数学课件函数与方程高考总复习
2025年高考数学总复习课件16第二章第八节函数与方程
核心考点 提升“四能”
课时质量评价
函数零点个数的判断方法 (1)直接求零点:令f (x)=0,有几个解就有几个零点. (2)函数零点存在定理:要求函数f (x)在区间[a,b]上是连续不断的曲线,且f (a)·f (b)<0,再结合函数的图象与性质确定函数的零点个数. (3)利用函数图象:作出两函数的图象,观察其交点个数即得零点个数.
A.(0,1)
B.(1,2)
√C.(2,3)
D.(3,4)
C 解析:(方法一)因为函数f (x)是增函数,且f (2)=ln 2-1<0,f (3)=ln 3>0, 所以由函数零点存在定理,得函数f (x)的零点位于区间(2,3)上.故选C. (方法二)函数f (x)=x+ln x-3的零点所在区间转化为g(x)=ln x,h(x)=-x+3的 图象的交点横坐标所在的范围.如图所示,可知函数f (x)的零点在(2,3)内.
b]上一定有实根
D.“二分法”对连续不断的函数的所有零点都有效
BC 解析:由结论知A错误,B正确,由函数零点存在定理可得C正确.由于
“二分法”是针对连续不断的函数的变号零点而言的,所以D错误.故选BC.
第八节 函数与方程
核心考点
提升“四能”
判断函数零点所在的区间
1.函数f (x)=x+ln x-3的零点所在的区间为( )
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
自查自测 知识点二 函数零点存在定理 1.(教材改编题)下列函数图象与x轴均有交点,其中不能用二分法求图中的函数 零点的是( C )
第八节 函数与方程
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
高考数学总复习第一讲:函数与方程
高考数学总复习第一讲:函数与方程函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律.函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系.在解决某些数字问题时,先设定一些未知数,然后把它们当作数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数假设有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题那么可以用方程的方法解决.总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题.在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最正确解题方案.一、例题分析例1.F(x)=xα-xβ在x∈(0,1)时函数值为正数,试比拟α,β的大小.分析:一般情况下,F〔x〕可以看成两个幂函数的差.函数值为正数,即f1(x)=xα的图象在x∈(0,1)上位于f2(x)=xβ的图象的上方,这时为了判断幂指数α,β的大小,就需要讨论α,β的值在〔1,+∞〕上,或是在〔0,1〕上,或是在〔0,1〕内的常数,于是F〔x〕成为两个同底数指数函数之差,由于指数函数y=a t(0<α<1)是减函数,又由于xα-xβ>0,所以得α<β.例2.0<a<1,试比拟的大小.分析:为比拟aα与(aα) α的大小,将它们看成指数相同的两个幂,由于幂函数在区间[0,+∞]上是增函数,因此只须比拟底数a与aα的大小,由于指数函数y=a x(0<a<1)为减函数,且1>a,所以a<aα,从而aα<(aα) α.比拟aα与(aα) α的大小,也可以将它们看成底数相同〔都是aα〕的两个幂,于是可以利用指数函数是减函数,由于1>a,得到aα<(aα) α.由于a<aα,函数y=a x(0<a<1)是减函数,因此aα>(aα) α.综上, .解以上两个例题的关键都在于适当地选取某一个函数,函数选得恰当,解决问题简单.例3.关于x的方程有实根,且根大于3,求实数a的范围.分析:先将原方程化简为a x=3,但要注意0<x<3且x≠1.现将a x看成以a为底的指数函数,考虑底数a为何值时,函数值为3.如图〔1〕,过〔3,3〕点的指数函数的底,现要求0<x<3时,a x=3,所以,又由于x≠1,在图〔1〕中,过〔1,3〕点的指数函数的底a=3,所以.假设将a x=3变形为,令,现研究指数函数a=3t,由0<x<1且x≠1,得,如图〔2〕,很容易得到:.通过本例,说明有些问题可借助函数来解决,函数选择得当,解决就便利.例4.函数f(x)是定义在实数集上的周期函数,且是偶函数,当x∈[2,3]时,f(x)=x,那么当x∈[-2,0]时,f(x)的解析式是〔〕.〔A〕f(x)=x+4 〔B〕f(x)=2-x〔C〕f(x)=3-|x+1| 〔D〕f(x)=3+|x+1|解法一、∵f(-2)=f(2)=2 f(-1)=f(3)=3,∴只有〔A〕、〔C〕可能正确.又∵f(0)=f(2)=2,∴〔A〕错,〔C〕对,选〔C〕.解法二、依题意,在区间[2,3]上,函数的图象是线段AB, ∵函数周期是2, ∴线段AB左移两个单位得[0,1]上的图象线段CD;再左移两个单位得[–2,1]上的图象线段EF .∵函数是偶函数, ∴把线段CD沿y轴翻折到左边,得[–1,0]上的图象线段FC.于是由直线的点斜式方程,得函数在[–2,0]上的解析式:即由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 所以y=3-|x+1|, x∈[-2,0].解法三、当x∈[-2,-1]时,x+4∈[2,3],∵函数周期是2,∴f(x+4)=f(x).而f(x+4)=x+4, ∴x∈[-2,-1]时,f(x)=x+4=3+(x+1).当x∈[-1,0]时,-x∈[0,1], 且-x+2∈[2,3].∵函数是偶函数,周期又是2,∴ ,于是在[–2,0]上, .由于x∈[-2,-1]时,x+1≤0,x∈(-1,0)时,x+1>0, 根据绝对值定义有x∈[-2,0]时,f(x)=3-|x+1|.此题应抓住“偶函数〞“周期性〞这两个概念的实质去解决问题.例5.y=log a(2-ax)在[0,1]上是x的减函数,那么a的取值范围是〔〕.