2013届高三人教A版理科数学一轮复习课时作业(9)函数图象及性质的综合应用)

合集下载

高考一轮复习课时作业(人教版):2-9函数的应用word版含答案

高考一轮复习课时作业(人教版):2-9函数的应用word版含答案

2-9函数的应用A 级 基础达标演练 (时间:40分钟 满分:60分)一、选择题(每小题5分,共25分)1.(2012·东莞调研)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为( ).解析 设原有荒漠化土地面积为b ,由题意可得y = b (1+10.4%)x . 答案 D2.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( ).A .10元B .20元C .30元 D.403元 解析 设A 种方式对应的函数解析式为S =k 1t +20, B 种方式对应的函数解析式为S =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10. 答案 A3.(2011·广州二测)如图为某质点在4秒钟内做直线运动时,速度函数v =v (t )的图象,则该质点运动的总路程s =( ).A .10 cmB .11 cmC .12 cmD .13 cm解析 ∵该质点运动的总路程为右图阴影部分的面积,∴s =12×(1+3)×2+2×3+12×1×2=11(cm).答案 B4.(2010·广东深圳)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如下图所示),则每辆客车营运多少年时,其营运的平均利润最大( ).A .3B .4C .5D .6 解析 由题图可得营运总利润y =-(x -6)2+11, 则营运的年平均利润 y x =-x -25x +12, ∵x ∈N *,∴yx ≤-2x ·25x +12=2,当且仅当x =25x ,即x =5时取“=”. ∴x =5时营运的平均利润最大. 答案 C5.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,则这个人应得稿费(扣税前)为( ).A .2 800元B .3 000元C .3 800元D .3 818元解析 设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得y =⎩⎨⎧0 (0≤x ≤800),(x -800)×14% (800<x ≤4 000),11%·x (x >4 000).如果稿费为4 000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4 000元之间,∴(x -800)×14%=420,∴x =3 800. 答案 C二、填空题(每小题4分,共12分)6.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元.解析 设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225]∴当x =95时y 最大. 答案 957.现有含盐7%的食盐水为200 g ,需将它制成工业生产上需要的含盐5 %以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水x g ,则x 的取值范围是__________.解析 根据已知条件:设y =200×7%+x 4%200+x ,令5%<y <6%,即(200+x )5%<200×7%+x ·4%<(200+x )6%,解得100<x <400. 答案 (100,400)8.(2012·绍兴模拟)2008年我国人口总数为14亿,如果人口的自然年增长率控制在1.25%,则________年我国人口将超过20亿.(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1)解析 由已知条件:14(1+1.25%)x -2008>20, x -2 008>lg 107lg 8180=1-lg 74 lg3-3 lg2-1=28.7则x >2 036.7,即x =2 037. 答案 2 037 三、解答题(共23分)9.(11分)围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图所示.已知旧墙的维修费用为45元/m ,新墙的造价为180元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元)(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 (1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360,由已知xa =360,得a =360x . 所以y =225x +3602x -360(x >0).(2)∵x >0,∴225x +3602x ≥2225×3602=10 800.∴y =225x +3602x -360≥10 440. 当且仅当225x =3602x 时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.10.(12分)(2012·天津模拟)某民营企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图①所示,B 产品的利润与投资的算术平方根成正比,其关系如图②所示(注:利润与投资单位:万元).(1)分别将A 、B 两种产品的利润表示为投资的函数关系式,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,怎样分配这10万元资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元)?解 (1)设投资为x 万元,A 产品的利润为f (x )万元,B 产品的利润为g (x )万元, 由题设f (x )=k 1x ,g (x )=k 2x (k 1·k 2≠0), 由题图知f (1)=14,∴k 1=14. 又g (4)=52, ∴k 2=54.从而f (x )=14x (x ≥0),g (x )=54x (x ≥0). 所以利润与投资的函数关系式为 A 种产品f (x )=14x (x ≥0), B 种产品g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入(10-x )万元,设企业利润为y 万元,则 y =f (x )+g (10-x )=x 4+5410-x , ∴0≤x ≤10,令10-x =t , 则0≤t ≤10,则y =10-t 24+54t =-14⎝ ⎛⎭⎪⎫t -522+6516(0≤t ≤10),当t =52时,y max =6516≈4,此时x =10-254=3.75.∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约为4万元.B 级 综合创新备选 (时间:30分钟 满分:40分)一、选择题(每小题5分,共10分)1.(2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( ). A .5太贝克 B .75ln 2太贝克 C .150ln 2太贝克 D .150太贝克解析 由题意M ′(t )=M 02-t 30⎝ ⎛⎭⎪⎫-130ln 2, M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln 2=-10ln 2,∴M 0=600,∴M (60)=600×2-2=150. 答案 D2.(2011·广东汕头)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ).A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析 由三角形相似得24-y 24-8=x20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15. 答案 A二、填空题(每小题4分,共8分)3.碳14的衰变极有规律,其精确性可以称为自然界的“标准时钟”.碳14的“半衰期”是5730年,即碳14大约每经过5730年就衰变为原来的一半.科学研究表明,宇宙射线在大气中能够产生放射性碳14.动植物在生长过程中衰变的碳14,可以通过与大气的相互作用得到补充,所以活着的动植物每克组织中的碳14含量保持不变.死亡后的动植物,停止了与外界环境的相互作用,机体中原有的碳14就按其确定的规律衰变.经探测,一块鱼化石中碳14的残留量约为原始含量的46.5%.设这群鱼是距探测时t 年前死亡的,则t 满足的等式为________,将t 用自然对数的运算式子可以表示为________(只写出运算式子不需要计算出结果,式子中可以出现自然对数、实数之间的四则运算). 解析 .答案4.某市出租车收费标准如下:起步价为8元,起步里程为3 k m(不超过3 k m 按起步价付费);超过3 k m 但不超过8 k m 时,超过部分按每千米2.15元收费;超过8 k m 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ k m. 解析 由已知条件y =⎩⎨⎧8,0<x ≤38+2.15(x -3)+1,3<x ≤88+2.15×5+2.85(x -8)+1,x >8由y =22.6解得x =9. 答案 9三、解答题(共22分)5.(10分)(2011·湖南)如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向做匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:①P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;②其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.解 (1)由题意知,E 移动时单位时间内的淋雨量为 320|v -c |+12,故y =100v ⎝ ⎛⎭⎪⎫320|v -c |+12=5v (3|v -c |+10).(2)由(1)知,当0<v ≤c 时,y =5v (3c -3v +10)=5(3c +10)v -15; 当c <v ≤10时,y =5v (3v -3c +10)=5(10-3c )v +15. 故y =⎩⎪⎨⎪⎧5(3c +10)v -15,0<v ≤c ,5(10-3c )v +15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数, 故当v =10时,y min =20-3c2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v 的增函数.故当v =c 时,y min =50c .6.(12分)(2012·聊城调研)某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.(1)设半圆的半径OA =r (米),设建立塑胶跑道面积S 与r 的函数关系S (r ); (2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?(精确到元) 解 (1)塑胶跑道面积S =π[r 2-(r -8)2]+8×10 000-πr 22r×2=80 000r +8πr -64π. ∵πr 2<10 000,∴0<r <100π. (2)设运动场的造价为y 元, y =150×⎝ ⎛⎭⎪⎫80 000r +8πr -64π+30×⎝ ⎛⎭⎪⎫10 000-80 000r -8πr +64π=300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π.令f (r )=80 000r +8πr , ∵f ′(r )=8π-80 000r 2,当r ∈[30,40]时,f ′(r )<0,∴函数y =300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π在[30,40]上为减函数.∴当r=40时,y min≈636 510,即运动场的造价最低为636 510元.。

人教A版高考理科数学一轮总复习课后习题 课时规范练5 函数及其表示

人教A版高考理科数学一轮总复习课后习题 课时规范练5 函数及其表示

课时规范练5 函数及其表示基础巩固组1.若f(2x)=3x+5,则f (x 2)=( ) A.34x+5 B.43x+5 C.35x+4 D.53x+42.(江苏百校大联考)设函数f(x)={√1-x +1,x ≤1,2x -1,x >1,则f(f(-3))=( ) A.14 B.2 C.4 D.83.已知函数f(x)={2x -1,0<x <2,6-x ,x ≥2,那么不等式f(x)≥√x 的解集为( ) A.(0,1]B.(0,2]C.[1,4]D.[1,6] 4.(广东梅州二模)设函数f(x)={log 2(6-x ),x <1,2x -1,x ≥1,则f(-2)+f(log 26)=( )A.2B.6C.8D.105.函数f(x)的定义域为[-1,1],图象如图①所示,函数g(x)的定义域为[-1,2],图象如图②所示.若集合A={x|f(g(x))=0},B={x|g(f(x))=0},则A∩B 中有 个元素.6.函数f(x)=√11-x +log 3(x+2)的定义域是 .综合提升组7.已知函数f(x)={2x ,x >a ,f (x +2),x ≤a ,且f(-2)=4,则实数a 的取值范围为( )A.(-∞,2)B.(0,+∞)C.[0,2)D.[0,+∞) 8.已知函数f 1-x 1+x =1-x 21+x 2,则f(x)的解析式为( ) A.f(x)=2x1+x 2(x≠-1)B.f(x)=-2x 1+x 2(x≠-1) C.f(x)=x1+x 2(x≠-1) D.f(x)=-x 1+x 2(x≠-1) 9.已知函数f(2-x)=√4-x 2,则函数f(√x )的定义域为( )A.[0,+∞)B.[0,16]C.[0,4]D.[0,2]10.已知函数f(x-1)的定义域为[1,9],则函数g(x)=f(2x)+√8-2x 的定义域为 .11.若函数f(x),g(x)满足f(x)-2f (1x )=2x-4x,且f(x)+g(x)=x+6,则f(1)+g(-1)= .创新应用组12.(北京西城二模)若函数f(x)={2x +3,x ≤0,(x -2)2,0<x ≤a的定义域和值域的交集为空集,则正数a 的取值范围是( )A.(0,1]B.(0,1)C.(1,4)D.(2,4)答案:课时规范练5 函数及其表示1.A 令t=2x,则x=12t,∴f(t)=32t+5,即f(x)=32x+5,则f (x 2)=34x+5. 2.C 由题意可知,因为f(-3)=√1-(-3)+1=3,所以f(f(-3))=f(3)=22=4,故选C.3.C 作出函数y=f(x)与y=√x 的图象:由图可知:不等式f(x)≥√x 的解集为[1,4].4.B 因为f(x)={log 2(6-x ),x <1,2x -1,x ≥1,所以f(-2)=log 28=3,f(log 26)=2log 26-1=3,所以f(-2)+f(log 26)=6.故选B.5.3 若f(g(x))=0,则g(x)=0或-1或1,∴A={-1,0,1,2}.若g(f(x))=0,则f(x)=0或2,∴B={-1,0,1},∴A∩B={-1,0,1},共3个元素.6.(-2,1) 由题意可得,{1-x >0,x +2>0,解得-2<x<1,故函数的定义域为(-2,1).7.C ∵4=22,∴f(-2)=f(0)=f(2),则0≤a 且2>a.8.A 令t=1-x 1+x ,则x=1-t 1+t ,所以f(t)=1-(1-t 1+t )21+(1-t 1+t )2=2t t 2+1(t≠-1),所以f(x)=2x 1+x 2(x≠-1),故选A.9.B 由4-x 2≥0,解得-2≤x≤2,即f(2-x)的定义域是[-2,2],则2-x ∈[0,4],即函数f(x)的定义域为[0,4],令√x ∈[0,4],解得x ∈[0,16],则函数y=f(√x )的定义域为[0,16].10.[0,3] ∵f(x-1)的定义域为[1,9],∴1≤x≤9,即0≤x -1≤8,即f(x)的定义域是[0,8],要使函数g(x)=f(2x)+√8-2x 有意义, 则{0≤2x ≤8,8-2x ≥0,得{0≤x ≤4,x ≤3,得0≤x≤3,即函数g(x)的定义域为[0,3].11.9 由f(x)-2f (1x )=2x-4x ,可知f (1x )-2f(x)=2x-4x,联立可得f(x)=2x,所以f(1)=2,f(-1)=-2.又因为f(-1)+g(-1)=-1+6=5,所以g(-1)=5+2=7,所以f(1)+g(-1)=9.12.B 由题意f(x)的定义域为(-∞,a],a>0.当x≤0时f(x)=2x +3,则f(x)在(-∞,0]上单调递增,所以f(x)∈(3,4]; 要使定义域和值域的交集为空集,显然0<a≤3.当0<x≤a 时,f(x)=(x-2)2,若a≥2,则f(2)=0,此时显然不满足定义域和值域的交集为空集;若0<a<2,则f(x)在(0,a]上单调递减,此时f(x)∈[(a-2)2,4),则f(x)∈[(a-2)2,4)∪(3,4],所以{a <(a -2)2,0<a <2,解得0<a<1,即a ∈(0,1),故选B.。

2022届高三数学一轮复习课时作业9 函数图象及性质的综合应用 新人教A版 理

2022届高三数学一轮复习课时作业9 函数图象及性质的综合应用 新人教A版 理

课时作业九[第9讲函数图象及性质的综合应用][时间:45分钟分值:100分]错误!1.[2022·郑州模拟] 若函数f是R上的减函数,且f的图象经过点A0,3,B3,-1,则不等式|f+1->a B.c>b>aC.a>b>c D.b>a>c4.[2022·豫南九校联考] 将函数f=inω+φ的图象向左平移错误!个单位,若所得的图象与原图象重合,则ω的值不可能等于A.4 B.6C.8 D.12错误!5.[2022·湖南“六校联考”] 已知图K9-2①是函数=f的图象,则图K9-2②中的图象对应的函数可能是A.=f|| B.=|f|C.=f-|| D.=-f-||6.[2022·哈密模拟] 已知函数f=a3+b2+c+d的图象如图K9-3,则b的取值范围为A.b0C.b≤0 D.b≥07.[2022·淮南一模] 已知函数f=-a-b其中a>b的图象如图K9-4所示,则函数g=a+b的图象是-8.为了得到函数=g错误!的图象,只需把函数=g的图象上所有的点A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度9f+2为偶函数,则A.f-0的解集是________.-812.从今年的∈[1,8年内起,小李的年薪单位万元与年数的关系是=2+,小马的年薪与年数的关系是=+,大约经过________年,小马的年薪超过小李.13.已知a>0且a≠1,f=2-a,当∈-1,1时均有,f3=-10,故函数=2-2至少在区间-1,0,0,3,3,5内有三个变号零点,综合各个选项可知只有选项A符合这个性质.故选A3.A [解析] 利用图象确定函数交点.4.B [解析] 函数f=inω+φ的图象向左平移错误!个单位得到f=in错误!=inω+φ的图象,与原图象重合,故错误!=2π,∈Z,故ω不可能是6【能力提升】5.C [解析] 由题图②知,图象对应的函数是偶函数,且当3a0,∴b<07.A [解析] 设f的零点为a,b,由图可知0 [解析] 由题图可知,当00,g>0;当错误!0,g2时,f>0,g>0因此f·g>0的解集是错误!12.6 [解析] 画出函数图象,从图象上观察知道在这8年内先是小马的年薪低,中间超过了小李.令函数f=2+--=+-,则f5=->0,f6=-=-0时,+>2+,由于是正整数,故在第6年小马的年薪超过小李的年薪.≤a2-错误!在-1,112由图象知:错误!∴错误!≤a错误a2m2m2m4m0,若m>0,>1-错误!,函数=f-有两个零点=错误!=错误!;若m<0,<1-错误!,函数=f-有两个零点=错误!=错误!;当≠1时,方程*有一解⇔Δ=4-4m1-=0,=1-错误!,函数=f-有一个零点=错误!。

最新人教A版理科数学一轮复习函数的性质专题精选课时习题(含答案解析)

最新人教A版理科数学一轮复习函数的性质专题精选课时习题(含答案解析)

