导数及其应用复习学案zst (2)
(推荐)高中数学选修2-2《导数及其应用》全章辅导学案(单元测试含答案)
选修2-2《导数及其应用》全章辅导学案第一章 导数及其应用1.1 变化率与导数自主探究学习1.平均变化率:变化率可用式子1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率。
若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆),则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212. 2.导数的概念从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,0000()()()limx f x x f x f x x∆→+∆-'=∆.3.几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,即0000()()()limx f x x f x f x k x∆→+∆-'==∆。
名师要点解析要点导学1.)(x f 的对于区间(a ,b )上任意点处都可导,则)(x f 在各点的导数也随x 的变化而变化,因而也是自变量x 的函数,该函数被称为)(x f 的导函数,记作)('x f .2.(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()limx f x f x f x x x ∆→-'=-.3. 求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程.4.在导数几何意义的应用过程中,应注意:切点),(00y x P 在曲线上,即)(00x f y =;②切点),(00y x P 也在切线上;③在切点处的切线斜率为)('0x f k =.5. 曲线在P 点处的切线与曲线过点P 的切线不是同一个概念:前者P 点为切点;后者P 点可能是切点也可能不.一般曲线的切线与曲线可以有两个以上的切点. 【经典例题】例1物体在地球上作自由落体运动时,下落距离212S gt =其中t 为经历的时间,29.8/g m s =,若 0(1)(1)limt S t S V t∆→+∆-=∆9.8/m s =,则下列说法正确的是【 】A. 0~1s 时间段内的速率为9.8/m sB. 在1~1+△ts 时间段内的速率为9.8/m sC. 在1s 末的速率为9.8/m sD. 若△t >0,则9.8/m s 是1~1+△ts 时段的速率;若△t <0,则9.8/m s 是1+△ts ~1时段的速率【分析】理解导数的概念,导数即为函数y =f (x )在x =x 0处的瞬时变化率,0(1)(1)limt S t S V t∆→+∆-=∆表示在1s 末的速率.【解】C .【点拨】本例旨在强化对导数意义的理解,0lim →∆t tS t S ∆-∆+)1()1(中的△t 可正可负【例2】(1)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数; (2)求曲线y =3x 2在点(1,3)处的切线方程。
【2019年整理】高三数学复习课导学案《导数及导数的应用》
高三数学复习课导学案《导数及导数的应用》学科:数学 课题:导数及导数的应用 (一) 编号:1.会用导数求函数的单调区间以及已知单调区间求参数范围2记住极值、极值点的定义并会用导数求函数的极值、最值3.提高规范意识和注重细节意识,从而提高“稳做会,求全对”的得分意识4.不断提高运用数形结合、分类讨论以及转化等思想的能力1记住导数的几何意义,求导公式(8个基本函数求导公式,导数的四则运算,复合函数如何求导)2回顾用导数求函数单调区间以及已知单调区间求参数范围的方法步骤3 回顾极值、极值点的定义及用导数求极值、最值的方法步骤4结合一轮复习回顾导数部分常见题型及解题方法.)x (f .a x x )x ln(a )x (f x .的极值)求函数(的值)求(的一个极值点是函数已知21101362-++== 处取得极小值,则实数在函数 的单调递增区间为函数 )轴交点的纵坐标是( 处的切线与在点山东文)曲线==-=-=--+=m x )m x (x )x (f .x ln x y .y ),(P x y .(152215(D) 9(C) 3 (B)9(A)1211120111223 的单调递增区间是函数x x x )x (f .32132323++-=)内单调递减,则,在(若函数204423+-=ax x )x (f . 的取值范围是 a考点一 函数的单调性与导数例1 (2011年天津高考19(2))【求单调区间】已知函数 R x t x t tx x x f ∈-+-+=,1634)(223 其中t R ∈当0t ≠时,求()f x 的单调区间.变式训练:求f(x)的单调区间.例2 2011年青岛模拟考试(理21(2))【已知单调区间求参数范围】 ),0)(2)((6)(1'≠-+=t t x t x t x f 若[].)x (f 上的单调性,在讨论21),0)(2)((6)(2'>-+=t t x t x t x f 若 已知函数),x ('f )x ln()x (g ,x ax x )x (f -++=++-=31323223问: 是否存在实数 使得 在 上单调递增,若存在求实数 的取值范围;若不存在请说明理由.考点二 函数的极值、最值与导数例3的取值范围? 个交点,求的图像有与函数若直线的极值求函数的值求的一个极值点是函数已知b )x (f b y )x (f a x x )x ln(a )x (f x 3(3)(2)(1)10132=-++==思考:若方程0101162=--++b x x )x ln(有三个不同实根,该如何求b 的取值范围?a )x (g ⎪⎭⎫ ⎝⎛+∞-,21a )x (g )x (f )x (F .m x x )x (g ,x ln a x )x (f -=+-=-=令22(1)当 时,试求实数 的取值范围使得 的图像恒在 轴上方;(2)当 时,若函数 在 上恰有两个不同零点,求实数 的取值范围;(3)是否存在实数 的值,使函数 和函数 在定义域上具有相同的单调性?若存在求出 的值,若不存在请说明理由 .)(1,0+∞∈=x ,m a )x (F x 2=a )x (F [1,3]m a )x (f )x (g a的( )条件是则 )内单调递增,,在( 设q p m q mx x x x f p ,5:012ln )(:.12-≥∞++++= (A) 充分不必要 (B)必要不充分 (C)充分必要 (D)既不充分也不必要2. (2011年湖南高考)设直线x=t 与函数f(x)= x 2,g(x)=lnx 的图像分别交于M,N 点,则当MN 达到最小时t 的值为( ) (A )1 (B )21 (C )25(D )22 3. 已知4)2(2)(24-++-=x p px x f 在]3,-∞-(上为增函数,在)0,3[-上为减函数,则p=4 已知函数 ,常数 为实数(1)是否存在实数 使得 在区间 上单调递增恒成立,若存在求出 的取值范围,若不存在请说明理由; (2)求函数 的单调递增区间B 组(选): 5)x (a )x ln(x )x (f 11+-+=a a )x (f [)+∞,1a x ax )x ('f )x (g +-=1121(2)(1)010212-+>=>+-=)a ln()a (g ),a (g )x (f )x (f b a )('f )a (bx ax x ln )x (f 试证明不等式的最大值为设函数的单调区间,并求的代数式表示试用含有且已知函数。
最新人教版高中数学选修2-2第一章《导数及其应用复习》示范教案(第2课时)
第2课时教学目标知识与技能目标1.在复习巩固导数基础知识的基础上,进一步理解利用导数解决函数单调性、极值、最值等问题的处理方法.2.提高学生转化化归意识,体会导数在解决实际问题中的作用.过程与方法目标掌握利用导数解决问题的方法、规律,深化学生对导数知识的理解及把握.情感、态度与价值观培养学生的观察、分析问题的能力,以及转化、化归的数学思想,让学生学会用数学方法认识世界、改造世界.重点难点重点:巩固常见导数题型,并培养学生解决实际问题的能力.难点:运用导数知识解决有关问题的方法.教学过程典型示例类型一 求函数的导数例1函数y =x 3lnx +2x +cos2x -3e +sinπ的导数为________.思路分析:本题考查函数求导公式及导数运算法则,且搞清变量是x ,一般在不做任何说明的情况下,将x 视为变量.答案:y ′=3x 2lnx +x 2+2x ln2-2sin2x点评:本题一方面考查了导数求导公式及导数运算法则,另一方面学生容易出现诸如“(sinπ)′=cosπ”的错误,因此本题有助于帮助学生克服思维定势.变式练习1.函数y =e x +x 2cosx +lnx 的导数为__________.2.下列函数求导运算正确的是( )A .(x +1x )′=1+1x 2B .(log 2x)′=1xln2C .(3x )′=3x log 3eD .(x 2sinx)′=2xcosx答案:1.y ′=e x +2xcosx -x 2sinx +1x2.B 类型二 用导数研究函数的性质(单调性、极值和最值)例2设函数f(x)=ln(2x +3)+x 2,(1)讨论f(x)的单调性;(2)求f(x)在区间[-34,14]上的最大值和最小值. 思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的最值取决于函数的极值以及端点函数值的大小.解:f(x)的定义域为(-32,+∞). (1)f ′(x)=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3. 当-32<x<-1时,f ′(x)>0;当-1<x<-12时,f ′(x)<0;当x>-12时,f ′(x)>0.从而,f(x)在区间(-32,-1),(-12,+∞)上单调递增,在区间(-1,-12)上单调递减. (2)由(1)知f(x)在区间[-34,14]上的最小值为f(-12)=ln2+14. 又f(-34)-f(14)=ln 32+916-ln 72-116=ln 37+12=12(1-ln 499)<0. 所以f(x)在区间[-34,14]上的最大值为f(14)=116+ln 72. 点评:(1)对数形式的函数求导一定要注意定义域;(2)注意求闭区间上函数最值的基本方法.变式练习:设函数f(x)=x 3-3ax +b(a ≠0).(1)若曲线y =f(x)在点(2,f(x))处与直线y =8相切,求a ,b 的值;(2)求函数f(x)的单调区间与极值点.思路分析:本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.解:(1)f ′(x)=3x 2-3a ,∵曲线y =f(x)在点(2,f(x))处与直线y =8相切,∴⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8,即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.∴a =4,b =24. (2)∵f ′(x)=3(x 2-a)(a ≠0),当a<0时,f ′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点; 当a>0时,由f ′(x)=0,得x =±a.当x ∈(-∞,-a)时,f ′(x)>0,函数f(x)单调递增,当x ∈(-a ,a)时,f ′(x)<0,函数f(x)单调递减,当x ∈(a ,+∞)时,f ′(x)>0,函数f(x)单调递增.∴此时x =-a 是函数f(x)的极大值点,x =a 是函数f(x)的极小值点.类型三 不等式证明例3当x>0时,证明不等式e x >1+x +12x 2成立. 思路分析:在高中数学学习过程中,我们常遇到一些不等式的证明,看似简单,但却无从下手,很难找到切入点,几种常用的证法都一一尝试,却很难奏效.