最新中考数学压轴题解题技巧江苏徐州
【中考复习】攻克中考数学压轴题的三个技巧
【中考复习】攻克中考数学压轴题的三个技巧对于数学而言,不分地区,在全国各地中考试卷中,
高中入学考试
压轴题,一直都是大家的痛,不仅耗费时间,而且分值高,一道题就是10分左右,
特别容易拉开差距。
要想得到高分,压轴题必须要攻克。
常见结局问题的特点:
一、解决过程中需要添加一定的辅助线
尤其是与几何有关的终轴问题,往往需要加线段形成特殊三角形或特殊四边形,并结
合相似三角形、两点间最短线段距离、勾股定理等知识点;或将不规则图形转换为规则图形,并通过切割和补偿方法进行计算。
二、一般来说压轴题的第一小问(如求点的坐标、函数解析式等)都比较简单,一定
要克服心理恐惧,严谨读题,一定可以拿下。
三、没有无缘无故的爱,没有无缘无故的恨,也没有无缘无故的第一个问题。
一般压轴题中几个小问都是紧密关联的,解决第二问、第三问等很多时候需要用第一
问的结论。
简而言之,最后一个问题并不难。
有很多问题类型。
仍然有可能赢得前两个问题。
这样,最后一道题可以得到2/3的分数,这也是相当可观的,与其他问题的差距也不会太大。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路
中考数学压轴题是考试中最难的题型,涉及的内容相对较为复杂,解题思路也较为繁琐。
以下是一些中考数学压轴题的常见类型和解题思路。
常见类型一:应用题
应用题是中考数学压轴题中最常见的类型之一。
这类题目通常涉及实际问题,需要运用数学知识进行分析和计算。
解题思路:
1. 仔细阅读题目,理解问题的背景和要求。
2. 分析问题,确定解题的核心思路和步骤。
3. 运用所学的数学知识和技巧,进行计算和推理。
4. 对结果进行合理性检验,确保解答的准确性和完整性。
解题思路:
1. 仔细观察图形,寻找图形的性质和特点。
2. 运用几何性质和定理,进行推理和证明。
3. 利用几何性质,绘制等边、等腰和直角三角形等特殊图形进行推理和计算。
4. 运用实际问题,将几何题转化为代数问题,从而更好地解决问题。
总结:
中考数学压轴题的常见类型包括应用题、几何题、代数题和概率题等。
解题时需要仔细阅读题目、分析问题、运用所学的数学知识和技巧进行计算和推理,并对结果进行合理性检验。
通过充分的准备和练习,掌握解题的方法和技巧,就能够更好地应对中考数学压轴题。
初中数学考试压轴题解题技巧方法
初中数学考试压轴题解题技巧方法中考数学压轴题解题技巧1.学会运用与方程思想。
从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
这种思想在代数、几何及生活实际中有着广泛的应用。
2.学会运用数形结合思想。
数形结合思想是指从几何直观的角度,利用的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
纵观近几年全国各地的中考压轴题,绝大部分都是与有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
3.要学会抢得分点。
一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到 ;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。
因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。
4.学会运用等价转换思想。
转化思想是解决数学问题的一种最基本的数学思想。
在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。
中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
初三数学总复习之压轴题解法分析
初三数学总复习之压轴题解法分析压轴题是指考试前夕给学生的一份重要的综合试题,目的是检测学生对所学知识的掌握程度和解题能力。
在初中数学考试中,压轴题往往是整个试卷的难点,也是考察学生能力的重要环节。
在本文中,我将从解题方法的角度,分析几种常见的压轴题解法策略,帮助初三学生更好地应对数学考试。
一、代数题解法代数题是初中数学中最常见的题型之一,也是压轴题的常客。
在解代数题时,我们可以采用以下几种解法:1. 消元法:将方程组中的一个未知数表示为另一个未知数的函数,并代入到另一个方程中,从而得到一个只有一个未知数的方程。
然后通过求解这个方程,就可以得到所有未知数的值。
3. 凑整法:通过适当的变换,将方程转化为更简单的形式。
将含有平方项的方程凑成完全平方的形式,再进行求解。
以上三种解法是解代数题的常见方法,需要根据具体情况选择使用。
1. 图形分析法:通过观察图形性质和推理,找出问题中的关键信息,并推导出结论。
这种方法需要学生对几何知识的掌握程度较高。
2. 图像法:通过画图来辅助解题。
画图可以直观地表示问题中的信息,帮助学生更好地理解问题,从而找到解题的思路。
3. 字母代换法:将几何问题中的一些条件用字母代替,构建方程或者不等式,利用代数方法求解。
这种方法需要学生对代数知识的掌握程度较高。
1. 函数性质法:通过分析函数的性质和变化规律,找到函数值的范围、最值点等关键信息,从而得到解题的思路。
2. 代数方法:通过解方程或者不等式来求解函数问题。
求解函数的零点、最值等问题。
压轴题是考察学生综合能力的重要环节,解题方法的选择对于解题的效果至关重要。
在解压轴题时,学生需要根据具体题目的要求,选择合适的解题方法,并进行深入分析和思考,找到解题的关键点。
通过不断的练习和总结,学生可以逐渐提高解题的能力,更好地应对数学考试。
2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围
2024年中考数学压轴题重难点知识剖析及训练—求函数的取值范围通用的解题思路:第一步:先判定函数的增减性:一次函数、反比例函数看k ,二次函数看对称轴与区间的位置关系;第二步:当a x =时,min y y =;当b x =时,max y y =;所以max min y y y ≤≤.二次函数求取值范围之动轴定区间或者定轴动区间的分类方法:分对称轴在区间的左边、右边、中间三种情况。
(1)若自变量x 的取值范围为全体实数,如图①,函数在顶点处abx 2-=时,取到最值.(2)若abn x m 2-<≤≤,如图②,当m x =时,max y y =;当n x =时,min y y =.(3)若n x m ab≤≤<-2,如图③,当m x =,min y y =;当n x =,max y y =.(4)若n x m ≤≤,且n a b m ≤-≤2,m a b a b n -->+22,如图④,当a bx 2-=,min y y =;当n x =,max y y =.1.(中考真题)设a 、b 是任意两个不等实数,我们规定:满足不等式a ⩽x ⩽b 的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m ⩽x ⩽n 时,有m ⩽y ⩽n,我们就称此函数是闭区间[m,n]上的“闭函数”。
(1)反比例函数xy 2013=是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若二次函数5754512--=x x y 是闭区间[a,b]上的“闭函数”,求实数a ,b 的值。
【解答】解:(1)反比例函数y=是闭区间[1,2013]上的“闭函数”.理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2013;当x=2013时,y=1,所以,当1≤x≤2013时,有1≤y≤2013,符合闭函数的定义,故反比例函数y=是闭区间[1,2013]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣x﹣=(x﹣2)2﹣,∴该二次函数的图象开口方向向上,最小值是﹣,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大;①当b≤2时,此二次函数y随x的增大而减小,则根据“闭函数”的定义知,,解得,(不合题意,舍去)或;②当a<2<b时,此时二次函数y=x2﹣x﹣的最小值是﹣=a,根据“闭函数”的定义知,b=a2﹣a﹣或b=b2﹣b﹣;a)当b=a2﹣a﹣时,由于b=(﹣)2﹣×(﹣)﹣=<2,不合题意,舍去;b)当b=b2﹣b﹣时,解得b=,由于b>2,所以b=;③当a≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵<0,∴舍去.综上所述,或.2.(中考真题)若关于x 的函数y ,当1122t x t -≤≤+时,函数y 的最大值为M ,最小值为N ,令函数2M N h -=,我们不妨把函数h 称之为函数y 的“共同体函数”.(1)①若函数4044y x =,当1t =时,求函数y 的“共同体函数”h 的值;②若函数y kx b =+(0k ≠,k ,b 为常数),求函数y 的“共同体函数”h 的解析式;(2)若函数21y x x=≥(),求函数y 的“共同体函数”h 的最大值;(3)若函数24y x x k =-++,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数”h 的最小值.若存在,求出k 的值;若不存在,请说明理由.解析:(1)解:①当1t =时,则111122x -≤≤+,即1322x ≤≤, 4044y x =,4044k =0>,y 随x 的增大而增大,314044404422202222M N h ⨯-⨯-∴===,②若函数y kx b =+,当0k >时,1122t x t -≤≤+,∴11,22M k t b N k t b ⎛⎫⎛⎫=++=-+ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==,当0k <时,则11,22M k t b N k t b ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭,22M N k h -∴==-,综上所述,0k >时,2k h =,0k <时,2kh =-,(2)解:对于函数()21y x x=≥, 20>,1x ≥,函数在第一象限内,y 随x 的增大而减小,112t ∴-≥,解得32t ≥,当1122t x t -≤≤+时,∴2424,11212122M N t t t t ====-+-+,()()()()()()2221221144442221212121212141t t M N h t t t t t t t +---⎛⎫∴==-=== ⎪-+-+-+-⎝⎭,∵当32t ≥时,241t -随t 的增大而增大,∴当32t =时,241t -取得最小值,此时h 取得最大值,最大值为()()4412121242h t t ===-+⨯;(3)对于函数24y x x k =-++()224x k =--++,10a =-<,抛物线开口向下,2x <时,y 随x 的增大而增大,2x >时,y 随x 的增大而减小,当2x =时,函数y 的最大值等于4k +,在1122t x t -≤≤+时,①当122t +<时,即3t 2<时,211422N t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422M t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=22111114422222t t k t t k ⎧⎫⎡⎤⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫-++++---+-+⎢⎥⎨⎬ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭=2t -,∴h 的最小值为12(当32t =时),若124k =+,解得72k =-,但32t <,故72k =-不合题意,故舍去;②当122t ->时,即5t 2>时,211422M t t k ⎛⎫⎛⎫=--+-+ ⎪ ⎪⎝⎭⎝⎭,211422N t t k ⎛⎫⎛⎫=-++++ ⎪ ⎪⎝⎭⎝⎭,∴h =2M N -=2t -,∴h 的最小值为12(当52t =时),若124k =+,解得72k =-,但52t >,故72k =-不合题意,故舍去③当11222t t -≤≤+时,即3522t ≤≤时,4M k =+,i )当112222t t ⎛⎫⎛⎫--≥+- ⎪ ⎪⎝⎭⎝⎭时,即322t ≤≤时,211422N t t k⎛⎫⎛⎫=--+-+ ⎪ ⎝⎭⎝⎭22114415252222228k t t k M N h t t ⎛⎫⎛⎫++---- ⎪ ⎪-⎝⎭⎝⎭===-+ 对称轴为52t =,102>,抛物线开口向上,在322t ≤≤上,当t =2时,h 有最小值18,148k ∴=+,解得318k =-;i i )当112222t t ⎛⎫⎛⎫--≤+- ⎪ ⎪⎝⎭⎝⎭时,即522t ≤≤时,4M k =+,N =211422t t k ⎛⎫⎛⎫-++++ ⎪ ⎝⎭⎝⎭,∴2211441392222228k t t kM N h t t ⎛⎫⎛⎫+++-+- ⎪ ⎪-⎝⎭⎝⎭===-+, 对称轴为32t =,102>,抛物线开口向上,在522t <≤上,当t =2时,h 有最小值18,148k ∴=+解得318k =-,综上所述,2t =时,存在318k =-.3.(中考真题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =()②my (m 0)x=≠()③31y x =-()(2)若点()1,A m 与点(),4B n -关于x 的“H 函数”()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值或取值范围;(3)若关于x 的“H 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,②(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【详解】(1)①2y x =是“H 函数”②my (m 0)x=≠是“H 函数”③31y x =-不是“H 函数”;故答案为:√;√;×;(2)∵A,B 是“H 点”∴A,B 关于原点对称,∴m=4,n=1∴A(1,4),B (-1,-4)代入()20y ax bx c a =++≠,得44a b c a b c ++=⎧⎨-+=-⎩,解得40b ac =⎧⎨+=⎩,又∵该函数的对称轴始终位于直线2x =的右侧,∴-2b a >2,∴-42a >2,∴-1<a <0,∵a+c=0,∴0<c <1,综上,-1<a <0,b=4,0<c <1;(3)∵223y ax bx c =++是“H 函数”,∴设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩,解得ap 2+3c=0,2bp=q ,∵p 2>0,∴a,c 异号,∴ac <0,∵a+b+c=0,∴b=-a-c ,∵(2)(23)0c b a c b a +-++<,∴(2)(23)0c a c a c a c a -----+<,∴(2)(2)0c a c a -+<,∴c 2<4a 2,∴22c a<4,∴-2<c a <2,∴-2<c a <0,设t=c a ,则-2<t <0,设函数与x 轴的交点为(x 1,0)(x 2,0),∴x 1,x 2是方程223ax bx c ++=0的两根,∴12x x -=,又∵-2<t <0,∴2<12x x -<4.(2022春•芙蓉区校级期末)在y 关于x 的函数中,对于实数a ,b ,当a ≤x ≤b 且b =a +3时,函数y 有最大值y max ,最小值y min ,设h =y max ﹣y min ,则称h 为y 的“极差函数”(此函数为h 关于a 的函数);特别的,当h =y max ﹣y min 为一个常数(与a 无关)时,称y 有“极差常函数”.(1)判断下列函数是否有“极差常函数”?如果是,请在对应()内画“√”,如果不是,请在对应()内画“×”.①y =2x ();②y =﹣2x +2();③y =x 2().(2)y 关于x 的一次函数y =px +q ,它与两坐标轴围成的面积为1,且它有“极差常函数”h =3,求一次函数解析式;(3)若,当a ≤x ≤b (b =a +3)时,写出函数y =ax 2﹣bx +4的“极差函数”h ;并求4ah 的取值范围.【解答】解:(1)①∵y =2x 是一次函数,且y 随x 值的增大而增大,∴h =2(a +3)﹣2a =6,∴y =2x 是“极差常函数”,故答案为:√;②∵y =﹣2x +2是一次函数,且y 随x 值的增大而减小,∴h =﹣2a +2﹣[﹣2(a +3)+2]=6,∴y =﹣2x +2是“极差常函数”,故答案为:√;∵y =x 2是二次函数,函数的对称轴为直线x =0,当a +3≤0时,h =a 2﹣(a +3)2=﹣9﹣6a ;当a ≥0时,h =(a +3)2﹣a 2=9+6a ;∴y =x 2不是“极差常函数”,故答案为:×;(2)当x =0时,y =q ,∴函数与y 轴的交点为(0,q ),当y =0时,x =﹣,∴函数与x 轴的交点为(﹣,0),∴S =×|q |×|﹣|=1,∴=2,当p >0时,h =p (a +3)+q ﹣(pa +q )=3,∴p =1,∴q =±,∴函数的解析式为y =x ;当p <0时,h =pa +q ﹣[p (a +3)+q ]=3,∴p =﹣1,∴q =±,∴函数的解析式为y =﹣x;综上所述:函数的解析式为y =x 或y =﹣x;(3)y =ax 2﹣bx +4=a (x ﹣)2+4﹣,∴函数的对称轴为直线x =,∵b =a +3,∴x ==+,∵,∴≤+≤,≤a +3≤,∵(a +3﹣﹣)﹣(+﹣a )=2a +2﹣,∵,∴2a +2﹣>0,∴a +3到对称轴的距离,大于a 到对称轴的距离,∴当x =a +3时,y 有最大值a (a +3)2﹣(a +3)2+4,当x =时,y 有最小值4﹣=4﹣,∴h =a (a +3)2﹣(a +3)2+4﹣4+=(a +3)2(a ﹣1+),∴4ah =(2a 2+5a ﹣3)2,∵2a 2+5a ﹣3=2(a +)2﹣,,∴≤2a 2+5a ﹣3≤9,∴≤4ah ≤81.5.(雅实)若函数1y 、2y 满足12y y y =+,则称函数y 是1y 、2y 的“融合函数”.例如,一次函数121y x =+和二次函数2234y x x =+-,则1y 、2y 的“融合函数”为21253y y y x x =+=+-.(1)若反比例函数12y x=和一次函数23y kx =-,它们的“融合函数”过点()1,5,求k 的值;(2)若21y ax bx c =++为二次函数,且5a b c ++=,在x t =时取得最值,函数2y 为一次函数,且1y 、2y 的“融合函数”为224y x x =+-,当12x -≤≤时,求函数1y 的最小值(用含t 的式子表示);(3)若二次函数21y ax bx c =++与一次函数2y ax b =--,其中0a b c ++=且a b c >>,若它们的“融合函数”与x 轴交点为()1,0A x 、()2,0B x 12x -的取值范围.【解答】解:(1)由题意可得y 1、y 2的融合函数23y kx x=+-,将点()1,5代入,可得:523k =+-,解得6k =.(2)∵12y y y =+,∴()()2222124214y y y x x ax bx c a x b x c =-=+----=-+---,∵y 2为一次函数,∴20a -=,即2a =,∴212y x bx c =++在x =t 处取得最值,∴4bt =-,即4b t =-,∴5a b c ++=,即54234c t t =+-=+,∴212434y x tx t =-++,对称轴:x t =.①若1t ≤-时,即当1x =-时,min 58y t =+,②若12t -<<时,即当x t =时,2min 234y t t =-++,③若2t ≥时,即当2x =时,min 114y t =-.(3)y 1、y 2的融合函数()2y ax b a x c b =+-+-,∵与y 轴交于点()1,0A x 、()2,0B x ,∴12b a x x a -+=,12c b x x a -⋅=,∵12||x x a -==,又∵0a b c ++=,∴b a c =--,∴12x x ==,∵a b c >>∴a a c c >--<,∴122c a -<<-,当2ca=-时,12maxx x -=,当12c a =-时,12min32x x -=12x <-<.6.(立信)已知:抛物线1C :2y ax bx c =++(0a >).(1)若顶点坐标为(1,1),求b 和c 的值(用含a 的代数式表示);(2)当0c <时,求函数220221y ax bx c =-++-的最大值;(3)若不论m 为任何实数,直线()214m y m x =--与抛物线1C 有且只有一个公共点,求a ,b ,c 的值;此时,若1k x k ≤≤+时,抛物线1C 的最小值为k ,求k 的值.【解答】解:(1)∵抛物线的顶点坐标为(1,1),∴y =a (x ﹣1)2+1=ax 2﹣2ax +a +1,∴b =﹣2a ,c =a +1;(2)∵y =ax 2+bx +c ,a >0,c <0,∴Δ=b 2﹣4ac >0,∴抛物线y =ax 2+bx +c (a >0)与x 轴有两个交点,∴|ax2+bx+c|≥0,∴﹣2022|ax2+bx+c|≤0,∴﹣2022|ax2+bx+c|﹣1≤﹣1,∴函数y=﹣2022|ax2+bx+c|﹣1的最大值为﹣1;(3)∵直线与抛物线C1有且只有一个公共点,∴方程组只有一组解,∴ax2+(b﹣m)x++m+c=0有两个相等的实数根,∴Δ=0,∴(b﹣m)2﹣4a(+m+c)=0,整理得:(1﹣a)m2﹣2(2a+b)m+b2﹣4ac=0,∵不论m为任何实数,(1﹣a)m2﹣2(2a+b)m+b2﹣4ac =0恒成立,∴,∴a=1,b=﹣2,c=1.此时,抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的对称轴为直线x=1,开口向上,∵当k≤x≤k+1时,抛物线的最小值为k,∴分三种情况:k<0或0≤k≤1或k>1,①当k<0时,k+1<1,当k≤x≤k+1时,y随着x的增大而减小,则当x=k+1时,y的最小值为k,∴(k+1﹣1)2=k,解得:k=0或1,均不符合题意,舍去;②当0≤k≤1时,当x=1时,抛物线的最小值为0,∴k=0;③当k>1时,y随着x的增大而增大,则当x=k时,y的最小值为k,∴(k﹣1)2=k,解得:k=或,∵k>1,∴k=,综上所述,若k≤x≤k+1时,抛物线的最小值为k,k的值为0或.7.(长郡)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k (b﹣a),则称此函数为“k属和合函数”,例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)若一次函数y=kx﹣1(1≤x≤3)为“4属和合函数”,求k的值;(2)反比例函数kyx(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣x2+2ax+3,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.