宽)
公式(断面积)
F(断面积) 49 r(圆角半径) 1 §(厚度) 12 §(厚度) 10 F(断面积) 314.16 s(边宽) 50 50 §(壁厚度) 10 B(长边宽) 200 F(断面积)1 55.424 212.09088 F(断面积) 5969.04 d(边厚) 3 r(内面圆角半径) 4 F(断面积)2 6495 12071 F(断面积) 3.1416 F(断面积) 240 r(圆角半径) 1 F(断面积) 19.1416
不规则立体图形的表面积和体积
1立体几何专题立体几何专题不规则立体图形的表面积和体积基础知识:规则立体图形的表面积和体积基础知识:规则立体图形的表面积和体积表面积表面积 体积体积 正方体(棱长为a ) 6a 2a 3 长方体(边长a 、b 、c ) 2(ab+bc+ca ab+bc+ca)) abc 圆柱体(底面半径r ,高h ) 2πr 2+2πr·h r·h πr 2·h ·h圆锥体(底面半径r ,高h )πr 2+πr·l r·l例1.1.把把19个边长为2厘米的正方体重叠起来,作成如图那样的组合形体,求这个组合形体的体积和表面积。
体,求这个组合形体的体积和表面积。
[答疑编号505787490101]【答案】体积是152立方厘米;表面积是216平方厘米。
平方厘米。
【解答】体积:19×23=152152(立方厘米)(立方厘米)(立方厘米) 上下看:3×3=上下看:3×3=9 9 左右看:左右看:44+3+1=8 前后看:前后看:44+4+3=10(9+8+1010)×2×2)×2×22=216216(平方厘米)(平方厘米)(平方厘米)进一步思考:进一步思考:(1)对于由小正方体搭起来的组合形体,其表面积总是等于三个方向看到的面积之和的两倍?看到的面积之和的两倍? [答疑编号505787490102] 【答案】不是【答案】不是(2)如果挪动最上面那个小正方体,将它移动到其他位置,那么所得到的新的组合形体的表面积最少是多少?到的新的组合形体的表面积最少是多少? [答疑编号505787490103] 【答案】【答案】200200平方厘米平方厘米【解答】找盖住的面最多的位置,最多可以盖住3个面。
个面。
例2.2.如图,如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体。
问这个物体的表面积是多少平方米?(π取3.143.14。
欧拉公式8个数学公式
欧拉公式8个数学公式正如欧拉所说:“数学是一门科学,是一种思想,不像物理学或化学,它只有一个原则,一般来说,这种原则就是逻辑。
”欧拉公式是欧拉研究所致力于发掘数学中最精确而又简洁的方法之一,是数学家们广泛使用的多项式解决问题的有效工具。
欧拉公式包含了许多数学家们构建出的有效的数学公式,非常适合于help用户速解决复杂的数学问题,而且它的效率非常高。
欧拉公式有很多,其中有8个最重要的数学公式如下:1、欧拉公式:n+n=2换言之,如果n是一个正整数,那么n+n等于2。
2、欧拉模式:奇数=2 and晗=2+1换言之,如果n是一个正整数,那么n等于2,如果n是一个偶数,那么等于2+1。
3、抛物线方程:y=a(x-h)+k抛物线方程是用来表示抛物线形状的数学方程式。
它的参数a、h和k都是人为设定的,它表示的抛物线的形状和位置。
4、二次函数求根公式:x= -b(b-4ac) / 2a二次函数求根公式,可以用来求出y=ax+bx+c的两个根。
5、勾股定理:a+b=c勾股定理是一个数学定理,指的是存在三条边的三角形,其中两条边的平方和等于第三条边的平方。
6、梯形公式:S=(a+b)h/2梯形公式是一个数学定理,其指出梯形的面积等于两边边长之和乘以高度再除以2。
7、立方体表面积公式:S=6a立方体表面积公式是指立方体表面积计算公式,其公式为:S=6a,即立方体表面积等于6倍每一边长的平方。
8、余弦定理:a=b+c-2bc cosA余弦定理指的是在一个三角形中,如果它的两条边的长度分别为a、b、c,它们的夹角A的余弦值为cosA,那么这个三角形的面积就是a=b+c-2bccosA。
这8个欧拉公式是数学家们长期研究出来的基础数学公式,用于解决复杂的数学问题。
这些公式包括了数学中的基本概念,如平方、立方、抛物线、梯形、三角形及两个边的余弦值等,可以被用来求解绝大多数数学问题。
欧拉公式的应用是十分广泛的,它们可以用来帮助解决复杂的数学问题,也可以用于几何上的计算,在大数据分析中,欧拉公式也可以用来提高准确性。
各种面积体积以及周长计算公式
各种面积体积以及周长计算公式1.矩形的面积公式:矩形的面积等于其长度乘以宽度。
即:A=长×宽。
2.正方形的面积公式:正方形的面积等于边长的平方。
即:A=边长×边长。
3.三角形的面积公式:如果已知三角形的底和高,可以使用以下公式来计算面积:A=1/2×底×高。
如果已知三角形的三条边长度,可以使用海伦公式来计算面积:A=√[s×(s-a)×(s-b)×(s-c)]其中,a、b、c分别为三角形的三条边的长度,s为半周长,即s=(a+b+c)/24.梯形的面积公式:梯形的面积等于上底与下底之和的一半乘以高。
即:A=(上底+下底)×高/25.平行四边形的面积公式:平行四边形的面积等于底乘以高。
即:A=底×高。
6.椭圆的面积公式:椭圆的面积等于长轴和短轴的一半分别乘以圆周率π。
即:A=π×长轴半径×短轴半径。
7.圆的面积公式:圆的面积等于圆周率π乘以半径的平方。
即:A=π×半径×半径。
8.三维图形的体积公式:立方体的体积等于边长的立方。
即:V=边长×边长×边长。
直方体的体积等于长乘以宽乘以高。
即:V=长×宽×高。
圆柱体的体积等于圆底面积乘以高。
即:V=圆面积×高。
圆锥体的体积等于一半的圆底面积乘以高。
即:V=圆面积×高/2球体的体积等于4/3乘以圆周率π乘以半径的立方。
即:V=4/3×π×半径×半径×半径。
9.三维图形的表面积公式:立方体的表面积等于6倍的边长的平方。
即:S=6×边长×边长。
直方体的表面积等于2倍的长乘以宽加上2倍的长乘以高加上2倍的宽乘以高。
即:S=2×(长×宽+长×高+宽×高)。
圆柱体的表面积等于2倍的圆底面积加上圆周长乘以高。
正方体的体积积公式
正方体的体积积公式正方体是一种特殊的立体图形,它的六个面都是正方形。
在几何学中,正方体的体积是一个重要的概念。
体积是指一个立体图形所占据的空间大小,可以理解为立方体的容积。
正方体的体积公式为V=a³,其中V表示体积,a表示正方体的边长。
这个公式非常简洁明了,只需要知道正方体的边长,就可以计算出它的体积。
假设一个正方体的边长为5cm,那么它的体积就是5³=125cm³。
正方体的体积公式可以通过立方体的性质来推导得出。
立方体的六个面都是相等的正方形,所以立方体可以看作是由六个相等的正方形叠加而成。
每个正方形的面积为a²,所以整个立方体的表面积为6a²。
而立方体的高度恰好等于边长a,所以立方体的体积就等于表面积乘以高度,即V=6a²*a=6a³。
正方体的体积公式在实际应用中有着广泛的用途。
比如在建筑领域,工程师们经常需要计算建筑物的体积。
如果建筑物的形状是一个正方体,那么只需要测量一下边长,就可以轻松计算出它的体积。
这对于设计和施工都非常重要,可以帮助工程师们合理规划施工过程和材料使用。
除了建筑领域,正方体的体积公式在其他科学领域也有着广泛的应用。
比如在物理学中,正方体的体积可以用来计算物体的密度。
密度是指物体的质量与体积的比值,可以用公式ρ=m/V来表示,其中ρ表示密度,m表示质量,V表示体积。
如果我们已知一个物体的质量和体积,就可以通过计算得出它的密度。
而正方体的体积公式可以帮助我们求解体积,从而计算出密度。
正方体的体积公式还可以用于计算容器的容积。
比如在制造容器时,我们需要知道容器的容积大小,以便装入适量的物质。
如果容器的形状是一个正方体,那么只需要测量一下边长,就可以利用体积公式计算出容积。
这样可以避免容器装不下或者浪费空间的问题。
正方体的体积公式是几何学中的基础概念,它简单易懂,应用广泛。
通过这个公式,我们可以快速计算出正方体的体积,解决实际问题。
空间几何体的计算综合练习题
空间几何体的计算综合练习题一、立方体问题1. 一个立方体的边长为5厘米,求其体积和表面积。
解答:立方体的体积公式为:V = a^3,表面积公式为:S = 6a^2,其中a 为边长。
给定边长a = 5厘米,代入公式可得:体积 V = 5^3 = 125立方厘米表面积 S = 6 × 5^2 = 150平方厘米因此,该立方体的体积为125立方厘米,表面积为150平方厘米。
2. 一个立方体的表面积为54平方米,求其边长和体积。
解答:设立方体的边长为a,则根据表面积公式可得:6a^2 = 54化简方程得:a^2 = 9a = 3所以该立方体的边长为3米。
根据体积公式可得:V = a^3 = 3^3 = 27立方米因此,该立方体的边长为3米,体积为27立方米。
二、球体问题1. 一个球体的半径为6厘米,求其体积和表面积。
解答:球体的体积公式为:V = (4/3)πr^3,表面积公式为:S = 4πr^2,其中r为半径。
给定半径r = 6厘米,代入公式可得:体积V = (4/3)π × 6^3 ≈ 904.78立方厘米表面积S = 4π × 6^2 ≈ 452.39平方厘米所以该球体的体积约为904.78立方厘米,表面积约为452.39平方厘米。
2. 一个球体的表面积为100平方米,求其半径和体积。