这时我们不妨变换一下思维角度,从所证不等式的结构和特点出发,结合自己已有知识,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明.用导数方法证明不等式,其步骤一般是:构造可导函数——研究单调性或最值——得出不等关系——整理得出结论.证明:设f(x)=e x -1-x -12x 2,则f ′(x)=e x -1-x. 令g(x)=e x -1-x ,则g ′(x)=e x -1.当x>0时,g ′(x)=e x -1>0.∴g(x)在(0,+∞)上单调递增,而g(0)=0.∴g(x)>g(0)=0.∴g(x)>0在(0,+∞)上恒成立,即f ′(x)>0在(0,+∞)上恒成立.∴f(x)在(0,+∞)上单调递增.又f(0)=0,∴e x -1-x -12x 2>0,即x>0时,e x >1+x +12x 2成立. 点评:利用导数知识证明不等式是导数应用的一个重要方面,也成为命题的一个新热点,其关键是构造合适的函数,通过构造函数转化为研究这个函数的单调性和区间端点值或最值问题,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式.变式练习:利用导数证明不等式lnx +1≤x 恒成立.解:设函数f(x)=lnx +1-x(x>0),则f ′(x)=1x-1,则0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0,故f(x)在(0,1)上为增函数,在(1,+∞)上为减函数,故f(x)≤f(1)=0,即lnx +1-x ≤0,即lnx +1≤x.点评:一般地,证明f(x)<g(x),x ∈(a ,b),可以构造函数F(x)=f(x)-g(x),如果F ′(x)<0,则F(x)在(a ,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x ∈(a ,b)时,有F(x)<0,即证明了f(x)<g(x).类型四 微积分基本定理及其应用例4(1)求∫21(1x+x +e x +cosx)dx 的值;(2)求∫2-24-x 2dx. 思路分析:(1)本题考查微积分基本定理,需结合导数公式记忆该定理.(2)本题若用微积分基本定理,不易求解,可考虑几何意义,即半径为2的半圆面积.解:(1)∫21(1x +x +e x +cosx)dx =(lnx +x 22+e x +sinx)|21=ln2+32+e 2-e +sin2-sin1. 点评:求导问题和求微积分问题可以看做互逆的两个过程,因此须牢记求导公式.(2)∫2-24-x 2dx =2π. 点评:对于某些比较难求的积分,可考虑其几何意义,数形结合.变式练习:1.求∫a -aa 2-x 2dx 的值,其中a>0. 2.求由y =1x,y =1,y =2,x =0所围成的图形的面积. 3.物体A 以速度v =6t +1在一直线上运动,同时物体B 在A 的正前方2米处以v =6t 的速度运动,两物体速度方向相同,两物体何时相遇?相遇处与物体A 的出发地距离是多少?答案:1.∫a -a a 2-x 2dx 几何意义为半径为a 的半圆的面积,故其值为πa 22. 2.本题以y 为变量较好,故面积S =∫211ydy =lny|21=ln2-ln1=ln2. 3.解:设在时刻t 0时相遇,则由题意,知∫t 00(6t +1)dt =2+∫t 006tdt ,∴(3t 2+t)|t 00=2+3t 2|t 00.∴3t 2+t =2+3t 2.∴t =2.相遇处与物体A 的出发地距离是s =∫20(6t +1)dt =(3t 2+t)|20=14(米).类型五 导数在实际问题中的应用例5某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格p(元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨的成本为R =50 000+200x(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入—成本)思路分析:建立利润函数,利用导数求其最值.解:每月生产x 吨时的利润为f(x)=(24 200-15x 2)x -(50 000+200x)=-15x 3+24 000x -50 000(x ≥0). 由f ′(x)=-35x 2+24 000=0,解得x 1=200,x 2=-200(舍去). 因为f(x)在[0,+∞)内只有一个点x =200使f ′(x)=0,故它就是最大值点,且最大值为f(200)=-15×(200)3+24 000×200-50 000=3 150 000(元). 答:每月生产200吨产品时利润达到最大,最大利润为315万元.点评:此题考查导数的实际应用,注意建立数学模型,将实际问题化为数学问题,最后一定要还原为实际问题来作答.变式练习:某厂生产某种产品的固定成本(固定投入)为2 500元.已知每生产x 件这样的产品需要再增加可变成本C(x)=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?解:设生产x 件产品的利润为L(x)元,则L(x)=500x -2 500-C(x)=300x -136x 3-2 500(x 为正整数). ∴L ′(x)=300-112x 2. 令L ′(x)=0,得到x =60(x =-60舍去).当0≤x<60时,L ′(x)>0;当x>60时,L ′(x)<0.∴x =60是L(x)的唯一极大值点.故[L(x)]max =L(60)=9 500.因此,要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.拓展实例1.已知函数f(x)=sin2x -acos2x 的图象关于直线x =π8对称,则a 的值为…( ) A .1 B .0C .-1D .1或-1思路分析:此题方法较多,可以利用定义f(π8+x)=f(π8-x)求解,也可以利用特殊值求解.例如用f(0)=f(π4)求解,若能抓住此类三角函数在对称轴处取到极值,则可利用该点处导数值为零解决.解析:f ′(x)=2cos2x +2asin2x ,因为函数图象关于直线x =π8对称,故f ′(π8)=0,代入得cos π4+asin π4=0,所以a =-1. 答案:C2.已知函数f(x)=sin(2x +π6),求函数的单调递增区间. 解:∵f(x)=sin(2x +π6),∴f ′(x)=2cos(2x +π6).令f ′(x)>0,得2kπ-π2<2x +π6<2kπ+π2,k ∈Z . 解得kπ-π3<x<kπ+π6,k ∈Z ,∴函数的单调递增区间为[kπ-π3,kπ+π6],k ∈Z . 变练演编1.已知f(x)=xlnx +e x ,则下列关系正确的是( )A .f ′(x)=1+e xB .f ′(1)=1+eC .f(1)>f(2)D .f ′(1)>f ′(2)2.对R 上可导的任意函数f(x),若满足(x -1)f ′(x)≥0,则必有( )A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1)C .f(0)+f(2)≥2f(1)D .f(0)+f(2)>2f(1)3.已知函数f(x)=f ′(π4)cosx +sinx ,则f(π4)的值为__________. 4.求∫20(4-x 2+|x -1|)dx 的值.5.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x(x ≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积) 6.设函数f(x)=ax 3+bx 2-3a 2x +1(a ,b ∈R )在x =x 1,x =x 2处取得极值,且|x 1-x 2|=2.(1)若a =1,求b 的值,并求f(x)的单调区间;(2)若a>0,求b 的取值范围.答案:1.B 2.C 3.1 4.π+1.5.解:设楼房每平方米的平均综合费用为f(x)元,则f(x)=(560+48x)+2 160×10 0002 000x =560+48x +10 800x(x ≥10,x ∈Z *). f ′(x)=48-10 800x 2,令f ′(x)=0,得x =15. 当x>15时,f ′(x)>0;当0<x<15时,f ′(x)<0.因此,当x =15时,f(x)取最小值f(15)=2 000.答:为了楼房每平方米的平均综合费用最少,该楼房应建为15层.6.解:f ′(x)=3ax 2+2bx -3a 2.①(1)当a =1时,f ′(x)=3x 2+2bx -3.由题意知x 1,x 2为方程3x 2+2bx -3=0的两根,所以|x 1-x 2|=4b 2+363. 由|x 1-x 2|=2,得b =0.从而f(x)=x 3-3x +1,f ′(x)=3x 2-3=3(x +1)(x -1).当x ∈(-1,1)时,f ′(x)<0;当x ∈(-∞,-1)∪(1,+∞)时,f ′(x)>0.故f(x)在(-1,1)上单调递减,在(-∞,-1),(1,+∞)上单调递增.(2)由①式及题意知x 1,x 2为方程3ax 2+2bx -3a 2=0的两根,所以|x 1-x 2|=4b 2+36a 33a.从而|x 1-x 2|=2 b 2=9a 2(1-a),由上式及题设知0<a ≤1.考虑g(a)=9a 2-9a 3,g ′(a)=18a -27a 2=-27a(a -23). 故g(a)在(0,23)内单调递增,在(23,1)内单调递减,从而g(a)在(0,1]上的极大值为g(23)=43. 又g(a)在(0,1]上只有一个极值,所以g(23)=43为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以b 2∈[0,43],即b 的取值范围为[-233,233]. 达标检测1.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)2.f(x)=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )A.193B.163C.133D.1033.当x ≠0时,有不等式( )A .e x <1+xB .当x>0时,e x <1+x ;当x<0时,e x >1+xC .e x >1+xD .当x<0时,e x <1+x ;当x>0时,e x >1+x4.已知f(x)=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为…( )A .-1<a<2B .-3<a<6C .a<-1或a>2D .a<-3或a>65.函数y =x 3+x 2-5x -5的单调递增区间是__________. 6.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是__________. 7.已知函数f(x)=13x 3+a 2x 2+ax +b ,当x =-1时,函数f(x)的极值为-712,则f(2)=__________.答案:1.C 2.D 3.C 4.D 5.(-∞,-53),(1,+∞) 6.(0,+∞) 7.53课堂小结1.知识收获:导数在解决函数极值与最值、不等式证明以及在解决实际问题中的应用.2.方法收获:转化化归的思想方法.3.思维收获:分类讨论思想以及转化化归的思想.设计意图注重基础,由学生总结导数常见题型,培养学生的总结能力以及对知识的梳理能力,这样可以帮助学生尽快建立完整的知识体系.布置作业1.已知函数f(x)=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g(x)=f ′(x)+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f(x)的单调区间;(2)若a>0,求函数y =f(x)在区间(a -1,a +1)内的极值.2.设函数f(x)=x 3+ax 2+bx 在点x =1处有极值-2,(1)求常数a ,b 的值;(2)求曲线f(x)与x 轴所围成图形的面积.答案:1.解:(1)由函数f(x)的图象过点(-1,-6),得m -n =-3.