〔A〕〔0,1〕〔B〕〔1,2〕〔C〕〔0,2〕〔D〕[2,+∞]分析:设t=2-ax,那么y=log a t, 因此,函数是上面这两个函数的复合函数,其增减性要考查这两个函数的单调性,另外,还要考虑零和负数无对数以及参数a对底数和真数的制约作用.解法一、由于a≠1,所以〔C〕是错误的.又a=2时,真数为2–2x,于是x≠1,这和矛盾,所以〔D〕是错的.当0<a<1时,t=2-ax是减函数,而y=log a t也是减函数, 故y=log a(2-ax)是x的增函数,所以〔A〕是错的.于是应选〔B〕.解法二、设t=2-ax,y=log a t 由于a>0,所以t=2-ax是x的减函数, 因此,只有当a>1,y=log a t是增函数时,y=log a(2-ax)在[0,1]上才是减函数;又x=1时,y=log a(2-a), 依题意,此时,函数有定义,故2–a>0 综上可知:1<a<2, 故应选〔B〕.例6. ,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于y’=x对称,那么g(5)=_____________-解法一、由去分母,得 ,解出x,得 , 故 ,于是 , 设 ,去分母得, ,解出x,得 ,∴的反函数.∴.解法二、由 ,那么 , ∴ ,∴.即的反函数为 ,根据:∴.解法三、如图,f(x)和f-1(x)互为反函数,当f-1(x)的图象沿x轴负方向平移一个单位时,做为“镜面〞的另一侧的“象〞f(x)的图象一定向下平移1个单位,因此f-1(x+1)的图象与f(x)-1的图象关于y=x对称.故f-1(x+1)的反函数是g(x)=f(x)-1,∴.本解法从图象的运动变化中,探求出f-1(x+1)的反函数,表达了数形结合的优势出二、稳固练习(1)函数在区间上的最大值为1,求实数a的值.〔1〕解:f(x)在区间上最大值可能在端点外取得,也可能在顶点外取得, , ,而顶点横坐标 ,最大值在顶点外取得,故此解舍去.当最大值为f(2)时,f(2)=1, ,顶点在应在区间右端点取得最大值,此解合理.当最大值在顶点处取得时,由 ,解得 ,当,此时,顶点不在区间内,应舍去.综上,.〔2〕函数的定义域是[a,b],值域也是[a,b],求a.b的值.2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.〔2〕解:y=f(x)的图象如图,分三种情况讨论.当a<b≤0时,f(x)为递增函数,有 ,解得, ,由于b>0,应舍去.当0≤a<b时,f(x)为递减函数,有 ,解得:a=1,b=2.当a<0<b时,f(x)最大值在顶点处取得,故 , ,所以最小值应在a处取得.,解得: ,综上,或〔3〕求函数的最小值.解〔3〕分析:由于对数的底已明确是2,所以只须求的最小值.〔3〕解法一:∵ ,∴x>2.设 ,那么 ,由于该方程有实根,且实根大于2,∴解之,μ≥8.当μ=8时,x=4,故等号能成立.于是log2≥0且x=4时,等号成立,因此的最小值是3.解法二:∵ ,∴x>2设 ,那么 =∴μ≥8且 ,即x=4时,等号成立,∴log2μ≥3且x=4时,等号成立.故的最小值是3.〔4〕a>0,a≠1,试求方程有解时k的取值范围. 4〕解法一:原方程由②可得:③,当k=0时,③无解,原方程无解;当k≠0时,③解为 ,代入①式,.解法二:原方程 ,原方程有解,应方程组,即两曲线有交点,那么ak<-a或0<ak<a(a>0)∴k<-1或0<k<1.〔5〕设函数〔Ⅰ〕解不等式f(x)≤1〔Ⅱ〕求a的取值范围,使f(x)在[0,+∞]上是单调函数.5〕解〔Ⅰ〕,不等式f(x≤1),即由此得:1≤1+ax即ax≥0,其中常数a>0, ∴原不等式即∴当0<a<1时,所给不等式解集为 ,当a≥1时,所给不等式解集为{x|x≥0}.〔Ⅱ〕在区间[0,+∞)上任取x1,x2,使得x1<x2,〔ⅰ〕当a≥1时,∵∴又∴所以,当a≥1时,函数f(x)在区间[0,+∞)上是单调递减函数.〔ⅱ〕当0<a<1时,在[0,+∞)上存在两点满足f(x1)=1,f(x2)=1 ,即f(x1)=f(x2),∴函数f(x)在区间[0,+∞)上不是单调函数.。
人教版高考总复习一轮数学精品课件 主题二 函数 第三章 函数与基本初等函数-第八节 函数与方程
2.用二分法求方程 + lg − 3 = 0的近似解,以下区间可以作为初始区间的是() B
A.[1,2]B.[2,3]C.[3,4]D.[4,5]
[解析]设 = + − ,显然函数图象是连续的,且 = − < ,
= − < , = > , = + > , = + > ,
[解析]因为函数 =
−
ቤተ መጻሕፍቲ ባይዱ
− 在区间 , 上单调递增,又函数
= − − 的一个零点在区间 , 内,则有 ⋅ < ,所以
− − − < ,即 − < ,所以 < < .故选C.
4.已知函数 = e − e− + 4,若方程 = + 4 > 0 有三个不同的实根1 ,
= 或 = ,作出 的图象,如图所示:
观察图象可知, = − 无解, = 有3个解, = 有1个解.综上所述,函数
的零点个数为4.故答案为4.
[对点训练3](1)已知函数 =
实根个数为() A
A.3
2 +1
൞ 2
−1
B.4
定理得函数 的零点位于区间 , 内.故选C.
法二(数形结合):
函数 = + − 的零点所在区间转化为 = ,
= − + 的图象的交点横坐标所在范围.如图所示,可知
的零点在 , 内.故选C.
[对点训练1] (多选题)下列函数中,在区间[−1,3]上存在唯一零点的有() BCD
人教B版高考总复习一轮数学精品课件 第2章一元二次函数、方程和不等式 第2节均值不等式
s2
(2)如果和 x+y 是定值 s,那么当且仅当 x=y 时,xy 有最大值是 4 (简记:和定积
最大).
微点拨应用均值不等式求最值时,要注意:“一正,二定,三相等”,忽略某个条
件,就有可能导致错误.
常用结论
1.当
1
x>0 时,x+ ≥2(当且仅当
x=1 时,等号成立);当
1
x<0 时,x+ ≤-2(当且仅当-
x=1,即 x=-1 时,等号成立).
2.若
2
a,b>0,则+
≤ ≤
+
2
3.三个正数的均值不等式:若
号成立.
≤
2 + 2
,当且仅当
2
++c
a,b,c>0,则 3
≥
3
a=b 时,等号成立.
c,当且仅当 a=b=c 时,等
自主诊断
题组一思考辨析(判断下列结论是否正确,正确的画“ ”,错误的画“×”)
为 1.