解答:设球体的半径为r,则根据表面积公式可得:4πr^2 = 100化简方程得:r = 5所以该球体的半径为5米。
根据体积公式可得:V = (4/3)πr^3 = (4/3)π × 5^3 ≈ 523.60立方米因此,该球体的半径为5米,体积约为523.60立方米。
三、圆柱体问题1. 一个圆柱体的底面半径为4厘米,高度为10厘米,求其体积和表面积。
解答:圆柱体的体积公式为:V = πr^2h,表面积公式为:S = 2πr^2 + 2πrh,其中r为底面半径,h为高度。
给定底面半径r = 4厘米,高度h = 10厘米,代入公式可得:体积V = π × 4^2 × 10 ≈ 502.65立方厘米表面积S = 2π × 4^2 + 2π × 4 × 10 ≈ 226.20平方厘米所以该圆柱体的体积约为502.65立方厘米,表面积约为226.20平方厘米。
人教版九年级下册数学第二十九章第2节《三视图》训练题 (3)(含答案解析)
九年级下册数学第二十九章第2节《三视图》训练题 (3)一、单选题1.如图所示的几何体的左视图是()A.A B.B C.C D.D2.如图所示,从上面看该几何体的形状图为()A.B.C.D.3.如图试一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.球D.三棱锥4.如图是一个立体图形从左面和上面看到的形状图,这个立体图形是由相同的小正方体构成,这些相同的小正方体的个数最少是()5.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm6.下列立体图形中,左视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球7.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .8.如图是一个立方体的三视图,这个立方体由一些相同大小的小正方体组成,这些相同的小正方体的个数是( )A .4B .5C .6D .79.如图所示的几何体的左视图为( )A.B.C.D.10.如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是()A.B.C.D.11.由若干个相同的小正方体搭建而成的几何体的三视图如图所示,则这个几何体共有小正方体()A.4个B.5个C.6个D.7个12.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同二、解答题13.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.14.下图的几何题是由8个相同的立方块搭成的,请画出它从正面、左面、上面看到的形状图.15.下图是由几个棱长为1的小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图;并计算出该几何体的表面积16.如图,这是一个小正方体所搭建的几何体的俯视图,正方形中的数字表示在该位置小正方体的个数,请你画出从正面看和从侧面看的图形.17.如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.18.下面图是几个小方块所搭几何体俯视图,小正方形中的数字表示在该位置的小立方块的个数.请画出这个几何体的主视图、左视图.19.由12个完全相同的棱长为1cm的小正方体搭成的几何体,如图所示.(1)请画出这个几何体的三视图.(2)请计算它的表面积.20.画出如图所示的几何体的主视图、左视图、俯视图:从正面看主视图_____左视图_____俯视图______21.如图是某几何体从正面、左面、上面看到的形状图.(1)这个几何体的名称是.(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,则这个几何体中所有棱长的和是多少?它的表面积是多少?22.用棱长为2cm的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,,第n层(n为正整数)(1)搭建第④个几何体的小立方体的个数为.(2)分别求出第②、③个几何体的所有露出部分(不含底面)的面积.1cm需要油漆0.2克,(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂2求喷涂第20个几何体,共需要多少克油漆?23.图中几何体由7个边长为1cm的正方体搭成,分别画如图几何体的主视图、左视图、俯视图.并算出此几何体的表面积24.用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示该位置小立方块的个数,请解答下列问题:(1)a=________,b=_________,c=_________.(2)这个几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(3)当d=e=1,f=2时,画出这个几何体的左视图.25.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.26.如图是由9个相同的棱长为2cm小立方体组成的一个几何体(1)请利用下方网格画出这个几何体的从正面看到主视图、从左面看到的左视图和从上面看到的俯视图(一个网格为小立方体的一个面).(2)计算这个堆积几何体的表面积(含底面).三、填空题27.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.28.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个29.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最多是________个,最少是________个.主视图俯视图30.如图,一个几何体是由若干个棱长为3的小正方体搭成的,小正方形中的数字表示在该位置小立方体的个数,则这个几何体的表面积是______.【答案与解析】1.D【解析】利用左视图的定义,从左向右看,看到的图形是一个长方形,由于右侧有一横线没看见,用虚线突出出来即可.从左向右看,看到的图形是一个长方形,右侧有横线看不见,为此用虚线显现出横线,左视图为D.故选:D.本题考查三视图的知识,左视图是从物体的左面看到的视图,掌握定义,会用定义选图是关键.2.C【解析】俯视图是从物体上面所看到的图形,可根据物体的特点作答;解:这是一个中间部分掏空的长方体,根据俯视图是从物体上面所看到的图形,故选:C本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,根据物体的特征回答是解题的关键.3.B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.C【解析】先根据俯视图和左视图确定底层和第二层正方体的最少个数,最后求和即可.解:根据俯视图可得:底层正方体最少5个正方体,根据左视图可得:第二层最少有1个正方体;则构成这个立体图形的小正方体的个数最少为5+1=6个.故答案为C.本题考查了根据三视图确定立体图形中正方体的个数,具有较好的空间想象能力是解答本题的关键.5.D【解析】先确定几何体的主视图,得到边长分别为3cm 、6cm ,再根据面积公式计算得出答案.如图,所得几何体的主视图是一个长方形,边长分别为3cm 、6cm ,∴所得几何体的主视图的面积是36 =218cm ,故选:D.此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键. 6.B【解析】根据三视图的意义可以得到解答.解:∵正方体的左视图与主视图均为以正方体棱长为边长的正方形,∴A 不符合题意; ∵倒放的圆柱体左视图为圆形,主视图为矩形,∴B 符合题意;∵圆锥的左视图与主视图均为以圆锥母线为腰、以底面直径为底的等腰三角形,∴C 不符合题意; ∵球的左视图与主视图均为以球半径为半径的圆,∴D 不符合题意;故选B .本题考查三视图的应用,熟练掌握三视图的意义和性质是解题关键 .7.C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为四边形,只有C 符合条件;故选:C .本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.8.D【解析】根据主视图和左视图小正方形的个数,在俯视图上标记每个位置上正方形的个数即可求解.根据题意,在俯视图上标注各个位置的个数为:所以一共有:1+2+2+1+1=7(个)故选D.本题考查了投影与视图,问题的关键是了解三种视图的关系与区别.9.C【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.从左边看是一个正方形,对面看不到的切割部分是虚线,故选:C.本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且存在的线是虚线.10.C【解析】根据左视图的定义:一般指由物体左边向右做正投影得到的视图,即可得出结论.解:根据左视图的定义,该几何体的左视图是:故选C.此题考查的是几何体左视图的判断,掌握左视图的定义是解题关键.11.B【解析】先由俯视图得出这个几何体的底层共有4个小正方体,再结合主视图和左视图可得第二层应该有1个小正方体,进而可得答案.