①由f(x)=x 3+ mx 2+nx -2,得f ′(x)=3x 2+2mx +n ,则g(x)=f ′(x)+6x =3x 2+(2m +6)x +n.而g(x)图象关于y 轴对称,所以-2m +62×3=0.所以m =-3.代入①得n =0, 于是f ′(x)=3x 2-6x =3x(x -2).由f ′(x)>0,得x>2或x<0.故f(x)的单调递增区间是(-∞,0),(2,+∞);由f ′(x)<0,得0<x<2,故f(x)的单调递减区间是(0,2).(2)由(1)得f ′(x)=3x(x -2).令f ′(x)=0,得x =0或x =2.当x 变化时,f ′(x),f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a -1,a +1)内有极大值f(0)=-2,无极小值;当a =1时,f(x)在(a -1,a +1)内无极值;当1<a<3时,f(x)在(a -1,a +1)内有极小值f(2)=-6,无极大值;当a ≥3时,f(x)在(a -1,a +1)内无极值.综上得:当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6.2.解:(1)a =0,b =-3.(2)92. 补充练习1.已知f(x)=2x 3-6x 2+a(a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是( )A .-5B .-11C .-37D .-292.设函数f(x)=x 3+bx 2+cx(x ∈R ),已知g(x)=f(x)-f ′(x)是奇函数,(1)求b 、c 的值;(2)求f(x)在点x 0=1处的切线方程;(3)求g(x)的单调区间与极值.3.若1 N 的力能使弹簧伸长2 cm ,要使弹簧伸长10 cm ,需作多少功?答案:1.C 2.(1)b =3,c =0;(2)y =9x -5;(3)单调增区间(-∞,-2),(0,+∞),单调减区间(-2,0);极大值f(-2)=42,极小值f(2)=-4 2.3.0.25 J.拓展练习4.以长为10的线段为直径作半圆,求它的内接矩形面积的最大值.解:如图所示,设AB =2x ,∴BC =52-x 2=25-x 2.∴面积S(x)=2x 25-x 2(0<x<5).S ′(x)=225-x 2-2x 225-x 2=2(25-2x 2)25-x 2, 令S ′(x)=0,解得x =522(x =-522舍去). 当x ∈(0,522)时,S ′(x)>0;当x ∈(522,5)时,S ′(x)<0, ∴在x =522时,S(x)取得极大值,也是最大值S(522)=25. 因此当x =522时,它的内接矩形面积最大,最大值为25. 设计说明导数是高等数学最为基础的内容,是中学必选的重要知识之一.由于导数应用的广泛性,可为解决所学过的函数问题提供更有效的工具或更一般性的方法,导数方法与初等方法相比,对技巧性的要求有所降低,因此运用导数方法可以简捷地解决相关问题.可以说导数的加入使函数这部分内容更加充实,也显得更加重要.但本部分也是难点,因此设计时尽可能地以小见大,从基础题入手,使学生循序渐近地掌握好本章内容.备课资料已知m ,n 是正整数,且1<m<n ,证明(1+m)n >(1+n)m .分析:要证(1+m)n >(1+n)m 成立,只要证ln(1+m)n >ln(1+n)m ,即要证1m ln(1+m)>1nln(1+n)成立.因为m<n ,所以,设函数f(x)=1xln(1+x),只要证f(x)在[2,+∞)上是减函数即可.证明:设函数f(x)=1x ln(1+x),则f ′(x)=-1x 2ln(1+x)+1x ·11+x, 即f ′(x)=1x 2[x 1+x -ln(1+x)],因为x ≥2,0<x 1+x<1,ln(1+x)≥ln3>1, 所以f ′(x)<0.所以f(x)在[2,+∞)内是减函数,而m<n ,所以f(m)>f(n),即1m ln(1+m)>1nln(1+n),从而有(1+m)n >(1+n)m . 评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题.难点在于找这个一元函数式,这就是“构造函数法”.通过这类数学方法的练习,对提高学生分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的.(设计者:李宾)。
导数及其应用复习完整版
《导数及其应用》复习导学案一、知识梳理二、典例剖析题型一、导数的概念及运算1.在求平均变化率时,自变量的增量为( )A .0x ∆>B .0x ∆<C .0x ∆=D . 0x ∆≠ 【答案】D2.函数f (x )=2x 2-1在区间[1,1+Δx ]上的平均变化率ΔyΔx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x 变式.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是__________.3. 下列求导正确的是 ( ) 【答案】BA.(x+x 1)′=1+21x B. (log2x)′=ln21x C. (3x)′=3xlog3xD. (x2cosx)′=-2xsinx4.下列说法正确的是( )A .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处就没有切线;B .若曲线)(x f y =在点()00,()x f x 有切线,则)(0x f '必存在;C .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处的切线斜率不存在;D .若曲线)(x f y =在点()00,()x f x 处的切线斜率不存在,则曲线在该点处没有切线。
【答案】C5.设,M m 分别是()f x 在区间[],a b 上的最大值和最小值,则()()()bam b a f x dx M b a -≤≤-⎰,由上述估值定理,估计定积分2212x dx --⎰的取值范围是 .【解析】:因为当12x -≤≤ 时,204x ≤≤ ,所以,212116x -≤≤所以由估值定理得:()()221121212116x dx --⨯--≤≤⨯--⎡⎤⎡⎤⎣⎦⎣⎦⎰, 即22132316x dx --≤≤⎰,所以答案应填:3,316⎡⎤⎢⎥⎣⎦. 6.211dx x +=⎰⎰.【答案】ln 24π+ 题型二、导数的几何意义7.已知曲线y =2x 2上一点A (2,8),则曲线在点A 处的切线斜率为( )A .4B .16C .8D .2 8.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.变式1.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.变式2.已知函数f (x )=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6] 变式 3.已知曲线2()xf x x e m =+-在0x =处的切线与坐标轴围成的三角形的面积为16,则实数m 的值为 .9.已知抛物线y =x 2,直线l :x -y -2=0,则抛物线上的点到直线l 的最短距离是 . 变式.点P 是曲线2ln y x x =-,则点P 到直线40x y --=的距离的最小值是 .题型三、导数的综合应用 类型1:导数的运算性质10.设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0f x g x f x g x +>,且(3)0f -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞ B .(3,0)(0,3)- C .(,3)(3,)-∞-+∞ D .(,3)(0,3)-∞-变式1.函数f (x )在定义域R 内可导,若f (x )=f (2-x )且当x ∈(-∞,1)时,(x -1)f ′(x )<0.设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系是______ .变式2.设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e 2 016f (0)C .f (2)<e 2f (0),f (2 016)<e 2 016f (0)D .f (2)>e 2f (0),f (2 016)<e 2 016f (0)变式3.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________. 变式4.定义在R 上的偶函数f x 的导函数为()f x ',若对任意的实数x ,都有()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的集合为( )A .{}1x x ≠±B .()(),11,-∞-+∞C .()1,1-D .()()1,00,1-【解析】:当0x >时,由()()220f x xf x +'-<可知:两边同乘以x 得: ()()2220xf x x f x x -'-< 设:()()22g x x f x x =-,则()()()2220g x xf x x f x x '=+'-<,恒成立:∴()g x 在(0)+∞,单调递减,由()()2211x f x f x -<-∴()()2211x f x x f -<-,即()()1g x g <,即1x >;当0x <时,函数是偶函数,同理得:1x <-;综上可知:实数x 的取值范围为()()11-∞-⋃+∞,,,故选:B变式5.函数()f x 的定义域是R ,(0)3f =,对任意,()()1x R f x f x ∈+>/,则不等式()2x xe f x e ⋅>+的解集为( )A .{|0}x x <B .{|0}x x >C .{|1,}x x x <->或1D .{|1,1}x x x <-<<或0 【解析】∵()()1f x f x +>/,∴()()0xxxe f x e f x e +>>/,∴[()1]()0xxe f x e f x -+>/,即{[()1]}0x e f x '->,∴函数()[()1]x F x e f x =-在R 上单调递增,且0(0)[(0)1]2F e f =-=∴ ()2[()1]2x x x e f x e e f x ⋅>+⇔->,∴x>0,故选B类型2:单调性问题11.函数()()3x f x x e =-的单调递增区间是( )DA .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 变式1.已知()21ln 2f x x a x =-在区间()0,2上不单调,实数a 的取值范围是( ) A .()()2,00,2- B .()()4,00,4- C .()0,2 D .()0,4【答案】D变式2.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则下列结论一定成立的是( )A .()()sin cos f A fB > B .()()sin cos f A f B <C .()()sin sin f A f B >D .()()cos cos f A f B < 12.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)变式1.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.变式2.已知a ≥0,函数f (x )=(x 2-2ax )e x .设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.变式3.函数32y x ax bx =++在(,1)-∞-上单调递增,在()1,2-上单调递减,在()2,+∞上递增,则,a b 的值为( ) AA 、3,62a b =-=-B 、36,2a b =-=- C 、3,2a b == D 、3,6a b =-=-变式4.