Enzyme-Mediated Redox Initiation for Hydrogel Generation and Cellular Encapsulation
nnk是烟草中特有的一种物质
nnk是烟草中特有的一种物质,可以诱导肺癌的发生。
卷烟燃烧可产生4000多种化学物质,其中40余种有明确的诱变/致癌性。
主要的致癌物有烟草特有亚硝胺(TSNA)、苯并(a)芘、多环芳烃(PAH),芳香胺、苯、二嗯英、儿茶酚及致癌的醌、肼类等。
TSNA是尼古丁被亚硝化的产物,4-(甲基亚硝氨基)-3-吡啶-1-丁酮(NNK)是已知7种TSNA中最强的致癌源。
NNK在主流、侧流烟气及不燃烧的烟草中均大量存在。
NNK是卷烟致癌的主要标志物,尼古丁是吸烟成瘾的主要原因。
Efficient Bioelectronic Actuation of the Natural Catalytic Pathway ofHuman Metabolic Cytochrome P450sSadagopan Krishnan,†Dhanuka Wasalathanthri,†Linlin Zhao,†John B. Schenkman,‡and James F. Rusling*,†,‡Herein, we describe fabrication of LbL films made by combining pure cyt P450s with CPR microsomes on electrodes to achieve a large ratio of cyt P450 to CPR (Figure 1), as in the human liver.1,2,40 Electrons are injected into the film from the electrode to accurately mimic the natural cyt P450 catalytic cycle at high catalytic turnover.We provide unambiguous evidence for electron transfer from electrode to CPR to cyt P450 from measured redox potentials, electron transfer rates, enzyme turnover rates, and carbon monoxide (CO) binding. Results suggest dynamic participation of a CPR-cyt P450 complex in a key equilibrium redox process facilitating efficient catalytic turnover of the excess cyt P450s. In addition, the electrode-driven turnover rate for a model oxidation reaction was as good as or better than when NADPH was utilized.这里我们主要叙述了层层膜结构通过将纯的P450酶和P450还原酶连接到电极上来实现像人体中从P450酶到P450还原酶一个较大差异,电子从电极中被送到膜中,准确模拟再高催化转化情况下的p450的催化过程。
nmn生物酶法的生产流程
nmn生物酶法的生产流程The production process of nmn biological enzyme method is a complex and intricate procedure that involves several key steps. 这个生产流程包括多个关键步骤,是一个复杂而精细的过程。
From sourcing raw materials to the final packaging of the product, every stage requires careful attention to detail and adherence to strict quality control measures. 从原材料的采购到最终产品的包装,每个阶段都需要对细节进行仔细的注意,并且要遵循严格的质量控制措施。
The first step in the production process is the sourcing and selection of high-quality raw materials. 生产流程的第一步是采购和选择高质量的原材料。
The raw materials used in the production of nmn biological enzyme are crucial in determining the quality and efficacy of the final product. 在生产nmn生物酶的过程中使用的原材料对于最终产品的质量和功效具有至关重要的作用。
Once the raw materials have been sourced and selected, the next step in the production process is the extraction and purification of nmn biological enzyme. 一旦原材料被采购和选择好,生产流程的下一步就是提取和纯化nmn生物酶。
3_种常用碳青霉烯类抗生素血药浓度UPLC-MS
3种常用碳青霉烯类抗生素血药浓度UPLC-MS/MS检测方法的建立Δ秦怡1*,张瑞霞2,吕雅瑶2,翁莉莉1,张弋2 #(1.天津医科大学一中心临床学院,天津 300192;2.天津市第一中心医院药学部,天津 300192)中图分类号 R917;R978.1文献标志码 A 文章编号 1001-0408(2024)03-0343-05DOI 10.6039/j.issn.1001-0408.2024.03.14摘要目的建立3种临床常用碳青霉烯类抗生素——厄他培南(ETP)、亚胺培南(IPM)、美罗培南(MEM)血药浓度检测的超高效液相色谱-质谱联用(UPLC-MS/MS)法。
方法血浆样品经甲醇沉淀蛋白后,以3种抗生素的稳定性同位素(ETP-D4、IPM-D4、MEM-D6)为内标,采用ACQUITY UPLC BEH C18(2.1 mm×50 mm,1.7μm)色谱柱分离;流动相为98%乙腈+2%水+0.1%甲酸和98%水+2%乙腈+0.1%甲酸,梯度洗脱;流速为0.3 mL/min;柱温为40 ℃;采用正离子、多反应监测模式进行扫描分析。
结果该方法专属性良好,在ETP、IPM、MEM 0.2~200、0.1~100、0.1~100μg/mL范围内线性良好(r2≥0.993),批内、批间精密度和准确度良好(RE均≤5.14%,RSD均≤11.15%),基质效应、提取回收率较一致(RSD≤12.99%)。
结论本实验建立了一种可以同时定量ETP、IPM、MEM血药浓度的UPLC-MS/MS法,该方法样品前处理简单、检测时间短、所需样品量少,可满足临床需求。
关键词碳青霉烯类抗生素;超高效液相色谱-质谱联用;血药浓度;厄他培南;亚胺培南;美罗培南Establishment of UPLC-MS/MS method for the determination of plasma concentration of three common carbapenem antibioticsQIN Yi1,ZHANG Ruixia2,LYU Yayao2,WENG Lili1,ZHANG Yi2(1. First Central Clinical College of Tianjin Medical University,Tianjin 300192,China;2. Dept. of Pharmacy,Tianjin First Central Clinical Hospital,Tianjin 300192, China)ABSTRACT OBJECTIVE To establish a UPLC-MS/MS method for the determination of plasma concentration of three carbapenem antibiotics,i.e. ertapenem (ETP),imipenem (IPM)and meropenem (MEM).METHODS After protein precipitation with methanol,the plasma samples were separated by ACQUITY UPLC BEH C18column (2.1mm×50mm,1.7μm)using stable isotopes of three antibiotics (ETP-D4,IPM-D4,MEM-D6)as the internal standard. The mobile phases were 98%acetonitrile +2% water +0.1%formic acid and 98%water +2%acetonitrile +0.1%formic acid,by gradient elution. The flow rate was 0.3mL/min and the column temperature was 40 ℃. Scanning analysis was performed in the positive ion and multiple reaction monitoring mode. RESULTS The method had good specificity,good linearity (r2≥0.993)in the range of 0.2-200,0.1-100and 0.1-100μg/mL of ETP,IPM and MEM,and good intra-batch and inter-batch precision and accuracy (all RE≤5.14%,all RSD≤11.15%),the matrix effect and extraction recovery were consistent (RSD≤12.99%). CONCLUSIONS This study establishes the UPLC-MS/MS method to simultaneously quantify the plasma concentration of ETP,IPM and MEM. The method has the advantages of simple pretreatment, short detection time and small sample quantity to meet clinical requirement.KEYWORDS carbapenem antibiotics; UPLC-MS/MS; plasma concentration; ertapenem; imipenem; meropenem碳青霉烯类抗生素具有抗菌谱广、抗菌活性强、耐药率低的特点,已成为治疗重症感染的主要选择。
黄芩素对人乳腺癌细胞系MDA-MB-231_侵袭、迁移、上皮间充质转化的调控作用及其机制
黄芩素对人乳腺癌细胞系MDA -MB -231侵袭、迁移、上皮间充质转化的调控作用及其机制陈林1,2,梁秋果1,2,吉杨丹1,2,王恒1,21 黔南民族医学高等专科学校基础医学部,贵州都匀558013;2 黔南州天然产物与组分功效重点实验室摘要:目的 观察黄岑素对人乳腺癌细胞系MDA -MB -231的侵袭、迁移及上皮间充质转化(EMT )的调控作用,探讨其可能作用机制。
方法 取对数生长期MDA -MB -231细胞分为一组、二组、三组及对照组,一组、二组、三组分别加入2.5、5、10 μmol /L 的黄岑素,对照组不做任何处理。
培养48 h 时采用划痕修复实验观察四组细胞迁移能力、采用Transwell 侵袭实验观察四组细胞侵袭能力,采用Western Blotting 法检测细胞EMT 标志物波形蛋白(vimentin )及E -钙黏蛋白(E -cadherin )、整合素αv 、β3、磷酸化黏着斑激酶(p -FAK )、磷酸化磷脂酰肌醇3激酶(整合素p -PI3K )。
结果 与对照组相比,黄岑素组细胞迁移率降低、侵袭细胞数少,细胞E -cadherin 相对表达量高,vimentin 、整合素αv 、整合素β3、p -FAK 、p -PI3K 蛋白相对表达量低,且呈剂量依赖性(P 均<0.05)。
结论 黄芩素抑制MDA -MB -231细胞的侵袭、迁移及EMT 。
黄岑素可能通过抑制整合素αv 、整合素β3表达,进一步抑制p -FAK 、p -PI3K 蛋白表达,抑制MDA -MB -231的侵袭、迁移及EMT 。