解:由俯视图可得:这个几何体的底层共有4个小正方体,结合主视图和左视图可得:第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个.故选:B.本题考查了几何体的三视图,属于基础题型,掌握解答的方法是解题的关键.12.C【解析】根据从正面看到的是主视图,从上面看到的是俯视图,从左面看到的是左视图画出两个组合图形的三视图,再进行判断即可.解:图①的三视图为:图②的三视图为:故选:C.本题考查了简单组合体的三视图.解题的关键是学生对几何体三视图的空间想象能力.13.见解析【解析】主视图有3列,每列小正方形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,3.依此画出图形即可求解.解:如图所示:本题考查了画三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.14.见解析观察图形可知,从正面看到的图形是3列,从左往右正方形个数依次是3,1,2;从左面看到的图形是2列,从左往右正方形个数依次是3,1;从上面看到的图形是3列,从左往右正方形个数依次是2,2,1;据此即可画图.解:如图所示:本题考查了作图-三视图:确定主视图位置,画出主视图;再在主视图的正下方画出俯视图,注意与主视图“长对正”;然后在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.15.画图见解析;40【解析】先根据题意可得主视图有3列,每列小正方数形数目分别为3,3,2;左视图有2列,每列小正方形数目分别为3,2,然后画出立体图形计算表面积即可.解:主视图和左视图如图所示:此几何体为:∴其几何表面积为:()855222++⨯+⨯=⨯+1824=+364本题主要考查了几何体的三视图画法以及立体图形表面积的求法,正确画出三视图和立体图形是解答本题的关键.16.见详解【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.解:如图所示:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.17.见解析【解析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.由图可得几何体的三视图如下:主视图左视图俯视图本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.18.见解析【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为4,2,3,左视图有3列,每列小正方形数目分别为2,4,,3.据此可画出图形.如图,即为所求.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.19.(1)画图见解析;(2)242cm.【解析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,3,1.据此可画出图形;(2)利用几何体的形状进而求出其表面积;(1)S=⨯+++(2)2(677)2=⨯+2202()2=42cm答:它的表面积是42cm2.本题考查了三视图的画法以及表面积的求法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,物体的表面积是指露在外部的所有表面积之和.20.见解析【解析】主视图有4列,每列小正方形数目分别为1,3,1,1;左视图有3列,每列小正方形数目分别为3,1,1;俯视图有4列,每列小正方形数目分别为1,3,1,1,从而可得答案.解:主视图左视图俯视图考查了作图-三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,掌握以上知识是解题的关键.21.(1)直三棱柱;(2)51cm;2120cm【解析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出棱长和与表面积.(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的所有棱长之和为:(3+4+5)×2+9×3=51(cm);它的表面积为:2×(12×3×4)+(3+4+5)×9=120(cm2)答:所有棱长的和是51cm,它的表面积为120cm2.此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.22.(1)30;(2)第②个几何体露出部分(不含底面)面积为264cm,第③个几何体露出部分(不含底面)面积为2132cm;(3)992克.【解析】(1)归纳出前3个几何体的规律即可得;(2)分别画出两个几何体的三视图,再根据四个侧面和向上的面的小正方形的个数即可得;(3)先根据(1)的方法得出第20个几何体每一层小立方体的个数,再根据(2)的方法得出第20个几何体的所有露出部分(不含底面)的面积,然后乘以0.2即可得.(1)搭建第①个几何体的小立方体的个数为1, 搭建第②个几何体的小立方体的个数为21412+=+, 搭建第③个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第④个几何体的小立方体的个数为22212341491630+++=+++=, 故答案为:30;(2)第②个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ⨯=,则第②个几何体的所有露出部分(不含底面)面积为()232324464()cm ⨯+⨯+⨯=;第③个几何体的三视图如下:则第③个几何体的所有露出部分(不含底面)面积为()2626294132()cm ⨯+⨯+⨯=;(3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm ⎡⎤⨯++++⨯++++⨯=⎣⎦, 因此,共需要油漆的克数为49600.2992⨯=(克), 答:共需要992克油漆.本题考查了三视图、几何体的表面积、图形变化的规律型问题,依据题意,正确归纳类推出规律是解题关键.23.图见解析,228cm . 【解析】根据主视图、左视图、俯视图的定义画出图形即可;有顺序的计算前后面、左右面、上下面的表面积之和即可得.由主视图、左视图、俯视图的定义画出图形如下所示:由题意得:小正方体的每个面的面积为()2111cm⨯=, 则其表面积为()262142142128cm⨯⨯+⨯⨯+⨯⨯=.本题考查了三视图、几何体的表面积,熟练掌握三视图的概念是解题关键. 24.(1)3,1,1a b c ===;(2)9,11;(3)画图见解析. 【解析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,从而可得答案; (2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可得到答案;(3)左视图有3列,每列小正方形数目分别为3,1,2,从而可得左视图.解:(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3, 所以:3,1,1a b c ===. 故答案为:3,1,1;(2)由第一列小立方体的个数最少为2+1+1,最多为2+2+2, 所以这个几何体最少由4+2+3=9个小立方块搭成; 这个几何体最多由6+2+3=11个小立方块搭成; 故答案为:9,11.(3)由左视图有3列,每列小正方形数目分别为3,1,2, 如图所示:本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.25.(1)C;(2)不正确,理由见解析;(3)图③不是图②几何体的表面展开图,改后的图形见解析【解析】(1)根据“切去三个面”但又“新增三个面”,因此与原来的表面积相等;(2)根据多出来的棱的条数及长度得出答案;(3)根据展开图判断即可.解:(1)根据“切去三个小面”但又“新增三个相同的小面”,因此与原来的表面积相等,即a=b故答案为:a=b;(2)如图④红颜色的棱是多出来的,共6条,当且仅当每一条棱都等于原来正方体的棱长的一半,n比m正好多出大正方体的3条棱的长度,故小明的说法是不正确的;图④图⑤(3)图③不是图②几何体的表面展开图,改后的图形,如图⑤所示.本题考查几何体表面积的意义、棱长之和、几何体的表面展开图,考查学生的观察能力,关键是抓住几何图形变换后边长和棱长的变与不变的量.26.(1)见解析;(2)144cm2【解析】(1)主视图有3列,每列小正方形数目分别为2,3,1;左视图有3列,每列小正方形数目分别为3,1,2;俯视图有3列,每列小正方形数目分别为1,3,2;(2)分别求出各个方向的小正方形的个数,进一步即可求解.解:(1)如图所示:(2)6×6×(2×2)=144(cm 2).故这个堆积几何体的表面积(含底面)是144cm 2.本题考查了简单组合体的三视图及求小立方块堆砌图形的表面积.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓画成虚线,不要漏掉. 27.2236a cm 【解析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a acm ⨯+⨯+⨯=,故答案为:2236a cm .