若函数y =a (x 3-x )的单调减区间为⎝⎛⎭⎫-33, 33,则a 的取值范围是( )A .(0,+∞)B .(-1,0)C .(1,+∞)D .(0,1)13.已知f(x)=e x -ax-1.(1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.【答案】解 : f ′(x)= e x -a.(1)若a ≤0,f ′(x)= e x -a ≥0恒成立,即f(x)在R 上递增. 若a >0, e x -a ≥0,∴e x ≥a,x ≥lna. ∴f(x)的递增区间为(lna ,+∞).(2)∵f (x )在R 内单调递增,∴f ′(x)≥0在R 上恒成立. ∴e x -a ≥0,即a ≤e x 在R 上恒成立.∴a ≤(e x )min ,又∵e x >0,∴a ≤0.[来源:Z §xx §] (3)由题意知e x -a ≤0在(-∞,0]上恒成立. ∴a ≥e x 在(-∞,0]上恒成立. ∵e x 在(-∞,0]上为增函数. ∴x=0时,e x 最大为1.∴a ≥1.同理可知e x -a ≥0在[0,+∞)上恒成立. ∴a ≤e x 在[0,+∞)上恒成立. ∴a≤1,∴a=1.14.设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数)(x f 单调区间. 【答案】解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.[所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0f x '>得211a x a --<,或211a x a +->;由()0f x '<得221111a a x a a--+-<<. 所以函数()f x 单调递增区间是211(,)a a ---∞和211(,)a a +-+∞, 单调递减区间221111(,)a a a a--+-. ……………9分 ②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>得221111a a x a a +---<<; 由()0f x '<得211a x a +-<,或211a x a-->.所以当10a -<<时,函数()f x 单调递减区间是211(,)a a +--∞和211(,)a a --+∞, 单调递增区间221111(,)a a a a+---. ……………12分 ④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞.类型3:图像问题15.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )A .B .C . D.【解析】:由三视图可知该几何体是圆锥,顶点朝下,底面圆的上面,随之时间的推移,注水量的增加高度在增加,所以函数是增函数,刚开始时截面面积较小,高度变化较快,随着注水量的增加,高度变化量减慢,综上可知B 正确16.函数()f x 的导函数()'f x 在区间(,)a b 内的图象如图所示, 则 ()f x 在(,)a b 内的极大值点有( )BA. 1个B. 2个C. 3个D. 4个变式1.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能( )O thh t O h t O O t h变式2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )类型4:极值(最值)问题17.已知函数()313f x x ax b =-+在y 轴上的截距为1,且曲线上一点02, 2p y ⎛⎫⎪ ⎪⎝⎭处的切线斜率为13. (1)曲线在P 点处的切线方程; (2)求函数()f x 的极大值和极小值【答案】解:(1)因为函数()313f x x ax b=-+在y 轴上的截距为1,所以1b = 又'2y x a =-,所以2211 236a a ⎛⎫-=∴= ⎪ ⎪⎝⎭()311 136f x x x ∴=-+ 所以0212y f ⎛⎫== ⎪ ⎪⎝⎭,故点2,12P ⎛⎫ ⎪ ⎪⎝⎭,所以切线方程为12132y x ⎛⎫-=- ⎪ ⎪⎝⎭ 即26620x y -+-=(2)由题意可得,令()'2106f x x =-=得66x =±列表如下:x6,6⎛⎫-∞- ⎪ ⎪⎝⎭66- 66,66⎛⎫- ⎪ ⎪⎝⎭666,6⎛⎫+∞ ⎪ ⎪⎝⎭()'f x+- 0 + ()f x增区间极大 减区间极小增区间所以函数的极大值为661f ⎛=+ ⎝⎭, 极小值为661f =⎝⎭18.已知函数c bx x ax x f -+=44ln )()0(>x 在1=x 处取得极值c --3,其中c b a ,,为常数.(1)求b a ,的值; (2)求函数)(x f 的单调区间;(3)若对任意0>x ,不等式02)(2≥+c x f 恒成立,求c 的取值范围.解:(1))4ln 4()(3/b a x a x x f ++=,0)1(='f ,∴04=+b a ,又c f --=3)1(,∴3,12-==b a ; 经检验合题意;………4分(2)x x x f ln 48)(3/=()0>x ∴由0)(/=x f 得1=x ,当0)(/<x f 时,10<<x ,)(x f 单调递减;当0)(/>x f 时,1>x ,)(x f 单调递增;∴)(x f 单调递减区间为)1,0(,单调递增区间为),1(+∞ ……8分 (3)由(2)可知,1=x 时,)(x f 取极小值也是最小值c f --=3)1(,列表略 依题意,只需0232≥+--c c ,解得23≥c 或1-≤c ………………12分 19.已知函数()()xf x x k e =-. (1)求()f x 的单调区间; (2)求()f x 在区间]2,1[上的最小值;(3)设)(')()(x f x f x g +=,当2523≤≤k 时,对任意]1,0[∈x ,都有λ≥)(x g 成立,求实数λ的范围。
导数及其应用复习课教案共三课时
导数及其应用复习课教案(共三课时)复习目标:1.熟记微积分的的基本概念及微积分基本定理,并能根据事例正确理解。
2.熟悉微积分的基本知识结构,记住并理解其联系。
3.会正确地求给定函数的导数,会正确地求给定函数在已知区间上的定积分。
4.能熟练应用导数研究函数的单调性、极值和最值。
5.能熟练解决定积分在几何和物理方面的应用。
复习重点:1.熟记微积分的的基本概念及微积分基本定理,并能根据事例正确理解。
2.正确地求给定函数的导数,会正确地求给定函数在已知区间上的定积分。
3.熟练应用导数研究函数的单调性、极值和最值。
4.熟练解决定积分在几何和物理方面的应用。
复习难点:1.熟记微积分的的基本概念及微积分基本定理,并能根据事例正确理解。
2.正确地求给定函数的导数,会正确地求给定函数在已知区间上的定积分。
3.熟练应用导数研究函数的单调性、极值和最值。
4.熟练解决定积分在几何和物理方面的应用。
第一课时一.知识结构二.知识点精析(一)求函数的导数1.导数的基本概念、变化率。
2.记住基本初等函数的导数公式3.记住导数的四则运算4.理解复合函数的求导,即[]'(())f x ϕ=''(())()f x x ϕϕ(1)求初等函数的导数注:'()a x =1a ax -(a 为常数) '()x a =ln x a a (a 0,1a >≠常数) '()x e =x e(二)导数的应用1.求函数的单调区间与极值步骤:①求出函数的定义域,求导函数。
②求出导数为0的点(驻点)或导数不存在点。
③列表讨论④总结2.求函数的最大值与最小值①闭区间[a ,b ]上连续函数()f x 一定能取到最大与最小值且最大值与最小值点一定包含在区间内部的驻点或内部导数不存在点及端点之中。
②应用题的最大与最小值。
设所求的量为y ,设于有关量为x ,建立()y f x =,x D ∈,求()f x 的最大值或最小值。
高三数学导数及其应用专题复习教案
高三数学二轮复习教案导数及其应用专题一、高考要求:⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.⑵熟记基本导数公式(,n C x (n 为有理数),sin .cos ,log ,,,ln x x a x x x a e x 的导数).掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数.⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值.二、复习要点:(1)近几年各地高考题一直保持对导数知识考查力度,体现了在知识网络交汇点出题的命题风格,重点考查导数概念、单调性、极值等传统、常规问题,这三大块内容是本专题复习的主线,在复习中应以此为基础展开,利用问题链展示题目间的内在联系,揭示解题的通法通解,如利用导数处理函数单调性问题时,可设计这样的问题链:已知函数求单调区间→知函数在区间上单调求参数→若函数不单调如何求参数.(2)要认识到新课程中增加了导数内容,增添了更多的变量数学,拓展了学习和研究的领域,在复习中要明确导数作为一种工具在研究函数的单调性、极值等方面的作用,这种作用体现在导数为解决函数问题提供了有效途径。
(3)有意识的与解析几何(特别是切线、最值)、函数的单调性,函数的最值极值,二次函数,方程,不等式,代数不等式的证明等进行交汇,综合运用。
特别是精选一些以导数为工具分析和解决一些函数问题、切线问题的典型问题,以及一些实际问题中的最大(小)值问题三、知识点回顾(多媒体演示)四、典型问题剖析题型一:导数的概念及几何意义导数的几何意义即是曲线在某点的切线的斜率,进而可解决有关切点、切线方程等相关问题。
1①过点(1,1)作曲线y=x 4的切线, 求切线方程。
②过点(1,0 )作曲线y=x 2的切线, 求切线方程。
导数及其应用导教学案(题型归纳复习)
第三章导数及其应用(复习)学习目标提高学生综合、灵活运用导数的知识解决有关函数问题的能力.学习过程___________________________________________________ 2导数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x ∆的比xy∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0'x x y =,即'0000()()()limx f x x f x f x x∆→+∆-=∆3切线:0()f x '是曲线)(x f y =上点()(,00x f x )处的切线的斜率因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为000()()(y f x f x x x '-=-3导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数'()f x ,从而构成了一个新的函数'()f x , 称这个函数'()f x 为函数)(x f y =在开区间内的导函数,简称导数, 4 常见函数的导数公式:1.'0C=; 2.1)'(-=n n nx x ;3.x x e e =)'(a a a x x ln )'(=;4.x x 1)'(ln =;e x x a a log 1)'(log =; 5.x x cos )'(sin =;x x sin )'(cos -=8和差的导数:)()()]()(['''x v x u x v x u ±=±.9积的导数:[()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '=10商的导数:'2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭1.若0()2f x '=,求0lim→k kx f k x f 2)()(00--2.下列函数的导数 ①2(1)(231)y x x x =-+- ②2(32)y sin x =+典型例题1.求曲线的切线例1:求曲线122+=x xy 在点(1,1)处的切线方程.