【详解】解:(1)当k >0时,y 随x 的增大而增大,∵1≤x ≤3,∴k ﹣1≤y ≤3k ﹣1,∵函数y =kx ﹣1(1≤x ≤3)为“k 属和合函数”,∴(3k ﹣1)﹣(k ﹣1)=4(3﹣1),∴k =4;当k <0时,y 随x 的增大而减小,∴3k ﹣1≤y ≤k ﹣1,∴(k ﹣1)﹣(3k ﹣1)=4(3﹣1),∴k =﹣4,综上所述,k 的值为4或﹣4;(2)∵反比例函数y =kx,k >0,∴在第一象限,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属和合函数”,∴k a ﹣kb=k (b ﹣a ),∴ab =1,∵a +b =3,∴(a ﹣b )2=(a +b )2﹣4ab =9﹣4=5,∴a ﹣b (3)∵二次函数y =﹣x 2+2ax +3的对称轴为直线x =a ,∵当﹣1≤x ≤1时,y 是“k 属和合函数”,∴当x =﹣1时,y =2﹣2a ,当x =1时,y =2+2a ,当x =a 时,y =a 2+3,①如图1,当a ≤﹣1时,当x =﹣1时,有y 最大值=2﹣2a ,当x =1时,有y 最小值=2+2a ∴(2﹣2a )﹣(2+2a )=k •[1﹣(﹣1)]=2k ,∴k =﹣2a ,而a ≤﹣1,∴k ≥2;②如图2,当﹣1<a ≤0时,当x =a 时,有y 最大值=a 2+3,当x =1时,有y 最小值=2+2a ,∴a 2+3﹣(2+2a )=2k ,∴k =2(1)2a -,∴12≤k <2;③如图3,当0<a ≤1时,当x =a 时,有y 最大值=a 2+3,当x =﹣1时,有y 最小值=2﹣2a ,∴a 2+3﹣(2﹣2a )=2k ,∴k =2(1)2a +,∴12<k ≤2;④如图4,当a >1时,当x =1时,有y 最大值=2+2a ,当x =﹣1时,有y 最小值=2﹣2a ,∴(2+2a )﹣(2﹣2a )=2k ,∴k =2a ,∴k >2.综上所述,当﹣1≤x ≤1时,y 是“k 属和合函数”,k 的取值范围为k ≥12.8.(师大附中博才)已知a 、b 是两个不相等的实数且a b <,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],.a b 对于一个函数,如果它的自变量x 与函数值y 满足:当a x b ≤≤时,有(ta y tb t ≤≤为正数),我们就称此函数是闭区间[],a b 上的“t 倍函数”.例如:正比例函数2y x =,当13x ≤≤时,26y ≤≤,则2y x =是13x ≤≤上的“2倍函数”.(1)已知反比例函数4yx=是闭区间[],m n 上的“2倍函数”,且m n +=22m n +的值;(2)①已知正比例函数y x =是闭区间[]1,2023上的“t 倍函数”,求t ;②一次函数()0y kx b k =+≠是闭区间[],m n 上的“2倍函数”,求此函数的解析式.(3)若二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,求实数a 、b 的值.【详解】(1)已知反比例函数4y x=是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,当x m =时,4y m =;当x n =时,4y n=,又40k => ,∴当0x >时,y 随x 的增大而减小,当0x <时,y随x 的增大而减小,42n m ∴=,且42m n=,24mn ∴=,又m n += ,()22222023m n m mn n ∴+=++=,2220232202342019m n mn ∴+=-=-=.(2)①已知正比例函数y x =,y 随x 的增大而增大,且当1x =时,1y =;当2023x =时,2023y =,∴当12023x ≤≤时,12023y ≤≤,y x ∴=是闭区间[]1,2023上的“1倍函数”,即1t =.② 一次函数0y kx b k =+≠()是闭区间[],m n 上的“2倍函数”,∴当m x n ≤≤时,22m y n ≤≤,若0k >时,y 随x 的增大而增大,∴当x m =,则2y km b m =+=;当x n =,则2y kn b n =+=,()()2m n k m n ∴-=-,2k ∴=,将2k =代入2km b m +=,得22m b m +=,0b ∴=.∴若0k >时,函数解析式为2y x =.若0k <时,y 随x 的增大而减小,∴当x m =时,2y km b n =+=;当x n =时,2y kn b m =+=,2k ∴=-,22b m n =+.∴若0k <时,函数解析式为()22y x m n =-++,综合以上分析,函数的解析式为2y x =或()22y x m n =-++.(3)由二次函数269y x x =--解析式可知,抛物线开口向上,对称轴3x =,∴当3x <时,y 随x 的增大而减小;当3x >时,y 随x 的增大而增大, 二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,∴当a x b ≤≤时,()770a y b a ≤≤≠,若3b ≤时,根据增减性,当x a =时,2697y a a b =--=;当x b =时,2697y b b a =--=,两式相减得:226677a b a b b a --+=-,()()a b a b b a ∴+-=-,1b a ∴=--,将1b a =--代入2697a a b --=得:220a a +-=,2a ∴=-或1a =,当2a =-时,1b =;当1a =时,2b =-(舍去,a b <).若3a ≥时,当x a =时,2697y a a a =--=,解得a =a =x b =时,2697y b b b =--=.解得132b =或b =均不符合a b <,舍去.若3a <,3b >时,当3x =时,236397y a =-⨯-=,187a ∴=-,则x a =时,26396949y a a =--=,若639749b =,6393343b =<,(舍去),当x b =时,2697y b b b =--=,则b =b =综上分析,2a =-,1b =或者187a =-,b =9.(长郡)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值的和叫做点P (x ,y )的勾股值,记为[]P x y =+.(1)已知点A (1,3),B (2-,4),C 22),直接写出[]A,[]B ,[]C 的值;(2)已知点D 是直线2y x =+上一点,且[]4D =,求点D 的坐标;(3)若抛物线21y ax bx =++与直线y x =只有一个交点M ,已知点M 在第一象限,且[]24M ≤≤.令2242022t b a =-+,试求t 的取值范围.【详解】(1)解:∵A (1,3),B (−2,4),C ),∴[A ]=|1|+|3|=4,[B ]=|-2|+|4|=6,[C ;(2)设D (m ,n ),∵D 是直线y =x +2上一点,且[D ]=4,∴42m n n m ⎧+⎨+⎩==,解得13m n =⎧⎨=⎩或31m n =-⎧⎨=-⎩,∴点D 的坐标(1,3)或(-3,-1);(3)由题意方程组21y x y ax bx =⎧⎨=++⎩只有一组实数解,消去y 得2(1)10ax b x +-+=,由题意224(1)40b ac b a -=--=,∴24(1)a b =-,∴方程可以化为()()2214140b x b x -+-+=,∴1221x x b ==-,∴22,11M b b ⎛⎫ ⎪--⎝⎭,∵[]24M ≤≤,∴2121b ≤≤-或2211b -≤≤--,解得10b -≤≤或23b ≤≤,∵点M 在第一象限,∴10b -≤≤,∵22222420222(1)202222021t b a b b b b =-+=--+=++=2(1)2020b ++,∵10b -≤≤,∴20202021t ≤≤.10.(雅礼)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=11b ab a≥⎧⎨-⎩,,<,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).(1)①点1)的限变点的坐标是;②在点A(-2,-1),B(-1,2)中有一个点是函数y=2x图象上某一个点的限变点,这个点是;(填“A”或“B”)(2)若点P在函数y=-x+3(-2≤x≤k,k>-2)的图象上,其限变点Q的纵坐标b′的取值范围是-5≤b′≤2,求k的取值范围;(3)若点P在关于x的二次函数y=x2-2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m-n,求s关于t的函数解析式及s的取值范围.【详解】(1)①根据限变点的定义可知点1)1);②(-1,-2)限变点为(-1,2),即这个点是点B.(2)依题意,y=-x+3(x≥-2)图象上的点P的限变点必在函数y=31321x xx x-+≥⎧⎨--≤⎩,,<的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=-2时,-2=-x+3.∴x=5.当b′=-5时,-5=x-3或-5=-x+3.∴x=-2或x=8.∵-5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.。
数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧(一)
数学中考压轴题题型及解题技巧
1. 单选题
•理解题意:仔细阅读题目,确保理解题目的要求和限制条件。
•画图辅助分析:针对几何题目,可以通过画图来帮助理解和解答问题。
•排除法:通过逐个排除选项,找出符合题目要求的答案。
2. 多选题
•筛选关键信息:将题目中的关键信息提取出来,对比选项中的信息,选择合适的答案。
•逻辑推理:通过逻辑分析,推断出哪些选项是肯定正确的,哪些是肯定错误的。
•试验法:将选项应用到一些具体的例子中进行试验,排除不符合题目要求的选项。
3. 填空题
•空中填数法:根据已知条件和问题要求,将空缺处需要填写的数进行逐步推导,不断试错,找出符合题目要求的答案。
•利用关系式:通过已知的关系式或者公式,将题目中的其他已知条件和空缺的部分进行联立,解方程求解空缺处的答案。
4. 解答题
•分析问题:对于解答题,首先要充分理解问题的要求和限制条件,有针对性地进行分析。
•简洁明了的表达:在解答问题时,要尽量用简洁明了的语言和符号,避免冗长和歧义。
•举例和论证:通过举例和论证来证明所给答案的正确性,增加解答的可信度。
5. 解题策略
•看清关键信息:题目中常常会有一些关键信息,通过仔细阅读题目,抓住这些关键信息来辅助解题。
•分析题目结构:将问题分解为更小的问题,并且对每个小问题进行分析和解答。
•多角度思考:尝试从不同的角度和方法来考虑问题,增加解题的灵活性和创造力。
通过以上的解题技巧和策略,在数学中考中解答压轴题将会更加
得心应手。
希望同学们能够充分理解和掌握这些技巧,取得好的成绩!。
初三数学压轴题解题技巧和方法
初三数学压轴题解题技巧和方法
1. 压轴题解题技巧
认真审题,弄清题意。
压轴题通常会给出含多个未知数的一元二次方程或
二元一次方程组,并伴随一些其他条件或限制。
首先,要明确题目要求解什么,以及给出的条件和限制是什么。
尝试化简方程或方程组。
如果方程或方程组较为复杂,尝试将其化简,以
便更容易找到解题思路。
寻找等量关系。
压轴题中通常会有一些等量关系,如面积、体积、角度等。
