4一次方程组的应用

合集下载

第4讲 方程及应用

第4讲  方程及应用

第4讲 方程及其应用限时计算能力训练:(1)4213301120912765211-+-+- (2)⎪⎭⎫ ⎝⎛++÷⎪⎭⎫ ⎝⎛++947511311673198(3)1999199819981998÷ (4)21171171311391951511⨯+⨯+⨯+⨯+⨯一、解一元一次方程例1:503045x x+=; 练习1:115514464030x x --+=例2:)843(1385314-=+x x )( 100)1540(101191=-+x x练习2:)(231-x =)(2052-x 2870)1018(521853=-⨯+⨯x x例3:11810365741=⨯-÷÷)(x 31121487431=⨯-÷÷)(x练习3:5261651=+÷)(x 833243531=⨯-÷÷)(x例4:52221+-=--y y y 261312=+-+x x练习4:432128-12-+=+x x 31819615xx x --+=+ 例5:51174205x x +=-; 练习5:3115312=--x x例6:2%)20(2x x x =-+)( 练习6:(3)( 1.2)(2)x x x x -⋅+=-巩固练习:(1)10(47)3(1212)216x x x ---=-; (2)38115923x x =⨯+;(3)21(300)54x x =+⨯; (4)31(2010)(10)5103x x +-⨯=-⨯+;(5)11(770)501910x x +-=; (6)1601160235x x+=; (7)4696-3154=++x x (8)2144312=-÷)(x(9)31821125322-=-÷)(x x (10)801132127--+=x x x(11)319521⨯-=)(x x (12)x x -=⨯-1313821)((13)2100280051)2800(x 41-=⨯-+x (14) 9519-21-=⨯x x )((15))104(5107-=+x x )( (16)x 1036x 152x 152=++(16))10(431030-x 54-=+x (18)7-1269261)(x x -=二、解二元一次方程组例1、⎩⎨⎧=+=+1341632y x x x练习:用代入法解下面各方程组①3102x y x y -=⎧⎨=⎩ ②44323x y x y -=⎧⎨+=⎩③613.543 3.5x y x y +=⎧⎨-=⎩ ④21237x y x y +=⎧⎨-=⎩例2、⎩⎨⎧=+=-13272y x y x例3、⎩⎨⎧=+=+17431232y x y x1. 用消元法解下列方程组①32135217x y x y +=⎧⎨+=⎩ ②3428211x y x y +=⎧⎨+=⎩③37334222x y x y +=⎧⎨+=⎩ ④35399266x y x y +=⎧⎨-=⎩三、方程的应用例1 某中学高中生人数是初中生人数的65,高中毕业生的人数是初中毕业生人数的1712。

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

则可列方程组为
( A)
A.yx++2231xy==5500,B.xy--1223yx==5500,C.2xx++23yy==5500,D.2xx--23yy==5500,
10.(2021·成都第 26 题 8 分)为改善城市人居环境,《成都市生活垃圾 管理条例》(以下简称《条例》)于 2021 年 3 月 1 日起正式施行.某区域 原来每天需要处理生活垃圾 920 吨,刚好被 12 个 A 型和 10 个 B 型预处 置点位进行初筛、压缩等处理.已知一个 A 型点位比一个 B 型点位每天 多处理 7 吨生活垃圾. (1)求每个 B 型点位每天处理生活垃圾的吨数;
x=1,则 a+m 的值为
( C)
A.9 B.8 C.5 D.4
x=1 6.(2021·凉山州第 14 题 4 分)已知y=3,是方程 ax+y=2 的解,则 a 的值为__--11__. 7.(2020·泸州第 14 题 3 分)若 xa+1y3 与12x4y3 是同类项,则 a 的值是__33__.
3.(RJ 七下 P111 复习题 T7 改编)用 1 块 A 型钢板可制成 4 件甲种产品和 1 件乙种产品.用 1 块 B 型钢板可制成 3 件甲种产品和 2 件乙种产品;要 生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A,B 两种型号的钢板 共 1 111 块.
4.(RJ 七下 P106 习题 T3 改编)一个两位数,十位数字比个位数字大 3, 若将十位数字和个位数交换位置,所得的新两位数比原两位数的13多 15, 则这个两位数是 6 633.
∵w 随 m 的增大而减小,∴费用越少,m 越大. 故方案③费用最少.
重难点 1:从实际问题中抽象一次方程(组)
我国古代数学名著《孙子算经》中记载:“今有木,不知长短.引绳

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
①-②,得 2y=2,∴y=1, x=2, x=2,
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.

一次方程组的应用

一次方程组的应用

一次方程组的应用引言一次方程组是数学中常见的问题解决工具,它在各个领域都有广泛的应用。

本文将介绍一次方程组的定义、求解方法以及在现实生活中的一些应用案例。

一次方程组的定义一次方程组指的是一组含有未知数的线性方程的集合。

一般来说,一次方程组的形式可以表示为:a1*x1 + a2*x2 + ... + an*xn = b1a1*x1 + a2*x2 + ... + an*xn = b2...a1*x1 + a2*x2 + ... + an*xn = bn其中,x1, x2, …, xn是未知数,a1, a2, …, an是已知系数,b1, b2, …, bn是已知常数。

一次方程组的求解方法一次方程组的求解方法有多种。

以下是常见的两种方法:1. 代入法代入法是一种简单直接的求解一次方程组的方法。

其基本思路是将一个方程的一个未知数的表达式代入到另一个方程中,从而得到只含有一个未知数的方程,进而求解出未知数的值。

以一个简单的一次方程组为例,:2x + y = 10x + y = 6我们可以选择第二个方程将y的表达式代入到第一个方程中:2x + (6 - x) = 10化简后得到:x = 2将x的值代回第二个方程,得到y的值:2 + y = 6y = 4最终,方程组的解为x = 2, y = 4。

2. 消元法消元法是另一种常用的求解一次方程组的方法。

其基本思路是通过将方程组中的某些方程相加、相减或相乘,消去其中的未知数,从而得到只含有一个未知数的方程,进而求解出未知数的值。

以一个简单的一次方程组为例,:2x + y = 10x + y = 6我们可以将第二个方程的y系数乘以2,然后将第一个方程减去第二个方程:2 * (x + y) - (2x + y) = 2 * 6 - 10化简后得到:x = 2将x的值代回第二个方程,得到y的值:2 + y = 6y = 4最终,方程组的解为x = 2, y = 4。

一次方程组在现实生活中的应用案例一次方程组在现实生活中有很多应用,以下是一些常见的应用案例:1. 购物问题假设你去商店购买3个苹果和2个香蕉,总共花费15元;如果购买2个苹果和3个香蕉,总共花费13元。

2022年中考数学人教版一轮复习课件:第5课 一次方程(组)的解法及应用

2022年中考数学人教版一轮复习课件:第5课 一次方程(组)的解法及应用

19.(2021·青海)已知 a,b 是等腰三角形的两边长,且 a,b 满足
2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为
A.8
( D)
B.6 或 8
C.7
D.7 或 8
20.(2021·眉山)解方程组:32xx- +21y5+y-203= =00① ②, .
解:方程组整理,得23xx+-125y=y=-3②20.①, ①×15+②×2,得 49x=-294, 解得 x=-6, 把 x=-6 代入②,得 y=1, ∴这个方程组的解为xy==1-. 6,
个肉粽和 5 个素粽共用去 70 元,设每个肉粽 x 元,则可列方
程为
( A)
A.10x+5(x-1)=70
B.10x+5(x+1)=70
C.10(x-1)+5x=70
D.10(x+1)+5x=70
15.(2021·东营)某玩具商店周年店庆,全场八折促销,持会员卡
可在促销活动的基础上再打六折.某电动汽车原价 300 元,
圆在该快递公司寄一件 8 千克的物品,需要付费
( B)
A.17 元
B.19 元
C.21 元
D.23 元
18.(2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、 小两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大垃圾桶和 8 个小垃圾桶共需 1 560 元. (1)求大、小两种垃圾桶的单价; (2)该校购买 8 个大垃圾桶和 24 个小垃圾桶共需多少元?
26.(2020·绍兴)若关于 x,y 的二元一次方程组 xA+=y0=2,的解为
xy==11,,则多项式 A 可以是 xx--y(答yx案-不y唯x-一)(写出一个即可).