〖跟踪练习〗1、已知直线y kx =是32y x =+的切线,则切点坐标为________2、函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为_____________2.利用导数研究函数的单调性1.利用导数求函数的单调区间 (1)求()f x ';(2)确定()f x '在(,)a b 内符号;(3)若()0f x '>在(,)a b 上恒成立,则()f x 在(,)a b 上是增函数;若()0f x '<在(,)a b 上恒成立,则()f x 在(,)a b 上是减函数1设函数321()(1)4243f x x a x ax a =-+++,其中常数1a ≥(Ⅰ)讨论()f x 的单调性;〖跟踪练习〗1、已知函数32()1f x x ax x =+++,a R ∈.①讨论函数()f x 的单调区间; ②设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.2、已知函数2()(2ln ),(0)f x x a x a x=-+->,讨论()f x 的单调性.2.已知函数的单调性,利用导数求参量 例(08-湖北-7)若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是CA. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-〖跟踪练习〗 1、已知0a>,函数3()f x x ax =-在[1,)+∞上时单调函数,则a 的取值范围是____________+2、已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .(1)若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.3.利用导数研究函数的极值1极大值: 一般地,设函数()f x 在点0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x <,就说0()f x 是函数()f x 的一个极大值,记作0()()f x f x =极大值, 0x 是极大值点2极小值:一般地,设函数()f x 在0x 附近有定义,如果对0x 附近的所有的点,都有0()()f x f x >,就说0()f x 是函数()f x 的一个极小值,记作0()()f x f x =极小值,0x 是极小值点3极大值与极小值统称为极值(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4判别0()f x 是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值5 求函数()f x 的极值的步骤: (1)确定函数的定义区间,求导数(f x '(2)求方程()0f x '=的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查()f x '在方程根左右的值的符号,如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则()f x 在这个根处无极值6函数的最大值和最小值:在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的. ⑶)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个 7利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值3: 函数的极值与最值 例6:(08-山东-文)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点.Ⅰ)求a 和b 的值;(Ⅱ)讨论()f x 的单调性;(Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小4:求参变量的范围例7.(08-安徽)设函数1()(0ln f x x x x=>且1)x ≠(Ⅰ)求函数()f x 的单调区间;(Ⅱ)已知12a xx >对任意(0,1)x ∈成立,求实数a 的取值范围。
导数及其应用(教学案)-2020年高考理数二轮复习精品资料Word版含解析_1
高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.预测高考仍将利用导数研究方程的根、函数的零点问题、含参数的不等式恒成立、能成立、实际问题的最值等形式考查.1.导数的定义f′(x)=limΔx→0ΔyΔx=limΔx→0f x+Δx-f xΔx.2.导数的几何意义函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).3.导数的运算(1)基本初等函数的导数公式①c′=0(c为常数);②(x m)′=mx m-1;③(sin x)′=cos x; ④(cos x)′=-sin x;⑤(e x)′=e x; ⑥(a x)′=a x ln a;⑦(ln x)′=1x;⑧(log a x)′=1x ln a.(2)导数的四则运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);③[f xg x ]′=f′x g x-f x g′xg2x.④设y=f(u),u=φ(x),则y′x=y′u u′x.4.函数的性质与导数在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增.如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.5.利用定积分求曲线围成图形的面积的步骤:①画出图形;②确定被积函数;③求出交点坐标,确定积分的上、下限;④运用微积分基本定理计算定积分,求出平面图形的面积.特别注意平面图形的面积为正值,定积分值可能是负值.被积函数为y=f(x),由曲线y=f(x)与直线x=a,x=b(a<b)和y=0所围成的曲边梯形的面积为S.①当f (x )>0时,S =⎠⎛ab f (x )d x ;②当f (x )<0时,S =-⎠⎛ab f (x )d x ;③当x ∈[a ,c ]时,f (x )>0;当x ∈[c ,b ]时,f (x )<0,则S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .高频考点一 导数的几何意义及应用 例1、(2018年全国Ⅲ卷理数)曲线在点处的切线的斜率为,则________.【答案】-3 【解析】,则 所以【变式探究】(1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 解析:基本法:由题意可得f ′(x )=3ax 2+1, ∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.速解法:∵f (1)=2+a ,由(1,f (1))和(2,7)连线斜率k =5-a1=5-a ,f ′(x )=3ax 2+1,∴5-a =3a +1,∴a =1.答案:1(2)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析:基本法:令f (x )=x +ln x ,求导得f ′(x )=1+1x ,f ′(1)=2,又f (1)=1,所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.设直线y =2x -1与曲线y =ax 2+(a +2)x +1的切点为P (x 0,y 0),则y ′|x =x 0=2ax 0+a +2=2,得a (2x 0+1)=0,∴a =0或x 0=-12,又ax 20+(a +2)x 0+1=2x 0-1,即ax 20+ax 0+2=0,当a =0时,显然不满足此方程, ∴x 0=-12,此时a =8.速解法:求出y =x +ln x 在(1,1)处的切线为y =2x -1由⎩⎪⎨⎪⎧y =2x -1y =ax 2+a +2x +1得ax 2+ax +2=0, ∴Δ=a 2-8a =0,∴a =8或a =0(显然不成立).【变式探究】设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3解析:基本法:y ′=a -1x +1,当x =0时,y ′=a -1=2,∴a =3,故选D. 答案:D高频考点二 导数与函数的极值、最值例2、(2018年浙江卷)已知λ∈R ,函数f (x )=,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1). (1,4) (2). 【解析】由题意得或,所以或,即,不等式f (x )<0的解集是当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为。
导数及其应用---复习课--教案 2
导数及其应用复习课 开课班级:高二(6) 开课时间:2019.6.13一、教材分析导数及其应用内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用.先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题.该部分共分三节,第三节则是“导数的应用”,内容包括利用导数求切线方程;判断函数的单调性;利用导数研究函数的最值、极值;导数的实际应用.在“利用导数求切线方程”中介绍了利用导函数的几何意义求切线的斜率,进而求解切线方程;在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题.二、考纲解读导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查:1.导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等.2.与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目.三、教学目标1.能熟练应用导数的几何意义求解切线方程2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题四、教学重点理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题五、教学难点原函数和导函数的图像“互译”,解决一些恒成立问题六、教学过程一.基本知识点总结。
1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇.2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续.事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 0000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→ ).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆x y ,故x y x ∆∆→∆0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±''''''')()(cv cv v c cv u v vu uv =+=⇒+=)0(2'''≠-=⎪⎭⎫ ⎝⎛v v u v vu v u5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅=复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数.⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9. 几种常见的函数导数:(1)0'=C (C 为常数) (2) 1')(-=n n nx x (R n ∈)(3)x x cos )(sin '= (4) x x sin )(cos '-=(5) e x x a a log 1)(log '= x x 1)(ln '=(6)a a a x x ln )('= x x e e =')(考点一 导数的概念及几何意义的应用设f (x )为可导函数,则h h x f h x f h )()(lim 000--+→ 的值为( )A. )('0x fB. 2 )('0x fC. -2)('0x fD.0 变式.设f (x )在x=x 0处可导,且1)()3(lim 000=∆-∆+→∆x x f x x f x ,则)('0x f 等于( )A.1B. 0C. 3D.31.已经曲线C:y=x3-x+2和点A(1,2)。