本题考查了求几何体的表面积,正确画出图形的三视图是解题关键. 28.5 【解析】利用三视图得到排数及列数,即可得到答案. 由三视图可知,此摆放体有两排, 第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键.29.17 11【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.++=(个)由主视图和俯视图可知:几何体的第一层最多有1337++=(个)第二层最多有1337++=(个)第三层最多有1113++=(个)故正方体的个数最多有77317++=(个),几何体的第一层最少有1337++=(个)第二层最少有1113第三层最少有1个,++=(个)故正方体的个数最少有73111故答案为:17;11.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.30.396【解析】首先确定该几何体的裸露的正方形的个数,然后确定面积即可.解:由该位置小立方体的个数可知,主视图为:有9个正方形左视图为:有6个正方形,俯视图为:有5个正方形,另外,该几何体有4个正方形的表面被遮挡,++⨯⨯+⨯=,∴这个几何体的表面积是(965)2949396故答案为:396.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也考查了空间想象能力.解题的关键是由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。
正方体的表面积公式是什么
正方体的表面积公式是什么正方体的体积公式:棱长×棱长×棱长或棱长的立方;字母表达式:a×a×a 或 a的立方.正方体表面积公式:S=6×(棱长×棱长)字母:S=6a²扩展资料:正六面体具有如下特征:(1)正六面体有8个顶点,每个顶点连接三条棱。
(2)正六面体有12条棱,每条棱长度相等。
(3)正六面体有6个面,每个面面积相等,形状完全相同。
(4)正六面体的体对角线:其中,a为棱长。
参考资料:百度百科-正方体长方体和正方体的表面积公式。
和体积公式。
长方体的表面积=(长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 V =abh 正方体的表面积=棱长×棱长×6 S =6a 正方体的体积=棱长×棱长长方体是底面为长方形的直四棱柱(或上、下底面为矩形的直平行六面体)。
其由六个面组成的,相对的面面积相等,可能有两个面(可能四个面是长方形,也可能是六个面都是长方形)是正方形。
扩展资料长方体有6个面。
每组相对的面完全相同。
长方体有12条棱,相对的四条棱长度相等。
按长度可分为三组,每一组有4条棱。
长方体有8个顶点。
每个顶点连接三条棱。
三条棱分别叫做长方体的长,宽,高。
长方体相邻的两条棱互相垂直。
正六面体有8个顶点,每个顶点连接三条棱。
正六面体有12条棱,每条棱长度相等。
正六面体有6个面,每个面面积相等,形状完全相同。
立方体长方体的体积公式和表面积公式有哪些?正方体的体积=棱长×棱长×棱长正方体的表面积=棱长×棱长×6长方体的体积=长×宽×高长方体的表面积=(长×宽+长×高+宽×高)×2立方体的表面积和体积有哪些公式?正方体吧,正方体才有体积和表面积的说法.正方体的表面积S=边长*边长*6=6*边长的平方正方体的体积V=边长*边长*边长=边长的立方.长方体,正方体的表面积计算公式是什么,怎样推导出来的长方体的表面积公式是:长方体的表面积=(长X宽+长X高+宽X高)X2。
小升初立体图形训练-正方体、长方体(1)
正方体与长方体第一部分 知识梳理1.表面积:物体表面面积的总和叫做物体的表面积。
用S 表示,常用的面积单位有:平方厘米、平方分米、平方米、平方千米。
单位换算: 1dm 2 =100cm 2 1m 2 =100dm 2 1km 2=1000000m 22.体积:物体所占空间的大小叫做物体的体积。
用V 表示,常用的体积单位有:立方厘米,立方分米,立方米。
单位换算:1m 3=1000dm 3 1dm 3=1000cm 3 1m 3=100 0000cm 33.容积:容器所能容纳物体的体积叫做容积。
用V 表示,常用的容积单位有:升(L),毫升(mL)。
单位换算:1L=1000ml 1L= 1dm 3 1ml= 1cm 34.正方体、长方体表面积和体积的计算公式 名称 图形 特点字母意义表面积公式 体积公式长方体12条棱、 8个顶点、6个面 a-长 b-宽 h-高 S 表-表面积 V-体积2(ab+ah+bh )S 底×h=abh正方体a-棱长 S 表-表面积 S 底-底面积 V-体积6a 2S 底×a=a 3第二部分 精讲点拨例1 小明用小立方体搭出了一个立体图形,下面是小明从正面、上面、右面看到的形状,这个立体图形一共由几个组成?画画看。
正面 右面 上面 举一反三:1.下面立体图形从上面、左面和正面看到的分别是什么形状?请画在方格纸上。
正面 侧面 上面2.桌子上放着一个同学们学过的立体图形教具三位同学分别从正面、上面、左面看到的形状如下,请你画出这个立体图形的草图并标上相应的数据。
草图: 3 3 · 3 33.下图是几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,( )图是这个几何体的主视图。
小结:例2 下面的四个图形中,按线折叠,( )不能围成一个正方形。
A B C D举一反三:1.如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等,那么:x=( ),y=( )。
七年级数学上册《第一章丰富的图形世界》单元测试卷及答案-北师大版
七年级数学上册《第一章丰富的图形世界》单元测试卷及答案-北师大版一、选择题1.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.2.如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是()A.一B.起C.向D.来3.用一个平面分别去截球、圆柱、圆锥、正方体,截面形状不可能...是圆的几何体有()A.1个B.2个C.3个D.4个4.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.5.下面四个立体图形中,从正面去观察它,得到的平面图形是三角形的是()A.B.C.D.6.在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了()A.点动成线B.线动成面C.面动成体D.以上都不对7.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.8.某正方体的每一个面上都有一个汉字,如图是它的种表面展开图,那么在原正方体的表面上,与“洗”字相对的面上的汉字是()A.罩B.勤C.口D.戴9.用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有()A.1个B.2个C.3个D.4个10.学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为()A.B.C.D.二、填空题11.截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.如图,截面平行于底面,则这个几何体的截面是.12.六棱柱有条棱.13.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y 的值为.14.分别从正面、上面、左面观察下列物体,得到的平面图形完全相同的是(填写序号).三、解答题15.一个正方体.六个面上分别写着6个连续整数.且每两个相对面上的两个数的和都相等,如图所示.能看到的三个面上所写的数为16,19,20,问这6个整数的和为多少?16.如图所示的是一个正方体的表面展开图,折成正方体后其相对面上的两个数互为相反数,求a﹣b的值.17.把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:颜色红黄蓝白紫绿花的朵数123456现将上述大小相同,颜色.花朵分布也完全相同的四个正方体拼成一个水平放置的长方体,如图所示.问:长方体的下底面共有多少朵花?18.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.( 取3.14,单位: cm)四、综合题19.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有小正方体?(2)其中两面被涂到的有个小正方体;没被涂到的有个小正方体;(3)求出涂上颜色部分的总面积.20.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m 正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.21.如图是由棱长都为lcm的6块小正方体组成的简单几何体.(1)请在方格中画出该几何体的三个视图.(2)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,最多可以再添加块小正方体(3)直接写出添加最多的小正方体后该几何体的表面积(包含底面).