八年级数学竞赛题1
八年级数学竞赛题试卷
八年级数学竞赛题试卷一、选择题(每题5分,共30分)1. 若公式,公式,则公式的值为()A. 5B. 6C. 7D. 8解析:根据完全平方公式公式,已知公式,公式,则公式,所以答案是A。
2. 已知公式,则分式公式的值为()A. 公式B. 9C. 1D. 公式解析:由公式可得公式,即公式,公式。
将公式变形为公式,把公式代入可得:公式,所以答案是A。
3. 若关于公式的方程公式有增根,则公式的值为()A. -4或6B. -4或1C. 6或1D. -4或6或1解析:先将方程化为整式方程,方程两边同乘公式得:公式,公式,公式。
因为方程有增根,所以公式或公式。
当公式时,公式,公式,公式;当公式时,公式,公式,公式。
所以答案是A。
二、填空题(每题5分,共30分)1. 分解因式公式______。
解析:先提取公因式公式,再利用平方差公式,公式。
2. 若公式,则公式______。
解析:根据完全平方公式公式,已知公式,则公式,所以公式。
3. 已知公式是方程公式的一个根,则公式______。
解析:因为公式是方程公式的根,所以公式,即公式。
则公式。
三、解答题(每题20分,共40分)1. 先化简,再求值:公式,其中公式。
解析:化简原式:\[\begin{align}&(\frac{(x 1)^{2}}{(x + 1)(x 1)}+\frac{1}{x})\div\frac{1}{x + 1}\\ =&(\frac{x 1}{x + 1}+\frac{1}{x})\div\frac{1}{x + 1}\\=&(\frac{x(x 1)+(x + 1)}{x(x + 1)})\div\frac{1}{x + 1}\\=&\frac{x^{2}-x+x + 1}{x(x + 1)}\times(x + 1)\\=&\frac{x^{2}+1}{x}\end{align}\]当公式时,公式。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)
2020-2021学年浙江省八年级下学期数学竞赛卷1 一.选择题(共8小题)1.设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.0【解答】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2﹣4×1×4=b2﹣16=0,解得:b=4.故选:A.3.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.4.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.【解答】解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.5.如图正方形ABCD的顶点A在第二象限y=图象上,点B、点C分别在x轴、y轴负半轴上,点D在第一象限直线y=x的图象上,若S阴影=,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.6.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣20【解答】解:∵m是关于x的方程x2﹣2020x+1=0的根,∴m2﹣2020m+1=0,∴m2﹣2020m=﹣1,∴(m2﹣2020m+4)•(m2﹣2020m﹣5)=(﹣1+4)×(1﹣5)=﹣18.故选:B.8.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.二.填空题(共6小题)9.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围﹣3≤k<4且k≠.【解答】解:∵关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,∴,解得:﹣3≤k<4且k≠.故答案为:﹣3≤k<4且k≠.10.若<0,化简﹣﹣3的结果为﹣2x.【解答】解:由题意得,或,解得,﹣2<x<,则原式=|5﹣3x|﹣|x﹣2|﹣3=5﹣3x﹣2+x﹣3=﹣2x,故答案为:﹣2x.11.如图,双曲线y=(x>0)的图象上.△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,过B1作B1C⊥x轴于C,过B2作B2D⊥x轴于D,则点A n的坐标为(,0).【解答】解:∵点B1,B2在双曲线y=(x>0)的图象上,∴OC•B1C=3,∵△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,∴B1C=OC,∴OC=,∴OA1=2,∴;连接OB2,则OD•B2D=3,∵OD=OA1+A1D=2+,,∴∴,∴,同理可得,,…由上可知,.故答案为:(,0).12.P是正方形ABCD内一点,AB=5,P A=,PC=5,则PB=或2.【解答】解:如图所示,∴PB==或PB==2,故答案为:或2.13.已知x1,x2,x3,x4,x5为正整数,任取四个数求和,只能得到44,45,46,47这样四个结果,则这5个数的众数是11.【解答】解:根据题意,设这个重复的和为z,可得:(x1+x2+x3+x4+x5)×4=44+45+46+47+z,可得:z=46,可得五个数据之和为57,所以五个数据为:10,11,12,13,11,故答案为:1114.如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.三.解答题(共4小题)15.已知x﹣y=6,,求的值.【解答】解:∵x﹣y=6,∴,∴,∵+=•+•=(+)=9,∴,即,∴=(﹣)=×=4.16.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中的最大者的最小值;(2)求|a|+|b|+|c|的最小值.【解答】解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2﹣a,.于是b,c是一元二次方程的两实根,≥0,a3﹣4a2+4a﹣16≥0,(a2+4)(a﹣4)≥0.所以a≥4.又当a=4,b=c=﹣1时,满足题意.故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,由(1)知a≥4,故2a﹣2≥6,当a=4,b=c=﹣1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.17.如图,四边形ABCD是矩形,E是对角线BD上不同于B、D的任意一点,AF=BE,∠DAF=∠CBD.(1)求证:△ADF≌△BCE;(2)求证:四边形ABEF是平行四边形;(3)试确定当点E在什么位置时,四边形AEDF为菱形?并说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS);(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=90°,∴∠DBC=∠ADB,∵∠DAF=∠CBD,∴∠DAF=∠ADB,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形;(3)解:当E为BD的中点时,四边形AEDF变为菱形,理由如下:如图所示:∵E为BD的中点,∠BAD=90°,∴AE=BE=DE,∵AF=BE,AF∥BD,∴AF∥DE,AF=DE,AF=AE,∴四边形AEDF是平行四边形,∴四边形AEDF是菱形.18.请你利用直角坐标平面上任意两点(x1,y1),(x2,y2)间的距离公式d=解答下列问题:已知:反比例函数y=与正比例函数y=x的图象交于A,B两点(A在第一象限),点F1(﹣2,﹣2),F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=图象上的任意一点,记点P与F1,F2两点之间的距离之差d=|PF1﹣PF2|.(1)试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).(2)现请你在反比例函数y=第一象限内的分支上找一点P,使点P到F2(2,2)和点C(6,4)的距离之和最小,求点P的坐标.【解答】:解由y=和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(﹣,﹣),线段AB的长度=4.∵点P(x0,y0)是反比例函数y=图象上一点,∴y0=.∴PF1==||,PF2==||,∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.因此,无论点P的位置如何,线段AB的长度与d一定相等.由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2)由条件PF2=PF1﹣4,知PF2+PC=PF1+PC﹣4,由F1,﹣P,C三点共线时最小,此时可解得P(2,1).。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