2020学年高中数学第1章导数及其应用阶段复习课学案苏教版选修2-2(最新整理)
2019-2020学年高中数学第1章导数及其应用阶段复习课学案苏教版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年高中数学第1章导数及其应用阶段复习课学案苏教版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年高中数学第1章导数及其应用阶段复习课学案苏教版选修2-2的全部内容。
第1章导数及其应用第一课导数及其应用导数的几何意义及其应用【例1错误!错误!(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[解](1)∵P(2,4)在曲线y=错误!x3+错误!上,且y′=x2,∴在点P(2,4)处的切线的斜率k=y′|x=2=4.∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.(2)设曲线y=错误!x3+错误!与过点P(2,4)的切线相切于点A错误!,则切线的斜率k=y′|x=x=x错误!.∴切线方程为y-错误!=x错误!(x-x0),即y=x错误!·x-错误!x错误!+错误!。
∵点P(2,4)在切线上,∴4=2x错误!-错误!x错误!+错误!,即x错误!-3x错误!+4=0,∴x错误!+x错误!-4x错误!+4=0.∴x错误!(x0+1)-4(x0+1)(x0-1)=0,∴(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=0或x-y+2=0. (3)设切点为(x0,y0),则切线的斜率k=x20=4,∴x0=±2。
导数专题及其应用教案
导数专题及其应用教案教案标题:导数专题及其应用教案教案目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 熟悉导数在实际问题中的应用。
教学重点:1. 导数的定义和计算方法;2. 导数在函数图像、极值和曲线的切线方程中的应用。
教学难点:1. 理解导数的概念和意义;2. 运用导数解决实际问题。
教学准备:1. 教师准备:教学课件、教学素材、计算工具;2. 学生准备:教材、笔记、计算器。
教学过程:一、导入(5分钟)1. 引入导数的概念,提问学生对导数的理解;2. 通过一个简单的例子,引导学生思考导数的意义。
二、导数的定义和计算方法(15分钟)1. 介绍导数的定义和符号表示;2. 讲解导数的计算方法,包括用极限定义导数和使用导数公式计算导数;3. 通过示例演示导数的计算过程。
三、导数在函数图像中的应用(15分钟)1. 讲解导数与函数图像的关系,包括导数与函数的增减性、极值和拐点;2. 指导学生根据导数的正负判断函数的增减性,并绘制函数图像;3. 引导学生通过导数的零点判断函数的极值和拐点,并绘制函数图像。
四、导数在曲线的切线方程中的应用(15分钟)1. 引入导数与曲线的切线方程的关系;2. 讲解切线方程的一般形式和求解步骤;3. 指导学生根据导数和给定点求解曲线的切线方程,并进行实际问题的应用练习。
五、导数在实际问题中的应用(15分钟)1. 介绍导数在实际问题中的应用领域,如物理、经济等;2. 提供一些实际问题,引导学生运用导数解决问题;3. 学生个别或小组完成导数应用问题的解答和讨论。
六、总结(5分钟)1. 简要回顾导数的概念和计算方法;2. 强调导数在实际问题中的应用;3. 鼓励学生继续深入学习导数的相关知识。
教学延伸:1. 提供更多的导数计算练习题,巩固学生的计算能力;2. 引导学生在实际生活中寻找更多导数的应用案例,并进行讨论和分享。
教学评估:1. 教师观察学生在课堂上的参与和表现;2. 学生完成课后作业,包括导数计算和应用题目;3. 学生进行小组或个人报告,展示导数在实际问题中的应用案例。
导数及其应用复习课教学设 计
导数及其应用复习课教学设计教学目标1、知识与技能(1)利用导数求函数的单调区间;(2)利用导数求函数的极值以及函数在闭区间上的最值;(3)解决很成立问题2、过程与方法1)能够利用函数性质作图像,反过来利用函数的图像研究函数的性质如交点情况,能合理利用数形结合解题。
2)学会利用熟悉的问答过渡到陌生的问题。
3、情感态度与价值观这是一堂复习课,教学难度有所增加,培养学生思考问题的习惯,以及克服困难的信心。
重点和难点:重点是应用导数求单调性,极值,最值难点是恒成立问题教学过程:(一)、导入.给出三道题(1)曲线在点处的切线方程为()A. B.C. D.(2)过原点作曲线的切线,切线的斜率____________(3)函数在上的最大值____________[设计意图: 数学的教学要遵循循序渐近的原则,三道题是导数应用中基础的题型。
其中(1),(2)两题同是求切线方程,却不同类型题,学生不易识别其间的不同之处容易出错。
通过题目的求同存异,加深学生对题目的本质的理解](二)、例题剖析例1.已知函数若在上单调递减,在上单调递增,求实数的值提问:本题已知函数在给定区间上的单调性,求解析式中参数。
由条件得到什么?学生:是极小值师:为什么?没有回答师:在学习极值的时候,要成为极值点,首先要保证在这个点上的导数等于0,现在导数=0不能保证,怎么能说取得极小值。
举反例:如图:1xy函数的单调性能满足题中条件,但是在1上并不是取极小值师:看来这样的一种题型并不是大家说熟悉的,那么我们能由熟悉的题型加以过渡吗?跟这样的题目类似的题型,你们会想到什么?学生:已知函数的解析式,求函数的单调性师:对,刚好是已知,未知交换一下。
那么我们可以把它当成我们熟悉的题型做分析-----整理求解过程。
例2.若函数为常数),当,函数取得极值(1)求的值(2)求的单调区间(3)当,求与轴的交点个数师:将条件整理下,可以怎么来利用条件?生:,函数取得极值可以得到师:可以得到什么?生:计算出的值在黑板上给出第(1)题的解题过程能。
导数及其应用(复习教案)(精)
导数及其应用(复习教案)
杭州市源清中学徐益强【教学目标】
通过几个基本问题的解决,进一步掌握函数在某一点处的导数的几何意义,利用导数求函数图象上某一点处的切线方程;
【教学重点】
导数的基本应用——切线.
【教学难点】
导数的综合应用.
①函数y=f(x)的递增区间是
导数及其应用(学案)
杭州市源清中学徐益强【学习目标】
掌握函数在某一点处的导数的几何意义,会利用导数求函数图象上某一点处的切线方程;
【学习重点】
导数的基本应用——切线
【课堂程序】
三、实践探究→综合能力提升
8、如图所示,曲线段OMB:y=x3(0<x<2)在点x=t(即点
M)处的切线PQ交x轴于点P,交线段AB于点Q,且BA⊥x
轴于A.
⑴试用t表示切线PQ的方程;
⑵求△QAP的面积g(t)的最大值.
9、设t>0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处的切线相同.
⑴用t示a、b、c;
⑵若函数y=f(x)–g(x)在(–1,3)上单调递减,求t的取值范围.
四、反思总结
1、本节课所用到的主要知识有哪些?主要的方法有哪些?
2、你能用本节课所用到的主要知识解决哪些问题?解决相应的问题的一般
过程如何?。
人教版数学高二导数及其应用学案 章末复习课
学习目标 1.理解导数的几何意义并能解决有关斜率、切线方程等的问题.2.掌握初等函数的求导公式,并能够综合运用法则求函数的导数.3.掌握利用导数判断函数单调性的方法,会用导数求函数的极值和最值.4.会用导数解决一些简单的实际应用问题.5.掌握定积分的基本性质及应用.知识点一导数的概念(1)定义:函数y=f(x)在x=x0处的瞬时变化率limΔx→0f(x0+Δx)-f(x0)Δx,称为函数y=f(x)在x=x0处的导数.(2)几何意义:函数y=f(x)在x=x0处的导数是函数图象在点(x0,f(x0))处的切线的斜率,表示为________,其切线方程为________________.知识点二基本初等函数的导数公式(1)c′=0.(2)(xα)′=________.(3)(a x)′=________(a>0).(4)(e x)′=________.(5)(log a x)′=(ln xln a)′=1x ln a(a>0,且a≠1).(6)ln x)′=________.(7)(sin x)′=________.(8)(cos x)′=________.知识点三导数的运算法则(1)[f(x)±g(x)]′=____________.(2)[f(x)·g(x)]′=________________.(3)[f (x )g (x )]′=________________(g (x )≠0).知识点四 复合函数的求导法则 (1)复合函数记法:y =f (g (x )). (2)中间变量代换:y =f (u ),u =g (x ). (3)逐层求导法则:y x ′=y u ′·u x ′.知识点五 函数的单调性、极值与导数 (1)函数的单调性与导数在某个区间(a ,b )内,如果________,那么函数y =f (x )在这个区间内单调递增;如果________,那么函数y =f (x )在这个区间内单调递减. (2)函数的极值与导数①极大值:在点x =a 附近,满足f (a )≥f (x ),当x <a 时,________,当x >a 时,________,则点a 叫做函数的极大值点,f (a )叫做函数的极大值;②极小值:在点x =a 附近,满足f (a )≤f (x ),当x <a 时,________,当x >a 时,________,则点a 叫做函数的极小值点,f (a )叫做函数的极小值. (3)求函数f (x )在闭区间[a ,b ]上的最值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的__________与__________处的函数值f (a ),f (b )比较,其中最大的一个就是________,最小的一个就是____________.知识点六 微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =____________.知识点七 定积分的性质(1)ʃb a kf (x )d x =________________(k 为常数).(2)ʃb a [f 1(x )±f 2(x )]d x =ʃb a f 1(x )d x ±__________.(3)ʃb a f (x )d x =________________(其中a <c <b ).类型一 导数几何意义的应用例1 设函数f (x )=13x 3+ax 2-9x -1(a >0),直线l 是曲线y =f (x )的一条切线,当l 的斜率最小时,直线l 与直线10x +y =6平行.(1)求a 的值;(2)求f (x )在x =3处的切线方程.反思与感悟 利用导数求切线方程时关键是找到切点,若切点未知需设出.常见的类型有两种:一类是求“在某点处的切线方程”,则此点一定为切点,易求斜率进而写出直线方程即可得;另一类是求“过某点的切线方程”,这种类型中的点不一定是切点,可先设切点为Q (x 1,y 1),由y 0-y 1x 0-x 1=f ′(x 1)和y 1=f (x 1),求出x 1,y 1的值,转化为第一种类型.跟踪训练1 直线y =kx +b 与曲线y =x 3+ax +1相切于点(2,3),则b =________.类型二 函数的单调性、极值、最值问题 例2 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.反思与感悟 本类题考查导数的运算,利用导数研究函数的单调性,求函数的极值和证明不等式,考查运算能力、分析问题、解决问题的能力. 跟踪训练2 已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.类型三 生活中的优化问题例3 某公司为获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x (百万元),可增加的销售额为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大. 反思与感悟 解决优化问题的步骤(1)要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域. (2)要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. (3)验证数学问题的解是否满足实际意义.跟踪训练3 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时,该蓄水池的体积最大.类型四 定积分与微积分基本定理例4 (1)设f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1),3-2x ,x ∈[1,2],则ʃ20f (x )d x =________. (2)如图所示,直线y =kx 将抛物线y =x -x 2与x 轴所围图形的面积分为相等的两部分,求k 的值.反思与感悟 由定积分求曲边梯形面积的方法步骤 (1)画出函数的图象,明确平面图形的形状. (2)通过解方程组,求出曲线交点的坐标.(3)确定积分区间与被积函数,转化为定积分计算.(4)对于复杂的平面图形,常常通过“割补法”来求各部分的面积之和. 跟踪训练4 执行如图所示的程序框图,则输出的T 的值为________.1.函数f (x )=ax 3+bx 2+cx +d 的图象如图,则函数y =ax 2+32bx +c3的单调递增区间是( )A .(-∞,2]B .[12,+∞)C .[-2,3]D .[98,+∞)2.函数F (x )=ʃx 0t (t -4)d t 在[-1,5]上( ) A .有最大值0,无最小值 B .有最大值0,最小值-323C .有最小值-323,无最大值D .既无最大值也无最小值3.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C.2 D.44.体积为16π的圆柱,当它的半径为________时,圆柱的表面积最小.5.设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.1.利用导数的几何意义可以求出曲线上任意一点处的切线方程y-y0=f′(x0)(x-x0).明确“过点P(x0,y0)的曲线y=f(x)的切线方程”与“在点P(x0,y0)处的曲线y=f(x)的切线方程”的异同点.2.借助导数研究函数的单调性,经常同三次函数,一元二次不等式结合,融分类讨论、数形结合于一体.3.利用导数求解优化问题,注意自变量中的定义域,找出函数关系式,转化为求最值问题.4.不规则图形的面积可用定积分求解,关键是确定积分上、下限及被积函数,积分的上、下限一般是两曲线交点的横坐标.答案精析知识梳理 知识点一(2)f ′(x 0) y -f (x 0)=f ′(x 0)(x -x 0) 知识点二 (2)αx α-1 (3)a x ln a (4)e x (6)1x (7)cos x (8)-sin x 知识点三 (1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) (3)f ′(x )g (x )-f (x )g ′(x )[g (x )]2知识点五(1)f ′(x )>0 f ′(x )<0 (2)①f ′(x )>0 f ′(x )<0 ②f ′(x )<0 f ′(x )>0(3)②极值 端点 最大值 最小值 知识点六 F (b )-F (a ) 知识点七(1)k ʃb a f (x )d x (2)ʃba f 2(x )d x (3)ʃc a f (x )d x +ʃbc f (x )d x题型探究例1 解 (1)f ′(x )=x 2+2ax -9 =(x +a )2-a 2-9, f ′(x )min =-a 2-9, 由题意知-a 2-9=-10,∴a=1或-1(舍去).故a=1.(2)由(1)得a=1,∴f′(x)=x2+2x-9,则k=f′(3)=6,f(3)=-10.∴f(x)在x=3处的切线方程为y+10=6(x-3),即6x-y-28=0.跟踪训练1-15解析由题意知f(2)=3,则a=-3.f(x)=x3-3x+1.f′(2)=3×22-3=9=k,又点(2,3)在直线y=9x+b上,∴b=3-9×2=-15.例2(1)解由f(x)=e x-2x+2a,x∈R,知f′(x)=e x-2,x∈R.令f′(x)=0,得x=ln 2.当x变化时,f′(x),f(x)的变化情况如下表:故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞),f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a).(2)证明设g(x)=e x-x2+2ax-1,x∈R,于是g′(x)=e x-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)取最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0, 即e x -x 2+2ax -1>0, 故e x >x 2-2ax +1.跟踪训练2 解 (1)当a =-4时,由f ′(x )=2(5x -2)(x -2)x =0 (x >0),得x =25或x =2.由f ′(x )>0,得x ∈(0,25)或x ∈(2,+∞),故函数f (x )的单调递增区间为(0,25)和(2,+∞).(2)因为f ′(x )=(10x +a )(2x +a )2x ,a <0,由f ′(x )=0,得x =-a 10或x =-a2.当x ∈(0,-a10)时,f (x )单调递增;当x ∈(-a 10,-a2)时,f (x )单调递减;当x ∈(-a2,+∞)时,f (x )单调递增,易知f (x )=(2x +a )2x ≥0, 且f (-a2)=0.①当-a2≤1,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1), 由f (1)=4+4a +a 2=8, 得a =±22-2,均不符合题意.②当1<-a 2≤4,即-8≤a <-2时,f (x )在[1,4]上的最小值为f (-a2)=0,不符合题意.③当-a2>4,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4上取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8,得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减, f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上,a =-10.例3 解 (1)设投入t (百万元)的广告费后增加的收益为f (t )(百万元), 则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3), 所以当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司获得的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元). 由此获得的收益是g (x )(百万元),则g (x )=(-13x 3+x 2+3x )+[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),所以g ′(x )=-x 2+4.令g ′(x )=0,解得x =-2(舍去)或x =2. 又当0≤x <2时,g ′(x )>0; 当2<x ≤3时,g ′(x )<0.故g (x )在[0,2)上是增函数,在(2,3]上是减函数,所以当x =2时,g (x )取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,可使该公司获得的收益最大.跟踪训练3 解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元.所以蓄水池的总成本为 (200πrh +160πr 2)元.又根据题意得,200πrh +160πr 2 =12 000π,所以h =15r(300-4r 2). 从而V (r )=πr 2h =π5(300r -4r 3). 因为r >0,又由h >0,可得r <53,故函数V (r )的定义域为(0,53).(2)因为V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2), 令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数.由此可知,V (r )在r =5处取得最大值,此时h =8.即当r =5,h =8时,该蓄水池的体积最大.例4 (1)14解析 ʃ20f (x )d x =ʃ10x 3d x +ʃ21(3-2x )d x =14x 4|10+(3x -x 2)|21=14.(2)解 抛物线y =x -x 2与x 轴的两交点的横坐标分别为x 1=0,x 2=1,所以抛物线与x 轴所围图形的面积S =ʃ10(x -x 2)d x =(x 22-x 33)|10=12-13=16. 抛物线y =x -x 2与y =kx 两交点的横坐标分别为x 1′=0,x 2′=1-k ,所以S 2=ʃ1-k 0(x -x 2-kx )d x =(1-k 2x 2-x 33)|1-k 0=16(1-k )3, 又知S =16,所以(1-k )3=12, 于是k =1-312=1-342. 跟踪训练4116当堂训练1.D 2.C 3.B 4.25.解 (1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b=(1-x )e a -x +b . 依题设,⎩⎪⎨⎪⎧ f (2)=2e +2,f ′(2)=e -1, 即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1. 解得a =2,b =e.(2)由(1),知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1,所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞),综上可知,f ′(x )>0,x ∈(-∞,+∞).故f (x )的单调递增区间为(-∞,+∞).。
高考数学专题复习学案导数及其应用 学案
2010高考数学专题复习学案导数及其应用【学法导航】导数是高中数学中较为重要的知识,由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性方法,是解决实际问题强有力的工具。
导数的概念及其运算是导数应用的基础,是高考重点考查的对象。
要牢记导数公式,熟练应用导数公式求函数的导数,掌握求导数的方法。
导数的应用是高考考查的重点和难点,题型既有灵活多变的客观性试题,又有具有一定能力要求的主观性试题,这要求我们复习时要掌握基本题型的解法,树立利用导数处理问题的意识.所以在复习中要重点把握以下几点:一是导数的概念及其运算是导数应用的基础,这是高考重点考查的内容。