课时作业(五) [第5讲 函数的性质][时间:45分钟 分值:100分]基础热身1. 下列函数中,既是偶函数又在(0,+∞)上单调递增的是( )A .y =x 3B .y =ln|x |C .y =1x 2D .y =cos x 2. 已知f (x )是定义在R 上的偶函数,对任意的x ∈R 都有f (x +6)=f (x )+2f (3),f (-1)=2,则f (2011)=( )A .1B .2C .3D .43.函数f (x )=2x x +1在[1,2]的最大值和最小值分别是( ) A.43,1 B .1,0 C.43,23 D .1,234. 若函数f (x )=x (2x +1)(x -a )为奇函数,则a =( ) A.12 B.23 C.34D .1 能力提升5. 已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5(x ≤1),2a x(x >1)是(-∞,+∞)上的减函数,则a 的取值范围是( ) A .(0,3) B .(0,3]C .(0,2)D .(0,2]6. 函数y =f (x )与y =g (x )有相同的定义域,且都不是常值函数,对于定义域内的任何x ,有f (x )+f (-x )=0,g (x )·g (-x )=1,且当x ≠0时,g (x )≠1,则F (x )=2f (x )g (x )-1+f (x )的奇偶性为( ) A .奇函数非偶函数 B .偶函数非奇函数C .既是奇函数又是偶函数D .非奇非偶函数7. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A.12B.14C .2D .4 8.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)9. 已知函数f (x )=⎩⎪⎨⎪⎧sinπx (0≤x ≤1),log 2 010x (x >1),若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( )A .(1,2 010)B .(1,2 011)C .(2,2 011)D .[2,2 011]10.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f [f (5)]=________. 11.f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为________. 12. 函数f (x )的定义域为D ,若对于任意的x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )为定义域D 上的非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0,②f (1-x )+f(x)=1,③feq\b\lc\(\rc\)(\a\vs ∴f (x )在[2a,3a ]上的最小值为-1,最大值为0.。

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

高三数学人教版A版数学(理)高考一轮复习教案 导数在函数研究中的应用

第十一节 导数在函数研究中的应用1.函数的单调性了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.函数的极值了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次).知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与其导数的正负有如下关系 (1)若f ′(x )>0,则f (x )在这个区间上是增加的. (2)若f ′(x )<0,则f (x )在这个区间上是减少的. (3)若f __′(x )=0,则f (x )在这个区间内是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f __′(x ).(2)在定义域内解不等式f __′(x )>0或f __′(x )<0. (3)根据结果确定f (x )的单调区间. 易误提醒1.在某个区间(a ,b )上,若f ′(x )>0,则f (x )在这个区间上单调递增;若f ′(x )<0,则f (x )在这个区间上单调递减;若f ′(x )=0恒成立,则f (x )在这个区间上为常数函数;若f ′(x )的符号不确定,则f (x )不是单调函数.2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[自测练习]1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).答案:A2.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数,∴f ′(x )≥0恒成立,∴Δ=4-12m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值.2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.易误提醒 f ′(x 0)=0是x 0为f (x )的极值点的非充分非必要条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点;又如f (x )=|x |,x =0是它的极小值点,但f ′(0)不存在.[自测练习]3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:导函数f ′(x )的图象与x 轴的交点中,左侧图象在x 轴下方,右侧图象在x 轴上方的只有一个,故选A.答案:A4.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2×(-3)a +3=0,解得a =5.答案:D考点一 利用导数研究函数的单调性|(2015·高考全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0, 所以f (x )在(0,+∞)单调递增. 若a >0,则当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0. 所以f (x )在⎝⎛⎭⎫0,1a 单调递增, 在⎝⎛⎭⎫1a ,+∞单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝⎛⎭⎫1a =ln 1a +a ⎝⎛⎭⎫1-1a =-ln a +a -1. 因此f ⎝⎛⎭⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).利用导数研究函数的单调性应注意两点(1)在区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. (2)可导函数f (x )在(a ,b )内是增(减)函数的充要条件是:∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒为零.1.已知函数f (x )=m ln x -12x 2(m ∈R ),求函数f (x )的单调区间.解:函数f (x )=m ln x -12x 2的定义域是(0,+∞).f ′(x )=mx -x =m -x 2x .当m ≤0时,f ′(x )≤-x 2x=-x <0,函数f (x )=m ln x -12x 2在(0,+∞)上为减函数.当m >0时,令f ′(x )=0,得:x =m 或-m (舍去). 当x ∈(0,m )时,f ′(x )>0, ∴f (x )在(0,m )上是增函数. 当x ∈(m ,+∞)时,f ′(x )<0, ∴f (x )在(m ,+∞)上是减函数.综上所述,当m ≤0时,f (x )的单调递减区间为(0,+∞),当m >0时,f (x )的单调递增区间为(0,m ),单调递减区间为(m ,+∞).考点二 已知单调性求参数范围|(2015·福州模拟)已知函数f (x )=e x 2-1e x -ax (a ∈R ).(1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在[-1,1]上为单调函数,求实数a 的取值范围. [解] (1)当a =32时,f (x )=e x 2-1e x -32x ,f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2),令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,则0<x <ln 2.∴f (x )在(-∞,0],[ln 2,+∞)上单调递增,在(0,ln 2)上单调递减. (2)f ′(x )=e x 2+1e x -a ,令e x =t ,由于x ∈[-1,1],∴t ∈⎣⎡⎦⎤1e ,e .令h (t )=t 2+1t ⎝⎛⎭⎫t ∈⎣⎡⎦⎤1e ,e , h ′(t )=12-1t 2=t 2-22t2,∴当t ∈⎣⎡⎭⎫1e ,2时,h ′(t )<0,函数h (t )为单调减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数. 故h (t )在⎣⎡⎦⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝⎛⎭⎫1e =12e +e ,∴2≤h (t )≤e +12e.∵函数f (x )在[-1,1]上为单调函数,若函数在[-1,1]上单调递增,则a ≤t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≤2;若函数f (x )在[-1,1]上单调递减,则a ≥t 2+1t 对t ∈⎣⎡⎦⎤1e ,e 恒成立,所以a ≥e +12e,综上可得a ≤ 2或a ≥e +12e.已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.提醒:f (x )为增函数的充要条件是对任意的x ∈(a ,b ),都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.2.已知函数f (x )=e x -ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x +x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a ,则当x ∈(-∞,ln a )时,f ′(x )<0,∴函数f (x )在(-∞,ln a )上为减函数, 当x ∈(ln a ,+∞)时,f ′(x )>0, ∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x -x )-e x +x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x -m e x +m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x -1在(2,+∞)上恒成立,令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=(e x )2-x e x -2e x (e x -1)2=e x (e x -x -2)(e x -1)2. 令L (x )=e x -x -2,L ′(x )=e x -1>0在(2,+∞)上恒成立, 即L (x )=e x -x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x -1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.考点三 利用导数研究极值|设函数f (x )=x 2-ax +b .讨论函数f (sin x )在⎝⎛⎭⎫-π2,π2内的单调性并判断有无极值,有极值时求出极值. [解] f (sin x )=sin 2x -a sin x +b =sin x (sin x -a )+b ,-π2<x <π2.[f (sin x )]′=(2sin x -a )cos x ,-π2<x <π2.因为-π2<x <π2,所以cos x >0,-2<2sin x <2.①a ≤-2,b ∈R 时,函数f (sin x )单调递增,无极值. ②a ≥2,b ∈R 时,函数f (sin x )单调递减,无极值.③对于-2<a <2,在⎝⎛⎭⎫-π2,π2内存在唯一的x 0,使得2sin x 0=a .-π2<x ≤x 0时, 函数f (sin x )单调递减;x 0≤x <π2时,函数f (sin x )单调递增.因此,-2<a <2,b ∈R 时,函数f (sin x )在x 0处有极小值 f (sin x 0)=f ⎝⎛⎭⎫a 2=b -a24.3.(2015·太原一模)已知函数f (x )=(x 2-ax +a )e x -x 2,a ∈R . (1)若函数f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若函数f (x )在x =0处取得极小值,求a 的取值范围. 解:(1)由题意得f ′(x )=x [(x +2-a )e x -2]= x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , ∵f (x )在(0,+∞)上单调递增, ∴f ′(x )≥0在(0,+∞)上恒成立, ∴x +2-2ex ≥a 在(0,+∞)上恒成立,又函数g (x )=x +2-2e x 在(0,+∞)上单调递增,∴a ≤g (0)=0,∴a 的取值范围是(-∞,0].(2)由(1)得f ′(x )=x e x ⎝⎛⎭⎫x +2-2e x -a ,x ∈R , 令f ′(x )=0,则x =0或x +2-2e x -a =0,即x =0或g (x )=a ,∵g (x )=x +2-2e x 在(-∞,+∞)上单调递增,其值域为R ,∴存在唯一x 0∈R ,使得g (x 0)=a ,①若x 0>0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,x 0)时,g (x )<a ,f ′(x )<0,∴f (x )在x =0处取得极大值,这与题设矛盾.②若x 0=0,当x ∈(-∞,0)时,g (x )<a ,f ′(x )>0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处不取极值,这与题设矛盾.③若x 0<0,当x ∈(x 0,0)时,g (x )>a ,f ′(x )<0;当x ∈(0,+∞)时,g (x )>a ,f ′(x )>0,∴f (x )在x =0处取得极小值.综上所述,x 0<0,∴a =g (x 0)<g (0)=0, ∴a 的取值范围是(-∞,0). 8.分类讨论思想在导数中的应用【典例】 (2015·贵阳期末)已知函数f (x )=ax -ae x (a ∈R ,a ≠0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围.[思维点拨] (1)求f ′(x )后判断f (x )在(-∞,+∞)上的单调性,可求极值. (2)分类讨论f (x )在(-∞,+∞)的单调性,利用极值建立所求参数a 的不等式求解. [解] (1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex . 由f ′(x )=0,得x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数f (x )的极小值为f (2)=-1e2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .①当a <0时,F (x ),F ′(x )的变化情况如下表:若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0;②当a >0时,F (x ),F ′(x )的变化情况如下表:因为F (2)>F (1)>0,且F ⎝⎛⎭⎫1-10a =e1-10a -10e1-10a <e -10e1-10a <0, 所以此时函数F (x )总存在零点. (或:当x >2时,F (x )=a (x -1)e x+1>1,当x <2时,令F (x )=a (x -1)e x+1<0,即a (x -1)+e x <0, 由于a (x -1)+e x <a (x -1)+e 2, 令a (x -1)+e 2≤0,得x ≤1-e 2a ,即x ≤1-e 2a时,F (x )<0,即F (x )存在零点)综上所述,所求实数a 的取值范围是(-e 2,0).[思想点评] 分类讨论思想在导数研究函数的应用中运用普遍常见的分类讨论点有: (1)f ′(x )=0是否有根.(2)若f ′(x )=0有根,根是否在定义域内. (3)若f ′(x )=0有两根,两根大小比较问题.A 组 考点能力演练1.(2015·岳阳一模)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x ) C .y =x e -xD .y =x +2x解析:A 、B 为单调函数,不存在极值,C 不是奇函数,故选D. 答案:D2.(2016·厦门质检)函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,1]C .(1,+∞)D .(0,2)解析:由题意知,函数的定义域为(0,+∞),又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].答案:B3.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22=( )A.23B.43C.83D.163解析:由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1·x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-43=83,故选C.答案:C4.已知函数f (x )=x ⎝⎛⎭⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A .x 1>x 2 B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析:因为f (-x )=-x ⎝ ⎛⎭⎪⎫e -x -1e -x =x ⎝⎛⎭⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*).又f ′(x )=e x-1e x +x ⎝⎛⎭⎫e x +1e x =e 2x(x +1)+x -1ex,当x ≥0时,e 2x (x +1)+x -1≥e 0(0+1)+0-1=0,所以f ′(x )≥0,所以f (x )在[0,+∞)上为增函数,由(*)式得|x 1|<|x 2|,即x 21<x 22,故选D.答案:D5.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C. 答案:C6.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞7.设x 1,x 2是函数f (x )=x 3-2ax 2+a 2x 的两个极值点,若x 1<2<x 2,则实数a 的取值范围是________.解析:本题考查利用导数研究函数的极值及不等式的解法.由f ′(x )=3x 2-4ax +a 2=0得x 1=a3,x 2=a .又∵x 1<2<x 2,∴⎩⎪⎨⎪⎧a >2,a 3<2,∴2<a <6.答案:(2,6)8.(2015·兰州一模)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵f (x )=x 2-e x -ax ,∴f ′(x )=2x -e x -a , ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,解得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a ≤2ln 2-2.答案:(-∞,2ln 2-2)9.已知函数f (x )=x -2ln x -ax +1,g (x )=e x (2ln x -x ).(1)若函数f (x )在定义域上是增函数,求a 的取值范围; (2)求g (x )的最大值.解:(1)由题意得x >0,f ′(x )=1-2x +ax2.由函数f (x )在定义域上是增函数,得f ′(x )≥0,即a ≥2x -x 2=-(x -1)2+1(x >0). 因为-(x -1)2+1≤1(当x =1时,取等号), 所以a 的取值范围是[1,+∞). (2)g ′(x )=e x ⎝⎛⎭⎫2x -1+2ln x -x , 由(1)得a =2时,f (x )=x -2ln x -2x +1,且f (x )在定义域上是增函数,又f (1)=0,所以,当x ∈(0,1)时,f (x )<0,当x ∈(1,+∞)时,f (x )>0. 所以,当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0. 故当x =1时,g (x )取得最大值-e.10.(2015·安徽六校联考)设函数f (x )=(x -1)e x -kx 2(其中k ∈R ). (1)当k =1时,求函数f (x )的单调区间和极值;(2)当k ∈[0,+∞)时,证明函数f (x )在R 上有且只有一个零点.解:(1)当k =1时,f (x )=(x -1)e x -x 2,f ′(x )=e x +(x -1)e x -2x =x e x -2x =x (e x -2), 令f ′(x )=0,得x 1=0,x 2=ln 2. 当x 变化时,f ′(x ),f (x )的变化如下表:∞).f (x )的极大值为f (0)=-1,极小值为f (ln 2)= -(ln 2)2+2ln 2-2.(2)f ′(x )=e x +(x -1)e x -2kx =x e x -2kx =x (e x -2k ), 当x <1时,f (x )<0,所以f (x )在(-∞,1)上无零点. 故只需证明函数f (x )在[1,+∞)上有且只有一个零点.①若k ∈⎣⎡⎦⎤0,e2,则当x ≥1时,f ′(x )≥0,f (x )在[1,+∞)上单调递增. ∵f (1)=-k ≤0,f (2)=e 2-4k ≥e 2-2e>0, ∴f (x )在[1,+∞)上有且只有一个零点.②若k ∈⎝⎛⎭⎫e2,+∞,则f (x )在[1,ln 2k ]上单调递减,在[ln 2k ,+∞)上单调递增. f (1)=-k <0,f (k +1)=k e k +1-k (k +1)2=k [e k +1-(k +1)2], 令g (t )=e t -t 2,t =k +1>2,则g ′(t )=e t -2t , g ″(t )=e t -2,∵t >2,∴g ″(t )>0,g ′(t )在(2,+∞)上单调递增. ∴g ′(t )>g ′(2)=e 2-4>0,∴g (t )在(2,+∞)上单调递增. ∴g (t )>g (2)=e 2-4>0. ∴f (k +1)>0.∴f (x )在[1,+∞)上有且只有一个零点.综上,当k ∈[0,+∞)时,f (x )在R 上有且只有一个零点.B 组 高考题型专练1.(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性. 解:(1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝⎛⎭⎫-43=0, 所以3a ·169+2·⎝⎛⎭⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝⎛⎭⎫12x 3+x 2e x, 故g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =⎝⎛⎭⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数. 2.(2015·高考安徽卷)已知函数f (x )=ax (x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar=400,求f (x )在(0,+∞)内的极值.解:(1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4,所以当x <-r 或x >r 时,f ′(x )<0,当-r <x <r 时,f ′(x )>0,因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞);f (x )的单调递增区间为(-r ,r ). (2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减. 因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)上的极大值为f (r )=ar (2r )2=a 4r =4004=100.3.(2016·宁夏银川一中联考)函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解:(1)∵f ′(x )=2x -2x,令f ′(x )=0,∵x >0,∴x =1.x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减1单调递增∴f (x )的极小值为1,无极大值.(2)∵k (x )=f (x )-h (x )=-2ln x +x -a ,k ′(x )=-2x +1.若k ′(x )=0,则x =2.当x ∈[1,2)时,k ′(x )<0;当x ∈(2,3]时,k ′(x )>0. 故k (x )在x ∈[1,2)上单调递减,在x ∈(2,3]上单调递增.∴{ k (1)≥0,k (2)<0,k (3)≥0,∴{a ≤1,a >2-2ln 2,a ≤3-2ln 3, ∴实数a 的取值范围是(2-2ln 2,3-2ln 3].。