八年级数学竞赛试卷(含答案)
八年级数学竞赛试卷(含答案) (满分:完卷时间:120分钟)一、选择题(每小题5分,共40分)1.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 2设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为【 】 A.M <N B.M >N C.M=N D .不能确定3.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187… 解答下列问题:3+32+33+34+…+32015的末位数字是【 】 A .0B .1C .3D .94.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是【 】A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-= 5.已知△ABC 中,AB=AC,高BD 、CE 交于点O,连接AO,则图中全等三角形的对数为【 】A .3B .4C .5D .6第5题图 第6题图6、如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是【 】A .4B .5C .6D .7 7、点(3,5)P -关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 8、下列四个命题中,真命题有( )① 两条直线被第三条直线所截,内错角相等.② 如果∠1和∠2是对顶角,那么∠1=∠2. ③ 三角形的一个外角大于任何一个内角. ④ 如果02>x ,那么0>x . A .1个 B .2个 C .3个 D .4个二、填空题(每小题5分,共40分)9.若532+y x b a 与x y b a 2425-是同类项,则XY= .10. 如图,直线l ∥m,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则 ∠1+∠2的度数为 .11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 . 12.已知2(25)1000a +=,则(15)(35)a a ++的值为 .13.计算1111111111234523456⎛⎫⎛⎫----++++ ⎪⎪⎝⎭⎝⎭1111111111234562345⎛⎫⎛⎫------+++ ⎪⎪⎝⎭⎝⎭的结果是 .14.如图,在△ABC 中,I 是三内角平分线的交点,∠BIC=130°,则∠A= .15.如图,钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A,则∠A 的度数是 .16、如图AB=AC,则数轴上点C 所表示的数为_____________题 号 1 2 3 4 5 6 7 8 答案题 号 9 10 11 12 13 14 15 16 答案OE D CA QP C B D第10题第14题图第15题图第16题图二、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值.19.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.ICBA20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.参考答案三、解答题(每小题10分,共40分)17.已知:3a=2,3b=6,3c=18,试确定a、b、c之间的数量关系.(2b=a+c)18.已知a=2015x+2014,b=2015x+2015,c=2015x+2016.求a2+b2+c2-ab-bc-ca的值=319.如图,△ABC是边长为6的等边三角形, P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.解法一:过P 作PE ∥QC则△AFP是等边三角形, ∵P 、Q 同时出发、速度相同,即BQ=AP∴BQ=PF∴△DBQ≌△DFP,∴BD=DF∵,∴BD=DF=FA=,∴AP=2.解法二: ∵P 、Q 同时同速出发,∴AQ=BQ设AP=BQ=x,则PC=6-x,QC=6+x 在Rt△QCP中,∠CQP=30°,∠C=60°∴∠CQP=90°∴QC=2PC,即6+x=2(6-x)∴x=2∴AP=2(2)由(1 )知BD=DF而△APF 是等边三角形,PE ⊥AF,∵AE=EF 又DE+(BD+AE)=AB=6,∴DE+(DF+EF)=6 ,即DE+DE=6∵DE=3 为定值,即DE 的长不变20.已知△ABC中,∠A:∠B:∠C=3:4:2,AD、BE是角平分线.求证:AB+BD=AE+BE.题号 1 2 3 4 5 6 7 8 答案 D B D D C A A A 题号9 10 11 12 13 14 15 16答案-2 4507 900 1/680°12°15AED CB证明:延长AB到F,使BF=BD,连DF,所以∠F=∠BDF因为∠ABC=80所以∠F=40°因为∠ACB=40度所以∠F=∠ACB,因为AD是平分线所以∠BAD=∠CAD又AD为公共边所以△ADF≌△ADC所以AF=AC因为AD是角平分线,所以∠CBE=∠ABC/2=40所以∠EBD=∠C所以BE=EC,所以BE+AE=EC+AE=AC=AF=AB+BF=AB+BD。
八年级上册数学竞赛试题
八年级上册数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1416B. πC. 0.33333D. √22. 如果a和b是两个实数,且a > b,那么下列哪个不等式是正确的?A. a + 1 > b + 1B. 3a > 3bC. a - b > 0D. 所有选项都是正确的3. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个4. 以下哪个是二次根式?A. √3xB. 3√xC. √x²D. √x/25. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5C. 7D. 86. 一个数的立方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个7. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π8. 下列哪个不是有理数?A. 1/2B. -3C. 0D. √39. 如果一个数的绝对值是5,那么这个数是?A. 5B. -5C. 5或-5D. 不存在10. 一个数的倒数是1/2,那么这个数是?A. 2B. 1/2D. 1/4二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是_________。
12. 一个数的绝对值是7,这个数可以是_________或_________。
13. 一个数的平方是25,这个数可以是_________或_________。
14. 一个数的立方是-64,这个数是_________。
15. 如果一个数的平方根是4,那么这个数是_________。
16. 一个数的倒数是2,那么这个数是_________。
17. 一个圆的直径是14,它的半径是_________。
18. 一个直角三角形的斜边是13,一条直角边是5,另一条直角边是_________。
19. 如果一个数的立方根是3,那么这个数是_________。
八年级数学竞赛试卷第1试及答案201305
初二数学竞赛试卷第1试一、填空题(第1--20题每题3分,第21-30题每题4分,共100分)1.若实数a,b,c满足abc=-2,a+b+c>O,则a,b,c中有个负数.2.设a△b=a2-2b,则(-2)△(3△4)的值为.3.如图,已知AB∥CD,MF⊥FG,∠AEM=50°,∠NHC=55°.则∠FGH的度数为.(第3题) (第4题)4.如图,把一个长26cm,宽14cm的长方形分成五块,其中两个大正方形和两个长方形分别全等.那么中间小正方形的面积是 cm。