四元一次方程解法

四元一次方程解法

四元一次方程解法
四元一次方程是指四个未知数的一次方程。

解四元一次方程的一
种常用方法是消元法,以下是具体步骤:
Step 1:对方程进行整理,将相同未知数的项放在一起,形成类
似于x1 + x2 + x3 + x4 = a的形式,其中x1、x2、x3、x4为未知数,a为常数。

Step 2:通过消元方法将方程化简为含有两个未知数的方程。


以通过两个方向进行消元:
a) 从前往后:先将x1与后面三个未知数中的一个进行消去,得到新的方程。

b) 从后往前:先将x4与前面三个未知数中的一个进行消去,得到
新的方程。

Step 3:重复Step 2,直到方程化简为只有两个未知数的方程(如x1 + x2 = b)。

Step 4:解决这个两个未知数方程。

可以使用代入法、消元法或
其他方法来求解这个方程。

解得其中一个未知数的值后,可以将其代
入到Step 2中化简的方程中,求解其他未知数。

Step 5:将解得的未知数值代入原方程,验证解是否成立。

通过以上步骤,可以解得四元一次方程的解。

一次函数的应用2,3,4

一次函数的应用2,3,4

小结:该题考查了数形结合、 待定系数、方程组等多种数学思想 方法的综合运用.
练习: 某边防检查站距边境线3200米,边防战士小 张随即开始追赶,图中l1、l2分别表示可疑人和小张 的运动路程y(米)与小张追赶的时间x(分)之间 的函数关系,根据图象提供的信息,解答下列问题: (1)可疑人在小张开始追赶时已先跑了多少米? (2)小张能否在边境线内追上可疑人?通过计算验 证你的结论.
例2、声音在空气中传播的速度y(m/s) (简称音速)是气温x(℃)的一次函数,下表列 出了一组不同气温时的音速: (1)求y与x之间的函数关系式; (2)气温x=22℃时,某人看到烟花燃烧5s 后才能听到声响,那么此人与燃放的烟花所在地 约相距多远?
X(℃) 0 5 10 15 20
y(m/s) 331
169
178
187
2、某医药研究所开发了一种新药,在试验药效时发现,如果 成人按规定剂量服用,那么服药后2h时血液中含药量最高 达每毫升6(vg),接着逐渐衰减,10h时血液中含药量为 每毫升3(vg),每毫升血液中含药量y(vg)随时间x(h) 的变化如图所示, (1)分别求出x≤2与x≥2时,y与x之间的函数关系式。 (2)如果每毫升血液中含药量为4(ug)或4(ug)以上时对 于治疗疾病是有效的,那么服药以后,药物实际发挥疗效的 时间多长?
2.见书P162.
例2、在平面直角坐标系中画出了函数y=kx+b 的图象。 (1)根据图象,求k和b的值; (2)在图中画出函数y=-2x+2的图象; (3)求x的取值范围,使函数y=kx+b的函数 值大于函数y=-2x+2的函数值.
变式:已知函数y1=x+2,y2=-2x+2,x取何值时 (1)y1>y2 (2)y1=y2 (3)y1<y2

4.一次方程(组)及其应用

4.一次方程(组)及其应用

)
A.1 C.3
B.2 D.4
x=-1, 3x+2y=m, 【点拨】把 代入 y=2 nx-y=1, m=1, 得 n=-3,
∴m-n=1+3=4.故选 D. 【答案】 D
方法总结: 方程组的解一定适合原方程组,把它代入原方 程组,得到关于未知字母的方程组,进而求出未知 字母及关于未知字母的代数式的值.
考点五
一次方程 组的应用
1.列一次方程(组)解应用题的一般步骤 (1)弄清题意,搞清楚条件是什么,求什么. (2)设未知数:
直接设未知数,问什么设什么; 间接设未知数.
(3)找出能够包含未知数的等量关系(一般情况下 设几个未知数,就找几个等量关系).
(4)列出方程(组). (5)求出方程(组)的解. (6)检验(看是否符合题意). (7)写出答案(包括单位名称). 2.列一次方程(组)解应用题的关键是:确定等量 关系.
考点梳理
考பைடு நூலகம்一
等式的性质及方程的有关概念
1.等式的性质 性质 1: 等式的两边都加上(或减去)同一个数(或式 子),所得的结果仍是等式.即如果 a=b,那么 a± c= b± c.
性质 2:等式的两边都乘(或除以)同一个不为 0 的 数(或式子),所得的结果仍是等式.即如果 a=b,那 a b 么 ac=bc, = (c≠0). c c 2.方程:含有未知数的等式叫做方程. 3.方程的解:使方程左、右两边相等的未知数的 值,叫做方程的解.
(5)储蓄问题 ①利息=本金×利率×期数; ②本息和=本金+利息=本金×(1+利率×期 数). (6)工程问题 工作量=工作效率×工作时间.
典例精讲
考点一
方程(组)的解 是二元一次方程组
x=-1, 例 1 已知 y=2

中考数学 课外提升作业 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 课外提升作业 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

4.(2021·荆门模拟)《九章算术》是我国古代数学名著,卷七“盈不足”
中有题译文如下:今有人合伙买羊,每人出 5 钱,会差 45 钱;每人出 7
钱,会差 3 钱.问合伙人数、羊价各是多少?设合伙人数为 x 人,所列
方程中正确的是
(B)
A.5x-45=7x-3
B.5x+45=7x+3
C.x+545=x+7 3
x+y=26, B.2x+y=16
x+y=16, D.2x+y=26
2x+y=7, 6.(2021·扬州)已知方程组x=y-1 的解也是关于 x,y 的方程 ax+
1
y=4 的一个解,则 a 的值为 2 .
7.(2020·南京)已知
x+3y=-1, x,y 满足方程组2x+y=3, 则 x+y
的值为
x=1, B.y=1
x=2, C.y=-2
x=3, D.y=-3
(B )
3.(2020·金华)如图,在编写数学谜题时,“□”内要求填写同一个数
字,若设“□”内数字为 x,则列出方程中正确的是
(D )
A.3×2x+5=2x
B.3×20x+5=10x×2
C.3×20+x+5=20x
D.3×(20+x)+5=10x+2
若 2 只 A 类蟹、1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只
的价格,而 6 只 A 类蟹、3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一
批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3∶4,根据市场
有关部门的要求 A,B,C 三类蟹的单价之和不低于 40 元,不高于 60 元, 则第一批大闸蟹每只价格为 1 元.
1
.