关键词:黄芩素;乳腺癌;细胞侵袭;细胞迁移;上皮间质转化;波形蛋白;E -钙黏蛋白;整合素αv 、整合素β3;黏着斑激酶;磷脂酰肌醇3激酶doi :10.3969/j.issn.1002-266X.2024.06.003中图分类号:R965.1 文献标志码:A 文章编号:1002-266X (2024)06-0010-04Regulatory effects of baicalein on invasion , migration , and EMT in human breast cancer cell line MDA -MB -231CHEN Lin 1, LIANG Qiuguo , JI Yangdan , WANG Heng1 Department of Basic Medicine , Qiannan Medical College for Nationalities , Duyun 558013, ChinaAbstract : Objective To investigate the regulatory effects of baicalein on the invasion , migration , and epithelial -mesenchymal transition (EMT ) of human breast cancer cell line MDA -MB -231 and to explore its potential mechanism of action. Methods MDA -MB -231 cells in the logarithmic growth phase were divided into the Group 1, Group 2, Group 3, and Control group. Baicalein was added to cells in the Group 1, Group 2, and Group 3 at concentrations of 2.5, 5, and 10 μmol /L , respectively , while cells in the Control group were not treated. After 48 h of incubation , Scratch repair experi‐ment was used to observe cell migration capacity , Transwell invasion experiment was performed to assess cell invasion ca‐pacity , and Western blotting was utilized to detect the expression levels of EMT markers including vimentin and E -cad‐herin , as well as integrin αv , integrin β3, phosphorylated focal adhesion kinase (p -FAK ), and phosphorylated phosphati‐dylinositol -3 kinase (p -PI3K ) proteins. Results Compared with the control group , the cell migration rate decreased , the number of invading cells decreased , the relative expression level of E -cadherin was higher , and the relative expression levels of vimentin , integrin αv , integrin β3, p -FAK , and p -PI3K protein were lower in the baicalein group , with a dose -de‐pendant manner (all P <0.05). Conclusions Baicalein inhibits the invasion , migration , and EMT of MDA -MB -231cells. Baicalein may inhibit the expression of integrin αv , integrin β3, and further inhibit the expression of p -FAK and p -PI3K proteins , thereby inhibiting the invasion , migration , and EMT of MDA -MB -231 cells.Key words : baicalein; breast carcinoma; cell invasion; cell migration; epithelial -mesenchymal transition; vimentin;基金项目:黔南民族医学高等专科学校校基金(qnyz202013,qnyz202206);黔南民族医学高等专科学教育教学科研基金项目(qnyzjx202205);黔南民族医学高等专科学校大学生科技创新项目(qnyz202201)。
黄芩素通过调节HIF-1α
黄芩素通过调节HIF -1α/VEGF 信号通路抑制类风湿关节炎大鼠的炎症反应和病理性血管生成*杜红丽1,张晨宇1,赵清2△[1河南中医药大学第五临床医学院(郑州人民医院)风湿免疫科,河南郑州450053;2河南大学淮河医院风湿免疫科,河南开封475099][摘要]目的:探讨黄芩素(BA )调节缺氧诱导因子1α(HIF -1α)/血管内皮生长因子(VEGF )信号通路对类风湿关节炎(RA )大鼠炎症反应和病理性血管生成的影响。
方法:按照随机数字表法将SD 大鼠分为对照(control )组、模型(model )组、低剂量(10mg/kg )BA (BA -L )组、高剂量(30mg/kg )BA (BA -H )组、雷公藤多苷片(TWP ;6.25mg/kg )组和BA -H+HIF -1α激动剂二甲基草酰甘氨酸(DMOG ;40mg/kg )组,每组12只。
除control 组外,其它组大鼠均采用II 型胶原蛋白-完全弗氏佐剂法诱导RA 大鼠模型。
第2次免疫24h 后开始给药处理,每天给药一次,持续4周。
检测大鼠在给药第0、7、14和28天时的足趾肿胀度,计算关节炎指数;计算大鼠胸腺和脾脏指数;HE 染色检测大鼠踝关节滑膜组织病理损伤;ELISA 法检测大鼠踝关节滑膜组织中肿瘤坏死因子α(TNF -α)和白细胞介素6(IL -6)水平;免疫组化检测大鼠踝关节滑膜组织中VEGF 和VEGF 受体2(又称激酶插入域受体,KDR )表达;Western blot 检测各组大鼠踝关节滑膜组织中HIF -1α和VEGF 蛋白表达。
结果:与control 组比较,model 组大鼠踝关节滑膜组织病理损伤严重,足趾肿胀度、关节炎指数、胸腺和脾脏指数,以及滑膜组织TNF -α、IL -6、VEGF 、KDR 、HIF -1α和VEGF 水平均显著升高(P <0.05);与model 组比较,BA -L 组、BA -H 组和TWP 组对应指标变化趋势与上述相反(P <0.05);BA -H 组与TWP 组比较,上述指标变化差异无统计学意义(P >0.05);DMOG 减弱了BA -H 对RA 大鼠炎症反应和病理性血管生成的抑制作用。
G6PD与肿瘤
•综述•G6P D与肿瘤王钟1李智宇1李晨媛1孙思2孙圣荣11武汉大学人民医院乳腺甲状腺外科430060; 2武汉大学人民医院检验科430060王钟和李智宇对本文有同等贡献通信作者:孙圣荣,Email:sun137@ 【摘要】葡萄糖>6-磷酸脱氢酶(G6PD)是磷酸戊糖途径的关键酶,参与体内多种代谢过程及氧化还原平衡。
近年来研究发现,G6PD在多种肿瘤组织中活性升高,其可调控肿瘤细胞的增殖和凋亡、血管生成、远处转移及放化疗抵抗等,在肿瘤发生发展中起着重要作用,G6PD有望成为新兴的肿瘤治疗靶点。
【关键词】肿瘤;磷酸葡糖脱氢酶;肿瘤形成过程;生物标志物基金项目:国家自然科学基金(81471781、81903166)D O I: 10.3760/371439-20200401-00109G6PD and tumorsWang Zhong' , Li Zhiyu1 , Li Chenyuan, Sun Si2, Sun Shengrong1'Department o f Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;2Department o f Clinical Laboratory, Renmin Hospital o f Wuhan University, Wuhan 430060, ChinaWang Zhong and Li Zhiyu are contributed equally to the articleCorresponding author:Sun Shengrong, Email:***************【A bstract】Glucose~6-phosphate dehydrogenase ( G6PD) is the1key enzyme of the pentose phosphatepathway, participating in several metabolic processes and redox balance. Recently, studies show that kinds oftumor tissues have a high level of G6PD, which regulates cell proliferation and apoptosis, angiogenesis,metastasis and chemoradiotherapy resistance and plays a crucial role in tumor progression. Furthermore, G6PDmay provide a promising therapeutic target for tumor.【Keywords】Neoplasms; Phosphogluconate dehydrogenase; Neoplastic processes; BiomarkersFund program:National Natural Science Foundation of China (81471781 , 81903166)DOI:10. 3760/cma. j. cn371439-20200401-00109葡萄糖~6-磷酸脱氢酶(glucose-6-phosphate dehydrogenase,G6PD)是磷酸戊糖途径(pentose phosphate pathway,PPP)的首个限速酶,临床中G6PD 缺乏症是常见的遗传性溶血性疾病,世界范围内累及 超4亿人[1~。
英国红芸豆蛋白抗氧化肽酶解工艺的研究
关键词 : 芸豆蛋 白, 碱 性 蛋 白酶 , 酶 解, 抗 氧 化 肽
Re s e a r c h o f e nz y mo l y s i s t e c h no l o g y o f t he Br i t i s h r e d k i dn e y b e a n pr o t e i n a nt i o x i d a n t pe p t i de
5 5℃ , h y d r o l y z i n g t i me o f 2 h , u n d e r t h i s c o n d i t i o n o f t h e t o t a l a n t i o x i d a n t c a p a c i t y t o 1 8 6 . 9 7 U / mg p r o . Br i t i s h r e d k i d n e y b e a n s p e p t i d e s h o we d s t r o n g a n t i o x i d a n t a c t i v i t y .
S d e n c e a n d T e c h n o l o g y o f F o o d I n d u s t r y
三 艺 搜 求
英 国红芸豆蛋 白抗氧化肽 酶解工艺 的研究
高嘉 唯 , 韩 晶, 左豫 虎 , 张洪 微 , 崔素 萍
( 黑龙 江八 一农 垦大 学 , 黑龙 江 大庆 1 6 3 3 1 9 )
Ab s t r a c t : S t u d y o f e n z y mo l y s i s t e c h n o l o g y o f k i d n e y b e a n p r o t e i n a n t i o x i d a t i v e p e p t i d e w i t h t h e B r i t i s h r e d k i d n e y b e a n s a s r a w
黄芩茎叶黄酮为何能降低缺氧性大脑皮质神经元的凋亡?