.5.如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:(填序号).6.A、B、C、D四人做相互传花球游戏,第一次A传给其他三人中的任一人,第二次由拿到花球的人再传给其他三人中的任一人,第三次由拿到花球的人再传给其他三人中的任一人.则第三次花球传回A的概率等于.7.一个正方体六个面上分别写着“东”、“海”、“实”、“验”、“学”、“校”,如图是这个正方体的三种不同的摆法,则与“东”、“海”、“实”所在面相对的面上的字分别是.8.设a ,b 是正整数(a>b>5),以下列各组数为三角形的三边长:①a+3b,a+4b ,a+5b ;②a 2-b 2,2ab ,a 2+b 2;③a+b,a+5,b-2.则这样的三角形不可能是直角三角形的编号是 .9.已知关于x 的不等式mx-2≤O 的负整数解只有-1,-2,则m 的取值范围是 . 10.若关于x,y 方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解为⎩⎨⎧==65y x ,则方程组⎩⎨⎧=+=+222111435435c y b x a c y b x a 的解为 .11.如图,等腰三角形ABC 中,∠A=lOO °,CD 是△ABC 的角平分线,则BC 写成图中两条线段的和是:BC= + .(所填线段应是图中已有字母表示的线段)(第11题) (第12题)12.某校为了了解八年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试.将测试成绩整理后作出如下的条形统计图.已知跳绳次数不少于100次的同学占96%,从左到右第二组有12人,第一、二、三、四组的人数之比为2:4:17:15,如果这次测试的中位数是120次,那么这次测试中成绩为120次的学生至少有 人.(注:每组含最小值,不含最大值)13. 已知a-b=4,ab+m 2-6m+13=0,则ab+m 的值为 .14.已知a ,b,c 都是质数,且满足abc+a=85l ,则a+b+c 的值为 .15.有一边长为20 m 的等边AABC 的场地,一个机器人从边AB 上点P 出发,先由点P 沿 平行于BC 的方向运动到AC 边上的点P 1,再由P l 沿平行于AB 方向运动到BC 边上的点P 2,又由点P 2沿平行于AC 方向运动到AB 边上的点P ,……,一直按上述规律运动下去,则机器人至少要运动 m 才能回到点P . 16.计算:)20081100711006110051()20081200714131211(++++÷-++-+-= . 17.已知正整数x ,y 满足:y=128++x x ,则符合条件的x ,y 的值为 .18.如图,四边形ABCD 中,∠BAD=60°,∠BCD=30°,AB=AD ,BC=8cm ,CD=5cm ,则AC 的长为 cm .(第18题) (第19题) (第20题)19.一个七边形棋盘如图所示,7个项点顺序从0到6编号,称为七个格子,一枚棋子放在O 格.现在依顾时针移动这枚棋子,第一次移动l 格,第二次移动2格,……,第n 次移动n 格,则不停留棋子的格子的编号有 .20.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为 .21.已知△AB C 的三条高的长分别为kk k -++31,1232,61,则k 的取值范围是 . 22.已知:4321)4)(3)(2)(1(6+++++++=++++n dn c n b n a n n n n ,其中a,b,c,d 是常数, 则a+2b+3c+4d 的值为 .23.如图是某汽车维修公司的维修点环形分布图,公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件,在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40,45,54,6l件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次之和为.(注:n件配件从一个维修点调整到相邻维修点的调动件次为n)(第23题) (第24题)24.如图,四边形ABCD各顶点的坐标分别为A(0,0),B(5,O),C(3,6),D(-1,3),写出在如图10×10的正方形网格纸中,到AB和CD所在直线的距离相等的所有网格点P 的坐标:.25.有编号为A、B、C三个盒子,分别装有水果糖、奶糖、巧克力糖中的一种,将它们分给甲、乙、丙三位小客人.己知甲没有得到A盒;乙没有得到B盒,也没有得到奶糖;A盒中没有装水果糖,B盒中装着巧克力糖.则丙得到的盒子编号是,得到的糖是.26.某旅游团65人在快餐店就餐,该店备有9种菜,每份单价分别为1、2、3、4、5、6、7、8、9(元).该旅游团领队交代:每人可选不同的菜,但金额都正好是10元,且每种菜最多只能买一份.这样,该团成员中,购菜品种完全相同的至少有人.27.一个棱长为6厘米的立方体,把它切开成49个小立方体.小立方体的大小不必都相同,而小立方体的棱长以厘米作单位必须是整数.则切出的立方体棱长为2厘米的应有个.28.一个三角形有一内角为48°,如果经过其一个项点作直线能把其分成两个等腰三角形,那么它的最大内角可能是.29.用标有lg,2g,3g,25g,30g的砝码各一个,在某架无刻度的天平上称量重物.如果天平两端均可放置砝码,那么,该天平所能称出的不同克数(正整数的重物)至多有___________种.30.有三张点数不同的扑克牌,随意分给甲、乙、丙每人一张,然后收起来洗牌之后再分给他们,这样分了n次之后,三人累计的点数:甲为16,乙为11,丙为24,已知甲第一次得到的牌是其中点数最大的一张,则这三张牌的点数各是.(说明:扑克牌的点数与牌面上的数字相同,对于“A”、“K”、“Q”、“J”,它们的点数分别是l,13,12,11)参考答案及评分标准(第1~20题每题3分,第21~30题每题4分,共100分) 1.1; 2.2 3.15 4.36 5.② 6.927.验,校,学 (次序出错不给分)8.①③(只填对一个,给2分,有错误答案不给分) 9.321-<≤-m (只是“=”号写错给2分) 10.⎩⎨⎧==84y x 11.AD ,CD (只填对一条线段不给分)12.7(提示:第一组占4%,则第二组占8%,故总人数为150人,则中位数在第四组,且是从小到大排列的第75,76两个数的平均数,而本组的最小值为120,第70个数开始是120,因此120次至少有7个) 13.1- 14.5015.30m 或60m (只给出一个正确答案给2分,有错误答案不给分) 16.1 提示:)20081100711006110051()20081200714131211(++++÷-++-+-)20081100711006110051()]200814121(2200814131211[++++÷+++-+++++= )20081100711006110051()]100412111(200814131211[++++÷+++-+++++= )20081100711006110051(++++= )20081100711006110051(++++÷ =1 17.⎩⎨⎧==31y x ,⎩⎨⎧==22y x ,⎩⎨⎧==17y x (对一个给1分)18.8919.2,4,5 (提示:找出一个周期) 20.85提示:设未知的三块面积分别为z y x ,,(如图)则⎩⎨⎧++++=++++++=++65152050701550207065x y z z y x经消元得:85=y 21.2718<<-k 设三角形面积为S , 则三边长分别为S kS k S k 23,4123,26-++,则由构成三角形的条件,列不等式组,即得 22.0 提示:)4)(3)(2)(1(6++++n n n n =)3)(2(3)4)(1(3++-++n n n n=33234111+++-+-+n n n n 23.16 提示:设A 到B 调1x 件,B 到C 调2x 件,C 到D 调3x 件,D 到A 调4x 件, 这里若)4,23,1(=i x i 为负数,则表明调动方向改变。
初二数学竞赛模拟试题1
初二数学竞赛模拟试题(一)满分 120分 班级 姓名一、选择题(共10题,每题4分,共40分)。
1、已知2009222==-=+c b a ,且k c b a 2009=++,则k 的值为( )。