找到这些等量关系,可以帮助我们找到解题的突破口。
尝试使用代数方法。
对于一些压轴题,代数方法可能比较适用。
例如,通
过对方程进行变形、替换或解方程等,可以找到未知数的值。
画图分析。
对于一些几何压轴题,可以通过画图来帮助分析。
在画图的过
程中,可以更好地理解题目的条件和要求,从而找到解题思路。
2. 压轴题方法总结
代数法:通过对方程进行变形、替换或解方程等,找到未知数的值。
几何法:通过画图来帮助分析,更好地理解题目的条件和要求,从而找到
解题思路。
等量关系法:通过寻找等量关系,如面积、体积、角度等,找到解题的突
破口。
化简法:将复杂的方程或方程组化简,以便更容易找到解题思路。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路中考数学的压轴题是考试中比较难的部分,涉及的知识点较复杂,解题思路也比较灵活多变。
下面将介绍一些中考数学压轴题的常见类型与解题思路。
一、函数与方程1. 函数的性质与图像:需要理解函数的性质,如函数的单调性、奇偶性、周期性等,以及函数的图像特征,如顶点、焦点、对称轴等。
解题思路是通过对函数的性质和图像进行分析,来确定问题的解。
2. 方程与不等式的解:需要运用方程的基本性质和不等式的特点,进行工整的计算和推理。
解题思路是将方程或不等式化简为标准形式,进行适当的转化和变形,然后通过移项、消元或配方等方法求得解。
二、几何与三角1. 几何图形的相似性:需要理解相似三角形和比例的概念,运用相似三角形的性质进行计算。
解题思路是利用相似三角形的对应边比例相等的特点,建立相应的方程求解。
2. 几何图形的面积与体积:需要掌握各种几何图形的计算公式,以及体积与表面积的计算方法。
解题思路是根据题目所给的条件,建立相应的方程或等式,代入计算公式,求出问题的解。
三、统计与概率1. 统计图表的分析与计算:需要对柱状图、折线图、饼图等进行分析和计算,了解统计图表的含义和数据的规律。
解题思路是根据统计图表上的数据,进行适当的计算和推理,得出问题的解。
2. 概率与事件的计算:需要理解概率的概念和计算方法,以及事件之间的关系和概率的性质。
解题思路是根据事件的定义和已知的概率,利用概率的加法和乘法原理进行计算,求得问题的解。
四、函数与推理2. 推理与判断题:需要根据已知条件进行推理和判断,运用逻辑和数学思维进行推理和计算。
解题思路是根据问题的条件,进行合理的分析和推理,得出问题的解。
中考数学压轴题的解题思路主要是通过对问题的分析和计算,根据已知条件进行适当的推理和计算,得出问题的解。
需要学生灵活运用各种数学方法和知识点,培养逻辑思维和推理能力,从而解决复杂的数学问题。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路中考数学压轴题在考查学生掌握知识点的同时,也更加强调解题的能力和思维能力。
因此,学生在备考中要注重掌握解题思路和方法,下面是中考数学压轴题常见类型和解题思路。
一、函数题型函数题型是中考数学压轴题中常见的一种类型。
其中,常见的函数类型有:1.一次函数一次函数的数学表达式为 y=kx+b,其中,k,b为常数,x,y分别为自变量和因变量。
解题思路:① 分析已知条件,列出方程;② 解方程得出未知量;③ 进行数据检验,判断解的可行性。
① 判断二次函数的开口方向;③ 运用二次函数的性质求出未知量。
3.反比例函数二、几何题型中考数学压轴题中的几何题型,主要涵盖了线段、角、平面图形等内容。
其中常见的几何题型有:1.线段长度的问题线段长度的计算方法主要包括勾股定理、相似三角形等。
① 画图,确定已知和未知量;② 运用勾股定理、相似三角形或者其他方法计算出未知量。
2.平面图形的问题平面图形的问题主要包括面积、周长、对边、对角线等。
② 运用平面图形相关的公式计算出未知量。
3.角度问题角度问题主要包括计算角度、判断直角的方法等。
三、整式的问题整式的问题主要是运用多项式的性质来解题,常见的整式问题有:1.整式的因式分解① 分析多项式的类型,确定因式分解的方法;② 进行因式分解;③ 检验分解的正确性。
2.整式的求和① 使用数学归纳法或其他方法推导公式;② 将已知数据代入公式计算出未知量。
以上就是中考数学压轴题常见类型和解题思路,希望对大家备考有所帮助。
中考数学压轴题题型解题思路技巧
中考数学压轴题题型解题思路技巧中考数学压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性。
其中,函数型综合题和几何型综合题是常见的题型。
对于函数型综合题,首先需要求出函数的解析式,然后根据图形的研究求出点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,而求点的坐标则可运用几何法或代数法。
对于几何型综合题,先给定几何图形,根据已知条件进行计算。
然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
关键是列出包含自变量和因变量之间的等量关系,变形写成y=f(x)的形式。
寻找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置和根据解析式求解。
解中考压轴题的思路是,以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法,如运用函数与方程思想、分类讨论的思想和转化的数学思想。
在解中考压轴题时,需要注意分离为相对独立而又单一的知识或方法组块去思考和探究。
此外,要运用数学思想方法,对问题的条件或结论的多变性进行考察和探究,由已知向未知、由复杂向简单的转换。
这样才能更好地解决中考数学压轴题。
首先,我们需要全面了解自己的数学研究状况,以便在考试时准确定位重点,避免因为芝麻大题而失去西瓜。
因此,我们应该在心中为压轴题或难点设置时间限制,如果超过设定的时间限制,必须停下来,认真检查前面的题目,尽可能保证选择和填空题的正确性,同时检查前面的解答题。
二是要注意自己的心态,保持冷静。
在考试中,我们往往会因为一道题目而失去整个试卷的信心。
因此,我们应该学会控制自己的情绪,保持冷静和清醒的头脑,避免因为一道题目而影响整个考试的表现。
中考数学压轴题解题技巧
中考数学压轴题解题技巧希望能帮到大家。
中考数学压轴题解题技巧填空题——“直扑结果”题型特点:填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。
对考生独立思考和求解,在能力要求上会高一些。
长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。
其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。
当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中。
否则,试题的区分度差,其考试的信度和效度都难以得到保证。
这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。
解题策略:由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路中考数学作为中学阶段的一项重要考试科目,对学生的数学能力和思维能力有着很高的要求。
而数学压轴题更是中考数学中的难点,它涉及的知识点更加综合,题型更加复杂,让很多学生望而生畏。
下面我们就来看一看中考数学压轴题的常见类型与解题思路。
一、常见类型1. 几何题几何题在中考数学中占有很大的比重,而且很多考生对于几何题的理解和应用能力较弱。
几何题涉及到的知识点包括:相似三角形、直角三角形、等腰三角形、正多边形等。
题目类型有:相似三角形的判定、证明、应用;平行线的性质与应用;圆的性质与应用等。
2. 代数方程题代数方程题也是中考数学中的常见类型,对于代数方程的解题能力也是一个学生的基本功。
考生需要掌握一元一次方程和一元二次方程的解法,以及应用方程进行实际问题求解的能力。
常见的题型有一元一次方程或不等式的运算、方式转化、实际问题转化方程、解方程或不等式等。
3. 统计与概率题统计与概率题在中考数学中也是一个很重要的考察点。
涉及到的知识点有频数、频率、统计图、概率等。
考生需要能够正确理解和运用统计数据和概率概念,并能应用到实际问题中。
统计与概率题的常见类型包括统计图的制作与分析、概率计算、实际问题的概率计算等。
二、解题思路在解几何题时,首先要明确题目中所涉及到的几何知识点和几何关系,特别要注意题目中的条件和所求的结论。
根据题目所给的条件进行分析,采用合适的方法解题。
灵活运用相似三角形、等角、平行线等几何性质来解题,掌握作图的技巧和方法,辅助理解和解决几何问题。
在解代数方程题时,首先要根据题目的要求,分析出所涉及到的未知数和方程式。
对于一元一次方程,可以采用逆运算的方法解方程,得出未知数的具体数值。
对于一元二次方程,可以采用求根公式或配方法解方程,注意根据实际问题进行条件式转化和求解。
在解统计与概率题时,首先要正确理解题目中的统计数据和概率概念,并明确所涉及到的统计图表和概率计算。
根据题目的要求和条件进行分析,采用适当的统计方法和概率计算方法进行求解。
中考数学压轴题的常见类型与解题思路
中考数学压轴题的常见类型与解题思路在中考数学考试中,压轴题通常是考察学生对于数学知识的综合运用能力和解决问题的能力。
为了顺利应对中考数学压轴题,学生需要熟悉并掌握一些常见类型的题目及其解题思路。
接下来,我们将介绍一些中考数学压轴题的常见类型及其解题思路。
一、解析几何题解析几何题是中考数学压轴题中的常见类型。
解析几何题通常考察学生的逻辑推理能力和空间想象能力。
解析几何题主要包括平面几何和空间几何两个部分。
对于平面几何题,学生需要掌握几何图形的性质和运用几何定理进行证明的方法。
在解析平面几何题时,学生需要先画图,然后根据已知条件和问题要求进行运用相关几何定理进行论证。
解析几何题的解题思路主要是明确已知条件和问题要求,画图,应用几何定理进行论证。
二、代数方程题代数方程题是中考数学压轴题中的重点考察内容。
代数方程题主要考察学生对代数方程的建立和求解能力。
在解析代数方程题时,学生需要根据问题条件建立代数方程,然后根据方程的性质和解题的目的进行求解。
在此过程中,学生需要运用代数方程的基本性质和解方程的基本方法进行推导和计算。
解析代数方程题的解题思路主要是建立方程,根据方程性质进行推导和求解。
三、概率统计题概率统计题是中考数学压轴题中的常见类型。
概率统计题主要考察学生对概率与统计知识的理解和运用能力。
解析概率统计题的解题思路主要是确定事件的概率计算方法和统计图表的分析方法,进行数据的处理和分析。
四、数量关系题在解析数量关系题时,学生需要根据数量关系进行推导和计算。
在此过程中,学生需要通过分析数量关系进行数据的整合和运算,最终得出结论。
五、综合题综合题是中考数学压轴题中的综合性考察内容。
综合题通常涉及多个知识点并需要综合运用多种解题方法进行推导。
解析综合题的解题思路主要是整体分析问题,综合运用相关知识点和解题方法进行推导和计算。
中考数学压轴题的解题思路主要是明确已知条件和问题要求,运用相关知识点和解题方法进行推导和计算,最终得出结论。
中考数学压轴题的技巧
中考数学压轴题的技巧中考数学作为关键的考试科目之一,一直是各位考生需要重点关注的科目,尤其是中考数学的压轴题更是任何一位考生不容错过的关键点,因为它往往占据了最后的几分。
那么在面对这些关键的压轴题时,我们该如何去应对呢?本文将会为大家介绍一些中考数学压轴题的解题技巧。
把握压轴题的特征首先,我们需要认识到压轴题的特点,这样才能更好地针对性地应对。
一般来说,压轴题有以下几个特点:•难度较大:这是压轴题最为显著的特点之一,一般来说,压轴题的难度普遍高于其他题目,是对考生能力的真正考验。