中考数学模拟题汇总《一次方程(组)的含参及应用问题》练习题

中考数学模拟题汇总《一次方程(组)的含参及应用问题》练习题

中考数学模拟题汇总《一次方程(组)的含参及应用问题》练习题(含答案解析)1、关于x 的方程mx 2m ﹣1+(m ﹣1)x ﹣2=0如果是一元一次方程,则其解为 ________ .2、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .43、若{x =1,y =2是关于x 、y 的二元一次方程ax +y =3的解,则a = .4、已知1023a b +=,16343a b +=,则+a b 的值为_________.5、已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解,则+a b 的值为__.6、已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________.7、已知关于x 、y 的二元一次方程组{ax −y =43x +by =4的解是{x =2y =−2,则a +b 的值是( )A .1B .2C .﹣1D .08、已知{x =3y =−2是方程组{ax +by =2bx +ay =−3的解,则a +b 的值是( )A .﹣1B .1C .﹣5D .59、若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一个解,则m 的值等于__________.10、若关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,则多项式A可以是_____(写出一个即可).11、母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种12、学校计划用200元钱购买A、B两种奖品,A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种13、2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.14、某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?15、在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?16、小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?17、同时满足二元一次方程和的,的值为( )A .B .C .D .18、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A .B .C .D .19、关于的一元一次方程的解为,则的值为( ) A .9 B .8 C .5 D .420、某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )9x y -=431x y +=x y45x y =⎧⎨=-⎩45x y =-⎧⎨=⎩23x y =-⎧⎨=⎩36x y =⎧⎨=-⎩()1552x x =--()1552x x =++()255x x =--()255x x =++x 224a x m -+=1x =a m +A .7.4元B .7.5元C .7.6元D .7.7元21、把一根长9m 的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种 B .4种C .5种D .9种22、中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( ) A .里 B .里C .里D .里23、学校计划购买和两种品牌的足球,已知一个品牌足球元,一个品牌足球元.学校准备将元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A .种 B .种C .种D .种24、在实数范围内定义运算“☆”:,例如:.如果,则的值是( ). A . B .1C .0D .225、为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种26、若是二元一次方程组的解,则x +2y 的算术平方根为( )A .3B .3,-3CD37896482412A B A 60B 75150034561a b a b =+-☆232314=+-=☆21x =☆x 1-21a b =⎧⎨=⎩3522ax by ax by ⎧+=⎪⎨⎪-=⎩27、已知a 、b 满足方程组,则a+b 的值为( )A .2B .4C .—2D .—428、已知,,则的值为_________.29、已知是方程组的解,则的值为__.30、已知关于的方程组的解为,则的平方根为________.31、《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 辆车,有y 人,则可列方程组为_____.32、已知关于x 、y 的方程的解满足,则a 的值为__________________.33、今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次.34、有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.35、“一带一路”促进了中欧贸易的发展,我市某机电公司生产的,两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价-成本).其每件产品的成本324236a b a b +=⎧⎨+=⎩1023a b +=16343a b +=+a b x a y b =⎧⎨=⎩2623x y x y +=⎧⎨+=-⎩+a b ,x y 7234mx ny mx ny +=⎧⎨-=⎩12x y =⎧⎨=⎩1m n -221255x y a x y a +=+⎧⎨+=-⎩3x y +=-A B和售价信息如下表:问该公司这两种产品的销售件数分别是多少?36、某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?参考答案与解析1、关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为________.【答案】x=2或x=﹣2或x=﹣3【解析】∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴当m=1时,方程为x﹣2=0,解得:x=2;当m=0时,方程为﹣x﹣2=0,解得:x=﹣2;当2m﹣1=0,即m=12时,方程为12−12x﹣2=0,解得:x=﹣3,故答案为:x=2或x=﹣2或x=﹣3.点睛:此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2、关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4【答案】C 【解析】 【分析】根据一元一次方程的概念和其解的概念解答即可. 【详解】解:因为关于x 的一元一次方程2x a -2+m=4的解为x=1, 可得:a -2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选C . 【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.3、若{x =1,y =2是关于x 、y 的二元一次方程ax +y =3的解,则a = .【答案】1【解析】把{x =1y =2代入二元一次方程ax +y =3中,a +2=3,解得a =1. 故答案是:1.点睛:本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.4、已知1023a b +=,16343a b +=,则+a b 的值为_________. 【答案】1 【解析】 【分析】观察已知条件可得两式中a 与b 的系数的差相等,因此把两式相减即可得解. 【详解】解:1023a b +=①,16343a b +=②, ②-①得,2a+2b=2, 解得:a+b=1, 故答案为:1.【点睛】此题主顾考查了二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键.5、已知x a y b =⎧⎨=⎩是方程组2623x y x y +=⎧⎨+=-⎩的解,则+a b 的值为__.【答案】1. 【解析】【分析】先把x=a ,y=b ,代入原方程组,再解关于a 、b 的二元一次方程组,代入要求的代数式即可得出答案. 【详解】 把x a y b =⎧⎨=⎩代入方程组2623x y x y +=⎧⎨+=-⎩得:2623a b a b +=⎧⎨+=-⎩①②, ①+②得: 333a b +=,1a b +=,故答案为1.【点睛】本题考查了二元一次方程组的解,先将x ,y 的值代入,再计算即可.6、已知关于,x y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,则1m n -的平方根为________.【答案】12± 【解析】【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根. 【详解】 将1,2x y =⎧⎨=⎩代入方程组7,234mx ny mx ny +=⎧⎨-=⎩得27264m n m n +=⎧⎨-=⎩, 解得51m n =⎧⎨=⎩.所以114m n =- 所以1m n -的平方根为12±故答案为:12±【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键. 7、已知关于x 、y 的二元一次方程组{ax −y =43x +by =4的解是{x =2y =−2,则a +b 的值是( )A .1B .2C .﹣1D .0【答案】B【解析】将{x =2y =−2代入{ax −y =43x +by =4得:{a =1b =1, ∴a +b =2; 故选:B .点睛:本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.8、已知{x =3y =−2是方程组{ax +by =2bx +ay =−3的解,则a +b 的值是( )A .﹣1B .1C .﹣5D .5【答案】A【解析】将{x =3y =−2代入{ax +by =2bx +ay =−3,可得:{3a −2b =23b −2a =−3,两式相加:a +b =﹣1, 故选:A .点睛:本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.9、若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一个解,则m 的值等于__________.【答案】7【解析】【分析】先把2x-y=1中的y用x表示出来,代入3x+2y=12求出x的值,再代入2x-y=1求出y的值,最后将所求x,y的值代入5x-my=-11解答即可.【详解】解:根据题意得21 3212x yx y-=⎧⎨+=⎩①②∴由①得:y=2x-1,代入②用x表示y得,3x+2(2x-1)=12,解得:x=2,代入①得,y=3,∴将x=2,y=3,代入5x-my=-11解得,m=7.故答案为:7.【点睛】本题考查了解二元一次方程和解二元一次方程组的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含y的式子表示x的形式.10、若关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,则多项式A可以是_____(写出一个即可).【答案】答案不唯一,如x﹣y.【解析】【分析】根据方程组的解的定义,11xy=⎧⎨=⎩应该满足所写方程组的每一个方程.因此,可以围绕11xy=⎧⎨=⎩列一组算式,然后用x,y代换即可. 【详解】∵关于x,y的二元一次方程组2x yA+=⎧⎨=⎩的解为11xy=⎧⎨=⎩,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.【点睛】此题考查二元一次方程组的定义,二元一次方程组的解,正确理解方程组的解与每个方程的关系是解题的关键.11、母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( ) A .3种 B .4种C .5种D .6种【答案】B 【解析】【分析】设可以购买x 支康乃馨,y 支百合,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出小明有4种购买方案. 【详解】解:设可以购买x 支康乃馨,y 支百合, 依题意,得:2x +3y =30, ∴y =10﹣23x . ∵x ,y 均为正整数, ∴38x y =⎧⎨=⎩,66x y =⎧⎨=⎩,94x y =⎧⎨=⎩,122x y =⎧⎨=⎩, ∴小明有4种购买方案. 故选:B .【点睛】本题考查了二元一次方程应用中的整数解问题,找准等量关系,正确列出二元一次方程是解题的关键.12、学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( ) A .2种 B .3种C .4种D .5种【答案】B 【解析】【分析】设购买了A 种奖品x 个,B 种奖品y 个,根据学校计划用200元钱购买A 、B 两种奖品,其中A 种每个15元,B 种每个25元,钱全部用完可列出方程,再根据x ,y 为正整数可求出解. 【详解】设购买了A 种奖品x 个,B 种奖品y 个, 根据题意得:1525200x y +=, 化简整理得:3540x y +=,得385y x =-,∵x ,y 为非负整数,∴08x y =⎧⎨=⎩,55x y =⎧⎨=⎩,102x y =⎧⎨=⎩,∴有3种购买方案:方案1:购买了A 种奖品0个,B 种奖品8个; 方案2:购买了A 种奖品5个,B 种奖品5个; 方案3:购买了A 种奖品10个,B 种奖品2个. 故选:B.【点睛】本题考查了二元一次方程的应用,关键是读懂题意,根据题意列出二元一次方程,然后根据解为非负整数确定出x ,y 的值.13、2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.【答案】该电饭煲的进价为580元 【解析】【分析】根据满600元立减128元可知,打八折后的总价减去128元是实际付款数额,即可列出等式. 【详解】解:设该电饭煲的进价为x 元 根据题意,得(150%)80%128568x +⋅-= 解,得580x =.答;该电饭煲的进价为580元【点睛】本题主要考察了打折销售知识点,准确找出它们之间的关系列出等式方程是解题关键.14、某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥? 【答案】每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥. 【解析】【分析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据运输360吨化肥,装载了6节火车车厢和15辆汽车;运输440吨化肥,装载了8节火车车厢和10辆汽车,列方程组求解. 【详解】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥, 由题意得,615360810440x y x y +=⎧⎨+=⎩, 整理得:25120521102x y x y +=⎧⎪⎨+=⎪⎩解得:504x y =⎧⎨=⎩.