A 、41B 、4C 、41-D 、– 42、一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为x ,则x 的值为( )。
A 、82 B 、83 C 、80≤x ≤82 D 、82≤x ≤83 3、若012192=+-x x ,则441xx +等于( )。
A 、411B 、16121 C 、1689 D 、4274、使分式ax a x --1有意义的x 应满足的条件是( )。
A 、0≠xB 、)0(1≠≠a ax C 、0≠x 或)0(1≠≠a ax D 、0≠x 且)0(1≠≠a ax5、若关于x 的方程a x =--12有三个整数解,则a 的值为( )。
A 、0B 、1C 、2D 、36、如图,在ABC △中AB = AC ,D 点在AB 上,DE ⊥AC 于E ,EF ⊥BC 于F ,若︒=∠140BDE ,那么DEF ∠等于( )。
A 、55° B 、60° C 、65° D 、70°7、如图,已知边长为a 的正方形ABCD ,E 为AD 的中点,P 为CE 的中点,F 为BP 的中点,则△BFD 的面积是( )。
A 、281aB 、2161aC 、2321aD 、2641a8、一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )。
A 、2005 B 、2006 C 、2007 D 、2008(第6题)(第7题)9、小红用计算器求关于正整数a 、b 、c 的表达式a b c+的值。
八年级上册数学竞赛题试卷
一、选择题(每题5分,共25分)1. 下列各数中,正数是()A. -2.5B. -3.6C. -0.5D. 02. 已知a=2,b=-3,那么a²+b²的值是()A. 7B. 13C. 17D. 233. 下列各数中,有理数是()A. √9B. √16C. √25D. √-94. 已知x=3,y=-2,那么x+y的值是()A. 5B. 1C. -5D. -15. 下列各式中,分式是()A. 2xB. 3x+4C. 5/xD. x-1二、填空题(每题5分,共25分)6. 3/4的倒数是______。
7. 已知x²=16,那么x的值是______。
8. (-2)³的值是______。
9. 下列各数中,负数是______。
10. 2/3的平方根是______。
三、解答题(每题15分,共45分)11. (1)已知a=2,b=-3,求a²+b²的值。
(2)已知x²=9,求x的值。
12. 已知一元二次方程2x²-3x+1=0,求该方程的解。
13. 已知一元一次方程3x-5=2x+4,求x的值。
四、应用题(每题20分,共40分)14. 某班有男生x人,女生y人,已知男生人数是女生人数的2倍,求男生和女生人数之和。
15. 小明有若干个苹果,第一天吃了1/3,第二天又吃了2个,这时还剩12个苹果,求小明原来有多少个苹果。
答案:一、选择题1. C2. B3. C4. A5. C二、填空题6. 4/37. ±38. -89. -2 10. ±√6三、解答题11. (1)a²+b²=2²+(-3)²=4+9=13(2)x²=9,则x=±312. 2x²-3x+1=0x²-3/2x+1/2=0(x-1/2)²=0x-1/2=0x=1/213. 3x-5=2x+4x=9四、应用题14. 男生人数是女生人数的2倍,设女生人数为y,则男生人数为2y。
浙教版初二上数学竞赛试题(1—3章)
初二数学第一次竞赛试卷班级 姓名一、填空题(30分)1. 如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于 度. 2. 已知,11x x -=(x >0),则441x x-= . 3.在等腰三角形ABC 中,底角∠B=15°,腰长AB=10,则这个三角形的面积为____. 4.在正方形ABCD 中,点E 是BC 上的一定点,且BE =10,EC =14,点P 是BD 上的一动点,则PE +PC 的最小值是 .5.如图,在等腰三角形ABC 中,AB=AC ,顶角A=200,在边AB 上取 点D ,使AD=BC ,则∠BDC= .6.如图,已知三个边长相等的正方形相邻并排,求 ∠EBF+∠EBG= .二、选择题(30分)1、等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .30° B .30°或150°C . 120°或150° D .30°或120°或150°2、如图是一个立方体的表面展开图,已知立方体的每一个面上 都有一个实数,且相对面上的两数互为倒数,那么代数式b ca-的值等于( ) A 、43- B 、6- C 、43D 、63、在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是 ( ). (A )14 (B )4 (C )14或4 (D )以上都有可能4、已知四边形的四条边的长分别是m 、n 、p 、q ,且满足m 2+n 2+p 2+q 2=2mn+2pq.则这个四边形是 ( ) (A)平行四边形 (B)对角线互相垂直的四边形 (C)平行四边形或对角线互相垂直的四边形 (D)对角线相等的四边形5、已知20042005+=a x ,20052005+=a y ,20062005+=a z ,则xz yz xy z y x ---++222的值为 ( )A BD PE(第4题) A E F G H ADBC第5题A 、2B 、3C 、4D 、56、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形的周长为 ( )(A )d S d 22++ (B )d S d +-2 (C ))(22d S d ++ (D )d S d ++22 三、计算题(60分)1、如图,△ABC 中,∠ACB =90°,CD 为∠ACB 平分线,CH ⊥AB 于H ,若AD =P ,BD =q ,求CH 的长。
八年级数学竞赛专题训练试卷(一)整式与根式
八年级数学竞赛专题训练试卷(一)整式与根式一、选择题(每小题4分,共40分)1.若代数式3x 2-2x+6的值为8,则代数式2312x x -+的值为 ( ) (A)1 (B)2 (C)3 (D)42.若x ,y 为有理数,4y =,则xy 的值为 ( )(A)0 (B)12(C)2 (D)不能确定 3.已知1+x+x 2+x 3=0,则1+x+x 2 +x 3+…+x 2008的值为 ( )(A)0 (B)1 (C)-1 (D)20084.已知a >0,b >0= ( )(A)1 (B)2 (C)19115.设x =y =则x ,y 的大小关系是 ( )(A)x >y (B)x=y (C)x <y (D)不能确定6.= ( ) (A)1a a -(B)1a a - (C)1a a + (D)不能确定 7.已知x 2-5x+m 能被x -2整除,则m 的值为 ( )(A)4 (B)-6 (C)6 (D)78.根据:“(x -1)(x+1)=x 2-1,(x -1)(x 2 +x+1)=x 3-1,(x -1)(x 3+x 2 +x+1)=x 4-1,(x -1)(x 4+x 3+x 2+x+1)=x 5-1,…”的规律,求出2 2007+2 2006+2 2005+…+2 3+2 2+1的末位数字是 ( )(A)1 (B)3 (C)5 (D)79.设y=x 4-4x 3+8x 2-8x+8,其中x 为任意实数,则y 的取值范围是 ( )(A)一切实数 (B)一切正实数(C)一切大于或等于4的实数 (D)一切大于或等于5的实数10.已知实数x ,y 满足(2008x y =,则3x 2-2y 2 +3x -3y -2007的值为 ( )(A)-2008 (B)2008 (C)-1 (D)1二、填空题(每小题4分,共40分)11.多项式5x 2-4xy+y 2-8x+2025的最小值为________.12.已知x ,y 2690y y -+=.若axy -3x=y ,则a=________.13.计算:(1) =_________;=_________.14.若x 2-x -1=0,则-x 3+2x+2009的值等于_________.15.已知(x+1) 5=ax 5+bx 4+cx 3+dx 2+ex+f ,求下列各式的值:a+b+c+d+e+f=_________;b+c+d+e=__________;a+c+e=_________.16.已知a(a -1)=a 2-b -2,则222a b ab +-=__________. 17.正方形A 的周长比正方形B 的周长长96cm ,它们的面积相差960cm 2,这两个正方形的边长分别为__________和_________.18.