黄芩茎叶黄酮为何能降低缺氧性大脑皮质神经元的凋亡?在脑缺氧环境下,脑内自由基和Na+-K+-ATP酶的异常参与了细胞凋亡过程,而植物黄芩茎叶黄酮是一种抗氧化剂,对记忆障碍和神经损伤有显著的改善作用。
为此,来自中国河北省中医药开发与研究重点实验室商亚珍团队设计了一项研究,首次发现黄芩茎叶黄酮对缺氧剂氰化钾所致大鼠原代大脑皮质细胞凋亡具有显著抑制作用,并发现该作用是通过逆转氰化钾所致细胞内丙二醛异常生成,超氧化物歧酶、谷胱甘肽过氧化物酶和Na+-K+-ATP酶的活性异常而完成的。
文章发表在《中国神经再生研究(英文版)》杂志2014年9月第17期。
黄芩茎叶黄酮含药血清75.92 μg/mL减轻氰化钾对大鼠原代神经元的损伤Article: "Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by favonoids from the stems and leaves of Scutellaria baicalensis Georgi," by Guangxin Miao1, Hongxiang Zhao1, Ke Guo1, Jianjun Cheng1, Shufeng Zhang1, Xiaofeng Zhang1, Zhenling Cai2, Hong Miao1, Yazhen Shang1 (1Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China; 2Department of Anesthesiology, Affliated Hospital of Chengde Medical College, Chengde, Hebei Province, China)Miao GX, Zhao HX, Guo K, Cheng JJ, Zhang SF, Zhang XF, Cai ZL, Miao H, Shang YZ. Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi. Neural Regen Res. 2014;9(17):1592-1598.欲获更多资讯:Neural Regen ResFavonoids of S. baicalensis G. reduce apoptotic cortical neurons in the hypoxic brainUnder hypoxia, cell apoptosis in the brain is related to free radicals and Na+-K+-ATPase disorders. Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi (S. baicalensis G.), an antioxidant, markedly improve memory impairments and neuronal injuries. Yazhen Shang who comes from Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, and her colleagues for the first time discovered that favonoids from the stems and leaves of S. baicalensis G. exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide. The relevat study has been published in the Neural Regeneration Research (Vol. 9, No. 17, 2014).Serum containing favonoids from the stems and leaves of Scutellaria baicalensis Georgi at a dose of 75.92 μg/mL lessens potassium cyanide-induced injury in primary cultured neurons in rats.Article: "Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by favonoids from the stems and leaves of Scutellaria baicalensis Georgi," by Guangxin Miao1, Hongxiang Zhao1, Ke Guo1, Jianjun Cheng1, Shufeng Zhang1, Xiaofeng Zhang1, Zhenling Cai2, Hong Miao1, Yazhen Shang1 (1Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China; 2Department of Anesthesiology, Affliated Hospital of Chengde Medical College, Chengde, Hebei Province, China)Miao GX, Zhao HX, Guo K, Cheng JJ, Zhang SF, Zhang XF, Cai ZL, Miao H, Shang YZ. Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi. Neural Regen Res. 2014;9(17):1592-1598.。
蔓越莓提取物对脂多糖诱导RAW246.7细胞炎症反应的抑制作用
蔓越莓提取物对脂多糖诱导RAW246.7细胞炎症反应的抑制作用高纳影;赵艳敏;刘岱琳;孙华庚;高晓霞【期刊名称】《食品研究与开发》【年(卷),期】2018(039)016【摘要】研究蔓越莓提取物对脂多糖(lipopolysaccharide,LPS)诱导RAW246.7细胞炎症反应的抑制作用及其作用机制.筛选LPS浓度建立细胞炎症模型;采用噻唑蓝[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide,MTT]法测定蔓越莓提取物对RAW246.7细胞活力的影响;利用4,6-联脒-2-苯基吲哚(4′,6-diamidino-2-phenylindole,DAPI)染色法观察蔓越莓提取物对细胞核形态的影响;采用荧光分析法测定一氧化氮合酶(nitric oxide synthase,NOS)的活力;酶联免疫吸附剂测定(enzyme linked immunosorbent assay,ELISA)试剂盒测定IL-1、IL-6、TNF-α细胞因子的水平;蛋白质印迹法(Western-Blot)法检测Nrf2/NF-κB通路相关蛋白的水平.实验结果显示5μg/mL的LPS建立炎症模型,LPS与细胞共培养24 h时炎症水平达到最高,蔓越莓提取物在5μg/mL~400μg/mL范围内对RAW246.7细胞无显著性毒性作用,细胞核形态完整,无明显损伤;与模型组比较,蔓越莓提取物在无毒性浓度范围内显著降低LPS诱导RAW246.7细胞炎症反应的NOS活力和IL-1、IL-6、TNF-α水平,且呈现出剂量依赖关系.Western-Blot实验结果显示蔓越莓提取物量效依赖性地降低Keap1、IKKα/β、NF-κBp65蛋白表达的水平,而上调了Nrf2、HO-1的蛋白表达水平.结果证明蔓越莓提取物能够有效地抑制LPS诱导的炎症反应,其作用机制可能与经典的抗氧化通路Keap1/Nrf2/HO-1和炎症通路NF-κBp65蛋白表达有关.【总页数】7页(P1-7)【作者】高纳影;赵艳敏;刘岱琳;孙华庚;高晓霞【作者单位】广东药科大学药学院,广东广州510006;中国人民武装警察部队后勤学院生药学与药剂学教研室,天津300162;中国人民武装警察部队后勤学院生药学与药剂学教研室,天津300162;广东药科大学药学院,广东广州510006;天津市尖峰天然产物研究开发有限公司,天津300309;中国人民武装警察部队后勤学院生药学与药剂学教研室,天津300162【正文语种】中文【相关文献】1.蔓越莓抑制UVB诱导HaCaT细胞氧化损伤和凋亡的研究 [J], 刘硕;邝梦婷;朱华伟;林勇2.铁观音茶提取物对脂多糖诱导RAW264.7细胞炎症反应的抑制作用及机制 [J], 文祎;王振;蔡淑娴;刘仲华3.草苁蓉多糖对脂多糖诱导的小鼠J774A.1巨噬细胞炎症反应的抑制作用 [J], 张天;王园园;张钊;葛乃嘉;尹学哲;郑喜;全吉淑4.乳脂肪球表皮生长因子8(MFG-E8)对脂多糖诱导小胶质细胞炎症反应的抑制作用及其机制△ [J], 邵敬芝;杜珊珊;张莉蓉;张凤妍5.桑葚提取物对脂多糖诱导的心肌细胞炎症反应和细胞凋亡的影响 [J], 苏长英;孙学会;吴美龄因版权原因,仅展示原文概要,查看原文内容请购买。
内质网应激诱导的细胞凋亡
内质网应激诱导的细胞凋亡【摘要】内质网是细胞加工蛋白质和贮存Ca2+的主要场所,对维持细胞存活和发挥细胞的正常生理功能具有重要的作用。
内质网对应激极为敏感,在细胞内外环境应激因子如缺氧、缺糖、ATP耗竭、钙超载及蛋白降解减弱等的刺激下,均可引起ER内稳态失衡,使未折叠蛋白或错误折叠蛋白在ER积聚,统称为内质网应激(endoplasmicreticulumstress,ERS)。
ERS会激活细胞内蛋白质量控制系统,检测和处理未折叠及错误折叠蛋白,并对蛋白合成/降解做出适应性调整,以帮助细胞渡过应激状态。
细胞的这种适应性反应称为ERS反应。
此时机体通过激活未折叠蛋白反应来恢复内质网的正常功能。
长期过强的内质网应激诱导细胞凋亡。
本文主要就未折叠蛋白反应、ERS 诱导凋亡的途径作一综述。
【关键词】内质网应激;未折叠蛋白反应;细胞凋亡;凋亡途径1、未折叠蛋白反应(unfolded protein response,UPR)当发生ERS时,机体会启动一套由真核细胞进化而成的复杂的应激反应系统来应对ERS,即UPR。
在UPR过程中,葡萄免疫球蛋白重链结合蛋白(binding immunoglobulinheavy chain protein,Bip)又称葡萄糖调节蛋白-78(Glucose-regulated protein 78,GRP78),在调节内质网应激跨膜信号蛋白活性等方面发挥了关键作用。
BiP是一种定位于内质网的主要分子伴侣,被认为是ERS的一种标志蛋白。
在生理情况下,BiP结合于3种内质网膜上的受体蛋白IRE1、PERK和ATF6,使其处于失活状态。
ERS时,造成未折叠蛋白的堆积,促使Bip从3 种跨膜感受蛋白上解离,转而去结合内质网内新堆积起的未折叠蛋白,这种解离效应不但降低了未折叠或错误折叠蛋白在内质网的错误积累,同时释放了IRE1、PERK和ATF6 。
这3 种跨膜感应蛋白游离的IRE-1、PERK分别通过各自细胞质内结构域的二聚化和自身磷酸化而被激活;解离后的ATF6则转入高尔基体被蛋白酶水解成活性转录因子,继而诱导内质网应激下游信息的传递与相关基因的表达。
氧化应激下植物线粒体自噬分析
氧化应激下植物线粒体自噬分析尹润竹;于静芳;周俊【摘要】线粒体自噬,是指通过选择性的识别并清除损伤、衰老及功能紊乱的线粒体,对维持细胞内线粒体质量和数量的平衡产生了重要作用.与动物和酵母中线粒体自噬的研究进展相比,植物线粒体自噬的途径及具体调控机制尚不明确.基于GFP标签,本文探究了氧化胁迫下植物线粒体自噬发生情况.研究发现甲基紫精诱导线粒体在液泡中积累,并呈现两种状态:1)GFP小体包含的线粒体;2)不含GFP的线粒体.本研究发展的GFP标签策略可为植物线粒体自噬关键调控因子的筛选提供借鉴.【期刊名称】《激光生物学报》【年(卷),期】2019(028)002【总页数】5页(P109-113)【关键词】线粒体;膜电位;线粒体自噬;拟南芥【作者】尹润竹;于静芳;周俊【作者单位】华南师范大学生物光子学研究院激光生命科学研究所暨激光生命科学教育部重点实验室,广东广州510631;华南师范大学生物光子学研究院激光生命科学研究所暨激光生命科学教育部重点实验室,广东广州510631;华南师范大学生物光子学研究院激光生命科学研究所暨激光生命科学教育部重点实验室,广东广州510631【正文语种】中文【中图分类】Q942.7线粒体(mitochondria)是细胞中重要的能量代谢场所,为生物体正常生命活动提供必要的能量和中间代谢产物。
线粒体电子传递链(electron transport chain)不仅能产生能量物质ATP,还是细胞内活性氧(reactive oxygen species,ROS)的重要来源[1]。
ROS是一个多功能的氧化信号分子,参与很多细胞信号转导过程[2,3]。
然而ROS过度积累则可能导致氧化损伤,破坏细胞中DNA、蛋白质及脂质结构。
损伤、衰老及功能紊乱的线粒体会引起细胞能量稳态的破坏,ROS过度产生,凋亡相关因子的释放[3,4]。
因此,有效地识别并清理受损的线粒体对于细胞各项生理功能的正常运转是很关键的。
人分化抑制因子3的研究进展
人分化抑制因子3的研究进展仲爱芳【摘要】@@ 分化抑制因子,又称DNA结合抑制因子(Inhibitors of differentiation/DNA binding,Id)属于螺旋-环-螺旋(HLH)转录因子家族成员之一,对碱性HLH(bHLH)转录因子活性起负调节作用.哺乳动物细胞含四种Id分子(Id1-Id4).Id3,作为血清诱导的立即早期基因1991年第一次在小鼠成纤维细胞系中被发现,该分子参与多种细胞生物学过程,本文就其表达的调控以及其生理和病理作用等方面作一综述.【期刊名称】《中国实验诊断学》【年(卷),期】2011(015)001【总页数】3页(P175-177)【作者】仲爱芳【作者单位】常州第一零二医院,检验科,江苏,常州,213003【正文语种】中文分化抑制因子,又称DNA结合抑制因子(Inhibitors of differentiation/DNA binding,Id)属于螺旋-环-螺旋(HLH)转录因子家族成员之一,对碱性HLH(bHLH)转录因子活性起负调节作用。
哺乳动物细胞含四种Id分子(Id1-Id4)。
Id3,作为血清诱导的立即早期基因1991年第一次在小鼠成纤维细胞系中被发现,该分子参与多种细胞生物学过程,本文就其表达的调控以及其生理和病理作用等方面作一综述。
1 Id3的结构与基本功能Id蛋白是一类分子量约13-20 kDa的小分子蛋白,这类蛋白有一共同类型的结构域:此结构域长40-50个氨基酸残基,其中含两个既亲水又亲脂的α螺旋,两个α螺旋被一个不同长度和序列的连接环区分开。
高保守螺旋区通过螺旋上疏水基团的相互作用形成同源或异源二聚体,从而发挥转录调控作用。
大部分HLH蛋白有一个与HLH基序相邻的强碱性区域,为DNA结合所必须,故此类HLH又称为碱性HLH(bHLH)蛋白。
Id分子是一类特殊的HLH蛋白,因其本身缺乏DNA结合必需的碱性氨基酸序列,与bHLH结合成异二聚体后,抑制bHLH与DNA及其他组织特异性bHLH转录因子(如E蛋白)的结合,对bHLH转录因子活性起负调节作用,影响细胞特异性基因的表达,从而抑制细胞分化。
生物传感器及其应用
电场
压电晶体式
气体
等离子体共振式 磁场
12
(1) 将化学变化转变成电信号 以酶传感器为例,酶催化特定底物发生反应,从
而使特定生成物的量有所增减,用能把这类物质的 量的改变转换为电信号的装置和固定化酶耦合,即构 成酶传感器。
常用转换装置有氧电极、过氧化氢。
13
(2)将热变化转换成电信号 固定化的生物材料与相应的被测物作用时常
膜
还原型辅酶
燃料电极
电流式
31
(2)微生物传感器特点
微生物较酶易获得,价格相对较低; 稳定性好,连续使用时间可达一个月左右; 响应时间比酶传感器长,多数在10分钟左右; 特异性较酶传感器差。
32
(3)微生物传感器实例
例1:谷氨酸传感器 谷氨酸脱羧酶催化谷氨酸的反应为:
HOOC-(CH2)2-CHNH2-COOH 谷氨酸脱羧酶 HOOC-(CH2)2-CH2NH2 + CO2
• 免疫电极(immuno bioelectrode)是以免疫物质 (抗原或抗体)作为敏感元件的电化学生物传感 器。