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.15、在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【答案】(1)跳绳的单价为16元/条,毽子的单件为5元/个;(2)该店的商品按原价的9折销售. 【解析】【分析】(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x 折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【详解】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:30607201050360x y x y +=⎧⎨+=⎩,解得:164x y =⎧⎨=⎩,答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:1001610041800()10x⨯+⨯⨯=,解得:9x =,答:该店的商品按原价的9折销售.【点睛】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.16、小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【答案】2元、6元 【解析】【分析】根据对话分别利用总钱数得出等式求出答案.【详解】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:12201121220144y x x y +=⎧⎨+=⎩, 解得:26x y =⎧⎨=⎩,答:中性笔和笔记本的单价分别是2元、6元.【点睛】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键. 17、同时满足二元一次方程和的,的值为( )A .B .C .D . 【答案】A 【解析】 【分析】联立和解二元一次方程组即可. 【详解】9x y -=431x y +=x y 45x y =⎧⎨=-⎩45x y =-⎧⎨=⎩23x y =-⎧⎨=⎩36x y =⎧⎨=-⎩9x y -=431x y +=解:有题意得: 由①得x=9+y ③将③代入②得:36+4y+3y=1,解得y=-5 则x=9+(-5)=4 所以x=4,y=-5. 故选:A . 【点睛】本题考查了二元一次方程组的应用及解法,掌握二元一次方程组的解法是解答本题的关键.18、我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺.则符合题意的方程是( ) A .B .C .D .【答案】A 【解析】 【分析】设索为尺,杆子为()尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于一元一次方程. 【详解】设索为尺,杆子为()尺, 根据题意得:(). 故选:A . 【点睛】本题考查了一元一次方程的应用,找准等量关系是解题的关键.19、关于的一元一次方程的解为,则的值为( ) A .9 B .8 C .5 D .4【答案】C9431x y x y -=⎧⎨+=⎩①②()1552x x =--()1552x x =++()255x x =--()255x x =++x 5x -x x 5x -12x =5x -5-x 224a x m -+=1x =a m +【分析】根据一元一次方程的概念和其解的概念解答即可. 【详解】解:因为关于x 的一元一次方程2x a -2+m=4的解为x=1, 可得:a -2=1,2+m=4, 解得:a=3,m=2, 所以a+m=3+2=5, 故选C .【点睛】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.20、某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( ) A .7.4元 B .7.5元 C .7.6元 D .7.7元【答案】C 【解析】 【分析】设该商品每件的进价为x 元,根据利润=售价-成本,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设该商品每件的进价为x 元, 依题意,得:, 解得:. 故选:C . 【点睛】本题考查了一元一次方程的应用.找准等量关系,正确列出一元一次方程是解题的关键.21、把一根长9m 的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( ) A .3种 B .4种 C .5种 D .9种【答案】B120.82x ⨯-=7.6x =【分析】可列二元一次方程解决这个问题. 【详解】解:设的钢管根,根据题意得:,、均为整数,,,,. 故选:B . 【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.22、中国古代数学著作《算法统宗》中有这样一段记载:“ 三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关”其大意是:有人要去某关口,路程里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半, 一共走了六天才到达目的地.则此人第三天走的路程为( ) A .里 B .里C .里D .里【答案】B 【解析】 【分析】根据题意可设第一天所走的路程为,用含的式子分别把这六天的路程表示出来,相加等于总路程378,解此方程即可. 【详解】解:设第一天的路程为里 ∴ 解得∴第三天的路程为 故答案选B 【点睛】2m b 29a b +=a b 14a b =⎧∴⎨=⎩33a b =⎧⎨=⎩52a b =⎧⎨=⎩71a b =⎧⎨=⎩37896482412x x x x x x x xx+++++=3782481632x=192x 192==4844本题主要考查了一元一次方程的应用,通过每日路程之和等于总路程建立一元一次方程是解题的关键. 23、学校计划购买和两种品牌的足球,已知一个品牌足球元,一个品牌足球元.学校准备将元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( ) A .种 B .种C .种D .种【答案】B 【解析】 【分析】设购买品牌足球个,购买品牌足球个,根据总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数即可求出结论. 【详解】解:设购买品牌足球个,购买品牌足球个, 依题意,得:,. ,均为正整数,,,,,该学校共有种购买方案.故选:B . 【点睛】本题主要考查二元一次方程的解的问题,这类题往往涉及到方案的种类,是常考点.24、在实数范围内定义运算“☆”:,例如:.如果,则的值是( ). A . B .1C .0D .2【答案】C 【解析】 【分析】根据题目中给出的新定义运算规则进行运算即可求解. 【详解】A B A 60B 7515003456A x B y =⨯x y x y A x B y 60751500x y +=∴4205y x =-x y ∴11516x y =⎧⎨=⎩221012x y =⎧⎨=⎩33158x y =⎧⎨=⎩44204x y =⎧⎨=⎩∴41a b a b =+-☆232314=+-=☆21x =☆x 1-解:由题意知:, 又, ∴, ∴. 故选:C . 【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.25、为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.26、若是二元一次方程组的解,则x +2y 的算术平方根为( )A .3B .3,-3CD【答案】C 【解析】2211☆=+-=+x x x 21x =☆11x +=0x =4043x-21a b =⎧⎨=⎩3522ax by ax by ⎧+=⎪⎨⎪-=⎩【分析】将代入二元一次方程组中解出x 和y 的值,再计算x +2y 的算术平方根即可.【详解】解:将代入二元一次方程中,得到:,解这个关于x 和y 的二元一次方程组,两式相加,解得,将回代方程中,解得,∴, ∴x +2y故选:C .【点睛】本题考查了二元一次方程组的解法,算术平方根的概念等,熟练掌握二元一次方程组的解法是解决本题的关键.27、已知a 、b 满足方程组,则a+b 的值为( )A .2B .4C .—2D .—4【答案】A 【解析】【分析】观察可知将两个方程相加得,化简即可求得答案. 【详解】, ①+②,得5a+5b=10, 所以a+b=2, 故选A.【点睛】本题考查了二元一次方程组的特殊解法,根据二元一次方程组的特点灵活选用恰当的方法是解题21a b =⎧⎨=⎩21a b =⎧⎨=⎩3522ax by ax by ⎧+=⎪⎨⎪-=⎩3522+=⎧⎨-=⎩x y x y 75x =75x =45y =7415223555+=+⨯==x y 324236a b a b +=⎧⎨+=⎩5510a b +=324236a b a b +=⎧⎨+=⎩①②28、已知,,则的值为_________. 【答案】1 【解析】【分析】观察已知条件可得两式中a 与b 的系数的差相等,因此把两式相减即可得解. 【详解】 解:①,②,②-①得,2a+2b=2, 解得:a+b=1, 故答案为:1.【点睛】此题主顾考查了二元一次方程组的特殊解法,观察条件的结构特征得出2a+2b=2是解答此题的关键. 29、已知是方程组的解,则的值为__. 【答案】1. 【解析】【分析】先把x=a ,y=b ,代入原方程组,再解关于a 、b 的二元一次方程组,代入要求的代数式即可得出答案. 【详解】把代入方程组得:,①+②得: ,,故答案为.【点睛】本题考查了二元一次方程组的解,先将x ,y 的值代入,再计算即可. 30、已知关于的方程组的解为,则的平方根为________.【答案】 1023a b +=16343a b +=+a b 1023a b +=16343a b +=x a y b =⎧⎨=⎩2623x y x y +=⎧⎨+=-⎩+a b x a y b =⎧⎨=⎩2623x y x y +=⎧⎨+=-⎩2623a b a b +=⎧⎨+=-⎩①②333a b +=1a b +=1,x y 7234mx ny mx ny +=⎧⎨-=⎩12x y =⎧⎨=⎩1m n -12±【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m 、n,再代入求平方根. 【详解】将代入方程组得, 解得 .所以所以的平方根为故答案为:【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.31、《孙子算经》记载:今有3人共车,二车空;二人共车,九人步,问人与车各几何?译文:今有若干人乘车,若每三人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?多少辆车?若设有x 辆车,有y 人,则可列方程组为_____.【答案】 【解析】【分析】根据两种乘车方式,找出等量关系,由此建立方程组即可. 【详解】由题意,可列方程组为:,故答案为:.【点睛】本题考查了列二元一次方程组,依据题意,正确找出等量关系是解题关键. 32、已知关于x 、y 的方程的解满足,则a 的值为__________________.1,2x y =⎧⎨=⎩7,234mx ny mx ny +=⎧⎨-=⎩27264m n m n +=⎧⎨-=⎩51m n =⎧⎨=⎩114m n =-1m n -12±12±()3229x yx y ⎧-=⎨+=⎩()3229x yx y ⎧-=⎨+=⎩()3229x yx y ⎧-=⎨+=⎩221255x y a x y a+=+⎧⎨+=-⎩3x y +=-【解析】【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可. 【详解】解:,①+②,得 3x+3y=6-3a , ∴x+y=2-a , ∵, ∴2-a=-3, ∴a=5. 故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.33、今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是_____次. 【答案】4 【解析】【分析】设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x 和y 的二元一次方程组,求解即可.【详解】解:设李红出门没有买到口罩的次数是x ,买到口罩的次数是y ,由题意得:, 整理得:,解得:.221255x y a x y a +=+⎧⎨+=-⎩①②3x y +=-1015110535x y y +=⎧⎨-⨯+=⎩10530x y y +=⎧⎨=⎩46x y =⎧⎨=⎩故答案为:4.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意找到等量关系列出方程组求解. 34、有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元. 【答案】100或85. 【解析】【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可. 【详解】解:设所购商品的标价是x 元,则 ①所购商品的标价小于90元, x ﹣20+x =150, 解得x =85;②所购商品的标价大于90元, x ﹣20+x ﹣30=150, 解得x =100.故所购商品的标价是100或85元. 故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.35、“一带一路”促进了中欧贸易的发展,我市某机电公司生产的,两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价-成本).其每件产品的成本和售价信息如下表:问该公司这两种产品的销售件数分别是多少?【答案】,两种产品的销售件数分别为160件、180件. 【解析】A B A B【分析】设,两种产品的销售件数分别为件、件,由题意列方程组,再计算即可得到答案. 【详解】设,两种产品的销售件数分别为件、件;由题意得:,解得:;答:,两种产品的销售件数分别为160件、180件. 【点睛】本题考查二元一次方程组的实际应用,解题的关键是熟练掌握二元一次方程组的实际应用.36、某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱? (2)该商场售完这500箱矿泉水,可获利多少元?【答案】(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元. 【解析】【分析】(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x ,y 的二元一次方程组,解之即可得出结论; (2)根据总利润=单箱利润×销售数量,即可求出结论. 【详解】解:(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱, 依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.A B x y A B x y 5720602420601020x y x y +=⎧⎨+=-⎩160180x y =⎧⎨=⎩A B 500253514500x y x y +=⎧⎨+=⎩300200x y =⎧⎨=⎩。