设221a b -=221b c -=a 4+b 4+c 4-a 2b 2-b 2c 2-c 2 a 2=_______.19.已知x =,y =x 4+y 4值为_________. 20.已知a -b=4,ab+c 2+4=0,则a+b+c 的值为_________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)2122.在一次数学考试中,老师出了一道解方程组的题:2222010x y z xy yz zxx y z⎧++=++⎨++=⎩,小明认为老师出的题目有错,没办法解,因为只有两个方程,而有三个未知数.你同意小明的观点吗?若不同意,试一试解一下这个方程组.23.已知实数2x2y=x≠y,求x+y和xy的值.参考答案一、选择题1.B 2.C 3.B 4.B 5.A 6.B 7.C 8.C 9.D 10.D二、填空题11.∵原式=4x 2-4xy+y 2+x 2-8x+16+2009=(2x -y) 2+(x -4) 2+2009≥2009,∴多项式的最小值为2009.122690y y -+=,得()230y -=,∴3x+4=0且y -3=0,∴43x =-,代入axy=3x -y ,解得14a =.13.(1).(2)原式112==.14.解法一:-x 2+2x+2009=2008.解法二:由x 2-x -1=0,得x 2-x=1.∴原式=2008.15.(1)令x=1,即可得a+b+c+d+e+f=32; (2)比较两边系数,发现a=f=1,所以b+c+d+e=30;(3)再令x=-1,可得-a+b -c+d -e+f=0,与(1)中的结论相减再除以2,即可得a+c+e=16.16.由已知得,a 2-a=a 2-b -2,则a -b=2,()2221222a b ab a b +-=-=. 17.设A ,B 两个正方形的边长分别为x ,y(x >y),则由题意可得两个正方形的边长分别为32cm 和8cm . 18.原式=6.19.由已知得,2x =2y =x+y=4,xy=1.∴x 2+y 2=(x+y) 2-2xy=14,x 4+y 4=(x 2+y 2) 2-2x 2y 2=142-2=194.20.因为a=b+4,所以代入ab+c 2+4=0,得b(b+4)+c 2+4=0,即(b+2) 2+c 2=0,所以b=-2,c=0,所以a=2.故a+b+c=0.三、解答题21b =,则有b 2-a 2=2005=5×401.∵5,401均为质数,a ,b 是正整数. 解得a=1002或a=198.∴满足条件的正整数的和为1002+198=1200.22.由(1)×2,移项得2x 2+2y 2+2z 2-2xy -2yz -2zx=0,即(x -y) 2+(y -z) 2+(z -x) 2=0,所以x=y=z .又因为x+y+z=2010,所以x=y=z=670.23.将两等式相减得:())220x y y x --=,∵x ≠y ,∴x y +=将两等式相加得:)22x y x y ++=222x y +=.∴2xy =。
八年级上数学竞赛练习题1含答案
八年级(上)数学竞赛练习题(1)一、选择题1、设x 、y 、z 均为正实数,且满意z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( )A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、多数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(依次不肯定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、假如不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么合适这个不等式组的整数a 、b的有序数对(a 、b )共有( )A.17个B.64个C.72个D.81个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,如今A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开场,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、A.C.E.GB 、 A.C.FC 、 B.D.FD 、C.E.G 6、已知13x x-=,那么多项式3275x x x --+的值是( ) A .11 B .9 C .7 D .5 7、线段12y x a =-+(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为( )A .6B .8C .9D .108、已知四边形ABCD 为随意凸四边形,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,用S 、P 分别表示四边形ABCD 的面积和周长;S 1、P 1分别表示四边形EFGH 的面积和周长.设K =S S 1,K 1 = PP 1,则下面关于K 、K 1的说法正确的是( ). A .K 、K 1均为常值 B .K 为常值,K 1不为常值 C .K 不为常值,K 1为常值 D .K 、K 1均不为常值 二、填空题1、如图,△ABC 是一个等边三角形,它围着点P 旋转,可以与等边△ABD 重合,则这样的点P 有_______个。
八年级(上)竞赛数学试卷(含答案)
八年级(上)竞赛数学试卷(含答案)一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=度.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有个数据.9.若(x+2)2=64,则x=.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是三角形.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.8114.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.2218.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.119.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?参考答案与试题解析一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.【解答】解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】先根据“于x轴对称的点,横坐标相同,纵坐标互为相反数”求得a,b的值再求代数式的值.【解答】解:∵点A(a,2)、B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.【考点】等边三角形的性质.【分析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.【解答】解:作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB=BP=BC,∠DBP=∠DBC,BD=BD;∴△BDC≌△BDP,所以∠BPD=30°.故应填30°.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】本题要分两种情况解答:当BD在三角形内部以及当BD在三角形外部.再根据等腰三角形的性质进行解答.【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故答案是:30°或150°.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,﹣1)代入函数解析式即可求出k的值.【解答】解:将点(﹣2,﹣1)代入得:﹣1=﹣2k+2,解得:k=.故填.6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是98%.【考点】有理数的除法.【分析】合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,即有294件合格,根据合格率=合格产品÷总产品,得出结果.【解答】解:这批产品的合格率=÷300=294÷300=0.98.