•层次比较复杂:压轴题的解题过程常常需要更加熟练的基本知识,同时也会考验考生的综合运用与推理能力,需要考生综合运用各种数学方法。
•针对性较强:压轴题的难度系数比较高,容易切中考试中考查的重点和难点。
在解答这些难度大、层次复杂、针对性强的压轴题时,需要考生更加谨慎细致,思路清晰,理解能力较强,运算能力熟练等多个方面的能力,而且还需要考虑时间限制。
技巧一:打好数学基础在考试前,为了做好压轴题,首先需要做好充分的复习与准备工作。
很多考生往往会忽视数学基础的打造,而直接投入到高难度的解题过程中,这无疑是错误的。
因为良好的数学基础可以极大地提高独立思考和综合运用的能力。
比如在初中数学中,我们需要从最基础明确概念开始入手,了解基本知识和规则。
通过刻意练习,我们可以逐渐加深对数学的理解,为后续解题打下坚实的基础。
技巧二:严谨的解题步骤对于数学压轴题,需要考生们有严谨、细心的解题步骤,规划自己的解题过程,充分利用好每一分时间。
具体来说,考生可以借助草稿纸,对问题进行分析和计算。
在解题过程中,需要注意以下几个方面:1. 理清解题思路解题前,首先需要理清思路,确定大概的解题思路和方向。
在解题过程中,也需要清楚每一步骤的所有具体操作和理由,做到思路清晰。
2. 合理利用时间在保证解题准确的前提下,需要合理安排好时间,尽量利用好每一分钟。
若一个问题比较复杂,可以放弃该问题,转而解决其他问题。
中考数学压轴题解题技巧江苏徐州
中考数学压轴题解题技巧数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。
压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。
先以20XX年河南中考数学压轴题为例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.这是一道函数型压轴题。
函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。
这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。
先从知识角度来分析:(1)通过观察图象可以发现,直线AD和x轴平行,直线AB和y轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为(4,8).知道了点A的坐标,加上已知条件点C的坐标,利用待定系数法很容易可以求出抛物线的解析式。
此问在本题中占3分,解决此问的关键在于:①多角度、全方位观察图形;②熟练掌握待定系数法求抛物线解析式。
(2)这是个动态的问题,解决动态问题的一个根本方法就是化动为静,动静结合。
先看第一小问,当t 为何值时,线段EG 最长?我们通过观察图形,很容易能够发现t 的变化,会导致点P 位置的变化,点P 位置的变化会引起点E 位置的变化,而E 点位置的变化直接决定了线段EF 位置和长度的变化,而线段EF 位置和长度的变化决定了线段EG 位置和长度的变化,我们看到,问题最终就是回归到线段EG 的长度之上。
试析中考数学压轴题中的数学思想及解题思路
试析中考数学压轴题中的数学思想及解题思路
中考数学压轴题是考试中最难的一道题,其难度和复杂程度相对于其他题目较高,需要考生具备一定的数学思想和解题思路才能够解答出来。
以下是对中考数学压轴题的数学思想及解题思路进行分析。
数学思想:
1. 数形结合的思想
数形结合是一种数学思想,指的是通过几何图形来解决数学问题。
在数学压轴题中,考生需要通过画图、构建模型等方式将问题转化成几何图形问题,然后再求解。
2. 数量关系的思想
数量关系是指数学中各种量之间的联系和变化规律。
在数学压轴题中,考生需要通过建立各种量之间的关系,从而解决问题。
3. 分析与综合的思想
分析与综合是人类思维的特点之一,指的是将一个整体拆分成几个部分,对每个部分进行分析,最后将各个部分综合起来,形成一个完整的结论。
在数学压轴题中,考生需要通过分析和综合,找到问题的本质和解决办法。
解题思路:
1. 理清题意
数学压轴题往往涉及多个概念和知识点,考生需要认真读题,理清题意,把握问题的核心和难点,避免在解题过程中出现误解。
2. 分析数据
在理清题意之后,考生需要分析数据,找到其中的规律和特点,将数据转化为数学模型或形式化表示,并用数学方法进行计算和分析。
4. 检查答案
最后,考生需要对答案进行检查,确保计算的准确性和解决方案的可行性。
在此过程中,考生需要回顾一遍题意,确认自己的计算步骤和结果是否符合题目要求。
综上所述,中考数学压轴题需要考生具备数形结合、数量关系、分析与综合等数学思想,并遵循理清题意、分析数据、综合分析、检查答案的解题思路,才能够完成高难度的数学问题。
苏教版初三数学解题思路与答题技巧
苏教版初三数学解题思路与答题技巧数学作为一门学科,对于初三阶段的学生来说,是相对较难的科目之一。
针对苏教版初三数学的解题思路与答题技巧,本文将从不同知识点展开,为学生们提供一些实用的指导。
一、整式与分式1. 整式的加减运算在进行整式的加减运算时,首先要进行合并同类项,即合并具有相同字母部分的项,并保留相应系数。
接着,按照字母的次数从高到低的顺序排列,并继续合并同类项,最终得到简化的结果。
2. 分式的加减运算对于分式的加减运算,首先要求出两个分母的最小公倍数,并进行通分。
通分后,将分子进行加减运算,并保持分母不变。
最后,将得到的结果化简,如果有可能,可以进行约分操作。
3. 分式的乘除运算在进行分式的乘法运算时,直接将分子与分母对应相乘,并对结果进行化简。
而在进行分式的除法运算时,将除法转化为乘法,即将被除数与除数的倒数相乘,然后进行化简。
二、方程与不等式1. 一元一次方程的解法对于形如ax + b = c 的一元一次方程,可以通过逆向运算的思路来求解。
首先,将常数项 b 移项,得到 ax = c - b。
接着,通过系数 a 的倒数乘以等式两边,即可得到方程的解 x = (c - b) / a。
2. 一元一次不等式的解法对于一元一次不等式 ax + b > c 或 ax + b < c,可以利用两边加减同一个数不改变不等关系的性质,将常数项 b 移项,得到 ax > c - b 或 ax < c - b。
接着,根据系数 a 的正负情况,确定不等式的符号,并求解出x 的取值范围。
3. 二元一次方程组的解法对于二元一次方程组,可以通过消元法或代入法来求解。
消元法是通过对方程组进行加减运算,消去其中一个未知数,从而得到另一个未知数的值,再代入到另一个方程中求解。
代入法则是通过将一个方程中的一个未知数表示为另一个未知数的函数,再代入到另一个方程中求解。
三、几何与三角函数1. 三角函数的基本关系在解三角函数相关题目时,需要熟悉三角函数的基本关系。
徐州市中考数学规律压轴选择题专题
一、规律问题数字变化类1.观察图中每一个正方形各顶点所标数字的规律,2 020应标在( )A .第504个正方形右上角顶点处B .第505个正方形右下角顶点处C .第505个正方形右上角顶点处D .第504个正方形右下角顶点处答案:B解析:B 【分析】观察可知,每个正方形标四个数字,从右上角的顶点开始,按照逆时针方向每四个正方形为一组依次循环,用2020除以4确定出所在的正方形的序号为505,再用505除以4确定出循环组的第几个正方形,然后确定出在正方形的位置,即可得解. 【详解】解:∵通过观察可知,第1个正方形的第一个数字标在正方形的右上角; 第2个正方形的第一个数字标在正方形的左上角; 第3个正方形的第一个数字标在正方形的左下角; 第4个正方形的第一个数字标在正方形的右下角; 第5个正方形的第一个数字标在正方形的右上角;∴依此类推,每四个正方形为一组依次循环 ∴20204505÷=,50541261÷=∴2020应标在第505个正方形的最后一个顶点,是第127个循环组的第1个正方形,在正方形的右下角,即,2020应标在第505个正方形右下角顶点处. 故选:B 【点睛】本题是对数字变化规律的考查,观察出数字的排列特点然后准确确定出2020所在的正方形以及所在循环组的序号是解题的关键.2.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .98答案:C解析:C 【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值.【详解】解:由题可得:222321,42,521=-==+……2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴== 79x y ∴+=故选C 【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键. 3.将正整数按下列规律排列数2在第二行第一列,与有序数对(2,1)对应;数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2015对应的有序数对为 A .(45,44)B .(45,12)C .(44,45)D .(45,11)答案:D解析:D 【详解】试题分析:根据所给数表可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2015在第45行,向右依次减小,∴2015所在的位置是第45行,第11列,其对应的有序数对为(45,11).故选D .考点:探寻规律.4.观察下面由正整数组成的数阵:照此规律,按从上到下、从左到右的顺序,第51行的第1个数是()A.2500 B.2501 C.2601 D.2602答案:B解析:B【分析】观察这个数列知,第n行的最后一个数是n2,第50行的最后一个数是502=2500,进而求出第51行的第1个数.【详解】由题意可知,第n行的最后一个数是n2,所以第50行的最后一个数是502=2500,第51行的第1个数是2500+1=2501,故选:B.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于发现第n行的最后一个数是n2的规律.---,…,从中取出三个相邻的数,若三个数5.一列数,按一定规律排列成:1,2,4,8,16的和为a,则这三个数中最大数与最小数的差为()A.a B.a C.2a D.2a答案:C解析:C【分析】根据数字规律,分三个数中两端为正中间为负和两端为负中间为正两种情况讨论,由三个相邻数的和是a,据题意列式即可求解.【详解】解:①当三个数中两端为正中间为负设相邻的三个数为n,-2n,4n由题意可得n-2n+4n=a,解得:a=3n此时三个数中最大数与最小数的差为:4n-(-2n)=6n=2a;②当三个数中两端为负中间为正设相邻的三个数为-n ,2n ,-4n 由题意可得-n+2n-4n=a ,解得:a=-3n此时三个数中最大数与最小数的差为:2n-(-4n)=6n=-2a ∴则这三个数中最大数与最小数的差为2a 故选:C 【点睛】此题主要考查数列的规律探索与运用,熟悉并会用代数式表示常见的数列是解题的关键. 6.为了求2310012222+++++的值.可令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,即231001*********+++++=-.仿照以上推理计算23202013333+++++的值是( )A .202031- B .202131-C .2020312-D .2021312-答案:D解析:D 【分析】令S =23202013333+++++,然后两边同时乘3,接下来按照例题的方法计算即可. 【详解】令S =23202013333+++++,则3S =2320213333++++,因此3S−S =202131-,所以2S =202131-.所以S =2021312-,故答案为:D . 