一次方程组及其应用

一次方程组及其应用

二元一次方程的定义:含有两个未知数,并且未知数项的次数是1的整式方程,叫做二元一次方程。

标准形式为ax +by =c (a ≠0,b ≠0)。

也是简单的不定方程(即未知数的个数比方程的个数多)。

二元一次方程的解:根据方程的解的定义,二元一次方程的解是使方程左、右两边的值都相等的一组未知数的值。

例如:2x -3y =5的一组解是x =4且y =1,通常写成41x y =⎧⎨=⎩。

一般来说,二元一次方程有无数个解。

二元一次方程组:由几个整式方程组成的一组含有两个未知数的方程组叫做二元一次方程组。

注意:125x x y =⎧⎨+=⎩和1351x y +=⎧⎨-=⎩也都是二元一次方程组。

二元一次方程组的解:使二元一次方程组的每个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

已知方程14(2)(5)3a b a xb y ----+=是关于x 、y 的二元一次方程,求a 、b 的值。

若方程组2x y b x by a +=⎧⎨-=⎩的解是10x y =⎧⎨=⎩,那么|a -b |=_____。

例2 例1 一次方程组及其应用.代入消元法:把方程组中其中一个方程的某一个未知数用另一个未知数的代数式表示,然后代入另一个方程,就可以消去一个未知数,转化成一元一次方程。

用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y,用另一个未知数如x的代数式表示出来,即写成y=ax+b的形式;②y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;③解这个一元一次方程,求出x的值;④回代求解:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解。

⑤把这个方程组的解写成的x ay b=⎧⎨=⎩形式。

用代入消元法解方程组⑴41216x yx y-=-⎧⎨+=⎩⑵2536x yx y+=⎧⎨-=⎩加减消元法解二元一次方程组的基本方法之一。

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用

最新中考数学总复习第一部分数与代数 第二章 方程与不等式 第5讲一次方程(组)及应用
返回
数学
考点2 二元一次方程组及其应用
3.(2021 金华)已知 x=2,是方程 3x+2y=10 的一个解,则 m 的值 y=m
是2 .
返回
数学
4.(2021 眉山)解方程组: 3x-2y+20=0, 2x+15y-3=0.
解:方程组整理得 3x-2y=-20① ,①×15+②×2 得 49x=-294, 2x+15y=3②
第一部分 数与代数
第二章 方程与不等式
第5讲 一次方程(组)及应用
数学
目录
01 命题分析
02 课前预习
03 考点梳理
04 课堂精讲
05 广东中考
06
新题速递(创新思维题)——全国视野
数学
命题分析
广东省卷近年中考数学命题分析
命题点 2021 2020 2019 2018 2017 2016
解一元一次
由题意得 x+y=55 .解得 x=5.9 .
y=9x-4
y=49.1
答:港珠澳大桥的桥梁长度和隧道长度分别为 49.1 km 和
5.9 km.
返回
数学
广东中考
6.(2013深圳)某商场将一款空调按标价的八折出售,仍可获利 10%,若该空调的进价为2 000元,则标价为 2 750 元.
返回
数学
若 a=b,则a = b(d≠0).
dd
(2)解法的一般步骤:
①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数
化为1.
返回
数学
2.解下列方程: (1)4x-2=3-x; x=1
(2)x+2 = x.
54
x=8

专题04 一次方程(组)及其应用-备战2022年中考数学题源解密(解析版)

专题04 一次方程(组)及其应用-备战2022年中考数学题源解密(解析版)

专题04 一次方程(组)及其应用考向1 一次方程(组)及其解法【母题来源】(2021·浙江温州)【母题题文】解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去,再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.【母题来源】(2021·浙江金华)【母题题文】已知是方程3x+2y=10的一个解,则m的值是.【分析】把二元一次方程的解代入到方程中,得到关于m的一元一次方程,解方程即可.【解答】解:把代入方程得:3×2+2m=10,∴m=2,故答案为:2.【母题来源】(2021·浙江嘉兴)【母题题文】已知二元一次方程x+3y=14,请写出该方程的一组整数解.【分析】把y看做已知数求出x,确定出整数解即可.【解答】解:x+3y=14,x=14﹣3y,当y=1时,x=11,则方程的一组整数解为.故答案为:(答案不唯一).【母题来源】(2021·浙江丽水)【母题题文】解方程组:.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:2y﹣y=6,解得:y=6,把y=6代入①得:x=12,则方程组的解为.【母题来源】(2021·浙江台州)【母题题文】解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=2,则方程组的解为.【试题分析】以上中考真题主要考察了一元一次方程与二元一次方程组的解法步骤以及二元一次方程的多解问题;【命题意图】一次方程(组)的解法是对等式基本性质的熟悉程度的检验,也是后续方程求解的基础,准确掌握一元一次方程以及二元一次方程组的解法,是考生拿到此考点分值的重点;【命题方向】一次方程(组)的解法在浙江中考中占比不大,分值在0~6分,个别城市几乎不会单独出题,出题也基本在选择或者填空题的前半部分,属于难度较小的一类题。