答:这批产品的合格率是98%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.【考点】代数式求值.【分析】令a=1,b=2,代入a◇b=,可求得k的值,进而根据运算法则可得出2◇3的值.【解答】解:令a=1,b=2,∴=1,k=7,∴2◇3==.故填:.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有60个数据.【考点】频数(率)分布表.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵一组数据中某一个数据的频数是12,频率是0.2,∴这个数据组中共有数据的个数=12÷0.2=60.9.若(x+2)2=64,则x=6或﹣10.【考点】平方根.【分析】依据平方根的定义可求得x+2的值,然后解关于x的一元一次方程即可.【解答】解:∵(x+2)2=64,∴x+2=±8.解得:x=6或x=﹣10.故答案为:6或﹣10.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=94°10′.【考点】全等三角形的性质.【分析】全等三角形的对应角相等,三角形内角和等于180°.所以∠C=180°﹣∠A﹣∠B,且∠C1=∠C,∠B=∠B′.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,∠B=∠B′,又∵∠C=180°﹣∠A﹣∠B=180°﹣∠A﹣∠B′=180°﹣35°25′﹣49°45′=94°50′.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“几个非负数相加,和为0,这几个非负数的值都为0”解出x、y、z的值,再根据勾股定理的逆定理判断三角形的类型.【解答】解:依题意得:x﹣13=0,y﹣12=0,z﹣5=0,∴x=13,y=12,z=5,∵x2=y2+z2,∴此三角形为直角三角形,故填直角.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为9【考点】规律型:数字的变化类.【分析】根据3的指数从1到4,末位数字从3,9,7,1进行循环,再用2010除以4得出余数,再写出32010个位数字.【解答】解:2010÷4=502…2,则32010个位数字为9,故答案为9.二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.81【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出=9的算术平方根.【解答】解:∵=32=9,∴的算术平方根是3.故选:B.14.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得已知点A(﹣3,a)是点B(3,﹣4)关于y轴对称的点的坐标,那么a=﹣4;则点A的坐标是(﹣3,﹣4),所以点A关于x轴对称的点的坐标是(﹣3,4).故选B.16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人【考点】频数与频率.【分析】根据频率、频数的关系:频率=,可得频数=频率×数据总和.【解答】解:根据题意,得0.3×60=18(人).故选B.17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.22【考点】加权平均数.【分析】本题是加权平均数,根据加权平均数的公式即可求解.【解答】解:平均数=12×+17×+25×=16.5.故选B.18.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形.【分析】过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.19.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A.20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m﹣3)=±8,∴m=7或﹣1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m﹣3)x+16中,2(m﹣3)=±8,解得:m=7或﹣1.故选:C.三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,解得,∴交点为A(2,5),令y=0,则2x+1=0,﹣x+7=0,解得x=﹣0.5,x=7,∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);(2)BC=7﹣(﹣0.5)=7.5,=×7.5×5=.∴S△ABC22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.【考点】频数(率)分布表.【分析】(1)根据频率、频数的关系,频率=,可依次计算出各组的频率;(2)观察图表,可得其中100m跑的成绩不低于15.55秒的有8人,进而求得其所占的比例.【解答】解:(1)样本容量为25,且已知各组的频数,则各组的频率分别为0.12,0.24,0.32,0.2,0.12.(2)观察图表可得:有8人100m跑的成绩不低于15.55秒,所占的比例为=0.32.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?【考点】一次函数的应用.【分析】(1)根据“甲厂费用=单价×数量+制版费;乙厂费用=单价×数量”,即可得出y甲、y乙关于x之间的函数关系式;(2)分别令y甲、y乙=2000,求出与之对应的x的值,比较后即可得出结论.【解答】解:(1)根据题意可知:y甲=0.2x+500;y乙=0.4x.(2)选甲印刷厂,理由如下:当y甲=2000时,有0.2x+500=2000,解得:x=7500;当y乙=2000时,有0.4x=2000,解得:x=5000.∵7500>5000,∴若三江职业中学拿出2000元材料印刷费,应该选取甲印刷厂.。
八年级数学竞赛模拟试题1
12、如图4,P为△ABC内部一点,使得∠PBC=30°,∠PBA=8°,且∠PAB=∠PAC =22°,求∠APC的度数
(图4)
13、为实现区域教育均衡发展,某市计划对某县A、B两类薄弱学校全部进行改造。
根据预算,共需资金1575万元,改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元。
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过5所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担。
若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案。
14、如图,已知等边△ABC,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形,点F始终在NE所在直线上。
(1)如图5,当点M在点B左侧时,试判断EN与MF有怎样的数量关系?(请直接写出结论,不需证明)。
(2)如图6。
当点M在BC边上,其他条件不变时,(1)的结论中EN与MF的数量关系是否仍然成立?请说明理由。
(图5)
(图6)。
八年级数学竞赛试题初中
八年级数学竞赛试题初中一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数可能是:A. 1B. -1C. 0D. 44. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π5. 以下哪个代数式是二次的?A. x + 2B. x^2 + 3xC. x^3D. x^26. 已知一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定7. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是多少?A. 24B. 36C. 48D. 528. 一个分数的分子和分母都乘以同一个数,这个分数的值会:A. 变大B. 变小C. 不变D. 无法确定9. 一个正数的倒数是:A. 它的平方B. 它的平方根C. 它的负数D. 它的倒数10. 以下哪个是完全平方数?A. 29B. 36C. 47D. 52二、填空题(每题4分,共20分)11. 一个数的立方根是它本身,这个数可能是______。