参考答案与解析部分1.【答案】D【解析】【解答】A、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;B、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;C、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故符合题意;故答案为:D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,分别判断各选项即可求解. 2.【答案】A【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“!”字相对的字是“一”.故答案为:A.【分析】根据正方体的展开图的特征“相对的面之间一定相隔一个正方形”并结合题意可求解. 3.【答案】A【解析】【解答】解:用一个平面分别去截球,截面形状是圆;用一个平面分别去截圆柱和圆锥,截面形状可能是圆;用一个平面分别去截正方体,截面形状不可能是圆;∴截面形状不可能是圆的几何体有1个.故答案为:A【分析】根据几何体的形状,可知用一个平面分别去截球,截面的形状一定是圆,用一个平面分别去截圆柱,圆锥截面形状可能是圆;用一个平面分别去截正方体,截面形状不可能是圆;据此可求解.4.【答案】C【解析】【解答】解:从上边看,底层是一个小正方形,上层是四个小正方形.故答案为:C.【分析】根据从上边看得到的图形是俯视图,可得答案.5.【答案】A【解析】【解答】解:A、从正面去观察,得到的平面图形是三角形,符合题意;B、从正面去观察,得到的平面图形是圆,不符合题意;C、从正面去观察,得到的平面图形是长方形,不符合题意;D、从正面去观察,得到的平面图形是长方形,不符合题意;故答案为:A【分析】根据三视图的定义求解即可。
体积和表面积的计算及应用
体积和表面积的计算及应用一、体积的计算1.体积的定义:物体所占空间的大小叫做物体的体积。
2.体积的单位:立方米(m³)、立方分米(dm³)、立方厘米(cm³)等。
3.常见几何体的体积公式:–立方体:V = a³(a为边长)–长方体:V = lwh(l为长,w为宽,h为高)–正方体:V = a³(a为边长)–圆柱体:V = πr²h(r为底面半径,h为高)–圆锥体:V = 1/3πr²h(r为底面半径,h为高)4.体积的计算在生活中的应用:如计算物体的容量、容积等。
二、表面积的计算1.表面积的定义:物体所有面的总面积叫做物体的表面积。
2.表面积的单位:平方米(m²)、平方分米(dm²)、平方厘米(cm²)等。
3.常见几何体的表面积公式:–立方体:S = 6a²(a为边长)–长方体:S = 2lw + 2lh + 2wh(l为长,w为宽,h为高)–正方体:S = 6a²(a为边长)–圆柱体:S = 2πrh + 2πr²(r为底面半径,h为高)–圆锥体:S = πr² + πrl(r为底面半径,l为斜高)4.表面积的计算在生活中的应用:如计算物体的表面积、制作物体的包装等。
三、体积和表面积的应用1.计算物体的体积和表面积,可以了解物体的空间大小和外表形状。
2.在生活中,计算物体的体积和表面积,可以帮助我们更好地利用空间,提高生活和工作效率。
3.体积和表面积的计算,可以帮助我们解决一些实际问题,如制作物体模型、设计建筑物的结构等。
4.体积和表面积的计算,是数学在实际生活中的重要应用,有助于培养学生的空间想象能力和实际应用能力。
以上就是关于体积和表面积的计算及应用的知识点总结,希望对你有所帮助。
在学习过程中,要注意理论联系实际,提高自己的空间想象能力和实际应用能力。
小学四年级立方体试卷
小学四年级立方体试卷一、选择题(每题2分,共20分)1. 一个立方体的体积是125立方厘米,它的棱长是多少厘米?A. 5厘米B. 10厘米C. 15厘米D. 20厘米2. 立方体的表面积公式是什么?A. 6a²B. a³C. 2a²D. 3a³3. 如果一个立方体的棱长增加1厘米,它的体积会增加多少?A. 6立方厘米B. 7立方厘米C. 8立方厘米D. 9立方厘米4. 一个立方体的棱长是4厘米,它的表面积是多少平方厘米?A. 48平方厘米B. 64平方厘米C. 96平方厘米D. 128平方厘米5. 一个立方体的体积是64立方厘米,它的棱长是多少厘米?A. 2厘米B. 4厘米C. 8厘米D. 16厘米二、填空题(每题2分,共20分)6. 立方体有______个面,每个面都是______形。
7. 如果一个立方体的棱长是3厘米,它的体积是______立方厘米。
8. 立方体的表面积公式可以表示为S=______。
9. 一个立方体的棱长是6厘米,它的表面积是______平方厘米。
10. 棱长为5厘米的立方体,它的体积比棱长为4厘米的立方体大______立方厘米。
三、判断题(每题1分,共10分)11. 立方体的每个面都是正方形。
()12. 立方体的棱长总和等于其表面积。
()13. 立方体的体积和表面积成正比。
()14. 立方体的体积公式是V=a³,其中a是棱长。
()15. 立方体的表面积公式是S=6a²,其中a是棱长。
()四、简答题(每题5分,共10分)16. 描述如何用小正方体木块拼成一个大立方体,并说明需要多少个小正方体。
17. 如果你要设计一个立方体形状的储物箱,你会考虑哪些因素?五、计算题(每题10分,共40分)18. 一个立方体的棱长为7厘米,计算它的表面积和体积。
19. 一个立方体的体积为343立方厘米,请计算它的棱长。
20. 如果一个立方体的棱长增加了2厘米,它的表面积和体积分别增加了多少?21. 一个立方体的棱长为9厘米,如果它的体积增加了729立方厘米,求增加后的棱长。
展开与折叠(提升训练)(原卷版) (1)
5.3 展开与折叠【提升训练】一、单选题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A,B,C,D中的()位置拼接正方形.A.A B.B C.C D.D2.下图是一个三棱柱纸盒的示意图,则这个纸盒的平面展开图是()A.B.C.D.3.如图是一个长方体包装盒,则它的表面能展开成的平面图形是()A.B.C.D.4.如图,是一个正方体的表面展开图,则原正方体中“伟”字所在的面相对的面上标的字是()A.大B.梦C.国D.的5.下列图形中,不是正方体表面展开图的是()A.B.C.D.6.下面的图形经过折叠可以围成一个棱柱的是()A.B.C.D.++的值()7.如图,若要使得图中平面展开图折叠成长方体后,相对面上的两个数之和为9,求x y zA.10B.11C.12D.138.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格→第2格→第3格→第4格,这时小正方体朝上的一面的字()A.的B.梦C.我D.中9.防控疫情必须勤洗手、戴口罩,讲究个人卫生.如图是一个正方体展开图,现将其围成一个正方体后,则与“手”相对的是()A.勤B.口C.戴D.罩10.正方体的平面展开图如图所示,则在原正方体中,“万”字的对面的字为()A.溱B.州C.中D.学11.下列图形中可以作为一个正方体的展开图的是()A.B.C.D.+-的值为()12.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b cA.-6B.-2C.2D.413.经过折叠可以得到四棱柱的是()A.B.C.D.14.图1是正方体的平面展开图,六个面的点数分别为1、2、3、4、5、6,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图2所示,若骰子初始位置为图2所示的状态,将骰子向右翻滚90 ,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连续完成2次翻折后,骰子朝下一面的点数是3;则连续完成2020次翻折后,骰子朝下一面的点数是()A.2B.3C.4D.515.如图,是一个正方体纸盒的平面展开图,则写有“为”字的面所对的面上的是()A.汉B.!C.武D.加16.如图,白纸上放有一个表面涂满染料的小正方体.在不脱离白纸的情况下,转动正方体,使其各面染料都能印在白纸上,且各面仅能接触白纸一次..........,则在白纸上可以形成的图形为()A.①①①B.①①C.①①D.①①17.如图,是一个几何体的表面展开图,则该几何体中写“英”的面相对面上的字是( )A.战B.疫C.情D.颂18.下列图形中,不是立方体表面展开图的是()A.B.C.D.19.下列展开图不能叠合成无盖正方体的是()A.B.C.D.20.长方体纸盒的长、宽、高分别是5cm、4cm、2cm ,若将它沿棱剪开,展成一个平面图形那么这个平面图形的周长的最小值是()A.60B.56C.42D.40个点的骰子,将它抛掷三次得到不同的结果,看到的情形如图所示,则图中21.一枚六个面分别标有16写有“?”一面上的点数是()A.6B.2C.3D.122.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.23.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第70次后,骰子朝下一面的数字是()A.2B.3C.4D.524.