考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义;二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题.三是应用导数解决实际问题.【专题综合】导数是高中数学知识的一个重要的交汇点,命题X 围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,高考命题在利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,突出了对能力的考查.例1(2009某某卷文)设函数329()62f x x x x a =-+-. (1)对于任意实数x ,()f x m '≥恒成立,求m 的最大值; (2)若方程()0f x =有且仅有一个实根,求a 的取值X 围. 解:(1) '2()3963(1)(2)f x x x x x =-+=--,因为(,)x ∈-∞+∞,'()f x m ≥, 即 239(6)0x x m -+-≥恒成立,所以 8112(6)0m ∆=--≤, 得34m ≤-,即m 的最大值为34- (2) 因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >; 所以 当1x =时,()f x 取极大值 5(1)2f a =-; 当2x =时,()f x 取极小值 (2)2f a =-;故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >. 2利用导数研究函数的图像变化规律例3(2009某某卷文)已知函数3()31,0f x x ax a =--≠()I 求()f x 的单调区间;()II 若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m的取值X 围。
高二数学 教案 1. 导数及其应用复习_苏教版_选修2-2
1 导数及其应用复习(2) 编写:赵太田 审核:黄爱华 一、知识点研究函数的单调性导数的应用函数的极值和最值在实际生活中的应用二、基础训练1.函数32()31f x x x 是减函数的区间为 ,大致图像为 .2.若函数3()ya x x 是递减函数的区间为33,33,则a 的取值范围是 .3.已知函数()sin 5,(1,1)f x x x x ,如果2(1)(1)0f a f a ,则实数a 的取值范围是 . 4.若函数32()f x x bx cx d 的单调递减区间为1,2,则b = ,c = . 5.已知函数322()f x x ax bxa 在1x处有极值为10,则(2)f = .三、典型例题例1.已知函数53()1f x x ax bx ,当且仅当1,1xx时取得极值,且极大值比极小值大4. ⑴求,a b 的值;⑵求()f x 的极大值和极小值.例2.已知函数3()1f x xax . ⑴若()f x 在实数集R 单调递增,求实数a 的取值范围;⑵是否存在实数a ,使()f x 在区间(1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由; ⑶试说明3()1f x xax 的图象不可能总在直线y a 的上方.例3.如图,已知海岛A 到海岸公路BC 的距离AB 为50km ,B ,C 间的距离为100km ,从A 到C ,先乘船,船速为25km/h ,再乘汽车,车速为50km/h ,登陆点选在何处,所用时间最少?四、课堂检测1.设1x 与2x 是函数2()ln f x a x bxx 的两个极值点. ⑴试确定常数a 和b 的值;⑵试判断1x ,2x 是函数()f x 的极大值点还是极小值点,并说明理由.五、课堂小结六、课后反思 七、课后作业 1.函数()y f x 是定义在R 上的可导函数,则()yf x 为R 上的单调增函数是()0f x的 条件.2.下列说法正确的是 .①当0()0f x 时,0()f x 为()f x 的极大值; ②当0()0f x 时,0()f x 为()f x 的极小值; ③当0()0f x 时,0()f x 为()f x 的极值;④当0()f x 为函数()f x 的极值且函数()f x 在0x 处可导时,有0()0f x .3.已知函数()f x 的导数为3()44f x xx ,且()f x 的图象过点(0,5),当函数()f x 取得极大值-5时,x 的值为 .4.若函数3()log ()(0,1)a f x x ax a a 在区间1,02内单调递增,则a 的取值范围是 .5.若在区间(,)a b 内,()0,()0f x f a ≥,则在(,)a b 内()____0f x .6.设函数32()()()yax ax ax a 在1x 处取得极大值,则a = .7.对于定义在区间,a b 上的函数()f x ,给出下列命题:⑴若()f x 在多处取得极大值,那么()f x 的最大值一定是所有极大值中最大的一个值; ⑵若()f x 有极大值m ,极小值n ,那么m n ; ⑶若0(,)x a b ,在0x 左侧附近()0f x ,在0x 右侧附近()0f x ,且0()0f x ,则0x 是()f x 的极大值点;⑷若()f x 在,a b 上恒为正,则()f x 在,a b 上增函数. 其中正确命题的序号为 . 8.若函数32()31f x x a x 的图象与直线3y只有一个公共点,则实数a 的取值范围为 .9.已知函数32()3f x ax bx x 在1x 处取得极值.⑴讨论(1)f 和(1)f 是函数()f x 的极大值还是极小值; ⑵过点(0,16)A 作曲线()y f x 的切线,求此切线方程.10.如图,已知曲线31:(0)C y x x ≥与曲线22:23(0)C yx x x ≥交于点O A 、,直线(01)xt t与曲线12C C 、交于点B D 、.⑴写出四边形ABOD 的面积S 与t 的函数关系()S f t ; ⑵讨论()f t 的单调性,并求()f t 的最大值.11.一艘轮船在航行中的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问此轮船以何种速度航行时,能使行驶每公里的费用总和最小?订正栏:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用复习学案
一、学习目的
(1)复习回顾导数的概念及其几何意义(2)掌握导数的计算
(3)能利用导数这个工具解决求函数单调区间、极值以及最值的问题
二、学习重点
利用导数这个工具解决求函数单调区间、极值以及最值的问题
三、学习难点
利用导数这个工具解决求函数单调区间、极值以及最值的问题
四、学习过程 (一)知识归纳
导数的概念及其几何意义 导数的计算 导数的应用
导数的引入 平均速度→平均变化率y x ∆∆→几何意义(割线AB 的斜率)→瞬时速度→ 瞬时变化率(导数) 0lim x y x ∆→∆∆→几何意义(在该点处切线的斜率) 利用导数的几何意义求切线的斜率、切线方程及参数 1、 利用定义求导数 00()()()lim lim x x y f x x f x f x x x
∆→∆→∆+∆-'==∆∆ 2、 基本初等函数的导数公式 3、 导数的运算法则 []'''()()()()f x g x f x g x ±=± []'''()()()()()()f x g x f x g x f x g x ⋅=± 推论:[]''()()cf x cf x = []'''2()()()()()(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦ 4、 复合函数求导 (())
(),()''.'
x u x y f g x y f u u g x y y u ====令
1、利用导数求函数的单调区
间('()0f x >,函数在这个区间内为增函数,'()0f x <,函数在这个区间内为减函数) 2、求函数的极值点与极值 (极值点处导数为零,导数为零的点不一定是极值点,左导正,右导负为极大值,左导负,
右导正为极小值) 3、求函数的最值点与最值 (最值必在极值点或闭区间端
点处取得,故只需计算极值和
端点处的函数值,再比较大小
即可) 生活中的优化问题距离:利用导数工具解决生活中遇到的利润最大、用料最省、效率最高
此类题即是运用导数来求解函数在给定定义域内的最值,当给定的区间为开区间时,最值必在极值点出取到
(二)模块练习
导数的定义及其几何意义
优化问题 用函数表示的数学问题 优化问题的答案 用导数解决数学问题
1.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒时的瞬时速度是 ( )
A .7米/秒
B .6米/秒
C .5米/秒
D .8米/秒
2.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h
→+-- 的值为( ) A .'0()f x B .'02()f x C .'02()f x - D .0
3.曲线1704,4y x P x ⎛⎫--=- ⎪⎝
⎭上一点处的切线方程是 ( )
(A ) 5x+16y+8=0 (B )5x-16y+8=0 (C )5x+16y-8=0 (D )5x-16y-8=0
4.设曲线b ax x y ++=4在x =1处的切线方程是x y =,则=a ,=b .
5.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程
6.求抛物线y=2x 过点5,62⎛⎫ ⎪⎝⎭
的切线方程 导数的计算
求函数的导函数(1)23cos sin x y x
-=
(2)21x x y x =-+ (3)2x y x e =
(4)3231y x =+
(5)22x y e x =-
(6)()2log 21a y x =-
导数的应用
图像题
1.如图是函数32()f x x bx cx d =+++的大致图像,则2212x x +等于
( )
A 、23
B 、43
C 、83
D 、123
2.如果函数y=f(x)的导函数的图像如右图所示,给出下列
判断:
(1) 函数y=f(x)在区间(3,5)内单调递增;
(2) 函数y=f(x)在区间(-1/2,3)内单调递减;
a b x y
)(x f y '=O
(3) 函数y=f(x)在区间(-2,2)内单调递增;
(4) 当x= -1/2时,函数y=f(x)有极大值;
(5) 当x=2时,函数y=f(x)有极大值; 则上述判断中正确的是: 。
3.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ( )
A 1个
B 2个
C 3个
D 4个 4.设函数f(x)在定义域内可导,y=f(x)的图象如图1所示,则导函数y=f '(x)可能为 (
)
求函数的单调区间、极值、最值
1.函数5523--+=x x x y 的单调递增区间是___________________________
2、函数,1)(23-++=bx ax x x f 当1=x 时,有极小值1,则函数bx ax x x g ++=23)(的 单调减区间是___________________________________
3.函数344+-=x x y 在区间[]2,3-上的最小值为
4.若函数()3f x ax x =+在区间[]1,1-上单调递增,求a 的取值范围
5.已知a 为实数,))(4()(2a x x x f --=。
⑴求导数)(x f ';
⑵若0)1(=-'f ,求)(x f 在[-2,2] 上的最大值和最小值;
⑶若)(x f 在(-∞,-2)和[2,+∞]上都是递增的,求a 的取值范围。
x y O A x y O B x y O C y O D x x
y
O 图1
生活中的优化问题
1.如图用铁丝围成一个上面是半圆,下面是矩形的图形,其面积为2am ,为使所用材料最省,底宽应为多少?
2. 某商品每件60元时,每星期能卖出300件;如果调整价格,每涨价1元,每星期要少卖10件。
已知每件商品成本为40元,问:如何定价才能使利润最大?
证明题
1、 证明函数()32
()2670,2f x x x =-+在内是减函数。
2.证明方程x-1sin 2
x =0有一个根。
3. 证明:当1>x 时,不等式x
x 132-
>成立。