≥
1
可得=2-y,则
1
+2-
)
2
(
2
2
1.
1
x= (y≠2),由
2-
> 0,
=
=1,当且仅当 y=2-y,即当 y=1
1
2-
可得 0<y<2,所以
>0
时,等号成立,故的最小值
(3)(2024·河南洛阳模拟)已知x>0,y>0,且 +2 =4,则xy的最大值
是
解析
4
2025版高考数学一轮总复习第2章函数概念与基本初等函数Ⅰ第8讲函数与方程课件
解法二:(图象法)函数 f(x)的图象如图所示,
由图象知函数 f(x)共有 2 个零点.
2.已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)
=2|x|-1,则函数g(x)=f(x)-|lg x|的零点个数是( B )
A.9
B.10
C.11
D.18
[解析] 由函数y=f(x)的性质,画出函数y=f(x)的图象,如图,再
考向 2 函数零点个数的确定——师生共研
x2+x-2,x≤0, 1.函数 f(x)=-1+ln x,x>0 的零点个数为( B )
A.3
B.2
C.7
D.0
[解析] 解法一:(直接法)由 f(x)=0 得
x≤0,
x>0,
x2+x-2=0 或-1+ln x=0,
解得 x=-2 或 x=e.
因此函数 f(x)共有 2 个零点.
2.几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与__x_轴__有交点⇔函数y= f(x)有__零__点____.
3.函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并 且有___f_(_a_)f_(_b_)<__0_____,那么函数y=f(x)在区间(a,b)内有零点,即存 在c∈(a,b),使得___f_(c_)_=__0__,这个c也就是方程f(x)=0的根.
点所在的大致区间是( C )
1
A.e,1
C.(2,e)
B.(1,2) D.(e,+∞)
2 [解析] y=f(x)=ln x-x的定义域为(0,+∞),因为 y=ln x 与 y=
2
2
-x在(0,+∞)上单调递增,所以 f(x)=ln x-x在(0,+∞)上单调递增,
函数与方程-高考数学复习课件
内无零点,在(1,e)内有零点.
2. (2024·山东滨州模拟)[ x ]表示不超过 x 的最大整数,例如[3.5]=3,[-
0.5]=-1.已知 x 0是方程ln x +3 x -15=0的根,则[ x 0]=(
A. 2
B. 3
C. 4
D. 5
C )
设 f ( x )=ln x +3 x -15,显然 f ( x )在定义域(0,+∞)上单调递增,
上存在零点,则实数 a 的取值范围是(
B. (-e,+∞)
D. (-∞,e)
D
)
由题意知,函数 y =e- x 与 g ( x )=ln( x + a )的图象在(0,+∞)上有交点.
当 a >0时, g ( x )=ln( x + a )的图象是由函数 y =ln x 的图象向左平移 a
个单位长度得到的,
解得 x =0或 x =1或 x =2,
所以函数 f ( x )=( x 2- x )ln|2 x -3|在区间[-2,2]上的零点个数为3.
(2)设函数 f ( x )是定义在R上的奇函数,当 x >0时, f ( x )=e x + x -3,
则 f ( x )的零点个数为( C )
A. 1
B. 2
- x +1的零点所在的区间是(-2,-1).
4. 函数 f ( x )=e x +3 x 零点的个数为(
A. 0
B. 1
C. 2
D. 4
B )
关键能力的区间
(1)(2024·陕西咸阳模拟)函数 f =log4 x -
C )
−
1
2
的零点所在的区间
过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼
数学 必修1 函数与方程 总复习
高中数学 必修1 数学———函数与方程一.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。
2.二分法二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。
注:函数零点的性质从“数”的角度看:即是使0)(=x f 的实数;从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点;若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点。
人教B版高考总复习一轮数学精品课件 第3章函数与基本初等函数 第9节函数与方程
作出两函数图象如图所示,可知f(x)的零点所在的区
间为(1,2).故选B.
(2)(2024·北大附中模拟)已知f(x)=22x+x-2,若f(x0)=0,则x0所在区间为( B )
1
A.(0, )
4
1 1
B.( , )
4 2
1
C.( ,1)
(1)函数零点的定义
实数α 处的函数值等于零,即
一般地,如果函数y=f(x)在
称 α 为函数y=f(x)的零点.
f(α)=0 ,则
误区警示求函数的零点不能忽视函数的定义域,零点必须是定义域中的实
数,例如,不能说0是函数f(x)= -1 的零点,事实上该函数不存在零点.
(2)等价关系
方程f(x)=0的实数根⇔函数f(x)图象与x轴交点的横坐标⇔函数f(x)的零点.
− 1 的图象(如图所示),由图象知,函数 y=log2x 与 y=
有唯一的公共点,所以函数 f(x)=
1
(2)
1
(2)
− 1 的图象
− 1 -log2x 的零点个数为 1,故选 B.
(3)(2024·广东肇庆模拟)已知函数f(x)满足f(x+1)=f(x-1),当x∈[0,2)时,
3 1 2
图象法
否有交点来判断
考点二 判断函数零点的个数
例2(1)(2024·山东潍坊模拟)函数f(x)=(x2-x)ln|2x-3|在区间[-2,2]上的零点个
数是( A )
A.3
B.4
C.5
D.6
解析 令f(x)=(x2-x)ln|2x-3|=0,得x2-x=0或ln|2x-3|=0,解得x=0或x=1或x=2,所
第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)
【答案】 −∞, −1
2
当 < 0时,令′ = 0,解得 = 0或 = − ,
【解析】因为 = 3 + 3 2 − 4,所以′ = 3 2 + 6 = 3 + 2
当 = 0时,有 = 3 2 − 4 = 0,解得 = ± 2 3,
公共点.
N
Q
Z
R
N
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有
f(a)f(b)<0
(a,b) 内至少有一个零点,即存
__________,那么,函数y=f(x)在区间
在c∈(a,b),使得 f(c)=0 ,这个c也就是方程f(x)=0的解.