2013届人教A版理科数学课时试题及解析(9)函数图象及性质的综合应用

2013届人教A版理科数学课时试题及解析(9)函数图象及性质的综合应用

课时作业(九) [第9讲 函数图象及性质的综合应用][时间:45分钟 分值:100分]基础热身1. 若函数f (x )是R 上的减函数,且f (x )的图象经过点A (0,3),B (3,-1),则不等式|f (x +1)-1|<2的解集是( )A .{x |0<x ≤2}B .{x |0≤x <2}C .{x |-1<x <0}D .{x |-1<x <2}2. 函数y =2x -x 2的图象大致是( )图K9-13.已知方程2x +x =0的实根为a ,log 2x =2-x 的实根为b ,log 12x =x 的实根为c ,则a ,b ,c 的大小关系为( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c4. 将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位,若所得的图象与原图象重合,则ω的值不可能等于( )A .4B .6C .8D .12 能力提升5. 已知图K9-2①是函数y =f (x )的图象,则图K9-2②中的图象对应的函数可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (-|x |)6. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图K9-3,则b 的取值范围为( )A .b <0B .b >0C .b ≤0D .b ≥07. 已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图K9-4所示,则函数g (x )=a x+b 的图象是( )-8.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度9.已知定义域为R 的函数f (x )在[2,+∞)上为减函数,且函数y =f (x +2)为偶函数,则( )A .f (-1)<f (0)<f (2)<f (3)B .f (-1)<f (3)<f (0)<f (2)C .f (-1)<f (0)<f (3)<f (2)D .f (2)<f (3)<f (0)<f (-1)10. 如图K9-6,正方形ABCD 的顶点A ⎝⎛⎭⎫0,22,B ⎝⎛⎭⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是图K9-11. 已知定义在[0,+∞)上的函数y =f (x )和y =g (x )的图象如图K9-8所示,则不等式f (x )·g (x )>0的解集是________.图K9-812.从今年的x (x ∈[1,8)年内起,小李的年薪y (单位万元)与年数x 的关系是y =2+0.2x ,小马的年薪与年数x 的关系是y =0.5+1.2x ,大约经过________年,小马的年薪超过小李.13.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时均有f (x )<12,则实数a 的取值范围是________.14.(10分)如图K9-9,在第一象限内,矩形ABCD 三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =-18x 2+58x 的图象上,且矩形的相邻的边分别与两坐标轴平行.若A点的纵坐标是2,求顶点D 的坐标.15.(13分)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴围成图形的面积;(3)写出(-∞,+∞)内函数f (x )的单调增(或减)区间,f (x )的解析式(不必写推导过程).难点突破16.(12分)已知二次函数y =g (x )的导函数的图象与直线y =2x 平行,且y =g (x )在x =-1处取得最小值m -1(m ≠0).设函数f (x )=g (x )x.(1)若曲线y =f (x )上的点P 到点Q (0,2)的距离的最小值为2,求m 的值; (2)k (k ∈R )如何取值时,函数y =f (x )-kx 存在零点,并求出零点.课时作业(九)【基础热身】1.D [解析] 化简原不等式得-1<f (x +1)<3,又∵f (x )的图象经过A (0,3),B (3,-1),∴f (0)=3,f (3)=-1,∴f (3)<f (x +1)<f (0),∵函数f (x )为减函数,∴0<x +1<3,-1<x <2.2.A [解析] 设f (x )=2x -x 2,f (-1)=-12<0,f (0)=1>0,f (3)=-1<0,f (5)=7>0,故函数y =2x -x 2至少在区间(-1,0),(0,3),(3,5)内有三个变号零点,综合各个选项可知只有选项A 符合这个性质.故选A.3.A [解析] 利用图象确定函数交点.4.B [解析] 函数f (x )=sin(ωx +φ)的图象向左平移π2个单位得到f (x )=sin ⎝⎛⎭⎫ωx +ωπ2+φ=sin(ωx +φ)的图象,与原图象重合,故ωπ2=2k π,k ∈Z ,故ω不可能是6.【能力提升】5.C [解析] 由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.6.A [解析] 解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过点(1,0),∴a +b +c =0①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0.解法二:由图象知f (x )=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵a >0,∴b <0.7.A [解析] 设f (x )的零点为a ,b ,由图可知0<a <1,b <-1,则g (x )是一个减函数,可排除C 、D ,再根据g (0)=1+b <0,可排除B ,故正确选项为A.8.C [解析] 变换函数的解析式为y =lg(x +3)-1,只要把函数y =lg x 的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度即可.答案为C.9.C [解析] 函数y =f (x +2)为偶函数,图象关于y 轴对称,把这个函数图象向右平移2个单位即得到函数y =f (x )的图象,即函数y =f (x )的图象关于直线x =2对称.由函数f (x )在[2,+∞)上为减函数,则函数f (x )在(-∞,2]上为增函数.由f (3)=f (4-3)=f (1),故f (-1)<f (0)<f (3)<f (2),正确选项为C.10.③ [解析] 当0<t ≤22时,f (t )=12·t ·2t =t 2,当22<t ≤2时,f (t )=1-12·(2-t )·2(2-t )=-t 2+22t -1,即函数f (t )在⎝⎛⎦⎤0,22上是开口向上的抛物线,在⎝⎛⎭⎫22,2上是开口向下的抛物线,故填③.11.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <2或x >2 [解析] 由题图可知,当0<x <12时,f (x )>0,g (x )>0; 当12<x <1时,f (x )>0,g (x )<0; 当1<x <2时,f (x )<0,g (x )<0; 当x >2时,f (x )>0,g (x )>0.因此f (x )·g (x )>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <2或x >2. 12.6 [解析] 画出函数图象,从图象上观察知道在这8年内先是小马的年薪低,中间超过了小李.令函数f (x )=2+0.2x -0.5-1.2x =1.5+0.2x -1.2x ,则f (5)=2.5-2.48832>0,f (6)=2.7-1.26=2.7-2.98598<0,根据函数的零点定理,存在x 0∈(5,6),当x >x 0时,0.5+1.2x >2+0.2x ,由于x 是正整数,故在第6年小马的年薪超过小李的年薪.13.12≤a <1或1<a ≤2 [解析] 由题意可知a x >x 2-12在(-1,1)上恒成立,令y 1=a x ,y 2=x 2-12,由图象知:⎩⎪⎨⎪⎧a -1≥(-1)2-12,a 1≥1-12,a >0且a ≠1,∴12≤a <1或1<a ≤2. 14.[解答] 显然,D 点的横坐标与A 点的横坐标相等,纵坐标与C 点的纵坐标相等.由于A 点在y =log 22x 的图象上,其纵坐标为2,所以横坐标为x =⎝⎛⎭⎫222=12.要求C 点的纵坐标,需要求其横坐标,而它的横坐标等于B 点的横坐标.因为B 点的纵坐标y B =y A =2,所以x C =x B =4,从而y D =y C =12,故D ⎝⎛⎭⎫12,12. 15.[解答] (1)由f (x +2)=-f (x ),得 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,从而得 f (π)=f (-1×4+π)=f (π-4)=-f (4-π) =-(4-π)=π-4.(2)由f (x )是奇函数且f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ),故知函数y =f (x )的图象关于直线x =1对称.又0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4.(3)函数f (x )的单调递增区间为[4k -1,4k +1](k ∈Z ),单调递减区间为[4k +1,4k +3](k ∈Z ),f (x )=⎩⎪⎨⎪⎧x -4k (4k -1<x ≤4k +1),2+4k -x (4k +1<x ≤4k +3)=1-|x -(4k +1)|(4k -1<x ≤4k +3,k ∈Z ).【难点突破】16.[解答] (1)设g (x )=ax 2+bx +c ,则g ′(x )=2ax +b , 又g ′(x )的图象与直线y =2x 平行, ∴2a =2,a =1.又g (x )在x =-1处取最小值,∴-b2=-1,b =2.∴g (-1)=a -b +c =1-2+c =m -1,c =m .f (x )=g (x )x =x +m x+2,设P (x 0,y 0),则|PQ |2=x 20+(y 0-2)2=x 20+⎝⎛⎭⎫x 0+m x 02=2x 20+m 2x 20+2m ≥22m 2+2m ,∴22m 2+2m =2,∴m =-1±2.(2)由y =f (x )-kx =(1-k )x +mx+2=0,得(1-k )x 2+2x +m =0,(*)当k =1时,方程(*)有一解x =-m 2,函数y =f (x )-kx 有一个零点x =-m2;当k ≠1时,方程(*)有两解⇔Δ=4-4m (1-k )>0,若m >0,k >1-1m,函数y =f (x )-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )k -1;若m <0,k <1-1m,函数y =f (x )-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )k -1;当k ≠1时,方程(*)有一解⇔Δ=4-4m (1-k )=0,k =1-1m,函数y =f (x )-kx 有一个零点x =1k -1.。

2013届人教A版理科数学课时试题及解析(4)函数及其表示

2013届人教A版理科数学课时试题及解析(4)函数及其表示

课时作业 (四 ) [第 4 讲 函数及其表示 ][时间: 45 分钟 分值: 100 分]基础热身1.以下各组函数中表示同样函数的是( )552A . y = x 与 y = xx - 1x +3C .y =与 y = x + 31D . y = x 与 y = x 02.已知 f :x →sinx 是会合 A(A? [0,2π]) 到会合 B =0,1的一个映照,则会合A 中的元2素最多有 ( )A .4个B .5 个C .6 个D .7 个2111x3.已知 f(x)= 1+x 2,那么 f(1) +f(2)+ f 2 + f(3) +f 3 + f(4) + f 4=()7 9 A . 3 B.2 C .4 D. 24. 某学校展开研究性学习活动,一组同学获取了下边的一组实验数据:x 1.99 3 4 5.1 6.12y 1.5 4.04 7.5 12 18.01现准备用以下四个函数中的一个近似地表示这些数据的规律,此中最靠近的一个是 ()A . y = 2x - 2B . y =1 x2 C .y = log 2x D .y = 12(x 2-1)能力提高15. 函数 y =log 2 3x -2 的定义域是 ()A . [1,+∞ )2,+∞B. 32 2 C. 3,1 D.3, 126. 函数 f( x)= 2x - 2的值域是 ()A . (-∞,- 1)B . (- 1,0)∪ (0,+∞ )C .( -1,+∞ )D . (-∞,- 1)∪ (0,+∞ )x 2+ 2x - 1, x ≥ 0, 7. 已知函数 f(x)= 则对随意 x 1,x 2∈ R ,若 0<|x 1|<|x 2|,以下不等x 2- 2x - 1, x<0 , 式恒建立的是 ( )A . f(x 1)- f(x 2)>0B . f( x 1)- f(x 2 )<0C .f(x 1)+ f(x 2)<0D . f( x 1)+ f(x 2 )>08. 定义在实数集上的函数 f(x),假如存在函数 g(x)= Ax + B(A ,B 为常数 ),使得 f( x)≥ g(x)对于一确实数 x 都建立,那么称 g(x)为函数 f( x)的一个承托函数.给出以下命题:①对给定的函数 f(x),其承托函数可能不存在,也可能有无数个;②定义域和值域都是R 的函数 f(x)不存在承托函数;x12的一个承托函数.④ g(x)= x 为函数 f( x)= x2( )此中,正确命题的个数是A .0B .1C .2D . 39.图 K4 - 1 中的图象所表示的函数的分析式为( )图 K4-13A . y = 2|x - 1|(0≤ x ≤2)B .y = 332 - |x -1|(0≤x ≤ 2)2C .y = 3- |x -1|(0≤x ≤2)2D . y = 1- |x -1|(0≤x ≤ 2)10.已知 f2+ 1= lgx ,则 f(x)= ________. x- log 3 x + 1 x>6 ,8,11. 设 f(x)= 3x -6- 1 x ≤ 6 知足 f(n)=- , 9则 f(n + 4)= ________.12. 设 f(x)的定义域为 D ,若 f(x)知足下边两个条件,则称 f(x)为闭函数.① f(x)在 D 内是单一函数;②存在 [a ,b]? D ,使 f(x)在 [a , b]上的值域为 [ a ,b].假如 f(x)= 2x +1+ k 为闭函数,那么 k 的取值范围是 ________.13.已知函数 f(x)= x 2, g(x)为一次函数,且一次项系数大于零,若f[g(x)] =4x 2- 20x + 25,则函数 g(x)= ________.14.(10 分 )已知二次函数 f(x)有两个零点 0 和- 2,且 f(x)最小值是- 1,函数 g(x)与 f(x)的图象对于原点对称.(1) 求 f(x)和 g(x)的分析式;(2) 若 h(x)=f(x)- λg (x)在区间 [ - 1,1]上是增函数,务实数 λ的取值范围.15. (13 分)解答以下问题:(1)若 f(x + 1)=2x 2+1,求 f(x);(2)若 2f( x)- f(- x)= x + 1,求 f(x);x(3)若函数 f(x)=, f(2)= 1,且方程 f(x)= x 有独一解,求 f(x).ax + b难点打破16. (12 分 )设 f( x)=ax2+ bx,则能否存在实数a,使得起码有一个正实数b,使函数f(x)的定义域和值域同样?若存在,求出 a 的值;若不存在,请说明原因.课时作业 ( 四)【基础热身】1. D [ 分析 ] 对于 A ,两函数的对应法例不一样; 对于 B ,两函数的定义域不一样; 对于 C ,两函数的定义域不一样; 对于 D ,两函数的定义域都为{ x|x ∈ R , x ≠ 0} ,对应法例都可化为 y = 1(x ≠ 0).2. B [ 分析 ] 当 sinx = 0 时, x = 0, π, 2π;1 π 5π 当 sinx = 2时, x = 6, 6 .所以,会合 A 中的元素最多有5 个.x 21 = 1 3. B [分析 ] 2可得 f x 2, 由 f(x) =1+ x1+ x 1 1所以 f(x)+ f x= 1,又∵ f(1) = 2,f(2) + f 1=1,2f(3) + f 1 =1, f(4)+ f 1= 1,3 4∴ f(1) + f(2)+ f 1 + f(3) +f 1 + f(4) + f 1 =7.2 3 4 21 x是单一递减的,也不4.D [分析 ] 直线是平均的,应选项 A 不是;指数函数 y = 2 切合要求;对数函数 y = log 2x 的增加是迟缓的,也不切合要求;将表中数据代当选项D 中, 基本切合要求.【能力提高】115.D [分析 ]由题知 log 2(3x - 2)≥ 0=log 21,又知对数函数的真数大于零,所以0<3x- 2≤ 1,解得 2<x ≤ 1.31 x -1- 1>- 1,联合反比率函数的图象可知f(x)∈ (-∞,- 1)∪ (0, 6. D [分析 ] f x = 2+∞ ),应选 D. x 2+ 2x -1, x ≥ 0,7.B[ 分析 ] f(x)= 为偶函数,在区间 (0,+∞ )上单一递加,所以x 2 -2x - 1, x<0,f(x 1)-f(x 2)<0.8. C [分析 ] ①正确,②错误;③正确;④错误. 9. B [分析 ] 从图象上看出 x =0 时 y = 0,代入各个选项就能够清除 A 、 C ,x = 1 时 y= 3,代当选项, D 就能够清除. 222+ 1= t(t > 1),则 x = 2 ,10. lg x - 1(x >1)[ 分析 ] 令 x t - 1∴ f(t)= lg 2,即 f(x)= lg 2(x > 1).t - 1x - 111.- 2 [分析 ]因为 x>6 时函数的值域为 (-∞,- log 37),- 8不在 (-∞,- log 37)内,9n -68所以 n ≤ 6,由 3-1=- ,解得 n = 4,所以 f(n + 4)= f(8)=- 2.1 92x + 1+ k 为 - 1,+∞ 上的增函数,又[分析 ] f(x)= f(x)在 [a , b]12.- 1<k ≤- 2 2上的值域为 [a ,b],∴ f a = a ,2x + 1=即 f(x)= x 在 -1,+∞ 上有两个不等实根,即f b = b , 2x -k 在 - 1,+∞ 上有两个不等实根.21,+∞方法一:问题可化为 y = 2x + 1和 y =x - k 的图象在- 上有两个不一样交点. 对2于临界直线 m ,应有- k ≥ 1,即 k ≤- 1 .对于临界直线n , y ′= ( 2x + 1)′=1 ,令2 22x + 11=1,得切点 P 横坐标为 0,∴ P(0,1).2x + 1∴直线 n : y = x +1,令 x = 0,得 y = 1,1∴- k < 1,即 k>-1.综上,- 1< k ≤-.方法二:化简方程2x +1= x - k ,得 x 2- (2k + 2)x + k 2- 1= 0.g -1≥ 0,2令 g(x) = x 2- (2k+ 2)x + k 2- 1 , 则 由 根 的 分 布 可 得1 , 即k + 1>-2>0,1 2≥0,k + 2 k>- 3, 2 k>- 1,解得 k>-1.又 2x + 1= x -k ,∴ x ≥ k ,∴ k ≤-112.综上,- 1<k ≤- .213. 2x - 5 [分析 ] 由 g(x)为一次函数,设 g(x)=ax + b(a>0). 因为 f[g(x)] = 4x 2 - 20x + 25, 所以 (ax + b)2= 4x 2- 20x + 25,2 222即 a x + 2abx + b = 4x - 20x + 25,解得 a = 2, b =- 5,故 g(x)= 2x - 5.214. [解答 ] (1) 依题意,设 f(x)= ax(x + 2)= ax + 2ax(a>0).∴ f(- 1)=- 1,即 a - 2a =- 1,得 a = 1.∴ f(x)=x 2+ 2x.由函数 g(x)的图象与 f(x)的图象对于原点对称,∴ g(x)=- f(- x)=- x 2+ 2x.(2)由 (1) 得 h( x)=x 2 + 2x - λ(- x 2+ 2x)= (λ+ 1)x 2+ 2(1-λ)x. ①当 λ=- 1 时, h(x)=4x 知足在区间 [ - 1,1] 上是增函数;②当 λ<- 1 时, h( x)图象的对称轴是 x = λ- 1,λ+ 1 λ- 1则≥ 1,又 λ<- 1,解得 λ<-1;λ- 1③当 λ>- 1 时,同理则需 ≤- 1,又 λ>- 1,解得- 1< λ≤ 0.综上,知足条件的实数 λ的取值范围是 (-∞, 0] .15. [解答 ] (1) 令 t = x + 1,则 x = t - 1,22所以 f(t)= 2(t - 1) + 1= 2t - 4t + 3.(2)因为 2f(x)- f(- x)= x + 1, 用- x 去替代等式中的 x , 得 2f(- x)- f(x)=- x + 1,2f x - f - x = x + 1, 即有2f - x -f x =- x + 1,解方程组消去f(- x),得 f(x)= x3+ 1.2=1,即 2a + b = 2.(3)由 f(2)= 1 得 2a + bx11- b由 f(x) =x 得 ax + b =x ,变形得 xax + b - 1 = 0,解此方程得: x = 0 或 x = a .又因为方程有独一解,所以 1- b= 0,解得 b = 1, a代入 2a + b = 2 得 a = 1,2所以所求分析式为f(x)= 2x.x + 2【难点打破】16. [解答 ] 要使分析式 f(x)= ax 2 +bx 存心义, 则 ax 2+ bx =x(ax + b)≥ 0.当 a>0 时,函数的定义域为 -∞,-b∪ [0,+∞ ),因为函数的值域为非负数,所以a a>0 不切合题意;当 a =0 时, f(x)= bx ,此时函数的定义域为 [0,+∞ ),函数的值域也为 [0 ,+∞ ),切合题意;bb222 b当 a<0 时,函数的定义域为0,- a ,又 f(x)=ax + bx =a x +2a- 4a ,∵ 0<- b <- b ,∴当 x =- b时,函数 f(x)有最大值- b 2,由题意有-b 2= -b2,2aa2a4a4aa即 a 2=- 4a ,解得 a =- 4.综上,存在切合题意的实数 a , a 的值为 0 或- 4.。