【点睛】本题主要考查的是有理数的乘方,主要考查的同学们自主学习的能力,读懂例题是解题的关键.7.对点(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-;且规定()()11,,n n P x y P P x y -=⎡⎤⎣⎦(n 为大于1的整数).如()()12,33,1P =-,()()()()21111,21,23,12,4P P P P==-=⎡⎤⎣⎦,()()()()31211,21,22,46,2P P P P===-⎡⎤⎣⎦.则()20211,1P -=( ) A .()10100,2B .()10100,2-C .()10110,2D .()10110,2-答案:C解析:C 【分析】根据题目提供的变化规律,找到点的坐标的变化规律并按此规律求得()20211,1P -的值即可. 【详解】解:P1(1,-1)=(0,2),P2(1,-1)=(2,-2) P3(1,-1)=(0,4),P4(1,-1)=(4,-4) P5(1,-1)=(0,8),P6(1,-1)=(8,-8) …当n 为奇数时,Pn (1,-1)=(0,122n +),∴()20211,1P -应该等于()101102,.故选C . 【点睛】本题考查了数字的变化类问题,解题的关键是认真审题并从中找到正确的规律,并应用此规律解题.8.某种细胞开始有1个,1小时后分裂成2个,2小时分裂成4个,3小时后分裂成8个,按此规律,n 小时后细胞的个数超过1000个,n 的最小值是( ) A .9B .10C .500D .501答案:B解析:B 【分析】设经过n 个小时,然后根据有理数的乘方的定义列不等式,计算求出n 的最小值即可. 【详解】由题意得,21000n ≥, ∵92512=,1021024=, ∴n 的最小值是:10, 故选:B . 【点睛】本题考查了有理数的乘方,是基础题,熟记乘方的定义并列出不等式是解题的关键. 9.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( ) A .0B .1C .3D .7答案:A解析:A 【分析】观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字. 【详解】解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…, 发现规律:末位数字为:3,9,7,1,3,9,7,…, 每4个数一组循环, 所以2020÷4=505, 而3+9+7+1=20, 20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0. 故选:A . 【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律. 10.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( )A .2018B .2018-C .1009-D .1009答案:C解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n,然后把n 的值代入进行计算即可得解. 【详解】 解:123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=- 678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-, 故选择C 【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.二、规律问题算式变化类11.求1+2+22+23+…+22020的值,可令S =1+2+22+23+…+22020,则2S =2+22+23+24+…+22021,因此2S -S =22021-1.仿照以上推理,计算出1+2020+20202+20203+…+20202020的值为( )A .2020202012020-B .2021202012020-C .2021202012019-D .2020202012019-答案:C 【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①解析:C 【分析】由题意可知S = 1+2020+20202+20203+…+20202020①,可得到2020S =2020+20202+20203+…+20202020+20202021②,然后由②-①,就可求出S 的值. 【详解】解:设S = 1+2020+20202+20203+…+20202020① 则2020S =2020+20202+20203+…+20202020+20202021② 由②-①得: 2019S =20202021-1∴2021202012019S -=.故答案为:C . 【点晴】本题主要考查探索数与式的规律,有理数的加减混合运算. 12.已知2221114834441004A ⎛⎫=⨯++⋯+⎪---⎝⎭,根据()21111n 3n 44n 2n 2⎛⎫=-≥ ⎪--+⎝⎭,则与A 最接近的正整数是( ). A .18B .20C .24D .25答案:D 【分析】根据公式的特点把A 进行变形化简,故可求解. 【详解】 ∵ ∴ =≈12×2.0435=24.522≈25 故选:D . 【点睛】此题主要考查数的规律计算,解题的关键是运用已知解析:D 【分析】根据公式的特点把A 进行变形化简,故可求解. 【详解】 ∵()21111n 3n 44n 2n 2⎛⎫=-≥ ⎪--+⎝⎭∴2221114834441004A ⎛⎫=⨯++⋯+ ⎪---⎝⎭ =111111111484323244242410021002⎡⎤⎛⎫⎛⎫⎛⎫⨯-+-+⋯+-⎪ ⎪ ⎪⎢⎥-+-+-+⎝⎭⎝⎭⎝⎭⎣⎦1111111148145426498102⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-+⋯+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111111111121......234598567102⎛⎫=⨯++++++----- ⎪⎝⎭111111112123499100101102⎛⎫=⨯+++---- ⎪⎝⎭≈12×2.0435=24.522≈25 故选:D . 【点睛】此题主要考查数的规律计算,解题的关键是运用已知的运算公式变形求解.13.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(a+b )n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b )2=a 2+2ab+b 2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b )3=a 3+3a 2b+3ab 2+b 3展开式中各项的系数等等.根据上面的规律,请你猜想(a+b )7的展开式中所有系数的和是( ) A .2018B .512C .128D .64答案:C 【分析】仿照阅读材料中的方法将原式展开,求出系数之和即可. 【详解】解:根据题意得:(a+b )7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7, 系解析:C 【分析】仿照阅读材料中的方法将原式展开,求出系数之和即可. 【详解】解:根据题意得:(a +b )7=a 7+7a 6b +21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7, 系数之和为2×(1+7+21+35)=128, 故选:C . 【点睛】此题考查了完全平方公式,以及规律型:数字的变化类,弄清“杨辉三角”中系数的规律是解本题的关键. 14.计算:2222211111(1)(1)(1)...(1)(1)56799100-⨯-⨯-⨯⨯-⨯-的结果是( ) A .101200 B .101125C .101100D .1100答案:B 【分析】先根据平方差公式把每个括号内的式子分解因式,进一步计算乘法即得答案. 【详解】 解:原式= = = =. 故选:B . 【点睛】本题考查了多项式的因式分解和有理数的简便运算,属于常解析:B 【分析】先根据平方差公式把每个括号内的式子分解因式,进一步计算乘法即得答案.【详解】 解:原式=111111111111111111115566779999100100⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=46576898100991015566779999100100⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ =41015100⨯ =101125. 故选:B . 【点睛】本题考查了多项式的因式分解和有理数的简便运算,属于常考题型,熟练掌握分解因式的方法是解题关键.15.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图象,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3,…,按此规律操作下所得到的正方形n n n n A B C D 的面积是( )A .(92)n B .(92)n ﹣1 C .(32)n D .(32)n ﹣1 答案:B 【分析】根据正比例函数的性质得到,分别求出正方形的面积、正方形的面积,总结规律解答. 【详解】解:直线为正比例函数的图象, , ,正方形的面积,由勾股定理得,,,,正方形的面积,同解析:B【分析】根据正比例函数的性质得到1145D OA ∠=︒,分别求出正方形1111D C B A 的面积、正方形2222A B C D 的面积,总结规律解答.【详解】 解:直线l 为正比例函数y x =的图象,1145D OA ∴∠=︒,1111D A OA ∴==,∴正方形1111D C B A 的面积1191()2-==, 由勾股定理得,12OD =,1222D A =, 222322A B A O ∴==, ∴正方形2222A B C D 的面积2199()22-==, 同理,33392A D OA ==, ∴正方形3333ABCD 的面积31819()42-==, ⋯ 由规律可知,正方形n n n n A B C D 的面积19()2n -=, 故选:B .【点睛】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到1145D OA ∠=︒,正确找出规律是解题的关键.16.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=( )A .97×98×99B .98×99×100C .99×100×101D .100×101×102 答案:C【详解】试题分析:根据给出的式子得出一般性的规律,从而得到答案.考点:规律题解析:C【详解】试题分析:根据给出的式子得出一般性的规律,从而得到答案.考点:规律题17.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是103,则m 的值是( ) A .9 B .10 C .11 D .12答案:B【详解】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m 个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=313,n=1解析:B【详解】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3有m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=(1)(2)2m m -+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B .