2.二分法
2
−∞, −
=
2
2
2
−∞, −
2
当 ∈ 0, − ,′ > 0, 在区间 0, − 上单调递增;
当 > 0时,由′ = 0,解得 = 0或 = − ,
2
且有 0 = −4, −
> 0,
, 存在一个正数零点,所以不符合题意;
2 3
,0
3
2
2 3
3
2024
高考一轮复习
第07讲 函数与方程
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析
高考总复习数学精品课件 第二章 一元二次函数、方程和不等式 第三节 二次函数与一元二次方程、不等式
2.研究不等式ax2+bx+c>0(<0,≥0,≤0)的恒成立问题时,注意对a=0这一情
形的讨论.
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( √ )
(2)若方程ax2+bx+c=0没有实数根,则不等式ax2+bx+c>0的解集为R.( × )
()
()() ≥ 0,
()
(2)
≥0⇔
()
() ≠ 0;
()
()
()-()
(3)
>m(m≠0)⇔
-m>0⇔
>0⇔[f(x)-mg(x)]g(x)>0;
()
()
()
()
()
()-()
[()-()]() ≥ 0,
(4)
的实数根
x1,x2(x1<x2)
ax2+bx+c>0(a>0) {x|x<x ,或x>x }
1
2
的解集
ax2+bx+c<0(a>0)
的解集
{x|x1<x<x2}
Δ=0
Δ<0
有两个相等的实数
根x1=x2= ≠
⌀
b
2a
−
2
没有实数根
R
⌀
微点拨1.简单分式不等式的解法
()
(1)
>0⇔f(x)g(x)>0;
考点一
一元二次不等式的解法(多考向探究)
高考数学复习知识点讲解教案第13讲 函数与方程
[解析] 令 = 2 − − 4,则 2 = 4 − 2 − 4 = −2 < 0,
3 = 8 − 3 − 4 = 1 > 0,
由 3
5
2
5
2
5
2
5
2
= 2 − − 4 < 0,
< 0知该解所在的区间为
5
,3
2
.
题组二 常错题
◆ 索引:误解函数零点的定义;忽略限制条件致误.
= 的零点.
(2)
等价关系
零点
方程 = 0有实数解⇔ 函数 = 有_______⇔
函数 = 的图象与
_______有公共点.
轴
(3)
函数零点存在定理
如果函数 = 在区间[, ]上的图象是一条连续不断的曲线,且有
至少有一个
<0
________________,那么,函数
4.函数
2
= 9 − 3 ln − 1 的零点为___.
[解析] 由题知 的定义域为 1, +∞ ,由 = 0,得
即9
− 3 = 0或ln − 1 = 0,解得 =
所以函数 =
9
1
(舍)或
2
− 3 ln − 1 的零点为2.
9
= 2,
− 3 ln − 1 = 0,
1
2
1
2
1
2
= 2 − 1 > 0,
< 0,所以 的零点在区间
1
0,
2
上,故选A.
)
D. 2,3
(2)
函数概念与基本初等函数Ⅰ 第六讲 函数与方程课件 高考理科数学复习讲义 考情解读 考点通关
函数与方程
继续学习
高考复习讲义
考点全通关 2
方程 ax2+bx+c=0 (a≠0)的根的个数 函数y=ax2+bx+c (a≠0)的零点个数
Δ>0
有两个不相 等的实数根
有两个 零点
Δ=0
Δ<0
有两个相等 的实数根
无实数根
有一个二重 零点
无零点
函数与方程
继续学习
高考复习讲义
考点全通关 3
a>0 函数y=ax2+bx+c(a≠0) 的图象
函数与方程
继续学习
高考复习讲义
考点全通关 8
【通关秘籍】
二分法求函数零点近似值的口诀 定区间,找中点,中值计算两边看. 同号去,异号算,零点落在异号间. 周而复始怎么办?精确度上来判断.
函数与方程
返回目录
a<0
函数y=ax2+bx+c(a≠0) 的图象与x轴的交点个数
Δ>0 有两个交点
续表
Δ=0
Δ<0
有一个交点
无交点
函数与方程
继续学习
高考复习讲义
考点全通关 4
4.零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那 么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程 f(x)=0的根. 【注意】在上述定理的条件下,只能判断出零点存在,不能确定零点的个数.
考情精解读 2
考纲解读
命题规律
命题趋势
函数与方程
考查内容 函数的零点
考查频次 考查题型
第8节 函数与方程--2025年高考数学复习讲义及练习解析
第八节函数与方程课标解读考向预测1.理解函数的零点与方程解的联系,掌握函数的零点、方程的根、图象交点(横坐标)三者之间的灵活转化.2.理解函数零点存在定理,并能简单应用.3.会用二分法求方程的近似解.从近三年高考情况来看,函数零点(方程的根)个数的判断、由零点存在定理判断零点(方程的根)是否存在、利用函数零点(方程的根)确定参数的取值范围等是考查的热点.本节内容也可与导数结合考查,难度较大.预计2025年高考函数与方程仍会出题,可能以选择题或填空题考查三种形式的灵活转化,也可能与导数结合考查,难度较大.必备知识——强基础1.函数的零点对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.2.方程的根与函数零点的关系方程f (x )=0有实数解⇔函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴有公共点.3.函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有01f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得f (c )=0,c 也就是方程f (x )=0的解.4.二分法对于在区间[a ,b ]上连续不断且02f (a )f (b )<0的函数y =f (x ),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.求方程f (x )=0的近似解就是求函数y =f (x )零点的近似值.函数零点的相关技巧:(1)若连续函数f (x )在定义域上是单调函数,则f (x )至多有一个零点.(2)连续不断的函数f (x ),其相邻的两个零点之间的所有函数值同号.(3)连续不断的函数f (x )通过零点时,函数值不一定变号.(4)连续不断的函数f (x )在闭区间[a ,b ]上有零点,不一定能推出f (a )f (b )<0.1.概念辨析(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)f(b)<0.()(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.()(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A必修第一册4.5.1例1改编)已知函数f(x)=23x+1+a的零点为1,则实数a的值为()A.-2B.-12D.2C.12答案B(2)下列函数图象与x轴都有公共点,其中不能用二分法求图中函数零点近似值的是()答案A解析根据题意,利用二分法求函数零点的条件是函数在零点的左、右两侧的函数值符号相反,即图象穿过x轴,据此分析,知选项A中的函数不能用二分法求零点.