2025年高考数学一轮复习课时作业-函数性质的综合应用【含解析】

2025年高考数学一轮复习课时作业-函数性质的综合应用【含解析】

2025年高考数学一轮复习课时作业-函数性质的综合应用【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)已知偶函数f(x)满足f(x)=x2+2-x(x≤0),则f(x)在(0,+∞)上()A.单调递增B.单调递减C.先递增后递减D.先递减后递增2.(5分)已知定义在R上的奇函数f(x)在(-∞,0]上单调递减,若f(-2)=1,则满足|f(2x)|≤1的x的取值范围是()A.[-1,1]B.[-2,2]C.(-∞,-1]∪[1,+∞)D.(-∞,-2]∪[2,+∞)3.(5分)(2023·广州模拟)已知f(x)是定义在R上的奇函数,f(x+1)=f(x-1),则f(2021)+f(2022)=()A.1B.0C.-2021D.-14.(5分)(2023·唐山模拟)已知函数f(x)=x3+ax2+x+b的图象关于点(1,0)对称,则b等于()A.-3B.-1C.1D.35.(5分)定义在R上的奇函数f(x),其图象关于点(-2,0)对称,且f(x)在[0,2)上单调递增,则()A.f(11)<f(12)<f(21)B.f(21)<f(12)<f(11)C.f(11)<f(21)<f(12)D.f(21)<f(11)<f(12)6.(5分)(多选题)已知y=f(x)是定义在R上的奇函数,满足f(x+1)=f(x-2),则下列说法正确的是()A.y=f(x)的图象关于直线x=32对称B.y=f(x)的图象关于点(32,0)对称C.y=f(x)在[0,6]内至少有5个零点D.若y=f(x)在[0,1]上单调递增,则它在[2021,2022]上也单调递增7.(5分)(2023·南昌模拟)已知f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,则满足不等式f(2a)<f(4a-1)的a的取值范围是.(用区间表示)8.(5分)(2023·松江模拟)已知函数y=f(x)为R上的奇函数,且f(x)+f(2-x)=0,当-1<x<0时,f(x)=- ,则f(2023)+f(20232)=.9.(5分)(2023·兰州模拟)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax3+bx.若f(3)+f(4)=6,则f(20232)=.10.(10分)已知g(x)为偶函数,h(x)为奇函数,且满足g(x)-h(x)=2x,若存在x∈[-1,1],使得不等式m·g(x)+h(x)≤0有解,求实数m的最大值.11.(10分)(2023·西城区模拟)设函数f(x)的定义域为R.若存在常数T,A(T>0,A>0),使得对任意x∈R,f(x+T)=Af(x)都成立,则称函数f(x)具有性质P.(1)判断函数y=x和y=cos x是否具有性质P.(结论不要求证明)所以y=cos x具有性质P.(2)若函数f(x)具有性质P,且其对应的T=π,A=2.当x∈(0,π]时,f(x)=sin x,求函数f(x)在区间[-π,0]上的最大值.【能力提升练】12.(5分)(2023·焦作模拟)已知函数f(x)=lg(2 +1a)是奇函数,则使得0<f(x)<1的x 的取值范围是()A.(-∞,-911)B.(0,911)C.(-911,0)D.(-911,0)∪(911,1)13.(5分)(2023·杭州调研)若函数f(x)是定义在R上的偶函数,且对于任意的x∈R,恒有f(x+1)=f(x-1),当x∈[0,1]时,f(x)=2 -1,且a=f(32),b=f(0.5-3),c=f(0.76),则a,b,c的大小关系为.14.(10分)设函数f(x)=a x-(k+2)a-x(a>0且a≠1)是定义域为R的奇函数.(1)求实数k的值;(2)若f(1)=32,g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为2,求实数m的值. 2025年高考数学一轮复习课时作业-函数性质的综合应用【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)已知偶函数f(x)满足f(x)=x2+2-x(x≤0),则f(x)在(0,+∞)上()A.单调递增B.单调递减C.先递增后递减D.先递减后递增【解析】选A.f(x)=x2+(12)x,由y=x2与y=(12)x在(-∞,0]上单调递减,得f(x)在(-∞,0]上单调递减,所以偶函数f(x)在(0,+∞)上单调递增.2.(5分)已知定义在R上的奇函数f(x)在(-∞,0]上单调递减,若f(-2)=1,则满足|f(2x)|≤1的x的取值范围是()A.[-1,1]B.[-2,2]C.(-∞,-1]∪[1,+∞)D.(-∞,-2]∪[2,+∞)【解析】选A.根据奇函数的性质,得f(x)在R上单调递减,且f(2)=-1;由|f(2x)|≤1,得-1≤f(2x)≤1,即f(2)≤f(2x)≤f(-2),所以-2≤2x≤2,解得-1≤x≤1.3.(5分)(2023·广州模拟)已知f(x)是定义在R上的奇函数,f(x+1)=f(x-1),则f(2021)+f(2022)=()A.1B.0C.-2021D.-1【解析】选B.由题知f(x+1)=f(x-1),所以f(x+2)=f(x),所以f(x)的周期为2,所以f(2021)+f(2022)=f(1)+f(0).因为f(x)为定义在R上的奇函数,所以f(0)=0,又f(-1)=-f(1),且f(-1)=f(1),所以f(1)=0,所以f(2021)+f(2022)=0.4.(5分)(2023·唐山模拟)已知函数f(x)=x3+ax2+x+b的图象关于点(1,0)对称,则b等于()A.-3B.-1C.1D.3【解析】选C.因为f(x)的图象关于点(1,0)对称,所以f(x)+f(2-x)=0,又f(2-x)=(2-x)3+a(2-x)2+(2-x)+b=-x3+(a+6)x2-(4a+13)x+10+4a+b,所以f(x)+f(2-x)=(2a+6)x2-(4a+12)x+10+4a+2b=0,所以2 +6=0,4 +12=0,10+4 +2 =0,解得a=-3,b=1.5.(5分)定义在R上的奇函数f(x),其图象关于点(-2,0)对称,且f(x)在[0,2)上单调递增,则()A.f(11)<f(12)<f(21)B.f(21)<f(12)<f(11)C.f(11)<f(21)<f(12)D.f(21)<f(11)<f(12)【解析】选A.函数f(x)的图象关于点(-2,0)对称,所以f(x-4)=-f(-x),又f(x)为定义在R上的奇函数,所以-f(-x)=f(x),所以f(x-4)=f(x),即函数f(x)的周期是4,则f(11)=f(-1),f(12)=f(0),f(21)=f(1),因为f(x)为奇函数,且在[0,2)上单调递增,则f(x)在(-2,2)上单调递增,所以f(-1)<f(0)<f(1),即f(11)<f(12)<f(21).6.(5分)(多选题)已知y=f(x)是定义在R上的奇函数,满足f(x+1)=f(x-2),则下列说法正确的是()A.y=f(x)的图象关于直线x=32对称B.y=f(x)的图象关于点(32,0)对称C.y=f(x)在[0,6]内至少有5个零点D.若y=f(x)在[0,1]上单调递增,则它在[2021,2022]上也单调递增【解析】选BCD.因为f(x+1)=f(x-2)且y=f(x)是定义在R上的奇函数,则f(x+3)=f(x),故函数f(x)是周期为3的周期函数,且f(x+3)=f(x)=-f(-x),所以f(3+x)+f(-x)=0,故函数y=f(x)的图象关于点(32,0)对称,A错误,B正确;由题意可知,f(6)=f(3)=f(0)=0,因为f(x)=f(x+3)=-f(-x),令x=-32,可得f(-32)=f(32),即f(32)=-f(32),所以f(32)=0,从而f(92)=f(32)=0,故函数y=f(x)在[0,6]内至少有5个零点,C正确;因为f(2021)=f(3×674-1)=f(-1),f(2022)=f(3×674)=f(0),且函数f(x)在[0,1]上单调递增,则函数f(x)在[-1,0]上也单调递增,故函数f(x)在[2021,2022]上也单调递增,D正确.7.(5分)(2023·南昌模拟)已知f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,则满足不等式f(2a)<f(4a-1)的a的取值范围是.(用区间表示)【解析】因为f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,所以f(x)在[0,1]上单调递增,所以-1≤2a≤1,-1≤4a-1≤1,|2a|<|4a-1|,所以0≤a<16.答案:[0,16)8.(5分)(2023·松江模拟)已知函数y=f(x)为R上的奇函数,且f(x)+f(2-x)=0,当-1<x<0时,f(x)=- ,则f(2023)+f(20232)=.【解析】因为f(x)+f(2-x)=0,y=f(x)为R上的奇函数,所以f(2+x)=-f(-x)=f(x),所以f(x)为周期为2的周期函数.因为当-1<x<0时,f(x)=- ,则f(20232)=f(1012-12)=f(-12)=22.令x=-1,得,f(1)=f(-1),又因为f(x)为奇函数,则f(1)=-f(-1),所以f(-1)=-f(-1),则2f(-1)=0,则f(-1)=0,所以f(2023)=f(2×1012-1)=f(-1)=0,所以f(2023)+f(20232)=22.答案:229.(5分)(2023·兰州模拟)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax3+bx.若f(3)+f(4)=6,则f(20232)=.【解析】因为f(x+1)为奇函数,则f(x+1)=-f(-x+1),令x=0,则f(1)=-f(1),故f(1)=0,则a+b=0.令x=-1,则f(0)=-f(2)=-8a-2b.又因为f(x+2)为偶函数,则f(x+2)=f(-x+2),令x=1,则f(3)=f(1)=0,令x=2,则f(4)=f(0),因为f(3)+f(4)=6,即f(0)+f(3)=f(0)=6,所以-8a-2b=6,联立-8 -2 =6+ =0,解得 =-1 =1,所以当x∈[1,2]时,f(x)=-x3+x.又因为f(x+2)=f(-x+2)=f(-(x-1)+1)=-f((x-1)+1)=-f(x),即f(x+2)=-f(x),则f(x+4)=-f(x+2)=f(x),所以函数f(x)是以4为周期的函数,故f(20232)=f(253×4-12)=f(-12)=-f(32)=-+32]=158.答案:15810.(10分)已知g(x)为偶函数,h(x)为奇函数,且满足g(x)-h(x)=2x,若存在x∈[-1,1],使得不等式m·g(x)+h(x)≤0有解,求实数m的最大值.【解析】因为g(x)-h(x)=2x,①所以g(-x)-h(-x)=2-x.又g(x)为偶函数,h(x)为奇函数,所以g(x)+h(x)=2-x,②联立①②,得g(x)=2 +2- 2,h(x)=2- -2 2.由m·g(x)+h(x)≤0,得m≤2 -2- 2 +2- =4 -14 +1=1-24 +1.因为y=1-24 +1为增函数,所以当x∈[-1,1]时,(1-24 +1)max=1-24+1=35,所以m≤35,即实数m 的最大值为35.11.(10分)(2023·西城区模拟)设函数f(x)的定义域为R.若存在常数T,A(T>0,A>0),使得对任意x∈R,f(x+T)=Af(x)都成立,则称函数f(x)具有性质P.(1)判断函数y=x和y=cos x是否具有性质P.(结论不要求证明)【解析】(1)因为函数y=x是增函数,所以函数y=x不具有性质P.当A=1,T=2π时,函数y=cos x对于任意x∈R,f(x+T)=Af(x)都成立,所以y=cos x具有性质P.(2)若函数f(x)具有性质P,且其对应的T=π,A=2.当x∈(0,π]时,f(x)=sin x,求函数f(x)在区间[-π,0]上的最大值.【解析】(2)设x∈(-π,0],则x+π∈(0,π],由题意得f(x+π)=2f(x)=sin(x+π),所以f(x)=-12sin x,x∈(-π,0].由f(-π+π)=2f(-π),f(0+π)=2f(0),得f(-π)=14f(π)=0,所以当x∈[-π,0]时,f(x)=-12sin x,所以当x=-π2时,f(x)在[-π,0]上有最大值12.【能力提升练】12.(5分)(2023·焦作模拟)已知函数f(x)=lg(2 +1a)是奇函数,则使得0<f(x)<1的x 的取值范围是()A.(-∞,-911)B.(0,911)C.(-911,0)D.(-911,0)∪(911,1)【解析】选C.令f(0)=lg(2+a)=0,得a=-1,所以f(x)=lg(2 +1-1)=lg1- 1+ ,定义域为(-1,1),f(-x)=lg1+ 1- =-lg1- 1+ =-f(x),满足f(x)为奇函数.因为y=1- 1+ =21+ -1在(-1,1)上单调递减,所以f(x)在(-1,1)上单调递减.又f(0)=0,f(-911)=1,所以使得0<f(x)<1的x的取值范围是(-911,0).13.(5分)(2023·杭州调研)若函数f(x)是定义在R上的偶函数,且对于任意的x∈R,恒有f(x+1)=f(x-1),当x∈[0,1]时,f(x)=2 -1,且a=f(32),b=f(0.5-3),c=f(0.76),则a,b,c的大小关系为.【解析】因为f(x)是定义在R上的偶函数,且恒有f(x+1)=f(x-1),所以f(x)=f(-x),f(x+2)=f(x),所以f(x)的最小正周期为2.又a=f(32)=f(-12)=f(12),b=f(0.5-3)=f(8)=f(0),0.76=0.493<0.53<0.5,则0<0.76<12,因为f(x)=2 -1在[0,1]上单调递增,所以b<c<a.答案:b<c<a14.(10分)设函数f(x)=a x-(k+2)a-x(a>0且a≠1)是定义域为R的奇函数.(1)求实数k的值;【解析】(1)因为f(x)是定义域为R的奇函数,所以f(0)=1-(k+2)=0,即k=-1.当k=-1时,f(x)=a x-a-x,f(-x)=a-x-a x=-f(x),此时函数f(x)为奇函数,故k=-1.(2)若f(1)=32,g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为2,求实数m的值.【解析】(2)因为f(1)=a-1 =32,所以2a2-3a-2=0,解得a=2或a=-12(舍去).故g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2,令t=2x-2-x,则函数t=2x-2-x在[1,+∞)上为增函数,故t≥21-2-1=32,所以y=t2-2mt+2(t≥32),函数y=t2-2mt+2图象的对称轴为直线t=m,①当m>32时,y min=m2-2m2+2=2,解得m=0(舍去);②当m≤32时,函数y=t2-2mt+2在[32,+∞)上为增函数,则y min=94-3m+2=2,解得m=34≤32,符合题意.综上所述,m=34.。

高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质

高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质

第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。

高三数学人教版A版数学(理)高考一轮复习教案:函数y=Asin(ωx+φ)的图象及应用 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:函数y=Asin(ωx+φ)的图象及应用 Word版含答案

第四节函数y=A sin(ωx+φ)的图象及应用1.三角函数的图象及其变换了解三角函数y=A sin(ωx+φ)的物理意义;能画出y=A sin(ωx+φ)的图象,了解参数A、ω、φ对函数图象变化的影响.2.y=A sin(ωx+φ)的图象和性质的综合应用会利用y=A sin(ωx+φ)(A>0,ω>0)的图象与性质求参数的值或范围、确定函数解析式.知识点一五点法作y=A sin(ωx+φ)的图象1.y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0,x≥0),表示一个振动量时振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφx -φωπ2-φωπ-φω32π-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0易误提醒五点法作图中的五点是函数y=A sin(ωx+φ)图象上五个关键点,两个最值点,三个零点,在实际作图中,这是首先要考虑的五个点,但也不能只依赖这五个点,其它的特殊点也应考虑.必备方法 由y =A sin(ωx +φ)的图象确定第一个零点的方法:确定φ值时,往往以寻找“五点法”中的第一零点⎝⎛⎭⎫-φω,0作为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.[自测练习]1.用五点法作函数y =sin ⎝⎛⎭⎫x -π6在一个周期内的图象时,主要确定的五个点是________、__________、________、________、________.答案:⎝⎛⎭⎫π6,0 ⎝⎛⎭⎫2π3,1 ⎝⎛⎭⎫7π6,0 ⎝⎛⎭⎫5π3,-1 ⎝⎛⎭⎫13π6,0 2.已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3解析:由题意知f (0)=2sin φ=1,∴sin φ=12,又|φ|<π2,∴φ=π6,又T =6,故选A.答案:A知识点二 y =A sin(ωx +φ)图象的变换由y =sin x 的图象变换得到y =A sin(ωx +φ)(其中A >0,ω>0)的图象 (1)先平移后伸缩 (2)先伸缩后平移易误提醒 (1)要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.(2)由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需平移的单位数应为⎪⎪⎪⎪φω,而不是|φ|.[自测练习]3.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位D .向右平移12个单位解析:∵y =cos(2x +1)=cos 2⎝⎛⎭⎫x +12, ∴只要将函数y =cos 2x 的图象向左平移12个单位即可.答案:C4.把函数y =sin x 的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移π4个单位,得到的函数图象的解析式是( )A .y =cos 2xB .y =-sin 2xC .y =sin ⎝⎛⎭⎫2x -π4 D .y =sin ⎝⎛⎭⎫2x +π4 解析:由y =sin x 图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,所得图象的解析式为y =sin 2x ,再向左平移π4个单位得y =sin 2⎝⎛⎭⎫x +π4,即y =cos 2x . 答案:A5.已知函数y =A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则φ=________.解析:由图象知A =1,T =4⎝⎛⎭⎫712π-π3=π,∴ω=2,再由2×π3+φ=π2,得φ=-π6. 答案:-π6考点一五点法描图|已知函数f(x)=cos2x-2sin x cos x-sin2x.(1)将f (x )化为y =A cos(ωx +φ)的形式;(2)用“五点法”在给定的坐标中,作出函数f (x )在[0,π]上的图象. [解] (1)f (x )=cos 2x -sin 2x -2sin x cos x =cos 2x -sin 2x =2⎝⎛⎭⎫22cos 2x -22sin 2x =2cos ⎝⎛⎭⎫2x +π4. (2)列表:用“五点法”作图应注意四点(1)将原函数化为y =A sin(ωx +φ)(A >0,ω>0)或y =A cos(ωx +φ)(A >0,ω>0)的形式. (2)求出周期T =2πω.(3)求出振幅A .(4)列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点和区间端点.1.(2015·合肥模拟)设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 解:(1)最小正周期T =2πω=π,∴ω=2.∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32, ∴sin φ=-32. ∵-π2<φ<0,∴φ=-π3.(2)由(1)得f (x )=cos ⎝⎛⎭⎫2x -π3,列表:考点二求函数y=A sin(ωx+φ)的解析式|(1)(2016·青岛一模)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f (x 1)=f (x 2),则f ()x 1+x 2=( )A .1 B.12 C.22D.32[解析] 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将⎝⎛⎭⎫-π6,0代入上式得sin ⎝⎛⎭⎫-π3+φ=0, 由|φ|<π2,得φ=π3,则f (x )=sin ⎝⎛⎭⎫2x +π3.函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝⎛⎭⎫-π6,π3, 且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32.故选D. [答案] D(2)(2015·高考陕西卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为________.[解析] 由图象知周期T =12,最低点的坐标为(9,2), 代入得π6×9+φ=2k π+3π2(k ∈Z ),∴φ=2k π(k ∈Z ),不妨取φ=0, 当x =6+3T4=15时,y 最大,列式得y max +22=3sin ⎝⎛⎭⎫π6×6+k , ∴3sin ⎝⎛⎭⎫π6×15+k +22=3sin ⎝⎛⎭⎫π6×6+k ,∴k =5,∴y max +22=k ,y max =8. [答案] 8确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω:确定函数的周期T ,则可得ω=2πT .(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2 ;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.2.如图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+B (ω>0,0≤φ<2π),则温度变化曲线的函数解析式为________.解析:由图象可知B =20,A =30-102=10,T 2=14-6=8,T =16=2πω,解得ω=π8. 将(6,10)代入y =10sin ⎝⎛⎭⎫π8x +φ+20可得sin ⎝⎛⎭⎫3π4+φ=-1, 由0≤φ<2π可得φ=3π4,∴y =10sin ⎝⎛⎭⎫π8x +3π4+20.答案:y =10sin ⎝⎛⎭⎫π8x +3π4+20考点三 y =A sin(ωx +φ)的图象变换与性质应用|三角函数的图象变换与性质在高考中是每年的必考点之一,在选择题或解答题中出现,常考查基本的图象变换,稍难的题中是图象变换与三角函数的单调性、奇偶性、对称性相结合,成为小综合题.归纳起来常见的探究角度有:1.由y =A sin(ω1x +φ1)变换到y =A sin(ω2x +φ2)型. 2.由y =A cos(ω1x +φ1)变换到y =A sin(ω2x +φ2)型. 3.图象变换与性质相结合.探究一 由y =A sin(ω1x +φ1)变换到y =A sin(ω2x +φ2)型1.(2015·高考山东卷)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析:y =sin ⎝⎛⎭⎫4x -π3=sin 4⎝⎛⎭⎫x -π12,故要将函数y =sin 4x 的图象向右平移π12个单位.故选B.答案:B探究二 由y =A cos(ω1x +φ1)变换到y =A sin(ω2x +φ2)型2.为了得到y =2sin ⎝⎛⎭⎫3x +π4的图象,可以将y =2cos 3x 的图象( ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位解析:∵y =2sin ⎝⎛⎭⎫3x +π4=2cos ⎝⎛⎭⎫3x -π4,故将y =2cos 3x 的图象向右平移π12个单位后可得到y =2cos ⎝⎛⎭⎫3x -π4的图象. 答案:A探究三 图象变换与性质结合3.(2015·长春二模)已知函数f (x )=3sin x cos x +12cos 2x ,若将其图象向右平移φ(φ>0)个单位后所得的图象关于原点对称,则φ的最小值为( )A.π6B.5π6C.π12D.5π12解析:由题意f (x )=sin ⎝⎛⎭⎫2x +π6,将其图象向右平移φ(φ>0)个单位后所得图象对应的解析式为g (x )=sin ⎣⎡⎦⎤2(x -φ)+π6,则2φ-π6=k π(k ∈Z ),即φ=k π2+π12(k ∈Z ),又φ>0,所以φ的最小值为π12.故选C.答案:C4.已知函数f (x )=3sin ωx +cos ωx (ω>0)的图象与x 轴交点的横坐标构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.关于函数g (x ),下列说法正确的是( )A .在⎣⎡⎦⎤π4,π2上是增函数B .其图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析:f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题设知T 2=π2,∴T =π,ω=2πT =2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象关于直线x =-π4不对称,所以A ,B ,C 错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max=2cos π3=1,即函数g (x )的值域是[-2,1],故选D.答案:D函数y =A sin(ωx +φ)的图象与性质的综合应用问题的三种类型及解题策略:(1)图象变换与函数性质的综合问题.可根据两种图象变换的规则,也可先通过图象变换求得变换后的函数解析式,再研究函数性质.(2)图象变换与函数解析式的综合问题,要特别注意两种变换过程的区别.(3)函数图象与性质的综合问题.此类问题常先通过三角恒等变换化简函数解析式,再来研究其性质.4.三角函数图象与性质结合题的规范解答【典例】 (13分)(2015·高考重庆卷)已知函数f (x )=12sin 2x -3cos 2x .(1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象.当x ∈⎣⎡⎦⎤π2,π时,求g (x )的值域.[思路点拨] (1)将f (x )化为y =A sin(ωx +φ)型,求周期及最值. (2)利用图象变换确定g (x )表达式,再求值域. [规范解答] (1)f (x )=12sin 2x -3cos 2x=12sin 2x -32(1+cos 2x )(2分) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32,(4分) 因此f (x )的最小正周期为π,最小值为-2+32.(6分)(2)由条件可知:g (x )=sin ⎝⎛⎭⎫x -π3-32.(8分) 当x ∈⎣⎡⎦⎤π2,π时,有x -π3∈⎣⎡⎦⎤π6,2π3,(9分) 从而sin ⎝⎛⎭⎫x -π3的值域为⎣⎡⎦⎤12,1, 那么sin ⎝⎛⎭⎫x -π3-32的值域为⎣⎢⎡⎦⎥⎤1-32,2-32.(12分) 故g (x )在区间⎣⎡⎦⎤π2,π上的值域是⎣⎢⎡⎦⎥⎤1-32,2-32.(13分) [模板形成][跟踪练习] (2015·高考天津卷)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解:(1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x=34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34.所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12.A 组 考点能力演练1.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π8=( ) A .1 B.12 C .-1D .-12解析:由题设知2πω=π,所以ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4, 所以f ⎝⎛⎭⎫π8=sin ⎝⎛⎭⎫2×π8+π4=sin π2=1,故选A. 答案:A2.(2015·洛阳期末考试)把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩小到原来的12(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4解析:把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩小到原来的12(纵坐标不变)所得函数图象的解析式为y =sin ⎝⎛⎭⎫2x +π6,再将图象向右平移π3个单位所得函数图象的解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,即y =-cos 2x ,令2x =k π,k ∈Z ,则x =k π2,k ∈Z ,即对称轴方程为x =k π2,k ∈Z ,故选A.答案:A3.已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则φ=( )A .-π6B.π6 C .-π3D.π3解析:由题图可知A =2,T =4×⎝⎛⎭⎫π3-π12=π,故ω=2,又f ⎝⎛⎭⎫π12=2,所以2×π12+φ=π2+2k π(k ∈Z ),故φ=2k π+π3,又|φ|<π2,∴φ=π3. 答案:D4.先把函数f (x )=sin ⎝⎛⎭⎫x -π6的图象上各点的横坐标变为原来的12(纵坐标不变),再把新得到的图象向右平移π3个单位,得到y =g (x )的图象.当x ∈⎝⎛⎭⎫π4,3π4时,函数g (x )的值域为( ) A.⎝⎛⎦⎤-32,1 B.⎝⎛⎦⎤-12,1C.⎝⎛⎭⎫-32,32 D .[-1,0)解析:依题意得g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3-π6=sin ⎝⎛⎭⎫2x -5π6,当x ∈⎝⎛⎭⎫π4,3π4时,2x -5π6∈⎝⎛⎭⎫-π3,2π3,sin ⎝⎛⎭⎫2x -5π6∈⎝⎛⎦⎤-32,1,此时g (x )的值域是⎝⎛⎦⎤-32,1,选A.答案:A5.(2015·云南一检)已知平面向量a =(2cos 2x ,sin 2x ),b =(cos 2x ,-2sin 2x ),f (x )=a·b ,要得到y =sin 2x +3cos 2x 的图象,只需要将y =f (x )的图象( )A .向左平行移动π6个单位B .向右平行移动π6个单位C .向左平行移动π12个单位D .向右平行移动π12个单位解析:由题意得:f (x )=a·b =2cos 4x -2sin 4x =2(cos 2x +sin 2x )·(cos 2x -sin 2x )=2cos 2x =2sin ⎝⎛⎭⎫2x +π2,而y =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+π2,故只需将y =f (x )的图象向右平行移动π12个单位即可.答案:D6.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝⎛⎭⎫π4=________.解析:依题意πω=π4,∴ω=4.∴f (x )=tan 4x .∴f ⎝⎛⎭⎫π4=tan π=0. 答案:07.已知函数f (x )=M cos(ωx +φ)(M >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,AC =BC =22,C =90°,则f ⎝⎛⎭⎫12的值为________.解析:依题意知,△ABC 是直角边长为22的等腰直角三角形,因此其边AB 上的高是12,函数f (x )的最小正周期是2,故M =12,2πω=2,ω=π,f (x )=12cos(πx +φ).又函数f (x )是奇函数,于是有φ=k π+π2,其中k ∈Z .由0<φ<π,得φ=π2,故f (x )=-12sin πx ,f ⎝⎛⎭⎫12=-12sin π2=-12. 答案:-128.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32 m(即OM 的长),巨轮的半径为30 m ,AM =BP =2 m ,巨轮逆时针旋转且每12分钟转动一圈.若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为h (t )m ,则h (t )=________.解析:本题考查三角函数的实际应用.建立如图所示的直角坐标系,设点B 的纵坐标为y =A sin(ωx +φ)+k ,由题意知A =30,k =32,φ=-π2,又因为T =12=2πω,所以ω=π6,y =30sin ⎝⎛⎭⎫π6t -π2+32,所以吊舱P 距离地面的高度h (t )=30sin ⎝⎛⎭⎫π6t -π2+30.答案:30sin ⎝⎛⎭⎫π6t -π2+309.(2016·龙岩模拟)已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解:(1)振幅为2,最小正周期T =π,初相为-π4.(2)图象如图所示.10.(2015·沈阳一检)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解:(1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π.由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,f (x )∈⎣⎡⎦⎤0,1+32. B 组 高考题型专练1.(2014·高考辽宁卷)将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减 B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 解析:平移后的函数为y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+π3= 3sin ⎝⎛⎭⎫2x +π3-π=3sin ⎝⎛⎭⎫2x -23π,增区间:-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤712π+k π,k ∈Z ,令k =0时,π12≤x ≤712π,故选B.答案:B2.(2015·高考湖南卷)将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6解析:由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=⎪⎪⎪⎪π2-φ=π3,又0<φ<π2,故φ=π6,选D.答案:D3.(2015·高考安徽卷)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析:∵f (x )=A sin(ωx +φ)的最小正周期为π,且x =2π3是经过函数f (x )最小值点的一条对称轴,∴x =2π3-π2=π6是经过函数f (x )最大值点的一条对称轴.∵⎪⎪⎪⎪2-π6=12-π6,⎪⎪⎪⎪(π-2)-π6=5π-126,⎪⎪⎪⎪0-π6=π6,∴⎪⎪⎪⎪2-π6>⎪⎪⎪⎪(π-2)-π6>⎪⎪⎪⎪0-π6,且-π3<2<2π3,-π3<π-2<2π3,-π3<0<2π3,∴f (2)<f (π-2)<f (0),即f (2)<f (-2)<f (0).答案:A4.(2015·高考安徽卷)已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1,所以函数f (x )的最小正周期T =2π2=π.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4, 由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知, 当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0. 5.(2015·高考湖北卷)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )图象,求y =g (x )的图象离原点O 最近的对称中心.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如表:且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z .令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0.。