下列平面图中不能围成正方体的是()A.B.C.D.25.如图,是正方体的展开图,2号面是前面,那么后面是()号A.3号B.4号C.5号D.6号26.如图,正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开外表面朝上,展开图可能是()A.B.C.D.27.下图为相同的小正方形组成,折叠后能围成正方形的是()A.B.C.D.28.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y等于()A.10B.11C.12D.1329.如图,三个图形是由立体图形展开得到的,相应的立体图形顺序是( )A.圆柱、三棱柱、圆锥B.圆锥、三棱柱、圆柱C.圆柱、三棱锥、圆锥D.圆柱、三棱柱、半球30.2020年,两安市为创建全国文明城市,在街头制作了正方体宣传板进行宣传,它的展开图如图示,请你来找一找“创”字所在面的对面是哪个字()A.明B.文C.北D.城第II卷(非选择题)请点击修改第II卷的文字说明二、填空题31.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),若在图中只添加一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,这样的拼接方式有_____种.32.如图是某几何体的表面展开图,则该几何体的名称是______;侧面积=______(用含π的代数式表示).33.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中“国”字所在面相对的面上的汉字是________.34.一张长50cm,宽40cm的长方形纸板,在其四个角上分别剪去一个小正方形(边长相等且为整厘米数)后,折成一个无盖的长方体形盒子,这个长方体形盒子的容积最大为_____cm3.+=______.35.若要使图中平面展开图折叠成正方体后,使得相对面上的数的和相等,则x y三、解答题36.在期末复习期间,悠悠碰到了这样一道习题:如图所示是一个正方体表面展开图,正方体的每个面上都写着一个整式,且相对两个面上的整式的和都相等.请根据展开图回答下列问题:(1)与A 相对的面是__________;与B 相对的面是____________;(填大写字母)(2)悠悠发现A 面上的整式为:3221x x y ++,B 面上的整式为:2312x y x -+,C 面上的整式为:2313x y x -,D 面上的整式为:()221x y -+,请你计算:F 面上的整式. 37.如图①,是一个边长为10cm 正方形,按要求解答下列问题:(1)如图①,若将该正方形沿粗黑实线剪下4个边长为 cm 的小正方形,拼成一个大正方形作为直四棱柱的一个底面,余下部分按虚线折叠成一个无盖直四棱柱,最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积;(2)若该正方形是一个圆柱的侧面展开图,求该圆柱的体积.(结果保留π)38.一个正方体的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示.(1)A 的对面是 ,B 的对面是 ,C 的对面是 ;(直接用字母表示)(2)若A =﹣2,B =|m ﹣3|,C =m ﹣3n ﹣112,E =(52+n )2,且小正方体各对面上的两个数都互为相反数,请求出F 所表示的数.39.如图是一个正方体的平面展开图,标注了字母M 的是正方体的正面,标注了2-的是正方体的底面,正方体的左面与右面标注的式子相等.(1)求x 的值;(2)求正方体的上面和后面的数字和.40.如图所示,是一个长方体纸盒平面展开图,已知纸盒中相对两个面上的数互为相反数.求a ,b ,c 的值?41.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a =______,b =_________; (2)先化简,再求值:()()2223252ab ab ab a ab ⎡⎤------⎣⎦.42.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数. (1)填空:a =________,b =________,c =________.(2)先化简,再求值:()22253234a b a b abc a b abc ⎡⎤---+⎣⎦43.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图所示,其中阴影部分为内部粘贴角料.(单位:毫米)(1)此长方体包装盒的体积为 立方毫米;(用含x 、y 的式子表示)(2)此长方体的表面积(不含内部粘贴角料)为平方毫米;(用含x、y的式子表示)(3)若内部粘贴角料的面积占长方体表面纸板面积的16,求当x=40毫米,y=70毫米时,制作这样一个长方体共需要纸板多少平方米.44.下面是一个多面体的表面展开图每个面上都标注了字母,(所有字母都写在这一多面体的外表面)请根据要求回答问题:(1)如果面F在前面,从左边看是B,那么哪一面会在上面?(2)如果从右面看是面C面,面D在后边那么哪一面会在上面?(3)如果面A在多面体的底部,从右边看是B,那么哪一面会在前面.45.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)46.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图所示,其中阴影部分为内部粘贴角料.(单位:毫米)(1)此长方体包装盒的体积为立方毫米;(用含x、y的式子表示)(2)此长方体的表面积(不含内部粘贴角料)为平方毫米;(用含x、y的式子表示)(3)若内部粘贴角料的面积占长方体表面纸板面积的15,求当x=40毫米,y=70毫米时,制作这样一个长方体共需要纸板多少平方毫米.47.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和①.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的①重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.48.已知:图①、图①、图①均为53的正方形网格,在网格中选择2个空白的正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体表面展开图,且3种方法得到的展开图不完全重合.49.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.50.如图所示,一个无盖的长方体纸盒,其长宽高分别为5cm,4cm,3cm.请你画出一种表面展开图(大概示意图),并计算其表面积.51.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=.(2)求代数式的值:a2﹣|a﹣b|+|b+c|.52.如图是从三个方向看几何体得到的形状图.(1)说出这个几何体的名称; (2)画出它的一种表面展开图;(3)若从正面看到的形状图的宽为4 cm ,长为7 cm ,从左面看到的形状图的宽为3 cm ,从上面看到的形状图中斜边长为5 cm ,求这个几何体所有棱长的和,以及它的表面积和体积. 53.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为cm a 的正方形纸板制作出两种不同方案的长方体盒子(左图为无盖的长方体纸盒,右图为有盖的长方体纸盒).(纸板厚度及接缝处忽略不计)华罗庚小组展示:根据左图方式制作一个无盖的长方体盒子,方法:先在纸板四角剪去四个同样大小边长为cm b 的小正方形,再沿虚线折合起来. 问题解决(1)该长方体纸盒的底面边长为______cm ;(请你用含a ,b 的代数式表示) (2)若12cm a =,3cm b =,则长方体纸盒的底面积为______2cm ; 陈省身小组展示:根据右图方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为cm b 的小正方形和两个同样大小的小长方形,再沿虚线折合起来. 拓展延伸(3)该长方体盒子的A面长为______,宽为______(请你用含a,b的代数式表示)cm;(请你用含a,b的代数式表示)(4)该长方体纸盒的体积为______354.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是_______.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有______(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.55.在一次青少年模型大赛中,小高和小刘各制作了一个模型,小高制作的是棱长为acm的正方体模型,小刘制作的是棱长为acm的正方体右上角割去一个长为3cm,宽为2cm,高为1cm的长方体模型(如图2)(1)用含a的代数式表示,小高制作的模型的各棱长度之和是___________;(2)若小高的模型各棱长之和是小刘的模型各棱长之和的56,求a的值;(3)在(2)的条件下,①图3是小刘制作的模型中正方体六个面的展开图,图中缺失的有一部分已经很用阴影表示,请你用阴影表示出其余缺失部分,并标出边的长度.①如果把小刘的模型中正方体的六个面展开,则展开图的周长是________cm;请你在图方格中画出小刘的模型中正方体六个面的展开图周长最大时的图形.56.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.57.如图所示,在一张正方形纸片的四个角上各剪去一个同样大小的正方形,然后把剩下的部分折成一个无盖的长方体盒子.请回答下列问题:(1)剪去的小正方形的边长与折成的无盖长方体盒子的高之间的大小关系为;(2)如果设原来这张正方形纸片的边长为acm,所折成的无盖长方体盒子的高为hcm,那么,这个无盖cm;长方体盒子的容积可以表示为3(3)如果原正方形纸片的边长为20cm,剪去的小正方形的边长按整数值依次变化,即分别取cm cm cm cm cm cm cm cm cm cm时,计算折成的无盖长方体盒子的容积得到下表,由1,2,3,4,5,6,7,8,9,10此可以判断,当剪去的小正方形边长为cm时,折成的无盖长方体盒子的容积最大。
全优课堂四年级数学(答案)上册2021
全优课堂四年级数学(答案)上册2021题型:选择题1.小明有5元钱,他去买了一杯2元的可乐和一包1元的薯片,他还剩下多少钱?A.1元B.2元C.3元D.4元E.5元2.小华一共写了60个字,他把它们分成了两份,每份都是30个字,那么这两份字数相等,小华的操作正确吗?A.正确B.不正确3.一支铅笔从1米多的高度自由落下,它落到地上需要多长时间A.0秒B.1秒C.约1秒D.约2秒E.约3秒4.如果一个数字的个、十、百位分别是3、7、8,它是多少A.378B.783C.738D.3875.在一条线段上,如果C点在AB点之前,那么C点到A点的距离与C 点到B点的距离的关系是A.等于B.大于C.小于选择题答案:1.C 2.正确 3.C 4.B 5.B题型:填空题1.把112分解成10位数和个位数两个数字相加的形式,则所得两个数字是 \_\_\_ 和 \_\_\_。
2.一条绳子长105厘米,将它剪成长度相同的若干段,则每段的长度是 \_\_\_ 厘米。
3.13的两倍加1等于 \_\_\_。
4.2+3×5的值为 \_\_\_。
5.8÷4-1×3的值是 \_\_\_。
填空题答案:1.11,2.7,3.27,4.17,5.-1题型:解答题1.小华家有10斤大米,他每次吃1/4斤大米,他吃了多少天以后大米袋子里只剩下5斤大米?2.小明和小王两个人做同一件工作,小明1小时能做完1/4,小王1小时能做完1/6,两个人同时工作,需要多长时间做完这件工作?3.城市公园的面积是30000平方米,其中花坛面积是4000平方米,游人行走的路面积是6000平方米,其余部分是草坪,请问公园的草坪面积是多少平方米?解答题答案:1. 20天 2. 1小时,48分钟 3. 20000平方米题型:应用题1.一张试卷上共有20道选择题和30道填空题,每题得分均为1分,小明答对了这些题目的2/3,那么小明这次考试得了多少分?2.一个立方体的面积分别为a、b、c,它们的和为56平方厘米,这个立方体的表面积是多少平方厘米?3.小红的妈妈给她10元钱,小红妈妈还给她了10张0.5元的奖章,问小红一共有多少元钱?应用题答案:1.16分 2.42平方厘米 3.15元题型:证明题1.假设a、b、c、d四个数字间成立如下关系:a > b, c > d,证明:a + c >b + d。
新人教版数学五下《长方体和正方体》单元测试题1
新人教版数学五下《长方体和正方体》单元测试题1《长方体和正方体》单元测试题一全名:分数:一、填空。
(13分)1、5.1dm3=()cm3120cm3=()dm34.25毫升=()厘米38。
6m2=()dm225dm3=()m370cm3=()l2、一个正方体棱长之和是36cm,它的表面积是()cm2.3.长方体长5厘米,宽5厘米。
高度是宽度的两倍。
长方体的边之和为()cm,表面积是()cm2,体积是()cm3.4.长方体长6厘米,宽5厘米,高4厘米。
其体积为()cm3。
5.长方体的底部面积为18cm2,体积为72cm3,高度为()DM6、一个长方体的长、宽、高分别是6cm、5cm、4cm,如果高增加1cm,体积添加()cm37、一个可乐瓶的容积大约是600().8、一间客厅的占地面积大约是50().10、在括号里填上合适的单位。
一本数学书的体积约为245页;3m一个仓库的容积是450();一瓶饮料的净含量为300();2m汽车的油箱可装汽油80();5m一间教室的占地面积是72().11.如上图所示,长方体上方面积为()m2,左侧面积为()m2,后面的面积是()m2.12.立方体的边长为6dm。
如果你把它切成两个完全相同的长方体,每个长方体的表面积是()dm2.二、选择正确答案的序列号并填入括号。
(10分)1。
边长为a的立方体的表面积为()a、6ab、a2c、6a3d、6a2一2、把一个长8cm、宽6cm、高4cm的长方体切成两个长方体,下图中()切割方法增加的表面积最大abc3.下面各种形状的纸板可以折叠成立方体abcd4、一瓶墨水的净含量是60()a、 lb、mlc、dm35、一个长方体的长、宽、高分别是16cm、10cm和8cm,如果它的长、宽、同时,高度降低到原始A,高度降低到原始A1,那么它的体积()21b、扩大8倍41c、缩小为原来的d、扩大4倍86.立方体的边长为5厘米。
如果其边缘长度加倍,其表面积将扩大大为原来的()倍.a、 4b、2c、87、一个玻璃鱼缸,装满水后水是50l,这个鱼缸的()是50l.a、体积b、重量c、面积d、容积8.长方体长10厘米,宽6厘米,高8厘米。
体积和表面积的关系
20XX.XX.XX
体积和表面积的关系
XXX,a click to unlimited possibilities
汇报人:XXX
目 录
01 体 积 和 表 面 积 的 定 义 02 体 积 和 表 面 积 的 关 系 03 体 积 和 表 面 积 的 应 用 04 体 积 和 表 面 积 的 公 式 05 体 积 和 表 面 积 的 拓 展 知 识
圆锥体的表面积公式:S=π*r*(r+h)
圆锥体的体积和表面积的关系:体积和表面积是相互独立的,但都与半径和高度有关 圆锥体的体积和表面积的应用:在工程、建筑等领域,需要计算圆锥体的体积和表面积, 以确定材料的用量和成本。
体积和表面积的应
03
用
建筑学中的应用
建筑设计:根据体积和表面积的 关系,设计出合理的建筑结构
体积和表面积的优化问题
体积和表面积的关系:体积是物体所占空间的大小,表面积是物体表面积的大小 优化问题:在满足一定条件下,如何使体积和表面积达到最优 优化方法:通过数学模型和算法,求解体积和表面积的最优解 应用领域:建筑设计、工业设计、包装设计等领域
体积和表面积的几何意义
体积:物体所占 空间的大小
建筑节能:根据体积和表面积的 关系,设计出节能的建筑方案
添加标题
添加标题
添加标题
添加标题
建筑材料选择:根据体积和表面 积的关系,选择合适的建筑材料
建筑施工:根据体积和表面积的 关系,优化建筑施工流程和工艺
包装设计中的应用
体积和表面积的关系:体积是物体所占空间的大小,表面积是物体表 面积的总和
包装设计中的应用:根据体积和表面积的关系,设计出合适的包装 尺寸和形状,以减少包装材料和运输成本
多面体的体积和表面积计算表
尺寸符号立方体长方体∧棱柱∨三棱柱棱锥棱台多面体的体积图形侧表面积表面积对角线棱----1S S d a 底面中线的交点底面积高边长----O F h h b a ,,底面对角线的交点边长--O h b a ,,锥底各对角线交点组合三角形的个数一个组合三角形的面积---O n f 组合梯形数一个组合梯形的面积底面间距离两平行底面的面积----n a h F F 21,圆柱和空心圆柱∧管∨斜线直圆柱直圆锥圆台球内外侧面积平均半径柱壁厚度内半径外半径=----1SptrR底面半径最大高度最小高度---rhh21母线长高底面半径---lhr母线高底面半径---lhrR,直径半径--dr球扇形∧球楔∨球缺圆环体∧胎∨球带体桶形弓形高弓形底圆直径球半径---hdr球缺表面积曲面面积平切圆直径球缺半径球缺的高曲-=---SSdrh圆环体截面半径圆环体截面直径圆环体平均半径圆球体平均半径----rdDR的距离至带底圆心球心腰高底面半径球半径1121O,OhhrrR----桶高底直径中间断面直径---ldD椭球体 a,b,c-半轴交叉圆柱体梯形体圆柱长圆柱半径--llr,1上、下底边距离(高)上底边长下底边长---hbaba11,,的体积和表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立方体的表面积A
————————————————————————————————作者:————————————————————————————————日期:
长方体或正方体的表面积就是其六个面的面积。
如果长方体的长用a表示、宽用b表示、高用h表示
那么长方体的表面积=(ab+ah+bh)×2
如果正方体的棱长用a表示
正方体的表面积=6a2
在计算长方体或正方体的表面积时,可以从上下、左右和前后六个方向(有时也只考虑上、左前三个方向的平面图形的面积的总和)。
例1求下面长方体、正方体的表面积。
例2 有一个长方体,长是6厘米,宽是4厘米,高是8厘米,把它截成棱长是2厘米的若干个小正方形,这些小正方体表面积之和比原长方体的表面积增加了多少平方厘米?