故选A. (3)(人教A必修第一册习题4.5T2改编)已知函数y=f(x)的图象是一条连续不断的曲线,部分对应关系如表所示,则该函数的零点个数至少为()x123456y126.115.15-3.9216.78-45.6-232.64A.2B.3C.4D.5解析由表可知,f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数f (x )在区间[1,6]上至少有3个零点.故选B.(4)若函数f (x )=kx +1在[1,2]上有零点,则实数k 的取值范围是________.答案-1,-12考点探究——提素养考点一函数零点所在区间的判断例1(1)(2024·湖南长沙长郡中学高三月考)函数f (x )=5-2x -lg (2x +1)的零点所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为函数f (x )=5-2x -lg (2x +1)-12,+,所以函数f (x )最多只有一个零点,因为f (0)f (1)=5(3-lg 3)>0,f (1)f (2)=(3-lg 3)(1-lg 5)>0,f (2)f (3)=(1-lg 5)(-1-lg 7)<0,f (3)f (4)=(-1-lg 7)×(-3-lg 9)>0,所以函数f (x )=5-2x -lg (2x +1)的零点所在的区间是(2,3).故选C.(2)用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:f (1.6000)≈0.200f (1.5875)≈0.133f (1.5750)≈0.067f (1.5625)≈0.003f (1.5562)≈-0.029f (1.5500)≈-0.060据此数据,可得方程3x -x -4=0的一个近似解为________(精确度为0.01).答案 1.56(答案不唯一,在[1.5562,1.5625]上即可)解析注意到f (1.5562)≈-0.029和f (1.5625)≈0.003,显然f (1.5562)f (1.5625)<0,又|1.5562-1.5625|=0.0063<0.01,所以近似解可取1.56.【通性通法】确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【巩固迁移】1.(2023·广东梅州高三二模)用二分法求方程log 4x -12x=0的近似解时,所取的第一个区间可A.(0,1)B.(1,2) C.(2,3)D.(3,4)答案B解析令f(x)=log4x-12x,因为函数y=log4x,y=-12x在(0,+∞)上都是增函数,所以函数f(x)=log4x-12x在(0,+∞)上是增函数,f(1)=-12<0,f(2)=log42-14=12-14=14>0,所以函数f(x)=log4x-12x在区间(1,2)上有唯一零点,所以用二分法求方程log4x-12x=0的近似解时,所取的第一个区间可以是(1,2).故选B.2.已知2<a<3<b<4,函数y=log a x与y=-x+b的交点为(x0,y0),且x0∈(n,n+1),n∈N*,则n=________.答案2解析依题意,x0为方程log a x=-x+b的解,即为函数f(x)=log a x+x-b的零点,∵2<a<3<b<4,∴f(x)在(0,+∞)上单调递增,又f(2)=log a2+2-b<0,f(3)=log a3+3-b>0,∴x0∈(2,3),即n=2.考点二函数零点个数的判断例2(1)已知函数f(x)2-4,x≤1,2(x-1),x>1,则函数y=f(x)零点的个数为________.答案2解析当x≤1时,由f(x)=x2-4=0,可得x=2(舍去)或x=-2;当x>1时,由f(x)=log2(x -1)=0,可得x=2.综上所述,函数y=f(x)零点的个数为2.(2)方程ln x+cos x=13在(0,1)上的实数根的个数为________.答案1解析解法一:ln x+cos x=13,即cos x-13=-ln x,在同一平面直角坐标系中,分别作出函数y=cos x-13和y=-ln x的大致图象,如图所示,在(0,1)上两函数的图象只有一个交点,即方程ln x+cos x=13在(0,1)上的实数根的个数为1.解法二:令f(x)=ln x+cos x-13,则f′(x)=1x-sin x,显然在(0,1)上f′(x)>0,所以函数f(x)在(0,1)上单调递增,又ln 1e +cos 1e -13=-1-13+cos 1e <0,f (1)=ln 1+cos1-13=0+cos1-13>cos π3-13=12-13>0,所以在(0,1)上函数f (x )的图象和x 轴有且只有一个交点,即方程ln x +cos x =13在(0,1)上的实数根的个数为1.【通性通法】求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点.(2)构造函数法:判断函数的性质,并结合零点存在定理判断.(3)图象法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.【巩固迁移】3.(2024·江苏无锡模拟)函数f (x )2-2,x ≤0,x -6+lg x ,x >0的零点的个数为________.答案2解析当x ≤0时,f (x )=x 2-2,根据二次函数的性质可知,此时f (x )单调递减,零点为x =-2;当x >0时,f (x )=2x -6+lg x ,∵y =2x -6单调递增,y =lg x 单调递增,∴f (x )=2x -6+lg x 单调递增.f (1)=-4<0,f (3)=lg 3>0,由零点存在定理知,在区间(1,3)必有唯一零点.综上所述,函数f (x )的零点的个数为2.4.函数f (x )|-|log 2x |的零点有________个.答案2解析f (x )|-|log 2x ||=|log 2x |的根的个数,即为y |与y =|log 2x |图象交点的个数,画出大致图象如图所示,则由图象可知交点有2个,即函数f (x )的零点有2个.考点三函数零点的应用(多考向探究)考向1利用零点比较大小例3已知函数f (x )=3x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点分别为a ,b ,c ,则a ,b ,c 的大小顺序为()A .a <c <bB .a <b <cC.b<a<c D.b<c<a答案A解析解法一:因为函数y=3x,y=x均为R上的增函数,故函数f(x)=3x+x为R上的增函数,因为f(-1)=13-1<0,f(0)=1>0,所以-1<a<0.因为函数y=log2x,y=x在(0,+∞)上均为增函数,故函数g(x)=log2x+x在(0,+∞)上为增函数,因为1+12<0,g(1)=1>0,所以12<b<1.由h(c)=c(c2+1)=0可得c=0,因此a<c<b.故选A.解法二:由题设,3a=-a,log2b=-b,c3=-c,所以问题可转化为直线y=-x与y=3x,y=log2x,y=x3的图象的交点问题,函数图象如图所示,由图可知a<c=0<b.故选A.【通性通法】(1)直接利用方程研究零点.(2)利用图象交点研究零点.(3)利用零点存在定理研究零点.【巩固迁移】5.