高三数学一轮复习课时作业10 函数的图象及应用 新人教A版 文

高三数学一轮复习课时作业10 函数的图象及应用 新人教A版 文

[时间:45分钟 分值:100分]基础热身1.函数y =x |x |的图象大致是( )图K10-2.把函数y =(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .y =(x -3)2+3B .y =(x -3)2+1C .y =(x -1)2+3D .y =(x -1)2+13.[2011·淮南一模] 已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图K10-2所示,则函数g (x )=a x+b-2图K10-34.函数y =2-xx -1的图象关于点________对称.能力提升5.已知图K10-4①是函数y =f (x )的图象,则图K10-4②中的图象对应的函数可能是( )图A .y =f (|x |) B .y =|f (x )|C .y =f (-|x |)D .y =-f (-|x |) 6.[2012·潍坊三县联考] 一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图K10-5所示.设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,记y =f (x ),则y =f (x )的图象是( )图K10-5图K10-67.已知f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0,x 2+1,x ∈[0,1],则如图K10-7中函数的图象错误的是( )K10-8.[2011·课标全国卷] 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )A .10个B .9个C .8个D .1个9.如图K10-8,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B 22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是( )图K10-8图K10-910.函数y =f (x )的图象与函数y =e x的图象关于直线y =x 对称,将y =f (x )的图象向左平移2个单位,得到函数y =g (x )的图象,再将y =g (x )的图象向上平移1个单位,得到函数y =h (x )的图象,则函数y =h (x )的解析式是________.11.[2011·岳阳调研] 若函数y =f (x +2)的图象过点P (-1,3),则函数y =f (x )的图象关于原点O 对称的图象一定过点________.12.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时均有f (x )<12,则实数a 的取值范围是________.13.已知函数y =f (x )和y =g (x )在[-2,2]上的图象如图K10-10所示:则方程f [g (x )]=0有且仅有________个根;方程f [f (x )]=0有且仅有________个根.14.(10分)已知函数f (x )=x 2-2x ,且g (x )的图象与f (x )的图象关于点(2,-1)对称,求函数g (x )的表达式.15.(13分)若关于x 的方程|x 2-4x +3|-a =x 至少有三个不相等的实数根,试求实数a 的取值范围.难点突破16.(12分)已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.课时作业(十)【基础热身】1.A [解析] 因y =⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,又y =x |x |为奇函数,结合图象知,选A.2.C [解析] 把函数y =f (x )的图象向左平移1个单位,即把其中x 换成x +1,于是得y =[(x +1)-2]2+2=(x -1)2+2的图象,再向上平移1个单位,即得到y =(x -1)2+2+1=(x -1)2+3的图象.3.A [解析] f (x )的零点为a ,b ,由图可知0<a <1,b <-1,则g (x )是一个减函数,可排除C 、D ;再根据g (0)=1+b <0,可排除B ,故正确选项为A.4.(1,-1) [解析] y =2-x x -1=-1+1x -1,y =2-x x -1的图象是由y =1x的图象先向右平移1个单位,再向下平移1个单位而得到,故对称中心为(1,-1).【能力提升】5.C [解析] 由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.6.A [解析] 依题意y =10x(2≤x ≤10),所以图象为A.7.D [解析] 因f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0,x 2+1,x ∈[0,1],其图象如图,验证知f (x -1),f (-x ),f (|x |)的图象均正确,只有|f (x 8.A [解析] 10个交点.9.C [解析] 当0<t ≤22时,f (t )=12·t ·2t =t 2,当22<t ≤2f (t )=1-12·(2-t )·2(2-t )=-t 2+22t -1,即函数f (t )在⎝ ⎛⎦⎥⎤0,22上是开口向上的抛物线,在⎝ ⎛⎦⎥⎤22,2上是开口向下的抛物线,故选C. 10.y =ln(x +2)+1 [解析] 依题意,f (x )=ln x ,g (x )=ln(x +2),h (x )=ln(x +2)+1.11.(-1,-3) [解析] 依题意得f (-1+2)=3,f (1)=3,即函数f (x )的图象一定过点(1,3),因此函数y =f (x )的图象关于原点O 对称的图象一定经过点(1,3)关于原点O 的对称点(-1,-3).12.12≤a <1或1<a ≤2 [解析] 由题意可知a x >x 2-12在(-1,1)上恒成立, 令y 1=a x ,y 2=x 2-12,由图象知:⎩⎪⎨⎪⎧a -1≥-12-12,a 1≥1-12,a >0且a ≠1,∴12≤a <1或1<a ≤2. 13.6 5 [解析] 上的根有三个,分别为x =0,x =a ∈(-2,-1),x =b ∈(1,2).①f [g (x )]=0等价于g (x )=0或g (x )=a ∈(-2,-1)或g (x )=b ∈(1,2),结合y =g (x )在[-2,2]的图象,可以发现g (x )=0,g (x )=a ∈(-2,-1),g (x )=b ∈(1,2)各有两个解,合计为6个解;②f [f (x )]=0等价于f (x )=0或f (x )=a ∈(-2,-1)或f (x )=b ∈(1,2),结合y =f (x )在[-2,2]的图象,可以发现f (x )=0,f (x )=a ∈(-2,-1),f (x )=b ∈(1,2)的根分别为3个,1个,1个,合计为5个解.14.[解答] 函数f (x )的定义域是R ,在函数f (x )的图象上任取一点(x 0,y 0),它关于点(2,-1)对称的点为(x ,y ),根据两点连线段的中点坐标公式,有⎩⎪⎨⎪⎧x 0=4-x ,y 0=-2-y ,于是-2-y =f (4-x )=(4-x )2-2(4-x )=x 2-6x +8,所以y =-x 2+6x -10.故g (x )=-x 2+6x -10.15.[解答] 原方程变形为|x 2-4x +3|=x +a ,于是,设y 1=|x 2-4x +3|,y 2=x +a ,在同一坐标系下分别作出它们的图象.如图, 则当直线y 2=x +a 过点(1,0)时a =-1;当直线y 2=x +a 与抛物线y 1由⎩⎪⎨⎪⎧y 2=x +a ,y 1=-x 2+4x -3⇒x 2-3x +a +3=0, 由Δ=9-4(3+a )=0,得a =-34.由图象知,a ∈⎣⎢⎡⎦⎥⎤-1,-34时,方程至少有三个根. 【难点突破】 16.[解答] (1)设f (x )图象上任一点P (x ,y ),则点P 关于点(0,1)的对称点P ′(-x,2-y )在h (x )的图象上,则2-y =-x -1x +2,∴y =x +1x.故f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x ,g ′(x )=1-a +1x2. ∵g (x )在(0,2]上为减函数,∴1-a +1x2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4, 即a ≥3,故a 的取值范围是[3,+∞).。

智慧测评新高考人教A版理科数学一轮总复习课时训练2.3函数性质的综合应用(含答案详析)

智慧测评新高考人教A版理科数学一轮总复习课时训练2.3函数性质的综合应用(含答案详析)

第二篇第 3 节1. (2013 年高考北京卷 )以下函数中,既是偶函数又在区间(0,+∞ ) 上单一递减的是()1- xA. y=x B .y= eC. y=- x2+ 1D. y= lg |x|1-x分析: y=x是奇函数,选项 A 错; y=e是指数函数,非奇非偶,选项 B 错; y= lg|x|是偶函数,但在 (0,+∞ )上单一递加,选项 D 错;只有选项 C 是偶函数且在 (0,+∞ )上单调递减.应选 C.答案: C2.已知周期为 2 的偶函数 f(x)在区间 [0,1] 上是增函数,则f(- 6.5), f(- 1), f(0) 的大小关系是 ()A. f(-6.5)< f(0)< f( -1) B .f(0)< f( -6.5)<f(-1)C. f(- 1)< f(- 6.5)<f(0)D. f(-1)< f(0)< f(- 6.5)分析:由条件得 f(- 6.5)= f(6.5)= f(6+ 0.5)= f(0.5),f(- 1)= f(1) ,又 f(x)在区间 [0,1] 上是增函数,因此f(0)< f(0.5)< f(1) ,故 f(0)<f(- 6.5)< f(- 1).应选 B.答案: B3. (2014 陕西师大附中一模)已知函数 f(x)对随意 x∈R都有 f(x+ 4)- f(x)= 2f(2) ,若 y= f(x- 1)的图象对于直线 x= 1 对称,且 f(1)= 2,则 f(2014) 等于 ()A. 2 B .3C. 4D. 0分析:因为 y= f( x-1)的图象对于直线x=1 对称,因此 y=f(x)的图象对于y 轴对称,即函数 y= f(x)是偶函数.在等式 f(x+ 4)- f(x)=2f(2) 中令 x=- 2 得 f(2)- f( - 2)= 2f(2) ,由此可得 f(2) = 0,故 f(x+4)= f(x),因此 4 是函数 y= f(x)的一个周期. f(2014) = f(1)= 2.应选 A.答案: A4.(2014 广东潮州质检)定义域为R 的奇函数f(x),当 x∈ (-∞, 0)时 f(x)+ xf′ (x)<0 恒建立,若a= 3f(3) , b= f(1) ,c=- 2f(- 2),则 ()A. a>c>b B .c>b>aC. c>a>b D. a>b>c分析:设 g(x)= xf(x),依题意得 g(x)是偶函数,当 x ∈(- ∞ ,0)时 f(x)+ xf ′ (x)<0 ,即 g ′ (x)<0恒建立,故g(x)在 x ∈(- ∞ , 0)上单一递减,则 g( x)在 (0,+ ∞ )上递加, a = 3f(3)= g(3), b= f(1)= g(1), c =- 2f(- 2)= g(- 2)= g(2) ,故 a>c>b.应选 A.答案: A5.(2014 江西南昌模拟 )已知定义在 R 上的函数 y = f(x) 知足以下三个条件:①对随意的x ∈ R 都有 f(x +2) =- f(x),②对于随意的 0≤ x 1<x 2≤ 2,都有 f(x 1)<f(x 2),③ y =f(x + 2)的图象 对于 y 轴对称,则以下结论中,正确的选项是()A . f(4.5)< f(6.5)< f(7)B .f(4.5)< f(7)< f(6.5)C . f(7)< f(4.5)< f(6.5)D . f(7)< f(6.5)<f(4.5)分析: 由 f(x +2)=- f( x),得 f(x + 4)=- f(x + 2)= f(x),即 4 是函数 y = f(x)的一个周期,依据②知函数y = f(x)在 [0,2] 上单一递加,依据③知函数y = f(x) 的图象对于直线x = 2 对称. f(4.5)= f(0.5), f(6.5)= f(2.5)= f(1.5) , f(7) = f(3) = f(1),则 f(4.5)< f(7)< f(6.5).应选 B.答案: B6.(2014 福建福州期末质检 ) 可以把圆 O : x 2+ y 2= 9 的周长和面积同时分为相等的两部 分的函数称为圆O 的“和睦函数”,以下函数不是圆O 的“和睦函数”的是 ()A . f(x)= 4x 3+ xB .f(x)= ln5-x5+ xC . f(x)= tanxD . f(x)= e x + e -x2分析: 选项 A 、 B 、 C 中的函数在 (- 3,3)上都是单一的奇函数,都能把圆的周长和面积分为相等的两部分,只有选项D 中的函数不是奇函数,应选 D.答案: D二、填空题7. (2012 年高考浙江卷 )设函数 f(x)是定义在 R 上的周期为2 的偶函数,当 x ∈ [0,1] 时,3= ________.f(x)= x + 1,则 f23 1 1 3 分析: f 2= f - 2= f 2= 2.答案:328.已知函数 f(x)为奇函数,函数f(x + 1)为偶函数, f(1) =1,则 f(3) =______.分析: 法一 依据条件可得 f(3) = f(2+ 1)= f(- 2+ 1)=f(- 1)=- f(1)=- 1.法二 使用特例法,追求函数模型,令ππ ππf(x)= sin=cos2x ,满2x ,则 f(x + 1)= sin 2x + 23π足以上条件,因此 f(3)= sin 2 =- 1.答案: -19.(2014 浙江温州一模 )已知函数 f(x)在 R 上是单一函数, 且知足对随意x ∈ R ,都有 f[f( x)- 2x ] = 3,则 f(3) 的值是 ________.分析: 依据函数 f(x)的单一性,存在独一的m ,使得 f(m)=3,故 f(x)- 2x = m ,即 f(x)= 2x +m ,令 x = m ,则 f(m)= 2m +m ,即 3=2m + m ,解得 m = 1,因此 f(x) =2x + 1,因此 f(3)= 9.答案: 910.(2014 陕西延安一模 )已知定义在 R 上的函数 y = f(x)知足条件 fx + 32=- f(x),且函数y= fx -34为奇函数,给出以下四个命题:(1)函数 f(x)是周期函数;3(2)函数 f(x)的图象对于点-4, 0 对称;(3)函数 f(x)为 R 上的偶函数;(4)函数 f(x)为 R 上的单一函数.此中真命题的序号为 ________. (写出全部真命题的序号 )分析: 由 fx +3T =3, (1)为真命题;2=- f(x)可得 f(x)= f(x + 3)? f(x)为周期函数,且333又 y = fx - 4对于(0,0)对称, y =fx -4向左平移 4个单位得 y = f(x)的图象,则 y = f(x)的图象对于点- 34, 0 对称, (2)为真命题;3又 y = fx -4为奇函数,因此 fx -3=- f - x - 3,44 3 333fx - 4- 4 =- f 4 - x - 4=- f(- x),3∴fx - =- f(- x),3f(x)=f(x - 3)=- fx - 2= f(- x),∴f(x) 为偶函数,不行能为R 上的单一函数,(3)为真命题;(4)为假命题,故真命题为(1)(2)(3) .答案: (1)(2)(3)三、解答题11.设 f(x)是定义在R上的奇函数,且对随意实数 x,恒有 f(x+ 2)=- f(x).当 x∈ [0,2] 时,f(x)= 2x- x2.(1)求证: f(x)是周期函数;(2)当 x∈ [2,4] 时,求 f(x)的分析式;(3)计算 f(0) +f(1)+ f(2) ++ f(2014) .(1)证明:∵f(x+ 2)=- f(x),∴f(x+ 4)=- f(x+ 2)= f(x).∴f(x)是周期为 4 的周期函数.(2)解:∵x∈[2,4] ,∴-x∈[-4,- 2],∴4-x∈[0,2] ,∴f(4- x)= 2(4- x)- (4- x)2=- x2+ 6x- 8,又 f(4- x)= f(-x)=- f(x),∴-f(x)=- x2+ 6x- 8,即 f(x)= x2-6x+ 8, x∈[2,4] .(3)解:∵f(0)= 0, f(2) =0, f(1) = 1, f(3) =- 1.又 f(x)是周期为 4 的周期函数,∴f(0)+ f(1) + f(2)+ f(3)= f(4)+ f(5)+ f(6) +f(7)==f(2008) + f(2009) + f(2010) + f(2011)= 0.∴f(0)+ f(1) + f(2)++ f(2012) + f(2014) = f(0) + f(1)= 1.12.已知函数 f(x)是定义在R上的奇函数,且它的图象对于直线x= 1对称.(1)求证: f(x)是周期为 4 的周期函数;(2)若 f(x)= x(0< x≤ 1),求 x∈ [- 5,- 4]时,函数 f(x)的分析式.(1)证明:由函数 f(x) 的图象对于直线 x=1 对称,有 f(x+ 1)= f(1- x).即有 f(- x)= f(x+ 2).又函数 f(x)是定义在R 上的奇函数,故有 f(- x)=- f(x).故 f(x+ 2)=- f(x).进而 f(x+ 4)=- f(x+ 2)= f(x),即 f(x)是周期为 4 的周期函数.(2)解:由函数 f( x)是定义在R上的奇函数,有f(0)= 0. x∈[- 1,0)时,- x∈(0,1] ,f(x)=- f(- x)=--x.故 x∈[-1,0]时, f(x)=--x.x∈[- 5,- 4]时, x+4∈[- 1,0] ,f(x)=f(x+ 4)=--x-4.进而, x∈[- 5,- 4]时,函数 f(x)=--x- 4.。