• 免疫物质的高特异性识别使免疫电极具有很高的 特异性。
• 根据测定过程是否需要标记物可分为直接免疫电 极(direct immuno electrode)和间接免疫电极 (indirect immuno electrode)。
葡萄糖传感器示意图
电解质溶液
记录仪
Pb Pt
聚四氟乙稀膜
氧电极
固定化葡萄糖氧化酶膜
葡萄糖 酶催化反应 电极旁O2浓度↓电化学反应 电流值↓→葡萄糖浓度
酶膜上
氧电极上
主要性能:测量范围:1~500 mg/L 响应时间:10~30 s 使用寿命:60~100 day
姜黄素通过下调HO-1
姜黄素通过下调HO -1/NQO1保护肝癌模型小鼠*牟海军, 陈幸幸, 刘安安, 张丽, 朱加兴, 金海△(遵义医科大学附属医院消化病医院,遵义医科大学附属医院消化内科,贵州 遵义 563000)[摘要] 目的:观察姜黄素对N -亚硝基二乙胺(DEN )联合四氯化碳(CCl 4)诱导的C57BL/6J 小鼠肝癌模型的作用并探索其机制。
方法:取14日龄雄性C57BL/6J 小鼠腹腔注射DEN (25 mg/kg ),随机分成模型组和姜黄素(100、200和400 mg/kg )给药组,另取同龄雄性小鼠10只作为正常对照组。
模型组和姜黄素给药组从第8周开始灌胃给予10% CCl 4(5 mL/kg ),每周2次;同时,给药组开始灌胃姜黄素,正常对照组灌胃等体积的蒸馏水,每天1次,连续14周。
给药结束后处死小鼠,检测小鼠血清丙氨酸转氨酶(ALT )和天冬氨酸转氨酶(AST )活性,观察肝组织病理学变化,检测血红素加氧酶1(HO -1)和NAD (P )H -醌氧化还原酶1(NQO1)的mRNA 表达水平,以及HO -1、NQO1和Ki67蛋白表达水平。
结果:与正常对照组比较,模型组小鼠体重显著降低(P <0.01),肝脏指数显著增加(P <0.01),血清ALT 和AST 活性显著升高(P <0.01),HO -1和NQO1的mRNA 表达水平无显著差异(P >0.05),HO -1和NQO1蛋白表达水平显著升高(P <0.05),Ki67阳性表达率显著增加(P <0.05)。
姜黄素治疗后,小鼠体重显著升高(P <0.01),肝脏指数无明显变化(P >0.05),癌结节数量显著减少(P <0.05或P <0.01),血清AST 活性显著降低(P <0.01),HO -1和NQO1的mRNA 及蛋白表达水平显著降低(P <0.05),Ki67阳性表达率显著降低(P <0.05)。
细胞生物学名词英汉对照(翟中和)
细胞生物学名词英汉对照1. 细胞(cell)2. 细胞质(cell plasma)3. 原生质(protoplasm)4. 原生质体(potoplast)5. 细胞生物学(cell biology)6. 细胞学说(cell theory)7. 原生质理论(protoplasm theory)8. 细胞遗传学(cytogenetics)9. 细胞生理学(cytophysiology)10.细胞化学(cytochemistry)11. 分子生物学(molecular biology)12. 分子细胞生物学(molecular biology of the cell)13. 支原体(mycoplasma)14. 结构域(domain)∶15. 模板组装(template assembly)16. 酶效应组装(enzymatic assembly)17. 自体组装(self assembly)18. 引发体(primosome)19. 剪接体(splicesome)20 原核细胞(prokaryotic cell)21. 古细菌(archaebacteria)22. 真细菌(Bacteria, eubacteria)23. 中膜体(mesosome)24. 真核细胞(eucaryotic cell)25. 生物膜结构体系(biomembrane system)26. 遗传信息表达结构系统(genetic expression system)27. 细胞骨架系统(cytoskeletonic system)28. 细胞社会学(cell sociology)细胞质膜与跨膜运输1. 膜(membrane)2. 细胞膜(cell membrane)3. 胞质膜(cytoplasmic membrane)4. 细胞质膜(plasma membrane)5. 生物膜(biomembrane,or biological membrane)6. 膜骨架(membrane skeleton)7. 血影蛋白(spectrin)8. 血型糖蛋白(glycophorin )9. 带3蛋白(band 3 protein)10. 锚定蛋白(ankyrin) 11. 带4.1蛋白(band 4.1 protein)12. 内收蛋白(adducin)13. 磷脂(phospholipids)14. 胆固醇(cholesterol)15. 脂质体(liposome)16. 整合蛋白(integral protein)17. 外周蛋白(peripheral protein)18. 脂锚定蛋白(lipid-anchored)19. 片层结构模型(Lamella structure model)20. 单位膜模型(unit membrane model)21. 流动镶嵌模型(fluid mosaic model)22. 孔蛋白(porin)23. 冰冻断裂(freeze fracture)24. 膜蛋白放射性标记法(radioactive labeling procedure)25. 相变(phase transition)26. 侧向扩散(lateral diffusion)27. 翻转扩散(transverse diffusion)28. 细胞融合(cell fusion)29. 成斑(patching)、成帽(capping)反应30. 光脱色荧光恢复技术(fluorescence recovery after photobleaching FRAP)31. 电子自旋共振谱技术(electron spin-resonance spectroscopy,ESR)32. 细胞运输(cellular transport)33. 胞内运输(intracellular transport)34. 转细胞运输(transcellular transport)35. 膜运输蛋白(membrane transport protein)36. 离子载体(ionophore)37. 短杆菌肽A(gramicidin A)38. 缬氨霉素(valinomycin)39. 扩散(diffusion)40.渗透(osmosis)41. 简单扩散(simple diffusion)42. 促进扩散(facilitated diffusion)43. 通道蛋白(channel protein)44. 电位-门控通道(voltage-gated channels)45. 配体-门控通道(ligand gated channel)46. 胁迫门控通道(stretch-gated channel)47. 载体蛋白(carrier protein)48. 水通道蛋白(aquaporin)49. 运输ATPase(transport ATPase)50. 协同运输(cotransport)51. 磷酸化运输(phosphorylating transport)细胞通讯1. 细胞通讯(cell communication)2. 信号传导(cell signalling)3. 信号转导(signal transduction)4. 信号分子(signaling molecules)5. 激素(hormone)6. 内分泌信号(endocrine signaling)。
细胞蛇的研究进展
2007年,英国牛津大学的刘骥陇等在研究果蝇U 小体和P 小体(U 小体和P 小体是真核生物细胞质中的无膜细胞器)的功能关系时,用4种针对Cup (P 小体中的一种蛋白质)的抗体,对雌性果蝇的卵巢组织进行免疫组织化学染色,染色结果除了预期标记上的P 小体外,还标记出了长条形的丝状结构[1]。
这种结构的形状和数量与纤毛很相似,导致当时以为在果蝇中找到了有纤毛的新细胞类型。
但后来的一系列实验表明,该结构与纤毛没有关系,于是将其命名为“细胞蛇”。
最初是抗Cup 抗体不纯产生假象,意外发现的细胞蛇,而采用亲和层析纯化后的抗Cup 抗体无法再DOI:10.16605/ki.1007-7847.2020.10.0258细胞蛇的研究进展收稿日期:2020-10-22;修回日期:2020-11-19;网络首发日期:2021-07-27基金项目:宁夏自然科学基金项目(2020AAC03179);国家自然科学基金资助项目(31560329)作者简介:李欣玲(1999—),女,广西贵港人,学生;*通信作者:俞晓丽(1984—),女,宁夏银川人,博士,副教授,主要从事干细胞与生殖生物学研究,E-mail:********************。
李欣玲,张樱馨,李进兰,潘文鑫,王彦凤,杨丽蓉,王通,俞晓丽*(宁夏医科大学生育力保持教育部重点实验室临床医学院基础医学院,中国宁夏银川750000)摘要:细胞蛇是近年来细胞生物学研究的热门方向之一,由于其在细胞的增殖、代谢和发育上具有一定的生物学功能,因此,对一些疾病如癌症等的临床诊断或治疗具有一定的指导意义。
细胞蛇是由三磷酸胞苷合成酶(cytidine triphosphate synthetase,CTPS)聚合而成的无膜细胞器,其形成过程及功能在不同类型的细胞中不尽相同。
例如:细胞蛇能促进癌细胞增殖,并使患者病情恶化;过表达的细胞蛇可抑制神经干细胞增殖,影响大脑皮层发育;在卵泡细胞中,细胞蛇相当于CTPS 的存储库,在卵子发生过程起到促进细胞增殖和代谢的作用。
219316076_植物多酚在消减牛乳蛋白致敏性作用中的研究进展
农丽艳,唐道邦,刘学铭,等. 植物多酚在消减牛乳蛋白致敏性作用中的研究进展[J]. 食品工业科技,2023,44(12):422−429. doi:10.13386/j.issn1002-0306.2022080301NONG Liyan, TANG Daobang, LIU Xueming, et al. Research Progress of Polyphenols in Reducing Lactoprotein Sensitization[J].Science and Technology of Food Industry, 2023, 44(12): 422−429. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080301· 专题综述 ·植物多酚在消减牛乳蛋白致敏性作用中的研究进展农丽艳1,2,唐道邦1,刘学铭1,王旭苹1,程镜蓉1,林耀盛1,邹金浩1,杨怀谷1,*(1.广东省农业科学院蚕业与农产品加工研究所,农业农村部功能食品重点实验室,广东省农产品加工重点实验室,广东广州 510610;2.广东海洋大学食品科技学院,广东湛江 524088)摘 要:牛乳蛋白过敏是主要由IgE 介导的病理性免疫反应,在易感体质婴幼儿群体中有较高的发生风险。
当前消除牛乳蛋白致敏性的技术手段包括热处理、高压处理、酶水解、糖基化修饰等,但这些方法可能会降低蛋白的营养功能价值、或产生不良风味。
植物多酚作为一种来源广泛的植物次级代谢产物,具有抗衰老、抗菌、抗炎和抗氧化等多重生物学活性。
多酚对蛋白质等大分子物质有显著的亲和作用,能通过共价和非共价结合方式有效降低不同食物蛋白的致敏性。
本文主要阐述酚-蛋白互作关系对牛乳致敏性的影响及其相关作用机制,并提出研究设想,为新型低致敏乳制品的开发工作提供思路和理论参考。
桑叶多酚的提取及其体外抗氧化能力测定
摘 要: 为研究最佳的桑叶多酚提取方法,并综合评价桑叶多酚的体外抗氧化能力,本试验采 用浓度分别为 60%、70%、80%的乙醇提取桑叶多酚,建立没食子酸标准曲线测定桑叶多酚的绝 对量和含量。 将各提取组桑叶多酚提取液稀释 2、4、8、16 倍后测定其 1,1-二苯基-2-三硝基苯 肼( DPPH) 自由基清除率,并以水溶性维生素 E( Trolox) 为阳性对照,半抑制浓度( IC50 ) 为参考 依据,对各组提取液及稀释液进行体外抗氧化能力测定。 结果表明:1) 60% 乙醇提取组的桑叶 多酚绝对量和含量最高,但各提取组之间无显著差异( P>0.05) 。 2) 将 60% 乙醇提取组中的桑 叶多酚提取液分别稀释至原液的 25%、50%、75%后测定各稀释组的桑叶多酚绝对量及含量,各 稀释组之间桑叶多酚绝对量和含量差异极显著( P<0.01) 。 3) 在 60%乙醇提取组中,2 倍稀释组 的 DPPH 自由基清除率极显著高于其他稀释组( P <0.01) ;在 70% 乙醇提取组中,2 倍稀释组的 DPPH 自由基清除率极显著高于 16 倍稀释组( P<0.01) ;在 80%乙醇提取组中,各稀释水平之间 DPPH 自由基清除率差异极显著( P<0.01) 。 4) 与 Trolox 标准品相比,各提取组的 IC50 均相对较 高,其中 60%乙醇提取组的 IC50极显著低于 70% 乙醇提取组( P <0.01) 。 5) 桑叶多酚绝对量与 IC50呈负相关,但相关关系不显著( P>0.05) 。 综上所述,桑叶多酚具有良好的体外抗氧化性能, 其含量与体外抗氧化能力之间存在一定的量效关系。 关键词: 桑叶;抗氧化;多酚;乙醇浓度;稀释 中图分类号:S816.7 文献标识码:A 文章编号:1006⁃267X( 2021) 06⁃3573⁃08
芝麻素对AngⅡ诱导的心肌成纤维细胞增殖和胶原分泌的影响
芝麻素对AngⅡ诱导的心肌成纤维细胞增殖和胶原分泌的影响曹雨朦;郑书国;赵梦秋;任尤楠;涂鹏程;李方圆;陈雪祎;常雪允【摘要】Objective:To observe the effect of sesamin on the collagen secretion and proliferation of cardiac fibroblasts ( CF) induced by angiotensin Ⅱ(AngⅡ)as well as the potentialmechanisms.Methods:Cardiac fibroblasts were isolated from neonatal rats with trypsin and collagenase digestion and puri-fied by differential attachment technique .MTT assay was applied to assess the effect of sesamin on the proliferation of cardiac fibroblasts after stimulation with Ang II.Hydroxyproline method was used to determine the collagen content,enzyme linked immunosorbent assay (ELISA) for measurement of TGF-β1 level,and colorimetric method for evaluation of the cellular total antioxidant capacity(T-AOC) and malonaldehyde(MDA)level.Results:Sesamin signifi-cantly suppressed AngⅡ induced CF proliferation and collagen secretion as well as TGF-β1 expression(P<0.05or P<0.01),whereas boosted cellular T-AOC and led to decrease of MDA level(P<0.05 or P<0.01).Conclusion:Sesamin is capable of suppressingAngⅡinduced CF proliferation and col-lagen synthesis.The potential mechanisms might involve boosted antioxidant capacity and down-regulation of TGF-β1 expression.