(2023·江西南昌模拟预测)已知函数f(x)=2x+x-4,g(x)=e x+x-4,h(x)=ln x+x-4的零点分别是a,b,c,则a,b,c的大小顺序是()A.a<b<c B.c<b<aC.b<a<c D.c<a<b答案C解析由已知条件得f(x)的零点可以看成y=2x的图象与直线y=4-x的交点的横坐标,g(x)的零点可以看成y=e x的图象与直线y=4-x的交点的横坐标,h(x)的零点可以看成y=ln x 的图象与直线y=4-x的交点的横坐标,在同一坐标系内分别画出函数y=2x,y=e x,y=ln x,y=4-x的图象,如图所示,由图可知b<a<c.故选C.考向2根据零点个数求参数例4(2023·山东济南高三三模)已知函数f (x )x +1)2,x ≤0,x |,x >0,若函数g (x )=f (x )-b 有四个不同的零点,则实数b 的取值范围为()A .(0,1]B .[0,1]C .(0,1)D .(1,+∞)答案A解析依题意,函数g (x )=f (x )-b 有四个不同的零点,即f (x )=b 有四个解,转化为函数y =f (x )与y =b 的图象有四个交点,由函数y =f (x )可知,当x ∈(-∞,-1]时,函数单调递减,y ∈[0,+∞);当x ∈(-1,0]时,函数单调递增,y ∈(0,1];当x ∈(0,1)时,函数单调递减,y ∈(0,+∞);当x ∈[1,+∞)时,函数单调递增,y ∈[0,+∞).结合图象,可知实数b 的取值范围为(0,1].故选A.【通性通法】根据零点个数求参数的方法(1)直接法:直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g (x ),y =h (x )的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为y =a ,y =g (x )的图象的交点个数问题.【巩固迁移】6.(2024·安徽蚌埠高三摸底)已知函数f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为()A .1B .-1C .0D .-2答案B解析函数f (x )=2|x |+x 2+a 的定义域为R ,f (-x )=2|-x |+(-x )2+a =f (x ),即函数f (x )为偶函数,当x ≥0时,f (x )=2x +x 2+a ,则f (x )在[0,+∞)上单调递增,在(-∞,0)上单调递减,则当x =0时,f (x )min =a +1,由函数f (x )=2|x |+x 2+a 有唯一的零点,得a +1=0,解得a =-1,所以实数a 的值为-1.故选B.7.设a ∈R ,对任意实数x ,记f (x )=min{|x |-2,x 2-ax +3a -5}.若f (x )至少有3个零点,则实数a 的取值范围为________.答案[10,+∞)解析设g (x )=x 2-ax +3a -5,h (x )=|x |-2,由|x |-2=0可得x =±2.要使得函数f (x )至少有3个零点,则函数g (x )至少有一个零点,则Δ=a 2-12a +20≥0,解得a ≤2或a ≥10.①当a =2时,g (x )=x 2-2x +1,作出函数g (x ),h (x )的图象如图所示,此时函数f (x )只有2个零点,不符合题意;②当a <2时,设函数g (x )的2个零点分别为x 1,x 2(x 1<x 2),要使得函数f (x )至少有3个零点,则x 2≤-2,-2,-2)=4+5a -5≥0,无解;③当a =10时,g (x )=x 2-10x +25,作出函数g (x ),h (x )的图象如图所示,由图可知,函数f (x )的零点个数为3,符合题意;④当a >10时,设函数g (x )的2个零点分别为x 3,x 4(x 3<x 4),要使得函数f (x )至少有3个零点,则x 3≥2,,=4+a -5≥0,解得a >4,所以a >10.综上所述,实数a 的取值范围是[10,+∞).考向3根据零点范围求参数例5已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则实数m 的取值范围为________.答案-53,解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,,≥0,<0,+53≥0,解得-53≤m <0.因此实数m 的取值范围是-53,【通性通法】根据零点范围求参数的方法(1)利用零点存在定理构建不等式(组)求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的上下关系问题,从而构建不等式(组)求解.【巩固迁移】8.(2024·湖北荆州中学高三月考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.答案解析作出函数f (x )=|x 2-2x +12|,x ∈[0,3)的图象,可见f (0)=12,当x =1时,f (x )极大值=12,方程f (x )-a =0在[-3,4]上有10个零点,即函数y =f (x )的图象与直线y =a 在[-3,4]上有10个交点,由于函数f (x )的周期为3,因此直线y =a 与函数f (x )=|x 2-2x +12|,x ∈[0,3)的图象有4个交点,则有a课时作业一、单项选择题1.(2024·江苏扬中第二高级中学高三期初检测)函数f (x )=2x +3x 的零点所在的一个区间是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案B解析因为函数f (x )=2x +3x 在定义域内单调递增,f (-1)=12-3=-52<0,f (0)=1+0=1>0,所以由函数零点存在定理可知,函数f (x )的零点所在的区间为(-1,0).故选B.2.已知函数f (x )x -1,x ≤1,+log 2x ,x >1,则函数f (x )的零点为()A .2B .-2,0C.12D .0答案D解析当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12(舍去).综上所述,函数f (x )的零点为0.故选D.3.函数f (x )=e x |ln x |-1的零点个数是()A .1B .2C .3D .4答案B解析令f (x )=e x |ln x |-1=0,即|ln x |=e -x ,则函数f (x )=e x |ln x |-1的零点个数等价于两个函数y =e -x 与y =|ln x |图象的交点个数,y =e -x 与y =|ln x |的图象如图所示,由图可知,两个函数的图象有2个交点,故函数f (x )=e x |ln x |-1的零点个数是2.故选B.4.(2023·河南扶沟期末)若关于x 的方程log 12x =m1-m在区间m 的取值范围是()(1,+∞)答案B解析y =log 12x,则1<y <2,即1<m 1-m<2,解得12<m <23.故选B.5.