高三数学人教版A版数学(理)高考一轮复习教案:2.9 函数的模型及其应用 Word版含答案

高三数学人教版A版数学(理)高考一轮复习教案:2.9 函数的模型及其应用 Word版含答案

第九节 函数的模型及其应用1.函数的实际应用了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.函数的综合应用了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.知识点一 几种常见函数模型函数模型 函数解析式 正比例函数模型 f (x )=kx (k 为常数,k ≠0) 一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=kx +b (k ,b 为常数且k ≠0)二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1)对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax α+b (a ,b 为常数,a ≠0,α≠1)“对号”函数模型 y =x +ax(a >0)易误提醒1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[自测练习]1.(2015·广州模拟)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,yA .y =2xB .y =x 2-1C .y =2x -2D .y =log 2x解析:根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意.故选D.答案:D2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价是20万元,为获取最大利润,该企业一个月应生产该商品数量为( )A .36万件B .18万件C .22万件D .9万件解析:利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值. 答案:B知识点二 三种增长函数的图象与性质函数性质 y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性增函数 增函数 增函数 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 增大逐渐表现为与y 轴接近平行随x 增大逐渐表现为与x 轴接近平行随n 值变化而不同必备方法 三种模型的增长差异在区间(0,+∞)上,尽管函数y =a x (a >1),y =log a x (a >1)和y =x n (n >0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x 的增大,y =a x (a >1)的增长速度越来越快,会超过并远远大于y =x n (n >0)的增长速度,而y =log a x (a >1)的增长速度则会越来越慢.因此,总会存在一个x 0,使得当x >x 0时,有log a x <x n <a x .[自测练习]3.下列函数中随x 的增大而增大速度最快的是( ) A .v =1100·e xB .v =100ln xC .v =x 100D .v =100×2x解析:只有v =1100·e x和v =100×2x 是指数函数, 并且e>2,所以v =1100·e x的增大速度最快,故选A.答案:A考点一 一次、二次函数模型|1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差( )A .10元B .20元C .30元D.403元 解析:依题意可设s A (t )=20+kt ,s B (t )=mt , 又s A (100)=s B (100), ∴100k +20=100m , 得k -m =-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元,选A. 答案:A2.经市场调查,某商品在过去100天内的销售量和价格均为时间t (天)的函数,且日销售量近似地满足g (t )=-13 t +1123(1≤t ≤100,t ∈N ).前40天价格为f (t )=14t +22(1≤t ≤40,t ∈N ),后60天价格为f (t )=-12t +52(41≤t ≤100,t ∈N ),试求该商品的日销售额S (t )的最大值和最小值.解:当1≤t ≤40,t ∈N 时, S (t )=g (t )f (t )=⎝⎛⎭⎫-13t +1123⎝⎛⎭⎫14t +22 =-112t 2+2t +112×223=-112(t -12)2+2 5003,所以768=S (40)≤S (t )≤S (12)=2 5003.当41≤t ≤100,t ∈N 时,S (t )=g (t )f (t )=⎝⎛⎭⎫-13t +1123⎝⎛⎭⎫-12t +52 =16t 2-36t +112×523=16(t -108)2-83, 所以8=S (100)≤S (t )≤S (41)=1 4912. 所以,S (t )的最大值为2 5003,最小值为8.一次函数与二次函数模型问题求解的三个关注点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错.(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法. (3)解决函数应用问题时,最后要还原到实际问题.考点二 分段函数模型|有一种新型的洗衣液,去污速度特别快.已知每投放k (1≤k ≤4,且k ∈R )个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y (克/升)随着时间x (分钟)变化的函数关系式近似为y =k ·f (x ),其中f (x )=⎩⎨⎧248-x-1,(0≤x ≤4),7-12x , (4<x ≤14).若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4克/升时,它才能起到有效去污的作用.(1)若只投放一次k 个单位的洗衣液,当两分钟时水中洗衣液的浓度为3克/升,求k 的值;(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,则在第12分钟时洗衣液是否还能起到有效去污的作用?请说明理由.[解] (1)由题意知k ⎝⎛⎭⎫248-2-1=3,∴k =1.(2)因为k =4,所以y =⎩⎪⎨⎪⎧968-x -4,(0≤x ≤4),28-2x , (4<x ≤14).当0≤x ≤4时,由968-x-4≥4,解得-4≤x <8,所以0≤x ≤4.当4<x ≤14时,由28-2x ≥4,解得x ≤12,所以4<x ≤12. 综上可知,当y ≥4时,0≤x ≤12,所以只投放一次4个单位的洗衣液的有效去污时间可达12分钟.(3)在第12分钟时,水中洗衣液的浓度为2×⎝⎛⎭⎫7-12×12+1×⎣⎡⎦⎤248-(12-10)-1=5,又5>4,∴在第12分钟还能起到有效去污的作用.分段函数模型问题求解的三个关注点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,应构建分段函数模型求解.(2)构造分段函数时,做到分段合理、不重不漏.(3)分段函数的最值是各段的最大(最小)者的最大者(最小者).1.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150-50t (t >3.5)D .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150(2.5<t ≤3.5),150-50(t -3.5)(3.5<t ≤6.5)解析:当0≤t ≤2.5时,x =60t ;当2.5<t ≤3.5时,x =150;当3.5<t ≤6.5时,x =150-50(t -3.5). 答案:D考点三 指数函数模型|已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是θ=m ·2t+21-t (t ≥0,并且m >0).(1)如果m =2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. [解] (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x (x ≥1),则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 即m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立.令12t =y ,则0<y ≤1,∴m ≥2(y -y 2)恒成立, 由于y -y 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞.求解指数函数模型的三个注意点(1)指数函数模型,常与增长率相结合进行考查,主要有人口增长、银行利率、细胞分裂等问题.(2)应用指数函数模型时,注意先设定模型,再求有关数据. (3)y =a (1+x )n 通常利用指数运算与对数函数的性质求解.2.(2015·江苏连云港模拟)把物体放在空气中冷却,如果物体原来的温度是θ1,空气温度是θ0,t 分钟后物体的温度θ可由公式θ=θ0+(θ1-θ0)e -t ln 32求得,现有60 ℃的物体放在15 ℃的空气中冷却,当物体温度为35 ℃时,冷却时间t =________分钟.解析:由已知条件可得35=15+(60-15)·e -t ln 32,解得t =2.答案:22.利用函数模型求解实际问题【典例】 (12分)已知一家公司生产某品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2(0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)[思路点拨] (1)由R (x )中分段写出W 与x 的解析式. (2)分两段求利润的最大值,比较后得出结论. [规范解答] (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;(2分)当x >10时,W =xR (x )-(10+2.7x ) =98-1 0003x-2.7x .(4分)∴W =⎩⎨⎧8.1x -x 330-10(0<x ≤10),98-1 0003x-2.7x (x >10).(5分)(2)①当0<x ≤10时,令W ′=8.1-x 210=0,得x =9,可知当x ∈(0,9)时,W ′>0,当x∈(9,10]时,W ′<0,(6分)∴当x =9时,W 取极大值,即最大值, 且W max =8.1×9-130×93-10=38.6.(7分)②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-21 0003x·2.7x =38,(8分)当且仅当1 0003x =2.7x ,即x =1009时,W =38,(9分)故当x =1009时,W 取最大值38(当1 000x 取整数时,W 一定小于38).(10分)综合①②知,当x =9时,W 取最大值,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.(12分)[模板形成]A 组 考点能力演练1.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( )解析:注意到y 为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.答案:D2.已知某种动物的繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,则到第8年它们将发展到( )A .200只B .300只C .400只D .500只解析:由题意,繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),这种动物第2年有100只,∴100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),∴当x =8时,y =100log 3(8+1)=100×2=200.故选A.答案:A3.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.8 m解析:建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m. 答案:A4.(2015·青岛模拟)某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x (正常情况0≤x ≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y 元.要求绩效工资不低于500元,不设上限且让大部分教职工绩效工资在600元左右,另外绩效工资在平均分数左右变化不大,则下列函数最符合要求的是( )A .y =(x -50)2+500B .y =10x25+500C .y =11 000(x -50)3+625D .y =50[10+lg(2x +1)]解析:由题意知,函数单调递增,且先慢后快,在x =50左右增长近乎为0且函数值在600左右,最小值为500,A 是先减后增,B 由指数函数知是增长越来越快,D 由对数函数增长速度越来越慢,C 是y =x 3的平移和伸缩变换而得,最符合题目要求,故选C.答案:C5.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1、y 2分别是2万元、8万元,那么要使这两项费用之和最小,仓库应建在离车站( )A .5千米处B .4千米处C .3千米处D .2千米处解析:设仓库到车站的距离为x 千米,由题意得y 1=k 1x,y 2=k 2x ,其中x >0,又当x =10时,y 1=2,y 2=8,故k 1=20,k 2=45.所以y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x=45x ,即x =5时取等号. 答案:A6.(2015·西宁五中片区四校联考)某城市出租车按如下方法收费:起步价6元,可行3 km(含3 km),3 km 后到10 km(含10 km)每走1 km 加价0.5元,10 km 后每走1 km 加价0.8元,某人坐出租车走了12 km ,他应交费________元.解析:本题考查数学知识在实际问题中的应用.某人坐出租车走了12 km ,他应交费6+0.5×7+0.8×2=11.1元.答案:11.17.(2015·北京朝阳统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (万元)与机器运转时间x (x ∈N *)(年)的关系为y =-x 2+18x -25,则每台机器运转________年时,年平均利润最大,最大值是________万元.解析:本题考查应用均值不等式解答实际问题.据已知每台机器的年平均利润关于运转,据均值不等式可得g (x )=时取得等号.的矩形蔬菜温室.在温室内,沿左、右两侧与宽的空地.则矩形温室的蔬菜的种植面积最大值是________m 2.解析:设矩形温室的左侧边长为a m ,后侧边长为b m ,则ab =800 m 2.蔬菜的种植面积S =(a -4)·(b -2)=ab -4b -2a +8=808-2(a +2b ).∴S ≤808-42ab =648(m 2).当且仅当a =2b ,即a =40 m ,b =20 m 时,S max =648 m 2.答案:6489.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.(1)分别写出两类产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资的函数分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资债券类产品x 万元,则投资股票类产品(20-x )万元.则收益(单位:万元)为y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20). 设t =20-x (0≤t ≤25),则y =20-t 28+12t =-18(t -2)2+3, 所以当t =2,即x =16时,收益最大,最大收益为3万元.10.某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p (以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由)?(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式(注:函数定义域是[0,5],其中x =0表示8月1日,x =1表示9月1日,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月内价格下跌.解:(1)因为上市初期和后期价格呈持续上涨态势,而中期又将出现价格连续下跌,所以在所给出的函数中应选模拟函数f (x )=x (x -q )2+p .(2)对于f (x )=x (x -q )2+p ,由f (0)=4,f (2)=6,可得p =4,(2-q )2=1,又q >1,所以q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5).(3)因为f (x )=x 3-6x 2+9x +4(0≤x ≤5),所以f ′(x )=3x 2-12x +9,令f ′(x )<0,得1<x <3.所以函数f (x )在(1,3)内单调递减,所以可以预测这种海鲜将在9月、10月两个月内价格下跌.B 组 高考题型专练1.(2015·高考四川卷)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是( )A .16小时B .20小时C .24小时D .28小时 解析:由已知得192=e b ,①48=e 22k +b =e 22k ·e b ,②将①代入②得e 22k =14,则e 11k =12, 当x =33时,y =e 33k +b =e 33k ·e b =⎝⎛⎭⎫123×192=24,所以该食品在33 ℃的保鲜时间是24小时.故选C.答案:C2.(2013·高考湖北卷)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )解析:小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除 A.因交通堵塞停留了一段时间,与学校的距离不变,故排除 D.后来为了赶时间加快速度行驶,故排除B.故选C.答案:C3.(2015·高考浙江卷)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( )A .ax +by +czB .az +by +cxC .ay +bz +cxD .ay +bx +cz解析:采用特值法进行求解验证即可,若x =1,y =2,z =3,a =1,b =2,c =3,则ax +by +cz =14,az +by +cx =10,ay +bz +cx =11,ay +bx +cz =13.由此可知最低的总费用是az +by +cx .答案:B4.(2015·高考北京卷)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间 加油量(升) 加油时的累计里程(千米)在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升解析:因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.答案:B5.(2014·高考湖北卷)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=76 000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;F≤76 00020+18=2 000(辆/小时),增加2 000-1 900=100(辆/小时),故答案为100. 答案:(1)1 900(2)100。

人教A版理科数学课时试题及解析(9)函数图象及性质的综合应用

人教A版理科数学课时试题及解析(9)函数图象及性质的综合应用

高考数学 课时作业(九) [第9讲 函数图象及性质的综合应用][时间:45分钟 分值:100分]基础热身1. 若函数f (x )是R 上的减函数,且f (x )的图象经过点A (0,3),B (3,-1),则不等式|f (x +1)-1|<2的解集是( )A .{x |0<x ≤2}B .{x |0≤x <2}C .{x |-1<x <0}D .{x |-1<x <2}2. 函数y =2x -x 2的图象大致是( )图K9-13.已知方程2x +x =0的实根为a ,log 2x =2-x 的实根为b ,log 12x =x 的实根为c ,则a ,b ,c 的大小关系为( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c4. 将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位,若所得的图象与原图象重合,则ω的值不可能等于( )A .4B .6C .8D .12 能力提升5. 已知图K9-2①是函数y =f (x )的图象,则图K9-2②中的图象对应的函数可能是( )图A .y =f (|x |) B .y =|f (x )|C .y =f (-|x |)D .y =-f (-|x |)6. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图K9-3,则b 的取值范围为( )图K9-3A .b <0B .b >0C .b ≤0D .b ≥07. 已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图K9-4所示,则函数g (x )=a x+b 的图象是( )-8.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度9.已知定义域为R 的函数f (x )在[2,+∞)上为减函数,且函数y =f (x +2)为偶函数,则( )A .f (-1)<f (0)<f (2)<f (3)B .f (-1)<f (3)<f (0)<f (2)C .f (-1)<f (0)<f (3)<f (2)D .f (2)<f (3)<f (0)<f (-1)10. 如图K9-6,正方形ABCD 的顶点A ⎝⎛⎭⎫0,22,B ⎝⎛⎭⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是图K9-11. 已知定义在[0,+∞)上的函数y =f (x )和y =g (x )的图象如图K9-8所示,则不等式f (x )·g (x )>0的解集是________.-812.从今年的x (x ∈[1,8)年内起,小李的年薪y (单位万元)与年数x 的关系是y =2+0.2x ,小马的年薪与年数x 的关系是y =0.5+1.2x ,大约经过________年,小马的年薪超过小李.13.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时均有f (x )<12,则实数a 的取值范围是________.14.(10分)如图K9-9,在第一象限内,矩形ABCD 三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =-18x 2+58x 的图象上,且矩形的相邻的边分别与两坐标轴平行.若A点的纵坐标是2,求顶点D 的坐标.图K9-915.(13分)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴围成图形的面积;(3)写出(-∞,+∞)内函数f (x )的单调增(或减)区间,f (x )的解析式(不必写推导过程).难点突破16.(12分)已知二次函数y =g (x )的导函数的图象与直线y =2x 平行,且y =g (x )在x =-1处取得最小值m -1(m ≠0).设函数f (x )=g (x )x.(1)若曲线y =f (x )上的点P 到点Q (0,2)的距离的最小值为2,求m 的值; (2)k (k ∈R )如何取值时,函数y =f (x )-kx 存在零点,并求出零点.课时作业(九)【基础热身】1.D [解析] 化简原不等式得-1<f (x +1)<3,又∵f (x )的图象经过A (0,3),B (3,-1),∴f (0)=3,f (3)=-1,∴f (3)<f (x +1)<f (0),∵函数f (x )为减函数,∴0<x +1<3,-1<x <2.2.A [解析] 设f (x )=2x -x 2,f (-1)=-12<0,f (0)=1>0,f (3)=-1<0,f (5)=7>0,故函数y =2x -x 2至少在区间(-1,0),(0,3),(3,5)内有三个变号零点,综合各个选项可知只有选项A 符合这个性质.故选A.3.A [解析] 利用图象确定函数交点.4.B [解析] 函数f (x )=sin(ωx +φ)的图象向左平移π2个单位得到f (x )=sin ⎝⎛⎭⎫ωx +ωπ2+φ=sin(ωx +φ)的图象,与原图象重合,故ωπ2=2k π,k ∈Z ,故ω不可能是6.【能力提升】5.C [解析] 由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.6.A [解析] 解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过点(1,0),∴a +b +c =0①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0.解法二:由图象知f (x )=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵a >0,∴b <0.7.A [解析] 设f (x )的零点为a ,b ,由图可知0<a <1,b <-1,则g (x )是一个减函数,可排除C 、D ,再根据g (0)=1+b <0,可排除B ,故正确选项为A.8.C [解析] 变换函数的解析式为y =lg(x +3)-1,只要把函数y =lg x 的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度即可.答案为C.9.C [解析] 函数y =f (x +2)为偶函数,图象关于y 轴对称,把这个函数图象向右平移2个单位即得到函数y =f (x )的图象,即函数y =f (x )的图象关于直线x =2对称.由函数f (x )在[2,+∞)上为减函数,则函数f (x )在(-∞,2]上为增函数.由f (3)=f (4-3)=f (1),故f (-1)<f (0)<f (3)<f (2),正确选项为C.10.③ [解析] 当0<t ≤22时,f (t )=12·t ·2t =t 2,当22<t ≤2时,f (t )=1-12·(2-t )·2(2-t )=-t 2+22t -1,即函数f (t )在⎝⎛⎦⎤0,22上是开口向上的抛物线,在⎝⎛⎭⎫22,2上是开口向下的抛物线,故填③.11.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <2或x >2 [解析] 由题图可知,当0<x <12时,f (x )>0,g (x )>0; 当12<x <1时,f (x )>0,g (x )<0; 当1<x <2时,f (x )<0,g (x )<0; 当x >2时,f (x )>0,g (x )>0.因此f (x )·g (x )>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <2或x >2. 12.6 [解析] 画出函数图象,从图象上观察知道在这8年内先是小马的年薪低,中间超过了小李.令函数f (x )=2+0.2x -0.5-1.2x =1.5+0.2x -1.2x ,则f (5)=2.5-2.48832>0,f (6)=2.7-1.26=2.7-2.98598<0,根据函数的零点定理,存在x 0∈(5,6),当x >x 0时,0.5+1.2x >2+0.2x ,由于x 是正整数,故在第6年小马的年薪超过小李的年薪.13.12≤a <1或1<a ≤2 [解析] 由题意可知a x >x 2-12在(-1,1)上恒成立,令y 1=a x ,y 2=x 2-12,由图象知:⎩⎪⎨⎪⎧a -1≥(-1)2-12,a 1≥1-12,a >0且a ≠1,∴12≤a <1或1<a ≤2. 14.[解答] 显然,D 点的横坐标与A 点的横坐标相等,纵坐标与C 点的纵坐标相等.由于A 点在y =log 22x 的图象上,其纵坐标为2,所以横坐标为x =⎝⎛⎭⎫222=12.要求C 点的纵坐标,需要求其横坐标,而它的横坐标等于B 点的横坐标.因为B 点的纵坐标y B =y A =2,所以x C =x B =4,从而y D =y C =12,故D ⎝⎛⎭⎫12,12. 15.[解答] (1)由f (x +2)=-f (x ),得 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,从而得 f (π)=f (-1×4+π)=f (π-4)=-f (4-π) =-(4-π)=π-4.(2)由f (x )是奇函数且f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ),故知函数y =f (x )的图象关于直线x =1对称.又0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4.(3)函数f (x )的单调递增区间为[4k -1,4k +1](k ∈Z ),单调递减区间为[4k +1,4k +3](k ∈Z ),f (x )=⎩⎪⎨⎪⎧x -4k (4k -1<x ≤4k +1),2+4k -x (4k +1<x ≤4k +3)=1-|x -(4k +1)|(4k -1<x ≤4k +3,k ∈Z ).【难点突破】16.[解答] (1)设g (x )=ax 2+bx +c ,则g ′(x )=2ax +b , 又g ′(x )的图象与直线y =2x 平行, ∴2a =2,a =1.又g (x )在x =-1处取最小值,∴-b2=-1,b =2.∴g (-1)=a -b +c =1-2+c =m -1,c =m .f (x )=g (x )x =x +m x+2,设P (x 0,y 0),则|PQ |2=x 20+(y 0-2)2=x 20+⎝⎛⎭⎫x 0+m x 02=2x 20+m 2x 20+2m ≥22m 2+2m ,∴22m 2+2m =2,∴m =-1±2.(2)由y =f (x )-kx =(1-k )x +mx+2=0,得(1-k )x 2+2x +m =0,(*)当k =1时,方程(*)有一解x =-m 2,函数y =f (x )-kx 有一个零点x =-m2;当k ≠1时,方程(*)有两解⇔Δ=4-4m (1-k )>0,若m >0,k >1-1m,函数y =f (x )-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )k -1;若m <0,k <1-1m,函数y =f (x )-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )k -1;当k ≠1时,方程(*)有一解⇔Δ=4-4m (1-k )=0,k =1-1m,函数y =f (x )-kx 有一个零点x =1k -1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(九) [第9讲 函数图象及性质的综合应用][时间:45分钟 分值:100分]基础热身 1.[2011·郑州模拟] 若函数f (x )是R 上的减函数,且f (x )的图象经过点A (0,3),B (3,-1),则不等式|f (x +1)-1|<2的解集是( )A .{x |0<x ≤2}B .{x |0≤x <2}C .{x |-1<x <0}D .{x |-1<x <2} 2.[2011·山东卷] x -x 2的图象大致是( )图K9-13.已知方程2x +x =0的实根为a ,log 2x =2-x 的实根为b ,log 12x =x 的实根为c ,则a ,b ,c 的大小关系为( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c4.[2011·豫南九校联考] 将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位,若所得的图象与原图象重合,则ω的值不可能等于( )A .4B .6C .8D .12 能力提升 5.[2011·湖南“六校联考”] 已知图K9-2①是函数y =f (x )的图象,则图K9-2②中的图象对应的函数可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (-|x |) 6.[2011·哈密模拟] 已知函数f (x )=ax 3+bx 2+cx +d 的图象如图K9-3,则b 的取值范围为( )A .b <0B .b >0C .b ≤0D .b ≥0 7.[2011·淮南一模] 已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图K9-4所示,则函数g (x )=a x +b 的图象是( )-8.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度9.已知定义域为R 的函数f (x )在[2,+∞)上为减函数,且函数y =f (x +2)为偶函数,则( )A .f (-1)<f (0)<f (2)<f (3)B .f (-1)<f (3)<f (0)<f (2)C .f (-1)<f (0)<f (3)<f (2)D .f (2)<f (3)<f (0)<f (-1)10.[2011·郑州模拟] 如图K9-6,正方形ABCD 的顶点A ⎝⎛⎭⎫0,22,B ⎝⎛⎭⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t 填序号).图K9-11.[2011·宁化质检] 已知定义在[0,+∞)上的函数y =f (x )和y =g (x )的图象如图K9-8所示,则不等式f (x )·g (x )>0的解集是________.图K9-812.从今年的x (x ∈[1,8)年内起,小李的年薪y (单位万元)与年数x 的关系是y =2+0.2x ,小马的年薪与年数x 的关系是y =0.5+1.2x ,大约经过________年,小马的年薪超过小李.13.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时均有f (x )<12,则实数a 的取值范围是________.14.(10分)如图K9-9,在第一象限内,矩形ABCD 三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =-18x 2+58x 的图象上,且矩形的相邻的边分别与两坐标轴平行.若A点的纵坐标是2,求顶点D 的坐标.15.(13分)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴围成图形的面积;(3)写出(-∞,+∞)内函数f (x )的单调增(或减)区间,f (x )的解析式(不必写推导过程).难点突破16.(12分)已知二次函数y =g (x )的导函数的图象与直线y =2x 平行,且y =g (x )在x =-1处取得最小值m -1(m ≠0).设函数f (x )=g (x )x.(1)若曲线y =f (x )上的点P 到点Q (0,2)的距离的最小值为2,求m 的值; (2)k (k ∈R )如何取值时,函数y =f (x )-kx 存在零点,并求出零点.课时作业(九)【基础热身】1.D [解析] 化简原不等式得-1<f (x +1)<3,又∵f (x )的图象经过A (0,3),B (3,-1),∴f (0)=3,f (3)=-1,∴f (3)<f (x +1)<f (0),∵函数f (x )为减函数,∴0<x +1<3,-1<x <2.2.A [解析] 设f (x )=2x -x 2,f (-1)=-12<0,f (0)=1>0,f (3)=-1<0,f (5)=7>0,故函数y =2x -x 2至少在区间(-1,0),(0,3),(3,5)内有三个变号零点,综合各个选项可知只有选项A 符合这个性质.故选A.3.A [解析] 利用图象确定函数交点.4.B [解析] 函数f (x )=sin(ωx +φ)的图象向左平移π2个单位得到f (x )=sin ⎝⎛⎭⎫ωx +ωπ2+φ=sin(ωx +φ)的图象,与原图象重合,故ωπ2=2k π,k ∈Z ,故ω不可能是6.【能力提升】5.C [解析] 由题图②知,图象对应的函数是偶函数,且当x <0时,对应的函数是y =f (x ),故选C.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.6.A [解析] 解法一:观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过点(1,0),∴a +b +c =0①,又有f (-1)<0,即-a +b -c <0②,①+②得b <0.解法二:由图象知f (x )=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵a >0,∴b <0.7.A [解析] 设f (x )的零点为a ,b ,由图可知0<a <1,b <-1,则g (x )是一个减函数,可排除C 、D ,再根据g (0)=1+b <0,可排除B ,故正确选项为A.8.C [解析] 变换函数的解析式为y =lg(x +3)-1,只要把函数y =lg x 的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度即可.答案为C.9.C [解析] 函数y =f (x +2)为偶函数,图象关于y 轴对称,把这个函数图象向右平移2个单位即得到函数y =f (x )的图象,即函数y =f (x )的图象关于直线x =2对称.由函数f (x )在[2,+∞)上为减函数,则函数f (x )在(-∞,2]上为增函数.由f (3)=f (4-3)=f (1),故f (-1)<f (0)<f (3)<f (2),正确选项为C.10.③ [解析] 当0<t ≤22时,f (t )=12·t ·2t =t 2,当22<t ≤2时,f (t )=1-12·(2-t )·2(2-t )=-t 2+22t -1,即函数f (t )在⎝⎛⎦⎤0,22上是开口向上的抛物线,在⎝⎛⎭⎫22,2上是开口向下的抛物线,故填③.11.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <2或x >2 [解析] 由题图可知,当0<x <12时,f (x )>0,g (x )>0; 当12<x <1时,f (x )>0,g (x )<0; 当1<x <2时,f (x )<0,g (x )<0; 当x >2时,f (x )>0,g (x )>0.因此f (x )·g (x )>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <2或x >2. 12.6 [解析] 画出函数图象,从图象上观察知道在这8年内先是小马的年薪低,中间超过了小李.令函数f (x )=2+0.2x -0.5-1.2x =1.5+0.2x -1.2x ,则f (5)=2.5-2.48832>0,f (6)=2.7-1.26=2.7-2.98598<0,根据函数的零点定理,存在x 0∈(5,6),当x >x 0时,0.5+1.2x >2+0.2x ,由于x 是正整数,故在第6年小马的年薪超过小李的年薪.13.12≤a <1或1<a ≤2 [解析] 由题意可知a x >x 2-12在(-1,1)上恒成立,令y 1=a x ,y 2=x 2-12,由图象知:⎩⎪⎨⎪⎧a -1≥(-1)2-12,a 1≥1-12,a >0且a ≠1,∴12≤a <1或1<a ≤2. 14.[解答] 显然,D 点的横坐标与A 点的横坐标相等,纵坐标与C 点的纵坐标相等.由于A 点在y =log 22x 的图象上,其纵坐标为2,所以横坐标为x =⎝⎛⎭⎫222=12.要求C 点的纵坐标,需要求其横坐标,而它的横坐标等于B 点的横坐标.因为B 点的纵坐标y B =y A =2,所以x C =x B =4,从而y D =y C =12,故D ⎝⎛⎭⎫12,12. 15.[解答] (1)由f (x +2)=-f (x ),得 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,从而得 f (π)=f (-1×4+π)=f (π-4)=-f (4-π) =-(4-π)=π-4.(2)由f (x )是奇函数且f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ),故知函数y =f (x )的图象关于直线x =1对称.又0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4.(3)函数f (x )的单调递增区间为[4k -1,4k +1](k ∈Z ),单调递减区间为[4k +1,4k +3](k ∈Z ),f (x )=⎩⎪⎨⎪⎧x -4k (4k -1<x ≤4k +1),2+4k -x (4k +1<x ≤4k +3)=1-|x -(4k +1)|(4k -1<x ≤4k +3,k ∈Z ).【难点突破】16.[解答] (1)设g (x )=ax 2+bx +c ,则g ′(x )=2ax +b , 又g ′(x )的图象与直线y =2x 平行, ∴2a =2,a =1.又g (x )在x =-1处取最小值,∴-b2=-1,b =2.∴g (-1)=a -b +c =1-2+c =m -1,c =m .f (x )=g (x )x =x +m x+2,设P (x 0,y 0),则|PQ |2=x 20+(y 0-2)2=x 20+⎝⎛⎭⎫x 0+m x 02=2x 20+m 2x 20+2m ≥22m 2+2m ,∴22m 2+2m =2,∴m =-1±2.(2)由y =f (x )-kx =(1-k )x +mx+2=0,得(1-k )x 2+2x +m =0,(*)当k =1时,方程(*)有一解x =-m 2,函数y =f (x )-kx 有一个零点x =-m2;当k ≠1时,方程(*)有两解⇔Δ=4-4m (1-k )>0,若m >0,k >1-1m,函数y =f (x )-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )k -1;若m <0,k <1-1m,函数y =f (x )-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )k -1;当k ≠1时,方程(*)有一解⇔Δ=4-4m (1-k )=0,k =1-1m,函数y =f (x )-kx 有一个零点x =1k -1.。

相关文档
最新文档