%目的:观察芝麻素对血管紧张素Ⅱ(AngⅡ)诱导的心肌成纤维细胞(CF)增殖及胶原分泌的影响,并探讨其可能机制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Enzyme-Mediated Redox Initiation for Hydrogel Generation andCellular EncapsulationLeah M.Johnson,Benjamin D.Fairbanks,Kristi S.Anseth,and Christopher N.Bowman*Department of Chemical and Biological Engineering,ECCH 111CB 424,University of Colorado,Boulder,Colorado 80309Received July 25,2009;Revised Manuscript Received September 25,2009A rapid,water-soluble enzyme-mediated radical chain initiation system involving glucose oxidase and Fe 2+generated hydrogels within minutes at 25°C and in ambient oxygen.The initiation components were evaluated for their effect on polymerization rates of hydroxyethyl acrylate-poly(ethylene glycol)575diacrylate comonomer solutions using near-infrared spectroscopy.Increasing glucose concentration increased polymerization rates until reaching a rate plateau above 1×10-3M of glucose.A square root dependence of the initial polymerization rate on Fe 2+concentration was observed between 1.0×10-4M and 5.0×10-4M of Fe 2+,whereupon excess Fe 2+reduced final acrylate conversions.The glucose oxidase-mediated initiation system was employed for encapsulation of fibroblasts (NIH3T3s)into a poly(ethylene glycol)tetra-acrylate (M n ∼20000)hydrogel scaffold demonstrating 96%((3%)viability at 24h postencapsulation.This first use of enzyme-mediated redox radical chain initiation for cellular encapsulation demonstrates polymerization of hydrogels in situ with kinetic control,minimal oxygen inhibition issues,and utilization of low initiator concentrations.IntroductionA hydrophilic and cross-linked hydrogel,that prevents dissolution while promoting water uptake,facilitates biomedical application including drug delivery,biosensor fabrication and tissue engineering.1One prominent tissue regenerative approach encapsulates cells into supportive three-dimensional hydrogel scaffolds to guide cellular adhesion,molecular signaling,proliferation,and,ultimately,tissue formation.2-4The homo-geneous distribution of cells and biomolecules in the hydrogel precursor solution permits the delivery to any targeted site,allowing morphologic customization of the polymerized gel.A realization of such hydrogel cellular scaffolds requires a gelation process,wherein the precursor solution is water-soluble;the polymerization conditions are mild;the cure time is readily tailored for a particular application;and the gel components are all cytocompatible.The use of radical chain polymerization of high molecular weight poly(ethylene glycol)(PEG)vinyl monomers (i.e.,macromers)often meets these demands and further permits molecular design of mechanical properties,swelling behavior,and bioactive molecule incorporation.Although photoinitiation is frequently employed for generation of these cell-laden scaffolds,5-8photopolymerization limitations associated with cure depth and shadow effects have prompted investigations into successful light independent encapsulation systems using the thermally activated ammonium persulfate-tetramethyleth-ylenediamine (APS/TEMED)initiation.9-11Additionally,utiliz-ing ascorbic acid in combination with persulfate ions,Mikos and co-workers described the significant advantages of redox initiation pathways for generating hydrogels and the importance of the redox initiator components on cellular environments.12Another redox initiation system involving Fenton’s reagent,13,14comprising a ferrous salt (Fe 2+)and hydrogen peroxide (H 2O 2),was successfully employed for the polymerization of poly(vinylalcohol)(PVA)hydrogels showing unique and advantageous drug release profiles compared with UV cured PVA hydrogels.15However,this rapid Fenton system also demonstrates unique challenges in finely controlling cure times and avoiding the formation of microgel domains.16Other light-independent initiation systems include enzymes that catalyze electron transfer reactions and subsequently generate products capable of initiating chain polymerization of water-soluble vinyl monomers;these include certain oxi-doreductase catalytic mechanisms which directly form a primary radical appropriate for initiating the vinyl polymerization reaction.An eminent example involves the horseradish peroxi-dase (HRP)enzyme that catalyzes the oxidation of 2,4-pentanedione by H 2O 2generating a radical initiating species on the acetylacetone molecule.17Although this HRP ternary system demonstrates successful polymerization of monomers including acrylamide and hydroxyethylmethacrylate,18,19the scheme also shows extended and irregular inhibitory periods of between 45and 100min.20Another ternary system consisting of manganese peroxidase,H 2O 2,and 2,4-pentanedione initiated the polymer-ization of acrylamide,but required 12h under a nitrogen atmosphere.21Such extended polymerization times do not facilitate the rapid formation of hydrogels as needed in cellular encapsulation.To date,no enzyme-mediated chain initiation systems have been employed for cellular encapsulation into hydrogel scaffolds.Enzyme-mediated initiation systems involving oxidase en-zymes that produce H 2O 2,including the glucose oxidase (GOX)enzyme,offer a beneficial approach for rapidly polymerizing hydrogels.In the GOX initiation system,the enzyme binds to the glucose substrate generating gluconolactone and subse-quently regenerates the flavin adenine dinucleotide (FAD)cofactor by binding oxygen and producing H 2O 2.By coupling ferrous ions to this enzymatic process,hydroxyl radical species are produced.Notably,a unique aspect of this system involves the utilization and elimination of oxygen,a powerful inhibitor of radical chain polymerization,by the GOX enzyme during*To whom correspondence should be addressed.E-mail:christopher.bowman@.Biomacromolecules 2009,10,3114–3121311410.1021/bm900846m CCC:$40.75 2009American Chemical SocietyPublished on Web 10/12/2009the initiation process.This feature offers unique advantages, including the ability to reduce initiator quantities and eliminate the requirement of performing reactions under inert atmospheric conditions which precludes the ability to encapsulate cells.For example,the GOX initiation system was actually completely suppressed under a nitrogen atmosphere until the introduction of oxygen whereupon polymerization quickly commenced.22 This compatibility with oxygen further prompted the use of this GOX system for the polymerization of detachable balloon catheters used in endovascular surgery where oxygenflow to blood and tissue is critical.23The tolerance of the GOX system to oxygen and the elimination of an extraneous energy source for initiation,such as light or heat,prompted our investigations to understand further the polymerization kinetics and employ this system for cellular encapsulation.Herein,we detail the chain polymerization kinetic reactions and mechanism of the GOX mediated initiation system for forming polymers with biomaterials applications.The outlined kinetic parameters provide a simple means to control thefinal vinyl conversion and tailor the polymerization rates.The understanding of these kinetic reactions facilitated the encap-sulation of mammalian cells with high viability.Experimental SectionPolymerization Kinetic Studies.The polymerization reactions weremonitored using Fourier transform infrared(FTIR)spectroscopy witha Nicolet750Magna FTIR instrument.The acrylate double bondconversion was followed in real time using the near-IR absorption peakbetween6212-6150cm-1corresponding to the C-H stretch of theacrylate functional group.The polymerization reaction commenced withthe addition of GOX from Aspergillus niger(Sigma-Aldrich)to amixing solution of all other reaction components comprising iron(II)sulfate(Fe2+)(Sigma-Aldrich),glucose(Sigma-Aldrich),2-hydroxy-ethyl acrylate(HEA),poly(ethylene glycol)diacrylate(M n∼575Da; Sigma-Aldrich),and2-(N-morpholino)ethanesulfonic acid(MES)bufferstabilized at pH)4.5(Teknova).The MES buffer was chosen forthese kinetic studies to maintain slightly acidic conditions favorablefor the GOX enzyme.A10%(w/v)glucose stock solution was stabilizedto ensure mutarotation of the sugar.After mixing,the reactions wereimmediately transferred to a1mm thick glass sample compartmentand placed in the FTIR instrument that utilized a horizontal transmissionapparatus.24All the reactions were performed sealed from the openatmosphere at ambient temperature without a solution purge of oxygen.Negative controls were performed by eliminating either GOX,glucose,or Fe2+from the reaction mixture and each resulted in no polymerizationafter30min.A slight induction period was partly attributed to thepresence of the hydroquinone monomethylether(MEHQ)inhibitor inthe unpurified commercial monomers.This induction period permittedthe acquisition of a reliable zero conversion baseline utilized in thedata analysis.The initial polymerization rates(R p)were obtained bydetermining the time required to react from15to30%double bondconversion and each experimental condition was performed three times.Rheological measurements using an ARES rheometer(TA Instruments)were employed to verify the polymerization of the poly(ethylene glycol)tetra-acrylate(M n∼20000Da).For rheological measurements,the reaction materials were mixed in the same manner used for the near-IR experiments and promptly sandwiched between20mm plates in parallel configuration.Cell Culture.The NIH3T3fibroblast cells were cultured usingDulbecco’s modified eagle medium(DMEM)containing25mMglucose(Gibco)and further supplemented with10%fetal bovine serum(FBS),1µg/mL amphotericin,50U/mL penicillin,50µg/mL strep-tomycin,and20µg/mL gentamicin.The cells were cultured understandard conditions(37°C and5%CO2)both prior to and followingencapsulationFibroblast Encapsulation.The poly(ethylene glycol)tetra-acrylate (M n∼20000;PEGTA20000)was synthesized according to previously published protocols.25The characterization of the PEGTA20000product with1H NMR confirmed95%acrylation.A peptide comprising CRGDS (cysteine,arginine,glycine,aspartic acid,serine)was synthesized using a433A peptide synthesizer(Applied Biosystems)and purified by reverse phase high performance liquid chromatography.The identity of the peptide was verified by MALDI-MS.An Ellman’s colorimetric assay26was also used to verify and quantify the presence of reduced thiols on cysteine residues,which permit the facile incorporation of the peptide within the hydrogel network.27Briefly,the cysteine residues present on the CRGDS peptide are incorporated into the hydrogel by chain transfer during the homopolymerization of the acrylate groups. Inclusion of this peptide in the hydrogel facilitates cellular adhesion and survival in synthetic hydrogels.28Fibroblasts were encapsulated into hydrogels at a density of30×106cells/mL,by gently suspending the cells in a PEGTA20000monomer formulation to obtain afinal concentration of2.5×10-5M GOX, 1.25mM Fe2+,4mM glucose,15wt%PEGTA20000,and1mM of CRGDS in a1×Dulbecco’s phosphate buffered saline(PBS)solution (pH)7.2-7.4).The mixture was added to a cylindrical mold(4mm diameter,1.5mm height)and permitted to polymerize for approximately 5min.The gels were incubated for30min in1×PBS(pH)7.2-7.4) at37°C before transferring the gels to the appropriate media or cell viability solution.For experiments involving the catalase enzyme,the gels were incubated under standard conditions in DMEM cell culture media containing afinal catalase concentration of2.0×10-6M for 24h.The catalase enzyme catalyzes the degradation of H2O2to water and O2,both products well tolerated by cells.Cell viability was determined using the Live/Dead cellular stain(Invitrogen),a membrane integrity assay that stains living cells green and dead cells red.The fluorescence images were obtained using confocal microscopy,three images taken at random positions for each gel examined.Live,green cells were counted using MetaMorph software;dead,red cells were counted manually.Results and DiscussionEnzymatic H2O2Generation and Initial Polymerization Rates.The GOX mediated radical generation process has been shown to be comprised of four significant reaction steps(eqs 1-4).23,29-30The GOX enzyme catalyzes the oxidation of glucose to gluconolactone and subsequently regenerates the FAD cofactor by reducing O2to H2O2(eq1).By combining the enzymatically produced H2O2with ferrous ions,a hydroxyl radical initiator is generated(eq2),which may further react with vinyl monomer [M]to produce a chain initiating species(eq4)or react with additional ferrous ion to inhibit polymerization(eq3).Overall, the present studies found that this GOX-mediated initiation system promotes rapid polymerization rates reaching high acrylic glucose+O298GOXgluconolactone+H2O2(1)H2O2+Fe+2f-OH+•OH+Fe+3k2)76M-1s-1(2)•OH+Fe+2f-OH+Fe+3k3)3×108M-1s-1(3)•OH+M f HOM•k4≈109-1010M-1s-1(4)Hydrogel Generation and Cellular Encapsulation Biomacromolecules,Vol.10,No.11,20093115double bond conversion,usually within about 3min under current conditions at ambient temperature and atmosphere.Moreover,the polymerization rates were easily tailored using a HEA-PEGDA 575monomer formulation by changing the initiator component concentrations (i.e.,glucose,GOX enzyme,Fe 2+).Detailed investigations of polymerization kinetics were required to understand further this initiation system for use in cellular encapsulation studies.Studies were performed to investigate the effects of H 2O 2generation (eq 1)on the polymerization kinetics,including the effects of glucose and GOX concentrations on polymerization rates.First,the effects of glucose on polymerization rates were evaluated by monitoring ambient temperature polymerization reactions at differing glucose concentrations using near-IR spectroscopy.Representative acrylate conversion profiles for various glucose concentrations using 6.25×10-7M GOX enzyme and 2.5×10-4M Fe 2+(Figure 1A)display the general trend that the increase in glucose concentrations results in an increase in polymerization rates when all other reaction com-ponents are maintained constant.This trend would be expected since increasing the glucose substrate results in the increase in the H 2O 2generation rate by the GOX enzyme.These acrylate conversion profiles were further used to determine scaling relationships between the initial polymeriza-tion rates (R p )and glucose concentrations at different fixed ferrous values (Figure 1B).Because the polymerization rate scales with initiation rate,31direct monitoring of the polymer-ization reaction (i.e.,double bond conversion)permits a further understanding of the initiation reaction and ultimately its mechanisms.Classically,assuming pseudosteady state and chain length independent termination,the radical chain polymerization rate is proportional to the square root of the initiation rate (R i ),indicating bimolecular termination (R p ∞R i R ,where R )0.5).31,32A divergence of the scaling exponent (R )from 0.5is attributed to alterations in the typical bimolecular termination mode,including R <0.5for systems involving chain length dependent termination 33and R >0.5for systems encountering inhibitory or unimolecular termination.34Here,the dependence of polymerization rates on glucose concentrations displayed a dynamic variation of scaling exponents changing from R )1,at lower glucose values,to R )0.5at increased glucose values.At R )1,a first order dependence of polymerization rate on glucose concentration indicates a deviation from bimolecular termination likely associated with an inhibitory termination reaction.Evidence for such an inhibitory reaction is also suggested by the conversion profiles in Figure 1A where,at lower glucose value (i.e.,below 1.75×10-4M of glucose),the reactions do not achieve complete double bond conversion.This inhibitory reaction is further evaluated and discussed in the following section concerning iron and polymerization.Interestingly,at higher glucose concentrations,approximately 1.0×10-3M and above,the initial polymerization rates do not change as the glucose concentration changes and ultimately maintain a zero order dependence with respect to glucose.This behavior implies that,as the polymerization rate saturates,another component of the initiation system becomes limiting (i.e.,Fe 2+,GOX,O 2).Further tests were performed by monitor-ing polymerization reactions at various GOX enzyme concentra-tions (Figure 2).In Figure 2,all reactions contain identical [Fe 2+]at 2.0×10-4M,whereas each line represents a unique and fixed glucose value.Each line displays a near square root dependence of the polymerization rate on the enzyme concentration until a saturation point is achieved,after which the polymerization rate maintains a zero order dependence on GOX.Notably,the saturation point is reached at,and above,6.25×10-7M of GOX enzyme,the same concentration of enzyme employed in Figure 1.This result indicates that a point is reached whereupon additional glucose or GOX enzyme does not increase the polymerization rate.Taken together,the saturation rate behavior achieved at high concentrations of glucose (Figure 1B)and high concentrations of GOX (Figure 2)is partly explained by understanding the enzymatic H 2O 2production mechanism.In this mechanism,increased glucose utilization is accompanied by increased oxygen consumption due to the enzymatic regeneration of the FAD cofactor.Before the polymerization reaction begins,the total dissolved oxygen concentration in these GOX reactions should approximate that of the dissolved oxygen found in a typical acrylate formulation (∼1.0×10-3M)because the reactions were sealed without an initial solution purgeofFigure 1.(A)Representative double bond conversion profile of the GOX-mediated initiation system with varying concentrations of glucose and a fixed Fe 2+concentration of 2.5×10-4M.The conversion plot displays that the rate of polymerization increases with increasing glucose concentrations.(B)Dependence of initial polymerization rates on glucose concentrations for (O )2.5×10-4M,(9)1.25×10-4M,and (2)6.25×10-5M of Fe 2+.All reactions were performed with 6.25×10-7M GOX,10mM MES pH )4.5,20wt %HEA,and 15wt %PEGDA 575with ambient temperature and oxygen.3116Biomacromolecules,Vol.10,No.11,2009Johnson et al.oxygen.34The zero order dependence of polymerization rates implies that enzymatic consumption of oxygen contributes to the polymerization rate plateau observed at these higher glucose and GOX levels.Additionally,although the iron species is catalytic in this system (see below discussion concerning iron),the consumption of Fe 2+may also contribute to this rate plateau behavior at high glucose and GOX concentrations.Effects of Iron Concentration on Polymerization.The quantity of iron present in a GOX-mediated initiation reaction is crucial because Fe 2+can either promote polymerization by forming the hydroxyl primary radical (eq 2)or hinder polym-erization by destroying the same hydroxyl radical,thus limiting the chain initiation events (eq 3).Understanding the effects of iron on final double bond conversion and polymerization rates is essential for using the GOX initiation system for biomedical applications such as cellular encapsulation.Incomplete func-tional group conversion could inhibit the formation of mechani-cally stable and fully cross-linked hydrogel scaffolds or could result in cell viability loss due to the presence of unreacted monomer.Moreover,understanding the kinetic effects of iron is essential for tuning cure times.The effect of the [Fe 2+]on polymerization kinetics was monitored using near-IR spectroscopy by varying the ferrous concentrations while maintaining identical concentrations of all remaining initiation components (i.e.,glucose,GOX,monomer).An increase of initial R p values with an increase in Fe 2+concentration was expected for a certain range of iron and confirmed as shown in Figure 3.The results in Figure 3also illustrate that an increase in fixed glucose concentrations (each line represents a unique and fixed glucose value)increases the overall R p values while maintaining the same scaling exponents (R )values at 0.5(Table 1).This polymerization rate dependence on the square root of the ferrous ion concentration indicates typical bimolecular termination with negligible inhibitory reac-tions within this range of Fe 2+values.Moreover,when varying Fe 2+concentrations,the polymerization rates overlap for 1.0×10-3M and 1.5×10-3M of fixed glucose amounts (Figure3).This behavior is consistent with the zero order dependence on glucose observed above 1.0×10-3M as discussed in the previous section.However,at lower glucose and Fe 2+values,the R p rapidly and significantly drops as shown for 3.0×10-4M and 1.75×10-4M of glucose.This drop in R p is attributed to the low concentration of hydroxyl