例3 下图是一个由小正方体构成的,请你数一数计算出共有多少块?
例4 右图是由17个边长为1厘米的小正方体拼成的,求它的表面积。
10
6
厘4
6
课堂练习
1.求下面长方体的表面积。
2.一个玻璃鱼缸的形状是正方体,棱长3分米。
制作这个鱼缸时至少需要玻璃多少平方分米?
3.一个长方体的长是10厘米,宽是6厘米,高12厘米。
如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方厘米?
4.把两个相同的正方体拼接成一个长方体,这个长方体的表面积是80平方厘米.问原来每个正方体的表面积是多少平方厘米?
5.一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数,这个长方体的表面积是多少?
4 厘 723
1256分
6.将3个表面积都是24平方厘米的正方体木块粘成一个长方体(如下图),求这个长方体的表面积.如果用6个这种正方体木块拼成一个长方体.那么长方体的表面积是多少平方厘米?
7.一个正方体的表面积是96平方厘米,把它切成两个相等的长方体后.问每个长方体的表面积是多少平方厘米?
8.将两个长都是8厘米,宽都是6厘米,高都是5厘米的长方体拼成一个大长方体.那么这个大长方体表面积最大是多少平方厘米?
9.一个教室的长是8米,宽是6米,高是4米。
要粉刷教室的屋顶和四面墙壁。
除去门
窗和黑板面积22.4平方米,粉刷的面积是多少平方米?
10.把19个棱长为1厘米的正方体重叠在一起,按右图中拼成一个立体图形。
求这个立体图形的表面积。
课后作业
1.一个长方体纸盒,长是14厘米,宽是10厘米,高是5厘米,做这个纸盒至少要用多少平方厘米的纸板?
2.一个长方体的工具箱,长15分米,宽12分米,高9分米 ,给这个工具箱除底部外涂上油漆,涂油漆的面积是多少平方分米?
3.一个长方体的卫生箱,长5分米,宽2.4分米,高3分米。
做这个卫生箱至少要用多少平方分米的木板?(卫生箱没有盖)
4.下图的木块分成三块后,木块的表面积增加多少平方厘米?
家长签字: 家长意见: 1510
5厘
例5 在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(如右图),求这个立体图形的表面积。
例 6 下图是一个棱长为2厘米的正方体,在正方体上表面的正中向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为0.5厘米的正方体小洞,第三个正方体小洞的挖法与前两个相同,棱长为0.25厘米,那么最后得到的立体图形的表面积是多少平方厘米?
例7 有一个棱长是1厘米的正方体,共1993个,要拼成一个大长方体,问表面最小是多少?
例8 一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块,如右下图。
问这60块长方体表面积的和是多少平方米?
1.如下图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?
2.有30个棱长为1米的方体,在地面上摆成如右图的形式,求这个立体图形的表面积是多少平方米?
3.一个长方体棱长之和是80厘米,已知长是高的2.5倍.宽比高多2厘米,求这个长方体的表面积.
4.如下图,正方体木块的表面积是36平方分米,把它沿虚线截成大小相等的8个正方体木块,这时表面积增加平方分米.
5.在一个棱长是5分米的正方体上放一个棱长为4分米的小正方体(如下图),求这个立体图形的表面积.
6.有一个底面是正方形的长方体,表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,那么这两个长方体的表面积和为240平方厘米.原来长方体的底面是多少平方厘米?
7.小明小制作时把6个棱长分别为1,2,3,4,5,6(单位:分米)的正方体按由大到小的顺序码放成一个宝塔,并且把重合部分用胶粘牢,再把所有外露的部分涂上油漆,交给老师。
所有涂上油漆部分的面积是多少平方分米?
8.一个正方体木块,表面积为120平方厘米,如果把它截成大小相等的八个小正方体,那么每个小正方体的表面积是多少平方厘米?
9.已知长方体的各边长均为整米数,相邻两个面的面积是180平方米和84平方米,那么表面积最小的长方体的表面积是多少平方米?
课后作业
1.把底面积为15平方厘米的两个相等的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?
2.一个长方体的正面和上面的面积之和为77平方厘米,它的长、宽、高都是整厘米数,且是质数,则这个长方体的表面积是多少平方厘米?
3.将下图中的图形折成正方体,2号正方形对面是几号正方形?
4.如下图,立体图形是由14个棱长为5厘米的正方体组成的.求这个立体图形的表面积.
家长签字:家长意见:
例9 把一个长为4厘米,宽为5厘米,高为6厘米的长方体木块表面全部涂成红色,然后
切成棱长为1厘米的小正方体木块。
问:
(1)切开后,有多少块小正方体木块没有染上色?
(2)切开后,有多少块小正方体木块分别有三个面、两个面、一个面被涂成红色。
练习题
1.下图(1)的一些积木是由16块棱长为2厘米的正方体堆成的,它的表面积是多少平方厘米?
2.如图(2),一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为l厘米的正方体做成一种玩具,求这个玩具的表面积。
3.图(3)中是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿着虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?
5.从一个棱长10厘米的正方体木块正中间挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?
6.1000个棱长为l厘米的小立方体合在一起成为一个边长为10厘米的大立方体,表面
涂油漆后再分开为原来的小立方体.这些小立方体中至少有一面被涂过油漆的个数是多少?
7.将一个长9厘米,宽8厘米,高3厘米的长方体木块锯成若干个小正方体(锯痕宽度忽略不计),然后再拼成一个大正方体,求这个大正方体的表面积是多少?
8.有一个立方体,边长是5厘米,如果它的左上方截去一个边长分别是5厘米,3厘米,2厘米的长方体(如下图).那么,它的表面积减少多少平方厘米?
9.把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大正方体,求这个大正方体的表面积。
课后作业
1.有一个棱长是3厘米的正方体,先从它的每个顶点处挖去一个棱长是1厘米的小正方体,再在它每个面的中央分别粘上一个棱长是1厘米的小正方体(如下图).所得物体的表面积是多少平方厘米?
2.在一个棱长为20厘米的正方体木块的上、右、前三个面的中心位置,分别凿一个开口为边长4厘米的正方形小孔直至对面,做成一个模型(如图6-3-7).求这个模型的表面积.
3.把棱长为5分米的正方体锯成两个长方体,这两个长方体表面积的和是多少平方分米?
4.一种长方体皮箱,用铁皮条做棱,每个面都是用皮革包成,皮箱长6分米,宽4分米,高5分米,做10个这样的皮箱至少要用铁皮条多少米?至少要用皮革多少平方米?
家长签字家长意见:。