沪教版六年级升七年级- 一次方程(组)的应用,带答案

沪教版六年级升七年级- 一次方程(组)的应用,带答案

主题一次方程(组)的应用教学内容1.能根据题意合理设元,找出等量关系,列出一次方程级方程组解应用题;2.经历和体验解决实际问题的过程,提高解决实际问题的能力。

(以提问的形式回顾)1. 解一元一次方程的步骤有哪些,需要注意什么?(1)去分母;(2)去括号;(3)移项;(4)合并同类项(5)系数化为一讲解时可以举一个具体的方程,让学生解,然后总结。

2. 一件工程,甲单独做要10天完成,乙单独做要12天完成,丙单独做要15天完成,甲、丙先合做了3天后,甲因事离去,由乙和丙继续合做,问还需几天才能完成?工程问题,把整个工程看成“1”,甲乙丙的工作效率就是111,, 101215答案:103(采用教师引导,学生轮流回答的形式)例1. 甲、乙两站相距240千米,客车每小时行65千米,货车每小时行35千米。

货车从甲站开往乙站1小时后,客车从乙站开往甲站,货车开出后几小时两车相遇?【答案】设货车开出后x小时后两车相遇,由题意可得:3565(1)240x x+-=解得:x=3.05多用了2节火车车厢而少用了5辆汽车,正好运完。

求每节火车车厢和每辆汽车平均各装多少吨?分析:题中有两个未知数,即每节火车车厢平均装的吨数与每辆汽车平均装的吨数。

题中两个相等的关系:(1)8节火车车厢装的吨数+10辆汽车装的吨数=440吨。

(2)10节火车车厢装的吨数+5辆汽车装的吨数=520吨。

解:设平均每节火车车厢装x 吨,平均每辆汽车装y 吨,依题意得: 810440(82)(105)520x y x y +=⎧⎨++-=⎩45220210423124450504x y x y y y y x x y +=⎧⎨+=⎩-⨯=====⎧∴⎨=⎩①经整理得②①②得把代入②得原方程组的解是答:每节火车车厢平均装50吨,每辆汽车平均装4吨。

例4. 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩.(学生统一完成,互相批改,教师针对重难点详细讲解)1. 一辆汽车从A 地驶往B 地,前面路段为普通公路,其余路段为高速公路.已知普通公路的路程是高速公路路程的一半,汽车在普通公路上行驶的速度为60千米/小时,在高速公路上行驶的速度为100千米/小时,汽5. 某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x 故中型汽车有15辆,小型汽车有35辆.本节课主要知识点:找等量关系列出方程,常见的行程问题,工程问题,利润问题等【巩固练习】1. 一列客车和一列货车在平行的轨道上同向行驶, 客车的长是200米,货车的长是280米,客车的速度与货车的速度比是5 :3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?解:设客车的速度是5x 米/分, 则货车的速度是3x 米/分。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
x+y=40, x+y=12, A.4x+3y=12 B.4x+3y=40
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)

25
35

35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.

中考总复习数学第1节 一次方程(组)及其应用

中考总复习数学第1节 一次方程(组)及其应用

【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.

2021-2022学年浙教版七年级数学下册《2-4二元一次方程组的应用》同步练习题(附答案)

2021-2022学年浙教版七年级数学下册《2-4二元一次方程组的应用》同步练习题(附答案)

2021-2022学年浙教版七年级数学下册《2-4二元一次方程组的应用》同步练习题(附答案)一.选择题1.地理老师介绍到:长江比黄河长836米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理老师的介绍,设长江长为x千米,黄河长为y千米,那么下面列出的方程组正确的是()A.B.C.D.2.某同学买了x枚1元的邮票与y枚2元的邮票,共12枚,花了20元钱,列出关于x、y 的二元一次方程组为()A.B.C.D.3.用大小完全相同的长方形纸片在直角坐标系中摆成如图所示图案,已知A(﹣1,5),则B点的坐标是()A.(﹣6,4)B.(﹣)C.(﹣6,5)D.(﹣)4.为紧急安置60名地震中的灾民,需要同时搭建可容纳6人和4人的两种帐篷,正好安置完所有人且不多余,则搭建方案共有()A.3种B.4种C.5种D.6种5.某超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是()A.第1天B.第2天C.第3天D.第4天6.小王到药店购买N95口罩和一次性医用口罩,已知N95口罩每个15元,一次性医用口罩每个2元,两样都买,共花了100元,则可供他选择的购买方案有()A.6种B.5种C.4种D.3种7.根据“x与y的差的2倍等于9”的数量关系可列方程为()A.2(x﹣y)=9B.x﹣2y=9C.2x﹣y=9D.x﹣y=9×28.初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.9.甲、乙两根绳共长17米,如果甲绳剪去它的,乙绳增加1米,两根绳长相等,若设甲绳长x米,乙绳长y米,那么可列方程组()A.B.C.D.10.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示,设小长方形的长、宽分别为xcm,ycm,则下列方程组正确的是()A.B.C.D.二.填空题11.如图,射线OC的端点O在直线AB上,∠1的度数x°比∠2的度数y°的2倍多10°,则列出关于x,y的方程组是.12.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得分y分,根据题意所列的方程组应为.13.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分.已知圆圆这次竞赛得了60分.设圆圆答对了x道题,答错了y道题,则可列出关于x、y的二元一次方程:.14.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.15.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.(商品的利润率=×100%)三.解答题16.一个两位数,十位数字和个位数字的和为15,把原两位数的十位数字与个位数字的位置调换得新两位数比原两位数少27,求原两位数.(用二元一次方程组解)17.再求值问题中,我们经常遇到利用整体思想来解决问题.例如1:已知:x+2y﹣3z=2,2x+y+6z=1,求:x+y+z的值解:令x+2y﹣3z=2﹣﹣﹣﹣﹣①2x+y+6z=1﹣﹣﹣﹣﹣﹣②①+②得3x+3y+3z=3所以x+y+z=1已知求x+2y的值解:①×2得:2x+2y=﹣10③②﹣③得:x+2y=11利用材料中提供的方法,解决下列问题(1)已知:关于x,y的二元一次方程组的解满足x﹣y=6,求m的值(2)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,求黄花一共用了多少朵?18.用20元去购买3元和2元的两种笔记本,可以只买一种,刚好将钱用完,你有哪几种购买方法?19.王妈妈在莲花商场里购买单价总和是90元的商品甲、乙、丙共两次,其中甲的单价是20元,乙的单价是40元,甲商品第一次购买的数量是第二次购买数量的两倍,乙商品第一次购买的数量与丙商品第二次购买的数量相等,两次购买商品甲、乙、丙的数量和总费用如下表:购买商品甲的数量(个)购买商品乙的数量(个)购买商品丙的数量(个)购买总费用(元)第一次购物4440第二次购物7490(1)求两次购买甲、乙、丙三种商品的总数量分别是多少?(2)由于莲花商场物美价廉,王妈妈打算第三次前往购买商品甲、乙、丙,设三种商品的数量总和为a个,其中购买乙商品数量是甲商品数量的3倍,购买总费用为1280元,求a的最小值.20.某超市的水果价格:梨子是5元/千克,苹果是6元/千克,香蕉是4元/千克.试选用上述数据,编一道应用题,使方程组为参考答案一.选择题1.解:由题意可得,,故选:D.2.解:由题意得.故选:B.3.解:设长方形的长为x,宽为y,则,解得,则|x B|=2x=,|y B|=x+y=;∵点B在第二象限,∴B(﹣,),故选:D.4.解:设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=60,整理得y=15﹣1.5x,因为x、y均为非负整数,所以15﹣1.5x≥0,解得0≤x≤10,从0到10的偶数共有5个,所以x的取值共有5种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有4种搭建方案.故选:B.5.解:设牙刷的单价为x元,牙膏的单价为y元,当第1天、第2天的记录无误时,依题意得:,解得:,∴23x+20y=23×3+20×15=369(元),17x+11y=17×3+11×15=216(元).又∵369≠368,∴第3天的记录有误.故选:C.6.解:设可以购买x个N95口罩,y个一次性医用口罩,依题意,得:15x+2y=100,∴y=50﹣x.又∵x,y均为正整数,∴或或,∴小王有3种购买方案.故选:D.7.解:由文字表述列方程得,2(x﹣y)=9.故选:A.8.解:设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:.故选:A.9.解:设甲绳长x米,乙绳长y米,.故选:A.10.解:设小长方形的长为xcm,宽为ycm,依题意得:,故选:A.二.填空题11.解:依题意,得:.故答案为:.12.解:设(1)班得x分,(5)班得分y分,根据题意得:.故答案为:.13.解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故答案是:5x﹣2y+(20﹣x﹣y)×0=60.14.解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.15.解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)﹣6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45(元),乙种粗粮每袋成本价为6+2×27=60(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,=.故答案为:.三.解答题16.解:设原两位数十位数字为x,个位数字为y,根据题意得:,解得:,所以原两位数为:10x+y=10×9+6=96.答:原两位数为96.17.解:(1)令x﹣3y=2m﹣3①,4x﹣6y=m﹣1②,②﹣①得:3x﹣3y=2﹣m.∵x﹣y=6,∴2﹣m=18,∴m=﹣16.(2)设该步行街摆放了a盆甲种盆景,b盆乙种盆景,c盆丙种盆景,根据题意得:,①×5得:75a+50b+50c=14500③,②+③得:100a+50b+75c=18250,∴24a+12b+18c=(100a+50b+75c)=4380.答:黄花一共用了4380朵.18.解:设购买3元的笔记x本,购买2元的笔记本y本,由题意得:3x+2y=20,整理得:y=10﹣x,∵x、y为非负整数,∴或或,或,∴有4种购买方法:①购买3元的笔记2本,2元的笔记本7本;②购买3元的笔记4本,2元的笔记本4本;③购买3元的笔记6本,2元的笔记本1本;④购买2元的笔记本7本.19.解:(1)设第二次购进甲商品x个,购进丙商品y个,则第一次购进甲商品2x个,乙商品y个,依题意,得:,解得:,∴2x+y+4=15,x+7+y=15.答:两次购买甲、乙、丙三种商品的总数量均为15个.(2)设第三次购进甲商品m个,则购进乙商品3m个,丙商品(a﹣4m)个,依题意,得:20m+40×3m+(90﹣20﹣40)(a﹣4m)=1280,∴a=.∵a,m,a﹣4m均为非负整数,∴,,,∴a的最小值为38.20.解:应用题是:某超市的水果价格:梨子是5元/千克,苹果是6元/千克,香蕉是4元/千克,王阿姨购买了梨子和苹果共花了53元,其中苹果的质量比梨子的质量2倍还多1千克,求王阿姨购买的梨子和苹果的质量分别是多少千克?。