initiating species,which are unable to overcome termination reactions.To understand the termination mechanism further,the final double bond conversions were examined.As shown in Figure 4A,a considerable decrease in final conversion occurs with an increase in [Fe 2+],suggesting an inhibitory reaction.The increase in Fe 2+accompanies the radical wasting reaction (eq 3)and likely promotes the decrease in double bond conversion as previously reported.23However,in addition to this wasting reaction,certain metal salts,including Fe 3+,may terminate propagating radical chains by oxidizing the growing polymer chain radical (M n •)through an electron transfer process as shown in Equation 5.35Because ferric ions are generated during the initiation reaction (eqs 2and 3),it was anticipated that the conversion decrease was partially attributed to the accumulation of Fe 3+.However,Figure 2.Dependence of initial polymerization rates on GOX concentrations for (O )1.0×10-3M,(9)5.0×10-4M,and (2)2.5×10-4M of glucose.These reactions exhibit a near square root dependence of the polymerization rate on the enzyme concentration (i.e.,0.42(0.04,0.45(0.04,0.41(0.04for 1.0×10-3M,5.0×10-4M,and 2.5×10-4M of glucose,respectively)until a saturation point is achieved at,and above,6.25×10-7M of GOX.All reactions were performed with ambient oxygen and temperature with 2.0×10-4M Fe 2+,10mM MES,pH )4.5,20wt %HEA,and 15wt %PEGDA 575.Figure 3.The dependence of initial polymerization rates on Fe 2+concentrations for (b )1.5×10-3M,(0)1.0×10-3M,(4)5.0×10-4M,(])3.0×10-4M,and (9)1.75×10-4M of glucose.This plot displays that the R p is dependent upon the square root of the Fe 2+concentrations indicating a typical biomolecular termination mode for this range of iron values.Additionally,at (b )1.5×10-3M and (0)1.0×10-3M of glucose,the R p values are near identical with increasing Fe 2+.This is consistent with zero order dependence of glucose above 1.0×10-3M.All reactions were performed with ambient oxygen and temperature with 6.25×10-7M GOX,10mM MES,pH )4.5,20wt %HEA,and 15wt %PEGDA 575.Table 1.Initiation Rate Scaling Exponents for the GOX-Mediated Reactions when [Fe +2]was Varied between 1×10-4M and 5×10-4M at Different Fixed Glucose Concentrations aglucose (M)scaling exponent (R )1.5×10-30.47(0.021.0×10-30.48(0.025.0×10-40.47(0.023.0×10-40.49(0.021.75×10-40.53(0.09aAll reactions contained 6.25×10-7M GOX,20wt %HEA,15wt %PEGDA 575,10mM MES,pH )4.5.Mn •+Fe +3OH -f MnOH +Fe +2(5)Hydrogel Generation and Cellular Encapsulation Biomacromolecules,Vol.10,No.11,20093117all monomers are not similarly affected by Fe 3+,as shown by the resistance of poly(methyl methacrylate)radicals to ferric termination attributed to steric influence.35To test the suscep-tibility of the current monomer formulation to ferric termination,the GOX-mediated polymerization reaction with the HEA-PEGDA 575formulation and 1.0×10-3M glucose was performed with supplemented ferric ions (Figure 4B).Significant drops in conversion occurred with increasing Fe 3+,indicating that these inhibitors cause premature chain termination in this system.For example,an average decrease in final conversion of 9%((3%),30%((5%),and 59%((4%)occurred with the addition of 5.0×10-4M,7.5×10-4M,and 1.0×10-3M of Fe 3+,respectively.Importantly,Figure 4A also displays that the reactions become more susceptible to iron inhibition as the glucose concentration used to initiate the reaction is reduced.For example,95%((0.3%)conversion was achieved with reactions containing 5×10-4M Fe 2+and 1.0×10-3M glucose,whereas only 74%((2%)conversion was reached with reactions containing 5×10-4M Fe 2+and 1.75×10-4M glucose.This result would indicate that,in general,maintaining a high glucose:iron concentra-tion ratio may largely eliminate iron’s inhibitory reactions and promote polymerization.Interestingly,the results in Figure 4A nearly collapse onto a single line when replotted as the mole ratio of (Fe 2+)2/(glucose)versus final double bond conversion (Figure 5).This plot displays the trend that as the mole ratio of (Fe 2+)2/(glucose)becomes smaller (i.e.,reaching 10-7),the final double bond conversion approaches 100%.This again emphasizes the benefits of maintaining a high glucose/iron ratio.The capacity for high conversion with trace ferrous iron is explained by understanding the catalytic nature of iron in this initiation system.As shown in eq 5,the termination of propagating chains by Fe 3+regenerates Fe 2+,which can subsequently interact with another H 2O 2molecule to initiate polymerization.Because the generation of H 2O 2scales with the quantity of glucose present in the GOX system,providing excess glucose promotes the formation of the hydroxyl radical from the catalytic iron.These findings are in agreement with the importance of the stoichiometric relationship between the components of Fenton’s reagent,namely,the [Fe 2+],[Fe 3+],and [H 2O 2].36For example,an optimized molar ratio of [H 2O 2]/[Fe 2+])10was found when using only Fenton’s reagent for the production of poly(N -vinyl-2-pyrrolidone).14GOX-Mediated Initiation System for Cellular Encapsula-tion.Cellular encapsulation in hydrogels requires biocompatible,cross-linked,and high molecular weight macromers (e.g.,acrylated PEGs),typically with a molecular weight greater than 3kDa,to ensure diffusion of bioactive molecules between the cellular hydrogel and the surrounding media.37Here,we employed PEGTA 20000(Figure 6A)to encapsulate fibroblasts into a hydrogel using the GOX-mediated polymerization reac-tion.Monitoring the polymerization kinetics of PEGTA 20000with IR spectroscopy proved infeasible due to the relatively insig-nificant absorption of the carbon -carbon double bond of the acrylate group.However,the characteristics of theGOX-Figure 4.(A)Change in final double bond conversion as a result of differing Fe 2+concentrations is shown for (O )1.5×10-3M,(0)1.0×10-3M,(2)5.0×10-4M,(])3.0×10-4M,and (9)1.75×10-4M of glucose.(B)Change in final double bond conversion as a result of differing Fe 2+concentrations with a fixed [glucose]of 1.0×10-3M for all lines is shown.Each line displays the drop in conversion when reactions were supplemented with (0)0M,(b )5.0×10-4M,(1)7.5×10-4M,and ([)1.0×10-3M of Fe 3+ions.This indicates that the polymerization is susceptible to ferric termination.All reactions were performed with ambient oxygen and temperature with 6.25×10-7M GOX,10mM MES,pH )4.5,20wt %HEA,and 15wt %PEGDA 575.Figure 5.Change in final double bond conversion versus the mole ratio of (Fe 2+)2/(glucose)is shown for (O )1.5×10-3M,(0)1.0×10-3M,(2)5.0×10-4M,(])3.0×10-4M,and (9)1.75×10-4M of glucose.This result further emphasizes the importance of maintain-ing a high mole ratio of glucose/iron to prevent excessive termination reactions.All reactions were performed with ambient oxygen and temperature with 6.25×10-7M GOX,10mM MES,pH )4.5,20wt %HEA,and 15wt %PEGDA 575.3118Biomacromolecules,Vol.10,No.11,2009Johnson et al.。