12. 一个数的绝对值是它本身,这个数可能是______。
13. 如果一个数的相反数是-5,那么这个数是______。
14. 一个数的平方是25,这个数可能是______。
15. 一个数的平方根是正数,这个数可能是______。
三、解答题(每题10分,共50分)16. 解方程:3x + 5 = 14。
17. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
18. 计算:(2x^2 - 3x + 1) / (x - 1) 的值,当x = 2时。
19. 一个长方形的长是20厘米,宽是10厘米,求它的周长和面积。
20. 一个数列的前五项是1, 2, 3, 5, 8,求第六项的值,并说明这个数列的规律。
八年级数学竞赛试题(含答案)-
CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。
2023-2024学年安徽省合肥市庐江县庐州学校八年级(上)第一次竞赛数学试卷+答案解析
2023-2024学年安徽省合肥市庐江县庐州学校八年级(上)第一次竞赛数学试卷一、选择题:本题共5小题,每小题12分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A. B. C. D.2.如图,是直角,是射线,则图中共有锐角()A.28个B.27个C.24个D.22个3.给出两列数:,3,5,7,…,2007;,6,11,16,…,2006,则同时出现在两列数中的数的个数为()A.201B.200C.199D.1984.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去5.在,,,这四个数中,最大的数是()A. B. C. D.二、填空题:本题共2小题,每小题10分,共20分。
6.已知,则______.7.如图,直线,是等边三角形,点A 在直线a 上,边BC 在直线b 上,把沿BC 方向平移BC 的一半得到如图①;继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是______.三、解答题:本题共3小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
8.本小题20分如图所示,若,则的度数是多少?已知三角形的三边长分别为a,b,c,化简:9.本小题25分动手操作,探究:探究一:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图,在中,DP、CP分别平分和,试探究与的数量关系.探究二:若将改为任意四边形ABCD呢?已知:如图,在四边形ABCD中,DP、CP分别平分和,试利用上述结论探究与的数量关系.写出说理过程探究三:若将上题中的四边形ABCD改为六边形图呢?请直接写出与的数量关系:______.10.本小题25分生活中的数学:如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是:______.小河的旁边有一个甲村庄如图2所示,现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:______.如图3所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度用两个字母表示线段这样做合适吗?请说出理由.答案和解析1.【答案】D【解析】【分析】考查了轴对称图形的知识,掌握轴对称图形的概念,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,进行判断即可.【解答】解:A、诚,不可以看作是轴对称图形,故本选项错误;B、信,不可以看作是轴对称图形,故本选项错误;C、友,不可以看作是轴对称图形,故本选项错误;D、善,可以看作是轴对称图形,故本选项正确.故选:2.【答案】B【解析】【分析】此题考查了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.分别以、……为一边,数出所有角,相加即可.【解答】解:以OA为一边的角有7个,以为一边的角有6个,…以为一边的角1个.共有角个去掉直角,还有27个.故选:3.【答案】A【解析】解:第二列数排列的规律是一奇一偶,,,,,第n个数为,由,解得,其中奇数由201个;故选:第一列数为连续的奇数,第二列中的奇数都在第一列的数中,找出有多少个奇数即可解答.此题主要利用数列中第n项公式解决问题,第一列数的第n项公式为,第二列数的第n项公式为4.【答案】C【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.5.【答案】C【解析】【分析】此题主要考查有理数的大小比较,考查幂的乘方,解题的关键是将四个数的指数化为相同,比较底数.分别把,,,这四个数化为,,,,比较它们的底数的大小即可求解.【解答】解:,,,这四个数分别化为,,,,而,,,,因为所以,则最大的数是故选6.【答案】64【解析】解:,,故答案是先根据已知可求,再把所求式子,化为底数是2的乘方形式,最后把的值代入计算即可.本题考查了同底数幂的乘法,幂的乘方与积的乘方,解题的关键是注意统一底数,以及注意指数的变化.7.【答案】400【解析】解:如图①是等边三角形,,,,,,是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:故答案为:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有2n个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.8.【答案】解:如图,过E作,过F作,过G作,过H作,,,,,,,,;的三边长分别是a、b、c,必须满足两边之和大于第三边,两边的差小于第三边,则,,,【解析】过E作,过F作,过G作,过H作,根据平行线的判定得出,根据平行线的性质得出即可;三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.本题考查了平行线的性质以及三角形三边关系,能灵活运用平行线的性质进行推理以及根据三角形三边的关系来判定绝对值内式子的正负是解此题的关键.9.【答案】【解析】解:探究一:、CP分别平分和,,,,,,,;探究二:、CP分别平分和,,,,,,,;探究三:六边形ABCDEF的内角和为:,、CP分别平分和,,,,,,,,即探究一:根据角平分线的定义可得,,然后根据三角形内角和定理列式整理即可得解;探究二:根据四边形的内角和定理表示出,然后同理探究二解答即可;探究三:根据六边形的内角和公式表示出,然后同理探究二解答即可.本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.10.【答案】解:三角形的稳定性;垂线段最短,,点M是BC的中点,,在和中,≌,,想知道M与F之间的距离,只需要测出线段ME的长度.【解析】【分析】本题主要考查了垂线段的性质,三角形的稳定性,以及全等三角形的应用,关键是掌握全等三角形,对应边相等.根据三角形的稳定性解答;根据垂线段最短解答;首先证明≌,根据全等三角形的性质可得【解答】解:一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形的稳定性;故答案为三角形的稳定性;过甲向AB做垂线,运用的原理是:垂线段最短;故答案为垂线段最短见答案.。
八年级数学竞赛试题及答案
八年级数学竞赛试题及答案1.将1、2、3、4、5这五个数字排成一排,使得最后一个数是奇数且其中任意连续三个数之和都能被这三个数中的第一个数整除。
求满足要求的排法数量。
答案:3种2.XXX沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。
假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车。
求发车间隔的时间。
答案:18分钟3.如图,在三角形ABC中,AB=7,AC=11,点M是BC 的中点,AD是∠BAC的平分线,MF∥AD。
求FC的长度。
答案:FC=54.已知0<a<1,且满足$\left\lfloor\frac{a+1}{2}\right\rfloor+\left\lfloor\frac{a+2}{3}\right\rfloor+\cdots+\left\lfloor\frac{a+29}{30}\right\rfloor=18$,求$\left\lfloor10a\right\rfloor$的值。