组合方程式

组合方程式

组合方程式一、什么是组合方程式呢?组合方程式就像是把不同的数学元素,像数字、变量、运算符等,按照一定的规则组合在一起,形成一个能够表达某种数学关系的式子。

比如说简单的一元一次方程,像2x + 3 = 7,这里面2、3、7就是数字,x是变量,+和=就是运算符,它们组合起来就成了一个方程式,可以通过一定的方法求出x的值呢。

这就像是在搭积木,每一块积木都有它的作用,组合在一起就能搭出各种各样的形状。

二、组合方程式的类型1. 整式方程组合整式方程里又有好多小类型。

一元一次整式方程,就像刚才说的2x+3 = 7这种,只有一个变量,而且变量的次数是1。

还有一元二次方程,像x²+2x - 3 = 0,变量的最高次数是2啦。

这种方程在解决很多实际问题中都很有用呢。

比如说计算一个长方形的面积,已知长比宽多2,面积是15,设宽是x,长就是x + 2,根据长方形面积公式长乘以宽,就可以得到方程x(x + 2)=15,展开就是x²+2x - 15 = 0,这就是一个一元二次方程的实际应用。

2. 分式方程组合分式方程就是方程式里有分式的那种。

比如1/(x - 1)+2/(x + 1)=3,这里面1/(x - 1)和2/(x + 1)就是分式。

分式方程在解决一些涉及比例关系的问题时会用到。

比如说两个人合作完成一项工作,甲单独做需要x天,乙单独做需要y天,他们合作的效率就是1/x+1/y,要是知道他们合作完成工作需要的时间,就可以列出分式方程来求解x和y了。

3. 方程组组合方程组就是由多个方程组成的组合。

像二元一次方程组{x + y = 5,2x - y = 1},这里面有两个方程,两个变量x和y。

解方程组就是要找到一组x和y的值,能同时满足这两个方程。

可以用代入消元法,比如说从第一个方程x + y = 5得到y = 5 - x,然后把y = 5 - x代入第二个方程2x - y = 1中,就变成2x-(5 - x)=1,这样就可以求出x的值,再把x的值代入y = 5 - x求出y 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次方程组的应用一.本讲数学内容列方程组解应用题二.技能要求:熟练掌握用二元、三元一次方程组解简单的应用题。

三.重要数学思想:通过列方程组解应用题的训练,进一步领会方程的思想。

四.主要数学能力:1.通过列二元或三元一次方程组解决应用问题的训练,学习把实际问题抽象成数学问题的方法,进一步培养分析问题和解次实际问题的能力。

2.通过将一些代数问题转化为方程组问题的方法的学习,培养运用转化思想去解决问题,发展思维能力。

五.列方程组解应用题的一般步骤是:①审题:弄清问题中的已知量是什么,未知量是什么,题目中的数量关系,尤其是要弄清给出了哪些等量关系。

②设未知数:一般有两种,设直接未知数(将题目中要求的未知数设为x,y),或间接未知数(与问题中要求的未知数相关的另一些未知数用x,y表示),看哪一种便于使用已知条件列出较简单的方程就选用哪一种。

③列方程:根据已知条件中某些相等关系列出两个独立的二元一次方程而组成二元一次方程组。

④解这个方程组:根据所列方程组的特点,选择适当的方法求得方程组的解。

⑤检验并作答:根据应用题中,所设未知数的实际意义判断方程组的解是否符合题意,最后写出答案。

六. 例题解析第一阶梯[例1]有10分和20分的两种邮票共16枚,总计价值2.50元,问10分和20分的邮票各多少枚?提示:通过情景1和2,我们可以很容易地就解决了这个问题.在情景3中的共有两个等量关系有:10分的张数+20分的张数=16张;10分×10分的张数+20分×20分的张数=250分.参考答案:解:设10分的邮票有x枚,20分的邮票有y枚,根据题意,得由②得:x+2y=25. (3)(3)-(1)得:y=9:把y=9代入(1),得所以:答:10分的邮票有7枚,20分邮票有9枚.说明:通过这3个情景的探索和解决,我们可以体会到学习用二元一次方程组解决问题的某些特征.首先,我们要找出题中的等量关系;弄清问题中的等量关系之后,再根据实际需要设出未知数,列出方程组;然后求解出这个方程组,得出方程组的解;最后再找出实际问题的答案.通过这个问题的解决,你是否有了一些关于用二元一次方程组解决问题的印象呢?如果你认为你已经具有了这方面的能力,请思考下边的情景探索单元2.[例2]运输一批共360吨的货物,需用6节火车皮和15辆汽车.每辆汽车和每节火车各运多少吨货物?请用二元一次方程来表达这个数量关系.提示:①在这一个情景中,要求我们解决汽车与火车的平均运输能力问题,涉及到两个未知数,因此,我们可以用一个未知数x来表示平均每辆火车的运输的吨数,用另外一个未知数y来表示平均每辆汽车的运输的吨数.②15×平均每辆汽车运输量=汽车的总共的运输量.6×平均每辆火车运输量=火车的总共的运输量.③等量关系为:6×每节火车运输量+15×每辆汽车运输量=360吨.参考答案:设平均每节火车装x吨,平均每辆汽车装y吨.根据题意得:6x+15y=360说明:对于这样的问题情景,我们在日常的生活中是随时可以遇到的.这种问题,我们总是可以把它用二元一次方程组来表示出来.与单元一中的情景1类似,我们只要搞清了情景中的各种数量关系,那么,解决这类问题就是一件十分容易的事了.通过此问题的解决,则否你认为你自己也能解决这样的问题了呢?[例3]快车与慢车相距150千米,两车同时出发,相向而行,快车与慢车1.5小时相遇,用二元一次方程表示出题中所反映出的数量关系.提示:①在这个问题中,要我们求快车与慢车的速度,一共是要解决两个问题.因此我们可以利用二元一次方程来解决.同时,这是一个同时出发,同向而行的相遇问题.②在行程问题中有一个很重要的数量关系:路程=速度×时间.③这个问题中所反映的运动如下图所示:④通过对这个图的分析,我们可以发现有如下的数量关系;快车行走的路程+慢车行走的路程=150千米.⑤如果说我们设快车速度为x千米/小时,慢车速度为y千米/小时,那么快车行走的路程是1.5x千米,慢车行走的路程是1.5y千米.参考答案:设快车行走的速度是x千米/小时,慢车的速度是y千米/小时,由题意可得:1.5x+1.5y=150.说明:对于这类行程问题,我们必须首先画出行程问题的行走路线图,同时,对于行程问题中的相遇问题来说,我们一般都是采用分路程之和等于总路程的长度.第二阶梯[例1]1997年,某省的文物馆举行文物展览,当天来参观的人非常多,在晚上清理时,发现丢失了一批珍贵的古代铜钱,公安局接到报警后,要求管理员提供丢失的铜钱的详细情况.管理员只记得丢失的铜钱总数是32枚,面值是5元和2元,原价总共是100元.请你帮助管理员推算出丢失的铜钱的各种面值的枚数的详细情况.根据这个问题的材料,我们可以把这个实际问题转化成如下的一个数学问题:问题:有5元和2元的两种钱币共32枚,总计价值100元,问5元和2元的钱币多少枚?提示:①在这个问题要求我们解决面值为5元和2元的两种铜钱的枚数,共有两个未知数,因此,我们可以考虑用二元一次方程组来解决.②题中的铜钱的总面值,即是面值为5元铜币的总钱数加上面值为2元的铜钱的总钱数,一共是100元.③面值为5元的铜钱的总钱数=5元×面值为5元的铜币的个数;面值为2元的铜钱的总钱数=2元×面值为2元的铜币的个数.④由此我们可以看出,只要我们知道了面值为5元的铜钱的枚数与面值为2地的铜钱的枚数,那么,这个问题中所有的量我们都可以用它们表示出来.因此我们可以直接设两种铜钱的枚数为未知数.⑤题中的等量关系有:5元的枚数+2元的枚数=32枚;5元×元的枚数+2×2元的枚数=100元。

如果我们设面值为5元的铜钱有X枚,面值为2元的铜钱有y枚,那么根据这两个等量关系,我就可以列出一个二元一次方程组出来,然后,求解这个方程组,我就可以达到目的.参考答案:解:设面值为5元的铜钱有x枚,面值为2元的铜钱有y枚,根据题意,得答:面值为5元的铜钱有12枚,面值为2元的铜钱有20枚.说明:通过这一个问题的解决,就可以体会到我们学习二元一次方程组的作用.要解决这样的问题,首先,我们要把这个问题转化成一个比较明确的数学问题,然后我们主要是找出题中的等量关系;分析完之后,我们再根据实际问题设出未知数,列出方程组;列出方程组之后,再求解这个方程组,就可以得出方程的解.[例2]某县在一次人口普查中了解到,该县现有人口12万,按照科学计算,预计一年后城镇人口将增加.8%,农村人口将增加1.1%,这样全县人口将增加到12.12万,求该县现有的城镇人口与农村人口。

提示:从题目中,我们可以看到:这个题目稍显复杂,就是因为这要求两个未知数,即现在的城镇人口与农村人口,而这两个量间有什么样的关系呢?不难分析到:现有的城镇人口+现有的农村人口=12万,但在这样一个等式中,同时存在两个未知的量,并能求出唯一确定的解,那么你还要依赖题中其它的条件。

按照:全县人口=城镇人口+农村人口。

这样一种关系,一年后的全县人口=一年后的城镇人口+一年后的农村人口,其关系式中的"一年后的城镇人口"与"一年后的农村人口",都可以利用未知量"现有的城镇人口"与"现有的农村人口"表示出来,这样我们就能得到两个关于这两个未知量的相等关系,那么只要将它们联立,组成方程组,就可以求解了。

参考答案:解:设现有的城镇人口为x万,农村人口为y万,根据题意,得方程组由(2)得x+0.8%x+y+1.1%y=12.12整理,得0.8%+1.1%=12.12-(xy)--------------------------(3)将(1)代入(3),得0.8%x+1.1%y=12.12-120.8%x+1.1%y=0.12---------------------------------------(4)v(4)-(1)×0.8,得0.3y=2.4y=8把y=8代入(1),得x=4。

答案:现有的城镇人口为4.3万,农村人口为8万。

说明:本题也可以用一元一次方程来求解,比如:设现有城镇人口为x万,则现有农村人口为12-x万根据题间,可以列出一元一次方程:x(1+0.8%)+(12-x)(1+1.1%)=12.12只要认真求解,仍然可以计算出x=4、12-x=8,那么,现在你就应该有这样一个思想:能用一元一次方程求解的问题,一般情况下都能用算式求解:能用二元一次方程组求解的问题,一般情况下也可以用一元一次方程求解,只不过计算起来稍显复杂,因此建议你当求两个未知量时,能用二元一次方程组求解,尽量要用方程组,不但训练你的动手解方程组能力,而且会培养你的观察、分析与审题能力。

特别是从题目中找出与所求知量有关的相等关系,是解应用题的关键,希望你能慢慢去摸索。

[例3]某工厂用浓度为30%的酒精与浓度为60%的酒精混合,制成了浓度为50%的酒精30千克,试问前两种酒精各使用了多少?提示:1.此题中叙述了这样一件事:用一定量的浓度为30%的酒精和一定量的浓度为60%酒精混合成一种浓度为50%的酒精30千克,问要得到这30千克浓度为50%的酒精,需用浓度30%和60%的酒精各多少千克?解决这一问题关键是要从问题中找出--混合前后哪些量改变了?哪些量没变?2.如果设两种酒精分别用了X千克,Y千克,则各量之间存在如下关系:溶质(纯酒精)X·30%Y·60%30·50%由表中数据,我们可以清晰看出各基本量间的关系。

3.分析题意,从题目中找出两个相等式:(1)两种溶液(酒精)的质量之和为30,即X+Y=30(2)两种溶液中纯酒精之和等于混合后的溶液中的纯酒精数,即X·30%+Y·60%=30·50%4.根据所得到的相等关系,我们就可以列方程组、解应用题了。

参考答案:解:设浓度为30%的酒精为X千克,浓度为60%的酒精为Y千克,根据题意得:(2)×100,得30X+60Y=30×50化简,得3X-6Y=150(3)(1)×3,得:3Y=60Y=20将Y=20代0代入(1),得:X=10所以,得答:需用浓度30%的酒精10千克,浓度60%的酒精20千克。

说明:这道题是一个稍有难度的应用题,在研究关于浓度问题或与浓度相关的实际问题时,重要的是要审清题意,能够从题目中找出一个溶液变化前后始终没有发生变化的量,以该量在变化前后始终相等作为相等关系,根据浓度问题中的基本数量关系,即可列方程组求解。

第三阶梯[例1]一只轮船顺流航行,每小时行20km;逆流航行,每小时行16km;求轮船在静水中的速度与水速。

相关文档
最新文档