考点:规律型.18.已知1x ,2x ,⋯⋯2013x 均为正数,且满足122012232013()()M x x x x x x =++++++,122013232012()()N x x x x x x =++++++,则M 与N 之间的关系是( ) A .M >N B .M =N C .M <N D .无法确定 答案:A【详解】试题分析:依题意设=A ,设=BM=(A-x2013)×B ;N=A×(B-x2013)所以M-N=(A-x2013)×B- A×(B-x2013)="AB-B" x2013-AB+【详解】试题分析:依题意设122013x x x +++=A ,设232013x x x +++=BM=(A-x 2013)×B ;N=A×(B-x 2013)所以M-N=(A-x 2013)×B- A×(B-x 2013)="AB-B" x 2013-AB+ A x 2013=(A-B )x 2013易知A-B=x 1>0,x 2013>0.则M >N考点:多项式运算点评:本题难度中等,主要考查学生对多项式运算知识点的掌握.为中考常见题型,要求学生牢固掌握解题技巧.19.2020减去它的12,再减去余下的13,再减去余下的14,….依此类推,一直减到余下的12020,则最后剩下的数是( ) A .20202019 B .1 C .20192020 D .0答案:B【分析】根据题意,可列式2020×(1−)×(1−)×(1−)×…×(1−),先算括号里的减法,再约分即可.【详解】解:2020×(1−)×(1−)×(1−)×…×(1−)=2020×××解析:B【分析】根据题意,可列式2020×(1−12)×(1−13)×(1−14)×…×(1−12020),先算括号里的减法,再约分即可.【详解】解:2020×(1−12)×(1−13)×(1−14)×…×(1−12020)=2020×12×23×34…×20192020=1.故选:B .【点睛】此题考查有理数的混合运算,首先要根据题意列式,总结规律是解题的关键. 20.(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是( ) A .8 B .6 C .4 D .2 答案:B【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位【详解】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1=(22﹣1)•解析:B【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【详解】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1=(22﹣1)•(22+1)•(24+1)…(216+1)+1=(24﹣1)•(24+1)…(216+1)+1=232﹣1+1=232,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴原式计算结果的个位数字为6,故选:B.【点睛】本题主要考查了平方差公式的应用,准确计算是解题的关键.三、规律问题图形变化类21.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2015=()A.22013B.22014C.22015D.22016解析:B【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a 2=2a 1,a 3=4a 1=4,a 4=8a 1=8,a 5=16a 1,以此类推:a 2015=22014.故选B .【点睛】根据已知得出a 3=4a 1=4,a 4=8a 1=8,a 5=16a 1…进而发现解题规律22.如图,已知∠MON=30°,点123......A A A 、、在射线ON 上,点123......B B B 、、在射线OM 上,111OA A B =,12B A OM ⊥,222OA A B =,23B A OM ⊥,以此类推,若11OA =,则66A B 的长为( )A .6B .152C .32D .72964解析:C【分析】 根据等腰三角形的性质以及平行线的性质,=30MON ∠︒,111OA A B =,得到1=30∠︒,由12B A OM ⊥,得到1OA 的长度,进而得到22122A B B A =,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而得出答案.【详解】∵=30MON ∠︒,111OA A B =,12B A OM ⊥∴1=30∠︒,∴===60︒∠3∠4∠12,∵11OA =,∴111A B =,∴21121A B A A ==,∴22OA =,∵222OA A B =,∴22122A B B A =∵23B A OM ⊥,∴122334////B A B A B A∴1===30︒∠∠6∠7,==90︒∠5∠8∴3323324A B B A OA ===,∴331244A B B A ==,441288A B B A ==,55121616A B B A ==,以此类推:66123232A B B A ==.故选:C .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而发现规律是解题关键.23.如图,每一幅图中均含有若干个正方形,第①个图形中含有1个正方形,第②个图形中含有5个正方形,按此规律下去,则第⑥个图形含有正方形的个数是( )A .102B .91C .55D .31解析:B【分析】 观察发现,第①个图形有正方形的个数为1;第②个图形有正方形的个数为:1+4=5;第③个图形有正方形的个数为:1+4+9=14;…;第n 个图形有正方形的个数为:1+4+9+…+n 2,从而得到答案.【详解】解:观察发现:第①个图形含有正方形的个数为1,第②个图形含有正方形的个数为:1+4=5,第③个图形含有正方形的个数为:1+4+9=14,…第n 个图形含有正方形的个数为:1+4+9+…+n 2,∴第⑥个图形含有正方形的个数为:1+4+9+16+25+36=91,故选:B .【点睛】此题考查了图形的变化规律,解题的关键是仔细观察图形并找到规律,利用规律解决问题.24.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,…,按此规律,第5个图的蜂巢总数的个数是( )A .61B .62C .63D .65解析:A【分析】根据前几个图形,可以写出蜂巢的个数,从而可以发现蜂巢个数的变化规律,进而得到第五个图形中蜂巢总的个数,本题得以解决.【详解】解:由图可得,第一个图有1个蜂巢,第二个图有1+6×1=7个蜂巢,第三个图有1+6×1+6×2=19个蜂巢,…,则第五个图中蜂巢的总数为:1+6×1+6×2+6×3+6×4=61,故选:A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中蜂巢个数的变化规律,求出相应的图形中蜂巢总的个数.25.现有四条具有公共端点O 的射线OA OB OC OD 、、、,若点123,,P P P ,…,按如图所示规律排列,则点2021P 应该落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上解析:A【分析】 根据图形可以发现点的变化规律,从而可以得到点P 2021落在哪条射线上.【详解】解:由图可得,P 1到P 5顺时针,P 5到P 9逆时针,∵(2021-1)÷8=252…4,∴点P 2021落在OA 上,故选:A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答. 26.把黑色三角形按如图所示的规律拼成下列图案,其中第①个图案中有4个黑色三角形,第②图案有7个黑色三角形,第③个图案有10个黑色三角形,…,按此规律排列下去,则第⑥图案中黑色三角形的个数为( )A .16B .19C .31D .36解析:B【分析】观察图案发现第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;即可求解.【详解】解:第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;……第⑥个图案中黑色三角形的个数为13619+⨯=,故答案为:B .【点睛】本题考查图形的规律,观察图案找出规律是解题的关键.27.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ P Q PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+ 解析:B【分析】根据线段中点定义先求出P 1Q 1的长度,再由P 1Q 1的长度求出P 2Q 2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP 和AQ 的中点P 1,Q 1,∴P 1Q 1=AP 1-AQ 1 =12AP-12AQ =12(AP-AQ ) =12PQ =12×10 =5.∵线段AP 1和AQ 1的中点P 2,Q 2;∴P 2Q 2=AP 2-AQ 2 =12AP 1-12AQ 1 =12(AP 1-AQ 1) =12P 1 Q 1 =12×12×10 =212×10 =52. 发现规律:P n Q n =12n ×10 ∴P 1Q 1+P 2Q 2+…+P 11Q 11=12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212 ) =10(1-1112) =10-11102 故选:B .【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度. 28.携带着2公斤珍贵月壤的嫦娥五号返回器于2020年12月17日凌晨1时32分,降落在内蒙古市四子王旗,实现了中国版的“空间跳跃”.在科幻电影《银河护卫队》中,星际之间的穿梭往往靠宇宙飞船沿固定路径“空间跳跃”完成,如图所示,两个星球之间的路径只有一条,三个星际之间的路径有3条,四个星际之间的路径有6条,...,按此规律,则10个星际之间的路径有( )A .45条B .21条C .42条D .38条 解析:A【分析】设n 个星球之间的路径有a n 条(n 为正整数,且n≥2),观察图形,根据各图形中星球之间“空间跳跃”的路径的条数的变化,可得出变化规律“a n =12n (n-1)(n 为正整数,且n≥2)”,再代入n=10即可求出结论.【详解】解:设n 个星球之间的路径有a n 条(n 为正整数,且n≥2).观察图形,可知:a 2=12×2×1=1,a 3=12×3×2=3,a 4=12×4×3=6,…, ∴a n =12n (n-1)(n 为正整数,且n≥2), ∴a 10=12×10×9=45. 故选:A .【点睛】本题考查了规律型:图形的变化类,根据各图形中星球之间“空间跳跃”的路径的条数的变化,找出变化规律“a n =12n (n-1)(n 为正整数,且n≥2)”是解题的关键. 29.长度相同的木棒按一定规律拼搭图案,第1个需7根木棒,第2个需13根木棒,…,第11个需要木棒的个数为( )A .156B .157C .158D .159解析:B【分析】 分别求出每一个图形的木棒数,然后再找出一般规律求解即可.【详解】解:第1个图形共有7=1×(1+3)+3根木棒,第2个图形共有13=2×(2+3)+3根木棒,第3个图形共有21=3×(3+3)+3根木棒,第4个图形共有31=4×(4+3)+3根木棒,…第n 个图形共有n×(n+3)+3根木棒,第11个图形共有11×(11+3)+3=157根木棒,故选:B【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.30.如图,图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的12)后,得图③、④,…,记第n (n≥3)块纸板的周长为P n ,则P n -P n -1等于…( )A .112n -B .3-12nC .1-132n - D .132n -+212n -解析:A【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,然后周长相减即可得到规律,进行解答.【详解】解:P 1=1+1+1=3,P 2=1+1+12=52, P 3=1+1+14×3=114, P4=1+1+14×2+18×3=238, …∴P 3-P 2=114-52=211=42, P 4-P 3=238-114=311=82, ∴P n -P n -1=n-112, 故答案为:A .【点睛】 本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题解题技巧数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。
综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。
压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。
下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。
先以2009年河南中考数学压轴题为例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.这是一道函数型压轴题。
函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。
这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。
先从知识角度来分析:(1)通过观察图象可以发现,直线AD和x轴平行,直线AB和y轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为(4,8).知道了点A的坐标,加上已知条件点C的坐标,利用待定系数法很容易可以求出抛物线的解析式。
此问在本题中占3分,解决此问的关键在于:①多角度、全方位观察图形;②熟练掌握待定系数法求抛物线解析式。
(2)这是个动态的问题,解决动态问题的一个根本方法就是化动为静,动静结合。
先看第一小问,当t 为何值时,线段EG 最长?我们通过观察图形,很容易能够发现t 的变化,会导致点P 位置的变化,点P 位置的变化会引起点E 位置的变化,而E 点位置的变化直接决定了线段EF 位置和长度的变化,而线段EF 位置和长度的变化决定了线段EG 位置和长度的变化,我们看到,问题最终就是回归到线段EG 的长度之上。
如果把整个这个变化的过程当作是一个事件来看的话,事件的起因就是t 的变化,而事件的结果就是线段EG 的长度发生变化。
换句话说就是因为t 的变化导致线段EG 长度的变化。
那么我们就可以把这个变化过程中的t 当作自变量,线段EG 的长度就是t 的函数。
因此,求当t 为何值时,线段EG 最长?实际上就是求函数取最大值时自变量的值。
因此本问的关键就是如何求线段EG 长关于t 的函数。
而求线段EG 长关于t 的函数,实际上就是把t 看作是一个常数,求线段EG 的长。
通过观察图形,不难发现,求线段EG 的长,可以通过求点E 、G 的纵坐标求得,点E 的纵坐标可以通过点P 的纵坐标求得,点G 的纵坐标需要通过点E 的横坐标求得,而点E 的横坐标可以通过求线段PE 的长度求得。
思路如下图所示:解决此问的关键是:体会问题中涉及到的函数思想,利用数形结合的方法解决问题。
(3)在点P 、Q 运动的过程中,△CEQ 的形状不断在发生变化,如果△CEQ 是等腰三当t 为何值时,线段EG 最长?求线段EG 长关于t 的函数函数的观点求点E 和点G 的纵坐标坐标系中两点间距离求线段AP的长求点E的横坐标求线段PE的长角形,需要分三种情况进行讨论,即点C、E、G分别可能是等腰三角形顶角的顶点。
解决此问的关键是:体会△CEQ形状不断变化的特点,能够想到存在的情况可能有三种,然后分别去求三种情况所对应的t的值。
详细解题过程如下:解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8. …………………5分∴EG=-18t2+8-(8-t) =-18t2+t.∵-18<0,∴当t=4时,线段EG最长为2. …………………7分②共有三个时刻. …………………8分t1=163, t2=4013,t3=8525.…………………11分从技术角度来分析:①压轴题的出现是为了让参加中考的学生成绩更有区分度,所以并不是每一个同学都可以把压轴题完整地做出来的。
所以我们告诫所有参加中考的同学,不要一味地把时间都花在压轴题上,一定要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。
如果时间还有剩余,再静下心来攻克压轴题,这是技术方面的一个考虑。
②压轴题并不可怕,所以情绪上要积极自信,没有必要惊慌失措。
③就本题而言,如何才能让自己多拿一些分数呢?ⅰ)做一问是一问。
第一问对绝大多数同学来说,不是问题;第二问的两小问都有难度,但是细心的同学会发现第二小问和第一小问没有特别大的联系,因此如果第一小问不会解,切忌不可轻易放弃第二小问。
事实上中考有较多的压轴题并不是每一问之间都有联系。
ⅱ)过程会多少写多少,因为数学解答题是按步骤给分的,拿第二小问来说,大部分同学都知道有3个时刻,可是因为写不出来相应的t 值,因此就放弃不写了,殊不知,你只要回答有3个时刻就可以多得1分。
和2009河南中考压轴题类似的中考题有很多,多数情况下类似第二问会有这样的问题:记图形中的某个变化三角形的面积为s ,求s 关于t 的函数,并求当t 取何值时s 最大,s 最大值是多少?涉及到等腰三角形的讨论类似的情况有直角三角形的问题。
比如: (2009年济南中考题的最后一题的第三问)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(2009年辽宁朝阳中考题最后一题第二问)将ABO △沿着垂直于x 轴的线段CD 折叠,(点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合)如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为)0,(x ,CDE △与ABO △重叠部分的面积为S .i )试求出S 与x 之间的函数关系式(包括自变量x 的取值范围);ii )当x 为何值时,S 的面积最大?最大值是多少?iii )是否存在这样的点C ,使得ADE △为直角三角形?若存在,直接写出点C 的坐标;若不存在,请说明理由.再以2009年江西中考数学压轴题为例:如图1,在等腰梯形ABCD 中,BC AD //,E 是AB 的中点,过点E 作BC EF //交CD 于点F .6,4==BC AB ,∠ 60=B .(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作AB MN //交折线ADC 于点N ,连结PN ,设x EP =.①当点N 在线段AD 上时(如图2),⊿PMN 的形状是否发生改变?若不变,求出⊿PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使⊿PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.这是一道几何型压轴题。
常见的几何型压轴题以常见的三角形、四边形(如正方形、等腰梯形等)、圆等知识为考查重点,贯穿几何、代数及三角函数等知识,以证明题、计算题出现。
先从知识角度来分析:(1)求点到直线的距离,一般的方法就是过这个点向直线作垂线段,然后利用勾股定理或者是解直角三角形的方法求垂线段的长度。
(2)①通过观察点N 的不同位置,可以发现⊿PMN 的形状并不发生变化。
不需要说明理由,然后分别去求三角形的三边长,最终求出三角形的周长。
线段PM 的长实际上就是线段EG 的长,第一问已经求出来了,线段MN 的长就是线段AB 的长,问题复杂就复杂在求线段PN 的长上,求线段的长,我们最容易想到也是最常用的方法还是构造直角三角形,然后使用勾股定理,因此过点P P 作PH MN ⊥于H 。
②通过画草图,可以看A D EBFC图4(备用)A D EBFC图5(备用)A D E BFC图1 图2A D EBFC PNM 图3A D EBFCPN M到当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形。
和2009河南中考压轴题一样,PMN △为等腰三角形需要讨论三种情况。
详细解题过程如下:解:(1)如图1,过点E 作EG BC ⊥于点G . ···················· 1分∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··········· 2分 ∴22112132BG BE EG ===-=,.即点E 到BC 的距离为3. ····································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,3PM EG ==.同理4MN AB ==. ················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠. ∴1322PH PM ==. ∴2330cos =⋅=PM MH 则35422NH MN MH =-=-=.在Rt PNH △中,222253722PN NH PH ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭. ∴PMN △的周长=374PM PN MN ++=++. ······································ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 图1A D E BF CG图2A D E BF CPNMG H类似①,32MR =. ∴23MN MR ==. ··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分 当MP MN =时,如图4,这时3MC MN MP ===.此时,61353x EP GM ===--=-.当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠,∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴130tan =⋅=PM MC此时,6114x EP GM ===--=.综上所述,当2x =或4或()53-时,PMN △为等腰三角形.………………..10分从技术角度来分析基本同上,比如求PMN △的周长,即使算不出来线段PN 的长,最起码可以求出另外两边的长,只要形成过程,就会给分。