答案:25.XXX家电话号码原为六位数。
第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。
XXX发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍。
求XXX家原来的电话号码。
答案:6.在平面上有7个点,其中任意3个点都不在同一条直线上。
如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形。
7.设a、b、c均是不为0的实数,且满足$a^2-b^2=bc$及$b^2-c^2=ca$。
证明:$a^2-c^2=ab$。
8.如图,在凹四边形ABCD中,它的三个内角∠A、∠B、∠C均为45度。
E、F、G、H分别是边AB、BC、CD、DA的中点。
证明:四边形EFGH是正方形。
9.已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形。
八年级上册数学竞赛试卷
一、选择题(每题5分,共25分)1. 下列各数中,绝对值最小的是()A. -2B. -3C. -4D. 02. 已知等差数列{an}中,a1=2,d=3,则a10=()A. 30B. 33C. 36D. 393. 在直角坐标系中,点A(2,3)关于原点的对称点是()A. (-2,-3)B. (-2,3)C. (2,-3)D. (2,3)4. 已知函数f(x)=2x+1,若f(x)=7,则x=()A. 3B. 4C. 5D. 65. 已知一元二次方程x^2-5x+6=0的两个根为x1和x2,则x1+x2=()A. 5B. -5C. 6D. -6二、填空题(每题5分,共25分)6. 已知等比数列{an}中,a1=3,q=2,则a5=__________。
7. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB=__________。
8. 已知函数f(x)=x^2-2x+1,若f(x)=0,则x=__________。
9. 已知一元二次方程x^2-4x+3=0的两个根为x1和x2,则x1x2=__________。
10. 已知函数f(x)=x^2+2x+1,若f(x)=0,则x=__________。
三、解答题(每题10分,共30分)11. 已知等差数列{an}中,a1=2,d=3,求前n项和S_n。
12. 在直角坐标系中,点A(2,3),点B(-3,4),求线段AB的中点坐标。
13. 已知函数f(x)=2x+1,若f(x)=7,求x的值。
四、附加题(每题15分,共30分)14. 已知等比数列{an}中,a1=2,q=3,求前n项和S_n。
15. 已知一元二次方程x^2-5x+6=0的两个根为x1和x2,求x1^2+x2^2的值。
注意:本试卷满分100分,考试时间60分钟。
请将答案填写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学竞赛题1
一填空题
1、观察下列各式1×3=3而3=22-1,3×5=15而15=42-1,5×7=35而35=62-1,……,11×13=143而143=122-1;你猜想到的规律用只含一个字母n的式子表示出来是__ 。
2、a=2005x+2004,b=2005x+2005,c=2005x+2006,代数式a2+b2+c2-ab-bc-ca= 。
3、一个多边形的对角线的条数等于边数的5倍,则这个多边形是_____边形.
4、现有铁矿石73吨,计划用载重量分别为7吨和5吨的两种卡车一次运走,已知载重量7吨的卡车每台车的运费为65元,载重量5吨的卡车每台车运费为50元,则最省的运费是元。
5、100个数据分成5组,其中第一、二小组的频率之和等于0.11,第四、五小组的频率之和等于0.27,则第三小组的频数等于_______________。
6、甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对1题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是________。
7、在四边形ABCD中,如果要使对角线AC⊥BD,可添加条件(只需填写一个你认为适当的条件即可)。
8、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币___枚,第2堆有硬币____枚,第3堆有硬币_____枚.
9、盒子里有10个球,每个球上写有1~10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是_______。
10、传说古埃及人曾用“拉绳”的方法画直角,现有一根长24cm的绳子,请你利用它拉出一个周长为24cm的直角三角形,那么你拉出的直角三角形的三边的长度分别为_______________________,其中的道理是:_______________ 。
二选择题(每题5分,共50分)
11、在△ABC中,AC⊥BC,∠B=30º,CN、CM 三等分∠ACB,AN:NM:MB的值是()
(A)1:1:3 (B)1:1:2 (C)1:2:2 (D)1:2:3
12、若关于x的方程|2x-1|+a=0无解,|3x-5|+b=0只有一个解,|4x-3|+c=0有两个解,则a,b,c 的大小关系是()(A)a>b>c (B)b>c>a (C)b>a>c(D)a>c>b
13、在凸四边形ABCD中,AB=BC=BD,∠ABC=700,则∠ADC等于( )
(A)1450 (B)1500 (C)1550 (D)1600
14、x2+mx-10=(x+a)(x+b)a,b是整数则m值()
(A)3或9 (B)±3 (C)±9 (D)±3或±9
15、已知△ABC两边长a,b且a<b则这个△ABC周长L范围是()
A)3a<L<3b(B)2b<L<2(a+b)(C)2a+b<L<a+2b(D)2a-b<L<2b-a
16、△ABC三边长分别为a,b,c,a2+b2+c2=ab+bc+ca,则这个三角形一定是()
(A)不等边三角形(B)等边三角形(C)等腰三角形(D)任意三角形
17、设有一凸多边形,除去一个内角外,其他内角和是2570°,则该内角的度数是()(A)40°(B)90°(C)120 (D)130 °
18、已知三条线段的长分别是22、16、18,以其中两条为对角线,其余一条为一边,可画平行四边形的个数是()(A)0 (B)1 (C)2 (D)3
19、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算其中一台盈利20%,另一台亏本20%,则本次出售中商场()
(A)不赔不赚(B)赚160元(C)赚80元(D)赔80元
20、三角形内有八个点,每三个点能组成一个三角形,最多能组成不重叠的三角形的个数为()(A)15 (B)16(C)17 (D)18
三、解答题
21、某仓库有50件同一规格的某种集装箱,准备委托运输公司送到码头.运输公司有每次可装运一件、二件、三件这种集装箱的三种型号的货车,这三种型号的货车每次收费分别为120元、160元、180元.现要求安排20辆货车刚好一次装运完这些集装箱.问这三种型号的货车各需多少辆,有多少种安排方式?哪种安排方式所付的运费最少?最小运费是多少?
22、一个多边形的内角和是外角和的五分之一,这个多边形存在吗?若存在,是几边形?若不存在,请说明理由。
23、随着IT技术的普及,越来越多的学校开设了微机课.某初中计划拿出72万元购买电脑,由于团体购买,结果每台电脑的价格比计划降低了500元,因此实际支出了64万元.学校共买了多少台电脑?若每台电脑每天最多可使用4节课,这些电脑每天最多可供多少学生上微机课?(该校上微机课时规定为单人单机)
24、一个等腰三角形的周长是12,且三边长都是整数,则三角形的腰长是多少?
25、某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.
(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;
(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?
26、一个长方体盒子的长为16,宽为12,高为9。
在这个长方体下底部的顶点A有一只蚂蚁,它想吃到它上底面的对角顶点B的食物,需爬行的最短路程是多少?。