已知三个函数f (x )=2x -1+x -1,g (x )=e x -1-1,h (x )=log 2(x -1)+x -1的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是()A .a >b >c B .a >c >b C .c >a >b D .c >b >a答案D解析∵函数f (x )=2x -1+x -1为增函数,又f (0)=2-1-1=-12<0,f (1)=1>0,∴a ∈(0,1),由g (x )=e x -1-1=0,得x =1,即b =1,∵h (x )=log 2(x -1)+x -1在(1,+∞)上单调递增,又log +32-1=-12<0,h (2)=log 2(2-1)+2-1=1>0,∴32<c <2,∴c >b >a .故选D.6.若方程m x -x -m =0(m >0,且m ≠1)有两个不同的实数根,则实数m 的取值范围是()A .(0,1)B .(2,+∞)C .(0,1)∪(2,+∞)D .(1,+∞)答案D解析方程m x -x -m =0有两个不同的实数根等价于函数y =m x 与y =x +m 的图象有两个不同的交点,当m >1时,如图1所示,由图可知,当m >1时,函数y =m x 与y =x +m 的图象有两个不同的交点,满足题意;当0<m <1时,如图2所示,由图可知,当0<m <1时,函数y =m x 与y =x +m 的图象有且仅有一个交点,不满足题意.综上所述,实数m的取值范围为(1,+∞).故选D.7.已知函数f (x )x ,x ≤0,x ,x >0,若函数g (x )=f (x )+x -m 恰有两个不同的零点,则实数m 的取值范围是()A .[0,1]B .(-1,1)C .[0,1)D .(-∞,1]答案D解析由题意,函数f (x )x ,x ≤0,x ,x >0,当x ≤0时,函数f (x )=e x 为增函数,其中f (0)=1,当x >0时,函数f (x )=ln x 为增函数,且f (1)=0,又由函数g (x )=f (x )+x -m 恰有两个不同的零点,即为g (x )=0有两个不等的实数根,即y =f (x )与y =-x +m 的图象有两个不同的交点,如图所示,当y =-x +m 恰好过点(1,0),(0,1)时,两函数的图象有两个不同的交点,结合图象,要使得函数g (x )=f (x )+x -m 恰有两个不同的零点,实数m 的取值范围是(-∞,1].故选D.8.已知函数f (x )x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 均不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是()A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案C解析函数f (x )的图象如图所示,不妨设a <b <c ,则-lg a =lg b =-12c +6∈(0,1),所以ab=1,0<-12c +6<1,所以ab =1,10<c <12,所以10<abc <12.故选C.二、多项选择题9.下列说法正确的是()A .函数y =x 2-3x -4的零点是(4,0),(-1,0)B .方程e x =3+x 有两个解C .函数y =3x ,y =log 3x 的图象关于直线y =x 对称D .用二分法求方程3x +3x -8=0在x ∈(1,2)内的近似解的过程中得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间(1.25,1.5)上答案BCD解析对于A ,令y =x 2-3x -4=0,解得x =-1或x =4,所以函数y =x 2-3x -4的零点是-1和4,故A错误;对于B,分别作出y=e x,y=3+x的图象,y=e x与y=3+x的图象有两个交点,即方程e x=3+x有两个解,故B正确;对于C,因为同底数的指数函数和对数函数的图象关于直线y=x对称,所以函数y=3x,y=log3x的图象关于直线y=x对称,故C正确;对于D,因为y=3x+3x-8单调递增,由零点存在定理知,因为f(1)<0,f(1.5)>0,f(1.25)<0,所以方程的根落在区间(1.25,1.5)上,故D正确.故选BCD.10.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1<x2,则下列结论正确的是()A.当m=0时,x1=2,x2=3B.m>-14C.当m>0时,2<x1<x2<3D.二次函数y=(x-x1)(x-x2)+m的零点为2和3答案ABD解析对于A,易知当m=0时,(x-2)(x-3)=0的根为2,3,故A正确;对于B,设y=(x-2)(x-3)=x2-5x+6-14≥-14,因为y=(x-2)(x-3)的图象与直线y=m有两个交点,所以m>-14,故B正确;对于C,当m>0时,y=(x-2)(x-3)-m的图象由y=(x-2)(x-3)的图象向下平移m个单位长度得到,x1<2<3<x2,故C错误;对于D,由(x-2)(x-3)=m 展开得,x2-5x+6-m=0,利用根与系数的关系求出x1+x2=5,x1x2=6-m,代入y=(x-x1)(x-x2)+m可得y=(x-x1)(x-x2)+m=(x-2)(x-3)-m+m=(x-2)(x-3),所以二次函数y=(x-x1)(x-x2)+m的零点为2和3,故D正确.故选ABD.11.已知函数f(x)x-1|,x<1,4x2+16x-13,x≥1,函数g(x)=f(x)-a,则下列结论正确的是()A.若g(x)有3个不同的零点,则a的取值范围是[1,2)B.若g(x)有4个不同的零点,则a的取值范围是(0,1)C.若g(x)有4个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则x3+x4=4D.若g(x)有4个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则x3x4答案BCD解析令g(x)=f(x)-a=0,得f(x)=a,所以g(x)的零点个数即为函数y=f(x)与y=a图象的交点个数,故作出函数y =f (x )的图象如图,由图可知,若g (x )有3个不同的零点,则a 的取值范围是[1,2)∪{0},故A 错误;若g (x )有4个不同的零点,则a 的取值范围是(0,1),故B 正确;若g (x )有4个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),此时x 3,x 4关于直线x =2对称,所以x 3+x 4=4,故C 正确;由C 项可知x 3=4-x 4,所以x 3x 4=(4-x 4)x 4=-x 24+4x 4,由于g (x )有4个不同的零点,a 的取值范围是(0,1),故0<-4x 24+16x 4-13<1,所以134<-x 24+4x 4<72,故D 正确.故选BCD.三、填空题12.已知函数f (x )=log 2(x -1)+a 在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为________.答案(-1,0)解析由对数函数的性质,可得f (x )为增函数,又函数f (x )在(2,3)上有且仅有一个零点,所以f (2)f (3)<0,即a (a +1)<0,解得-1<a <0,所以实数a 的取值范围是(-1,0).13.已知函数f (x )x -1|+1,x >0,x 2-2x ,x ≤0,若函数y =f (x )-kx -1有m 个零点,函数y =f (x )-1k x-1有n 个零点,且m +n =7,则非零实数k 的取值范围是________.答案,13∪[3,+∞)解析f (x )的图象与直线y =kx +1和y =1kx +1共7个交点,f (x )的图象如图所示,所以①k <3,3,解得0<k ≤13;0<1k <3,≥3,解得k ≥3.综上,非零实数k ,13∪[3,+∞).14.(2024·河北衡水中学高三月考)已知函数f (x )=x -1x -2与g (x )=1-sinπx ,则函数F (x )=f (x )-g (x )在区间[-2,6]内所有零点的和为________.答案16解析令F (x )=f (x )-g (x )=0,得f (x )=g (x ),在同一平面直角坐标系中分别画出函数f (x )=1+1x -2与g (x )=1-sinπx 的图象,如图所示,又f (x ),g (x )的图象都关于点(2,1)对称,结合图象可知f (x )与g (x )的图象在[-2,6]上共有8个交点,交点的横坐标即F (x )=f (x )-g (x )的零点,由对称性可得,所有零点的和为4×2×2=16.15.已知函数f (x )+1x ,x <0,x ,x >0,则方程f (f (x ))+3=0的解的个数为()A .3B .4C .5D .6答案C解析已知函数f (x )+1x ,x <0,x ,x >0,∴令f (x )=-3,则当x >0时,ln x =-3,解得x =1e 3;当x <0时,x +1x =-3,解得x =-3±52.∵f (f (x ))+3=0,即f (f (x ))=-3,则f (x )=1e 3或f (x )=-3±52.由f (x )=1e 3,得ln x =1e 3,此方程只有一个根,∵当x <0时,f (x )=x +1x ≤-2,当且仅当x =-1时,等号成立,∴f (x )=-3+52仅在x >0时有一个根,f (x )=-3-52在x <0时有两个根,在x >0时有一个根.综上,方程f (f (x ))+3=0的解的个数为5.故选C.16.(多选)(2024·湖北荆州模拟)已知函数f (x )|log 12x |,0<x<4,4≤x ≤14,若方程f (x )=m 有四个不等的实根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则下列结论正确的是()A .0<m <2B .x 1x 2=12C .x 3x 4∈(48,55)D .x 1x 3∈(1,5)答案ACD解析对于A ,当0<x <1时,log 12x >0,则f (x )=log 12x ,易得f (x )在(0,1)上单调递减,且f (x )>f (1)=0,当1≤x <4时,log 12x ≤0,则f (x )=-log 1x ,易得f (x )在[1,4)上单调递增,且f (1)≤f (x )<f (4),即0≤f (x )<2,当4≤x ≤14时,f (x )=则由f (x )=x ∈[4,14]的图象,可知f (x )在[4,8)上单调递减,在[8,14]上单调递增,且f (4)=2,f (5)=0,f (8)=4,f (11)=0,f (14)==4,从而利用对数函数与正弦函数的性质,画出f (x )的图象,如图所示,因为方程f (x )=m 有四个不等实根,所以f (x )与y =m 的图象有四个交点,所以0<m <2,故A 正确;对于B ,结合A 项分析可得log 12x 1=-log 12x 2,所以log 12(x 1x 2)=0,则x 1x 2=1,故B 错误;对于C ,D ,由正弦函数的性质及结合图象可知(x 3,m )与(x 4,m )关于直线x =8对称,所以x 3+x 4=16,又当0<x <1时,f (x )=log 12x ,令f (x )=2,得x =14,所以14<x 1<1,4<x 3<5,所以x 1x 3∈(1,5),x3x 4=x 3(16-x 3)=-x 23+16x 3=-(x 3-8)2+64,因为x 3∈(4,5),所以x 3x 4∈(48,55),故C ,D 正确.故选ACD.17.已知定义在R 上的奇函数y =f (x )满足f (1+x )=f (1-x ),当-1≤x <0时,f (x )=x 2,则方程f (x )+12=0在[-2,6]内的所有根之和为________.答案12解析因为f (1+x )=f (1-x ),所以y =f (x )的图象关于直线x =1对称,又函数y =f (x )在R 上为奇函数,且当-1≤x <0时,f (x )=x 2,由此画出f (x )在区间[-2,6]上的图象如图所示.f (x )+12=0⇒f (x )=-12,由图可知,y =-12与f (x )的图象有4个交点,其中两个关于直线x =1对称,两个关于直线x =5对称,所以方程f (x )+12=0在[-2,6]内的所有根之和为2×1+2×5=12.18.(2024·山东泰安高三期末)已知函数f (x )2(x +1),x >3,x +3|,-9≤x ≤3,若x 1<x 2,x 1<x 3,且f (x 1)=f (x 2),f (x 1)+f (x 3)=4,则x 3x 1+x 2的取值范围是________.答案-52,-12解析对于f (x )2(x +1),x >3,+3|,-9≤x ≤3,当x >3时,f (x )>2,当-9≤x ≤3时,0≤f (x )≤2,并且图象关于直线x =-3对称,函数f (x )的图象如下图所示,如果x 1>3,则f (x 1)=f (x 2)不成立,∴x 1∈[-9,3],x 2∈[-9,3],并且有x 1+x 2=-6,0<f (x 1)≤2.由f (x 1)+f (x 3)=4可知,2≤f (x 3)<4,∴2≤log 2(x 3+1)<4,3≤x 3<15.∴x 3x 1+x 2=-16x 3-52,-12.。
2020届高三数学复习 函数与方程、不等式 讲座 课件(共20张PPT)
借助于二次函数的图像特征来求解
尝试分离参数的方法,来回避分类讨论
总结
01 函数思想是一种思维习惯,要用变量和函数的
观点来思考问题
02 求 y f (x) 的零点和解 f (x) 0 求根是一致的,但方法是多样的,
特别要注意数形结合的使用。
如果要判断函数有几个零点,则必须结合其图像与性质(单调性、奇偶性)。
02 函数 f (x) 在[a,b]上是连续不断的曲线,且 f (a) f (b) 0 ,满足这些条件一定有零点。 但不满足这些条件也不能说一定没有零点。
产品介绍 Product introduction
关于零点存在性定理
如图:
已知 x, y 0 ,则有: x y 2 xy (当且仅当 x y 等号成立)
若 x y S (和为定值),
则当 x y 时,积 xy 取得最大值 S 2 ; 4
即: xy ( x+y)2 = S 2 24
若 xy P (积为定值)
则当 x y 时,和 x y 取得最小值 2 P
则 f (x) a fmin (x) a
因为 x 0 ,由平均值不等式: x+ 1 2(当且仅当 x 1 ,即: x 1时等号成立),
x
x
所以: f (x)min 2 故: a 2
产品介绍 Product
introduction 函数与不等式
【例 3.】变式:关于 x 的不等式 x+ 1 a 0 对 x [2, ) 恒成立, x
【例 1】关于 x 的一元二次方程 x2 ax 3 a 0 ,求当 a 为何值时,分别有以下的结论: