高考物理牛顿运动定律的应用练习题及答案
高中物理牛顿运动定律的应用计算题专题训练含答案
高中物理牛顿运动定律的应用计算题专题训练含答案
姓名:__________ 班级:__________考号:__________
一、计算题(共20题)
1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?
2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.
3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,
求物块滑到斜面底端所需的时间.
4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.
5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求
(1)物块与水平面间的动摩擦因数;
(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?
6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小
不变、方向相反。再经过一段时间,物体的速度变为零。如果这一过程物体的总位移为15m。求:
(物理)物理牛顿运动定律的应用练习题含答案
(物理)物理牛顿运动定律的应用练习题含答案
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取
,求:
(1)开始时B 离小车右端的距离;
(2)从A 、B 开始运动计时,经t=6s 小车离原位置的距离。 【答案】(1)B 离右端距离
(2)小车在6s 内向右走的总距离:
【解析】(1)设最后达到共同速度v ,整个系统动量守恒,能量守恒
解得:
,
A 离左端距离,运动到左端历时,在A 运动至左端前,木板静止
,
,
解得
B 离右端距离
(2)从开始到达共速历时,,
,
解得
小车在前静止,在至之间以a 向右加速:
小车向右走位移
接下来三个物体组成的系统以v 共同匀速运动了
小车在6s 内向右走的总距离:
【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.
2.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数
k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静
止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 2
牛顿运动定律的应用练习题含答案
牛顿运动定律的应用练习题含答案
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:
(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】
(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:
F =7.5N.
(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:
mgh =
212
mv 解得
v 2gh ;
滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:
μmgL =
2201122
mv mv 代入数据得:
μ=0.25
(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:
x=v 0t
对物体有:
v 0=v −at
ma=μmg
滑块相对传送带滑动的位移为:
△x =L−x
相对滑动产生的热量为:
Q=μmg △x
高考物理牛顿运动定律的应用题20套(带答案)含解析
高考物理牛顿运动定律的应用题20套(带答案)含解析
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图甲所示,质量为1kg m =的物体置于倾角为37θ︒=的固定且足够长的斜面上,对物体
施以平行于斜面向上的拉力F ,10.5s t = 时撤去拉力,物体速度与时间v-t 的部分图象如图乙所示。(2
10/,sin 370.6,cos370.8g m s ︒
︒
===)问: (1)物体与斜面间的动摩擦因数μ为多少? (2)拉力F 的大小为多少?
【答案】(1)0.5 (2)30N 【解析】 【详解】
(1)由速度时间图象得:物体向上匀减速时加速度大小:
22110-5
m/s 10m/s 0.5
a =
= 根据牛顿第二定律得:
1sin cos mg mg ma θμθ+=
代入数据解得:
0.5μ=
(2)由速度时间图象得:物体向上匀加速时:
2220m /s v
a t
∆=
=∆ 根据牛顿第二定律得:
2sin cos F mg mg ma θμθ--=
代入数据解得:
30N F =
2.如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m =2 kg 的小物体轻轻放在传送带的A 端,物体相对地面的速度随时间变化的关系如图乙所示,2 s 末物体到达B 端,取沿传送带向下为正方向,g =10 m/s 2,sin 37°=0.6,求:
(1)小物体在传送带A 、B 两端间运动的平均速度v ; (2)物体与传送带间的动摩擦因数μ; (3)2 s 内物体机械能的减少量ΔE . 【答案】(1)8 m/s (2)0.5 (3)48 J 【解析】 【详解】
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:
(1)物体由静止开始运动后的加速度大小;
(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】
(1)物体的受力情况如图所示:
根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N
联立得:a =cos37(sin 37)
F mg F m
μ--o o
代入解得a =0.3m/s 2
(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小2
19.6m 2
x at =
= (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m m
μμ=
==='' 由v 2
=2a ′x ′得:2
1.44m 2v x a =''
=
【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.
2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)
一、高中物理精讲专题测试牛顿运动定律
1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求
(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55
/5
m s 【解析】 【分析】 【详解】
(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带
向下的分力sin 37mg o
,在传送带方向,对小物块根据牛顿第二定律有:
cos37sin 37mg mg ma μ-=o o
解得:20.4/a m s =
小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度
为0时没有滑落,根据运动公式有:2
112v x a
=
解得:1 1.25x m =,12
L
x <
,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =
小物块向下滑动的时间为1
1=v t a
传送带运动的距离101s v t = 联立解得15s m =
小物块相对传送带运动的距离11x s x ∆=+
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)
一、高中物理精讲专题测试牛顿运动定律的应用
1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求
(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;
(3)木板右端离墙壁的最终距离.
【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】
(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =
木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m s
g s
μ-=
解得20.4μ=
木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212
x vt at =+ 带入可得21/a m s =
木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=
(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214
/3
高中物理牛顿运动定律的应用综合题专题训练含答案
高中物理牛顿运动定律的应用综合题专题训练含答案
姓名:__________ 班级:__________考号:__________
一、综合题(共20题)
1、(10分)物体以12m/s的初速度从斜面底端冲上倾角为37°的斜坡,已知物体与斜面间的动摩擦因数为0.25,g取10m/s2,求:sin37°=0.6,cos37°=0.8
(1)物体沿斜面上滑的最大位移;
(2)物体再滑到斜面底端时的速度大小;
(3)物体在斜面上运动的时间。
2、(10分)某航空公司的一架客机,在正常航线上做水平飞行时,突然受到强大的垂直气流的作用,使飞机在10 s内下降高度为1800 m,造成众多乘客和机组人员的伤害事故,如果只研究在竖直方向上的运动,且假设这一运动是匀变速直线运动.
(1)求飞机在竖直方向上产生的加速度多大?
(2)试估算质量为65 kg的乘客所系安全带必须提供多大拉力才能使乘客不脱离座椅.
3、(10分)在水平地面上有一质量为2kg的物体,物体在水平拉力F的作用下由静止开始运动,10s后拉力大小减为F/3,该物体的运动速度随时间t的变化规律如图所示.求:(1)物体受到的拉力F的大小.
(2)物体与地面之间的动摩擦因素.(g取10m/s2)
4、(8分)楼梯口一倾斜的天花板与水平地面成,一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10N,刷子的质量为,刷子可视为质点,刷子与板间的动摩擦因数为0.5,天花板长为,取
,试求:
(1)刷子沿天花板向上的加速度
(2)工人把刷子从天花板底端推到顶端所用的时间
(物理)物理牛顿运动定律的应用练习题含答案
(物理)物理牛顿运动定律的应用练习题含答案
一、高中物理精讲专题测试牛顿运动定律的应用
1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:
(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】
(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mg
m
μ=3 m/s 2
由于μ1mg>2μ2mg
故平板做匀加速运动,加速度大小:a 2=
122mg mg
m
μμ-⨯=1 m/s 2
设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)
L 2+x =vt -12
a 1t 2 对平板:v′=a 2t
x =
12
a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=
mg
m
μ=5 m/s 2
若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s
设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-1
物理牛顿运动定律的应用练习题20篇及解析
【答案】(1)0.6;0.2(2)1.5m,2.0m
【解析】
【详解】
(1)设 0.5s 滑块的速度为 v1,由 v-t 图像可知:v0=4m/s v1=1m/s
滑块的加速度
a1
v0
v1 t
6m /
s2
木板的加速度大小 a2
v1 t
2m /
s2
对滑块受力分析根据牛顿定律:μ1mg=ma1 所以 μ1=0.6 对木板受力分析:μ1mg-μ2∙2mg= ma2 解得 μ2=0.2 (2)0.5s 滑块和木板达到共同速度 v1,假设不再发生相对滑动则 2ma3=μ2∙2mg 解得 a3=2m/s2 因 ma3=f<μ1mg 假设成立,即 0.5s 后滑块和木板相对静止,滑块的总位移为 s1 则
由几何关系及速度分解有: 解得:
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
高考物理牛顿运动定律的应用题20套(带答案)及解析
高考物理牛顿运动定律的应用题20套(带答案)及解析
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3
,木板与传送带间的动摩擦因数μ2=
3
4
,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】
(1)对小木块受力分析如图甲:
木块重力沿斜面的分力:1
sin 2
mg mg α=
斜面对木块的最大静摩擦力:13
cos 4
m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;
(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则
1cos sin mg mg ma μαα-=
木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9
9.0N 8
m F M m g =
+=
高考物理牛顿运动定律的应用题20套(带答案)含解析
高考物理牛顿运动定律的应用题20套(带答案)含解析
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:
(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】
(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:
F =7.5N.
(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:
mgh =
212
mv 解得
v 2gh ;
滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:
μmgL =
2201122
mv mv 代入数据得:
μ=0.25
(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:
x=v 0t
对物体有:
v 0=v −at
ma=μmg
滑块相对传送带滑动的位移为:
△x =L−x
相对滑动产生的热量为:
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:
(1)物体由静止开始运动后的加速度大小;
(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】
(1)物体的受力情况如图所示:
根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N
联立得:a =cos37(sin 37)
F mg F m
μ--o o
代入解得a =0.3m/s 2
(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小2
19.6m 2
x at =
= (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m m
μμ=
==='' 由v 2
=2a ′x ′得:2
1.44m 2v x a =''
=
【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.
2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.
(物理)物理牛顿运动定律的应用练习题含答案及解析
(物理)物理牛顿运动定律的应用练习题含答案及解析
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:
(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;
(3)小球向下运动到最低点时,物块M 所受的拉力大小T
【答案】(1)53F Mg mg =- (2)
65M m = (3)()85mMg T m M =+(4855
T mg =或8
11T Mg =
) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得5
3
F Mg mg =
- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得
65
M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T
牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma
高考物理牛顿运动定律的应用题20套(带答案)
高考物理牛顿运动定律的应用题20套(带答案)
一、高中物理精讲专题测试牛顿运动定律的应用
1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:
(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】
物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】
(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:
222
011-22A B
v v v L a a =+ 又: 011
-=A B
v v v a a 解得:a B =6m/s 2
再代入F +μMg =ma B 得:F =1N
若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N
当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N
物理牛顿运动定律的应用练习题含答案
物理牛顿运动定律的应用练习题含答案
一、高中物理精讲专题测试牛顿运动定律的应用
1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:
(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】
(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mg
m
μ=3 m/s 2
由于μ1mg>2μ2mg
故平板做匀加速运动,加速度大小:a 2=
122mg mg
m
μμ-⨯=1 m/s 2
设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)
L 2+x =vt -12
a 1t 2 对平板:v′=a 2t
x =
12
a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=
mg
m
μ=5 m/s 2
若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s
设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理牛顿运动定律的应用练习题及答案
一、高中物理精讲专题测试牛顿运动定律的应用
1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3
,木板与传送带间的动摩擦因数μ2=
3
4
,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】
(1)对小木块受力分析如图甲:
木块重力沿斜面的分力:1
sin 2
mg mg α=
斜面对木块的最大静摩擦力:13
cos 4
m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态;
(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则
1cos sin mg mg ma μαα-=
木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9
9.0N 8
m F M m g =
+=
(3)因为F=10N>9N ,所以两者发生相对滑动
对小木块有:2
1cos sin 2.5m/s a g g μαα=-=
对长木棒受力如图丙所示
()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=
解得24.5m/s a =' 由几何关系有:221122
L a t at =-' 解得1t s =
全过程中产生的热量有两处,则
()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫
=+=+++ ⎪⎝⎭
解得:12J Q =。
2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;
(2)长板2的长度0L ;
(3)当物体3落地时,物体1在长板2的位置.
【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向
(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3
由以上两式可得:22
g g
a μ+=
=6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s
1
12
v v x t +=
=1.75m 122
v t
x =
=0.75m 所以木板2的长度L 0=x 1-x 2=1m
(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3
g a =
对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42
g g
a μ-=
=4m/s 2 整体下落高度h =H —x 2=5m 根据2124212
h v t a t =+
解得t 2=1s
物体1的位移2
3123212
x v t a t =+
=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】
本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.
3.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:,
(1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量.
【答案】(1)2
5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J
【解析】 【详解】
(1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得:
对A :A A A A m g f m a -= 对B :B B B B m g f m a -=
A B f f = 0.5A A f m g =
联立以上方程得:2
5m/s A a = 27.5m/s B a =
(2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t =
21
2
B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =,