江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题
江苏省2019届高三数学4月质量检测试题(含解析)
江苏省2019届高三数学4月质量检测试题(含解析)一、填空题(请将答案填写在答题卷相应的位置上.)1.设集合,则________.【答案】【解析】【分析】由题,解不等式求得集合A,再求得得出答案.【详解】因为集合,集合,所以故选A【点睛】本题考查了集合的交集,属于基础题.2.在复平面内,复数对应的点位于第________象限.【答案】一【解析】【分析】先由题对复数进行运算化简,求得在复平面所对应的点,可得结果.【详解】复数所以复数在复平面所对应的点为在第一象限故答案为一【点睛】本题考查了复数的概念,运算化简是解题的关键,属于基础题.3.“”是“”的__________条件.(填:充分不必要,必要不充分,充分必要,既不充分也不必要)【答案】必要不充分条件【解析】【分析】由题,很明显必要性成立,再取可得充分性不成立,可得答案.【详解】由可以推出,故必要性成立; 当,成立,但是无意义,所以不成立,故充分性不成立故答案为必要不充分条件【点睛】本题考查了充分必要条件,熟悉对数函数的性质是解题的关键,属于基础题.4.将某选手的7个得分去掉1个最高分,去掉1个最低分,现场作的7个分数的茎叶图如图,则5个剩余分数的方差为_________.【答案】6 【解析】 【分析】由题,先去掉最高和最低分,求得剩下数的平均数,再利用方差公式求得方差即可. 【详解】由图观察,最高分为99,最低分为87,所以剩下的5个数的平均数:所以方差:故答案是6【点睛】本题考查了茎叶图,熟悉平均数和方差的求法是解题的关键,属于基础题.5.某同学欲从数学建模、航模制作、程序设计和机器人制作4个社团中随机选择2个,则数学建模社团被选中概率为______. 【答案】 【解析】从个社团中随机选择个,有6种选法,其中数学建模社团被选中的选法有3种选法,所以概率为6.执行如图所示的程序框图,输出的s 值为_______.【答案】【解析】【分析】直接模拟运行程序即得解.【详解】s=1-,k=2,s=,k=3,输出s=.故答案为:【点睛】本题主要考查程序框图,意在考查学生对这些知识的掌握水平和分析推理能力.7.已知焦点在x轴上的双曲线的一条渐近线的倾斜角为,且其焦点到渐近线的距离为2,则该双曲线的标准方程为_____.【答案】【解析】【分析】设出双曲线方程,由已知条件易得,,求得a,b的值,可得方程. 【详解】设焦点在x轴上的双曲线方程为:一条渐近线方程倾斜角为,取焦点,因为焦点到渐近线的距离为2,所以解得所以双曲线方程:故答案为【点睛】本题考查了双曲线的性质,掌握好双曲线的性质是解题的关键,属于较为基础题.8.已知圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为16的正方形,则该圆柱的表面积为_____.【答案】【解析】【分析】由题意,先求得圆柱体的高和底面圆的半径,再利用表面积公式求得圆柱的表面积.【详解】因为圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为16的正方形,所以圆柱的高为:,底面直径:,底面周长为:所以其表面积为:故答案为【点睛】本题考查了圆柱体的表面积,熟悉公式,清楚圆柱展开图形的形状是解题的关键,属于较为基础题.9.设四边形为平行四边形,.若点满足,则=______.【答案】9【解析】【分析】利用向量的加减运算法则,对进行变形,最后用向量表示,再将代入可得答案.【详解】由题,故答案为9【点睛】本题考查了向量数量积,解题的关键是掌握平面向量的加减运算法则,属于中档题目.10.若在是减函数,则a的最大值是_____.【答案】【解析】【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.【详解】解:f(x)=cos x﹣sin x=﹣(sin x﹣cos x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故答案为:.【点睛】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.11.已知函数,.若存在2个零点,则a的取值范围是___________.【答案】【解析】【分析】把的零点问题归结为与函数有两个不同交点的问题,通过移动动直线得实数的取值范围.【详解】有两个不同的零点等价于有两个不同的解,即有两个不同的解,所以的图像与有两个不同的交点.画出函数的图像,当即时,两图像有两个不同的交点,故答案为.【点睛】含参数的函数的零点个数问题,可以利用函数的单调性和零点存在定理来判断,如果该函数比较复杂,那么我们可以把该零点个数问题转化为两个熟悉函数图像的交点问题,其中一个函数的图像为动直线,另一个函数不含参数,其图像是确定的.12.已知公差为d的等差数列满足,且是的等比中项;记,则对任意的正整数n均有,则公差d的取值范围是_____.【答案】【解析】【分析】先由等差数列性质,求得通项公式,即可得到数列的通项,再利用求和公式求得可得结果.【详解】因为公差为d的等差数列满足,且是的等比中项,所以,解得所以即所以故答案为【点睛】本题考查了数列的综合,解题的关键是在于通项公式的求法和求和公式的运用,属于中档题目.13.已知点,若分别是和直线上的动点,则的最小值为_____.【答案】6【解析】【分析】设出点P的坐标和点R的坐标,分别表示出其向量,利用坐标求其模长,可得表示为圆与直线上一点距离的问题,再利用点到直线的距离求得其最小值.【详解】因为分别是和直线上的动点,所以设点,点所以所以表示的是圆上一点与直线直线上一点距离的最小值,圆是圆心为(0,0)半径为2的圆直线一般式:最小值为:故答案为6【点睛】本题考查了直线与圆的综合,会结合到参数方程和向量的坐标运算,模长的求法,属于较难题目.14.用表示中的最大值,已知实数满足,设,则M的最小值为___________.【答案】【解析】【分析】由题,先求得M最大值时,x和y的关系范围,再画出图像,分别求得不同范围的的最小值即可求得答案.【详解】由题,当当,解得所以当时,,即图像的区域1当,即解得,所以当,,即图像的区域3所以当在区域2时,综上可得:在区域1中,;在区域2中,;在区域3中,在区域1中,当且紧当时,取最小值为在区域2中,当且紧当时,取最小值为在区域3中,当且紧当时,取最小值为综上所述,可得M的最小值为【点睛】本题考查了函数与不等式综合,熟悉理解题意,求最值是解题的关键,属于难题.二、解答题(请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点. (1)求的值;(2)若角满足,求的值.【答案】(1)(2)或【解析】【分析】(1)由题,先求得的值,再利用倍角公式,求得;(2)由恒等变化,可得,再利用已知条件求得、、代入求解即可.【详解】(1)(2)∵,∴,∵,∴,又∵,且终边在第三象限,∴.①当时,.②当时,【点睛】本题考查了三角综合求值,熟悉三角函数线和恒等变化是解题的关键所在,属于较为基础题.16.如图,在斜三棱柱中,侧面是菱形,与交于点O,E是棱上一点,且平面.(1)求证:E是的中点;(2)若,求证:.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)连接,由∥平面结合线面平行性质定理可得∥,结合是中点及,可得结果;(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.试题解析:(1)连接,因为∥平面,平面,平面平面,所以∥.因为侧面是菱形,,所以是中点,所以,E是AB中点.(2)因为侧面是菱形,所以,又,,面,所以面,因为平面,所以.17.已知椭圆的离心率为,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为。
江苏省泰州中学、宜兴中学等校2019届高三4月联考数学试题(含附加题)(解析版)
= max{ , ,… , }= | d| ,所以 有最大值,因此 不
可能递增且 d≠0,所以 d<0,②正确;
③若数列
是公比为 q 的等比数列,则
,且
==
,所以
,所以
或
,
又因为
,所以
,所以 q> 1,③正确;
④若存在正整数 T,对任意
,都有
,假设在
中 最大,则
中都是 最大,则
= ,且
,即
= ,所以
,直线 的方程为
.将直线 的方程代入椭圆方程,求得 点的坐标为
求得 点的坐标为
,由于
,即
,也即
,化简得
.故离心率为
.
,将直线 的方程代入椭圆方程, ,即
【点睛】本小题主要考查直线和椭圆的位置关系 有一个很大的要求 .属于难题 .
.利用直线方程和椭圆方程联立,求得交点的坐标,对运算能力
13. 已知函数 大值是 ____. 【答案】 2 【解析】
,所以 是数列 的最大项,④正确 .
故答案为:①②③④.
【点睛】本题考查了数列的综合问题,涉及到常数数列、等差数列、等比数列、周期数列,对知识熟练度和推
理分析能力要求较高,属于难题 .
二、解答题:本大题共 6 小题,共 90 分,请在答题卡指定区域内作答,解答时应写出文字说明、 证明过程或演算步骤 .
万元;
当
每件商品的售价为
元时 ,该连锁分店一年的利润 最大 ,最大值为
万元 .
【解析】
试题分析:( 1)该连锁分店一年的利润 L (x)= ( x- 4- a)(10- x)2, x∈ [8,9] .
L (万元)与售价 x 的函数关系式为
江苏省泰州市2019-2020学年第四次高考模拟考试数学试卷含解析
江苏省泰州市2019-2020学年第四次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数在上的值域为,则实数的取值范围为( ) A . B . C . D .【答案】A【解析】【分析】 将整理为,根据的范围可求得;根据,结合的值域和的图象,可知,解不等式求得结果.【详解】当时, 又,, 由在上的值域为 解得: 本题正确选项:【点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.2.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//m α,//m β,则//αβB .若m α⊥,m n ⊥,则n α⊥C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β【答案】C【解析】【分析】在A 中,α与β相交或平行;在B 中,//n α或n ⊂α;在C 中,由线面垂直的判定定理得n α⊥;在D 中,m 与β平行或m β⊂.【详解】设,m n 是两条不同的直线,,αβ是两个不同的平面,则:在A 中,若//m α,//m β,则α与β相交或平行,故A 错误;在B 中,若m α⊥,m n ⊥,则//n α或n ⊂α,故B 错误;在C 中,若m α⊥,//m n ,则由线面垂直的判定定理得n α⊥,故C 正确;在D 中,若αβ⊥,m α⊥,则m 与β平行或m β⊂,故D 错误.故选C .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题. 3.已知i 是虚数单位,若1z ai =+,2zz =,则实数a =( )A .B .-1或1C .1 D【答案】B【解析】【分析】 由题意得,()()2111zz ai ai a =+-=+,然后求解即可 【详解】∵1z ai =+,∴()()2111zz ai ai a =+-=+.又∵2zz =,∴212a +=,∴1a =±. 【点睛】本题考查复数的运算,属于基础题4.函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的部分图像如图所示,若5AB =,点A 的坐标为(1,2)-,若将函数()f x 向右平移(0)m m >个单位后函数图像关于y 轴对称,则m 的最小值为( )A .12B .1C .3πD .2π 【答案】B【解析】【分析】根据图象以及题中所给的条件,求出,A ω和ϕ,即可求得()f x 的解析式,再通过平移变换函数图象关于y 轴对称,求得m 的最小值.【详解】由于5AB =,函数最高点与最低点的高度差为4,所以函数()f x 的半个周期32T =,所以263T ππωω==⇒=, 又()1,2A -,0ϕπ<<,则有2sin 123πϕ⎛⎫-⨯+= ⎪⎝⎭,可得56πϕ=, 所以()()52sin 2sin 2cos 1363323f x x x x ππππππ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭, 将函数()f x 向右平移m 个单位后函数图像关于y 轴对称,即平移后为偶函数,所以m 的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.5.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,为了得到函数()cos g x x ω=的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度 【答案】A【解析】【分析】【详解】由()f x 的最小正周期是π,得2ω=, 即()sin(2)4f x xπ=+ cos 224x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦ cos 24x π⎛⎫=- ⎪⎝⎭ cos 2()8x π=-, 因此它的图象向左平移8π个单位可得到()cos2g x x =的图象.故选A . 考点:函数()sin()f x A x ωϕ=+的图象与性质.【名师点睛】三角函数图象变换方法:6.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b << 【答案】C【解析】【分析】可设[]0,1x ∈,根据()f x 在R 上为偶函数及(2)()f x f x +=-便可得到:()()(2)f x f x f x =-=-+,可设1x ,[]20,1x ∈,且12x x <,根据()f x 在[]1,2上是减函数便可得出12()()f x f x <,从而得出()f x 在[]0,1上单调递增,再根据对数的运算得到a 、b 、c 的大小关系,从而得到()()(),,f a f b f c 的大小关系.【详解】解:因为ln1ln 2ln e <<,即01a <<,又12124b -⎛⎫== ⎪⎝⎭,12log 21c ==- 设[]0,1x ∈,根据条件,()()(2)f x f x f x =-=-+,[]21,2x -+∈;若1x ,[]20,1x ∈,且12x x <,则:1222x x -+>-+; ()f x Q 在[]1,2上是减函数;12(2)(2)f x f x ∴-+<-+;12()()f x f x ∴<;()f x ∴在[]0,1上是增函数;所以()()()20f b f f ==,()()()11f c f f =-=∴()()()f b f a f c <<故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设12x x <,通过条件比较1()f x 与2()f x ,函数的单调性的应用,属于中档题.7.已知某口袋中有3个白球和a 个黑球(*a N ∈),现从中随机取出一球,再换回一个不同颜色的球(即若取出的是白球,则放回一个黑球;若取出的是黑球,则放回一个白球),记换好球后袋中白球的个数是ξ.若3E ξ=,则D ξ= ( )A .12B .1C .32D .2【答案】B【解析】由题意2ξ=或4,则221[(23)(43)]12D ξ=-+-=,故选B . 8.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a 是正项等比数列,所以2020a ==∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.9.已知P 是双曲线22221x y a b-=渐近线上一点,1F ,2F 是双曲线的左、右焦点,122F PF π∠=,记1PF ,PO ,2PF 的斜率为1k ,k ,2k ,若1k ,-2k ,2k 成等差数列,则此双曲线的离心率为( )AB .2C D【答案】B【解析】【分析】求得双曲线的一条渐近线方程,设出P 的坐标,由题意求得(,)P a b ,运用直线的斜率公式可得1k ,k ,2k ,再由等差数列中项性质和离心率公式,计算可得所求值.【详解】 设双曲线22221x y a b-=的一条渐近线方程为b y x a =, 且(,)b P m m a ,由122F PF π∠=,可得以O 为圆心,c 为半径的圆与渐近线交于P , 可得222()b m m c a+=,可取m a =,则(,)P a b , 设1(,0)F c -,2(,0)F c ,则1b k a c =+,2b k a c =-,b k a=, 由1k ,2k -,2k 成等差数列,可得124k k k -=+, 化为2242a a a c -=-,即2232c a =,可得2c e a ==, 故选:B .【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.10.若双曲线E :22221x y a b-=(0,0a b >>)的一个焦点为(3,0)F ,过F 点的直线l 与双曲线E 交于A 、B 两点,且AB 的中点为()3,6P --,则E 的方程为( )A .22154x y -= B .22145x y -= C .22163x y -= D .22136x y -= 【答案】D【解析】【分析】求出直线l 的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得,a b 的方程组,求得,a b 的值,即可得到答案.【详解】由题意,直线l 的斜率为06133PF k k +===+, 可得直线l 的方程为3y x =-, 把直线l 的方程代入双曲线22221x y a b-=,可得2222222()690b a x a x a a b -+--=, 设1122(,),(,)A x y B x y ,则212226a x x a b+=-, 由AB 的中点为()3,6P --,可得22266a a b=--,解答222b a =,又由2229a b c +==,即2229a a +=,解得a b == 所以双曲线的标准方程为22136x y -=. 故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.11.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( ) A .()f x 的值域是[]0,1B .()f x 是奇函数C .()f x 是周期函数D .()f x 是增函数 【答案】C【解析】【分析】根据[]x 表示不超过x 的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由[]x 表示不超过x 的最大正整数,其函数图象为选项A ,函数()[)0,1f x ∈,故错误;选项B ,函数()f x 为非奇非偶函数,故错误;选项C ,函数()f x 是以1为周期的周期函数,故正确;选项D ,函数()f x 在区间[)[)[)0,1,1,2,2,3L L 上是增函数,但在整个定义域范围上不具备单调性,故错误.故选:C【点睛】本题考查对题干[]x 的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.12.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( )A .100B .210C .380D .400 【答案】B【解析】【分析】设{}n a 公差为d ,由已知可得3a ,进而求出{}n a 的通项公式,即可求解.【详解】设{}n a 公差为d ,27a =,415a =,2433211,42a a a d a a +∴===-=, 1010(339)41,2102n a n S ⨯+∴=-∴==. 故选:B.【点睛】本题考查等差数列的基本量计算以及前n 项和,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市2019-2020学年高考数学统考试题
2019-2020学年高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正四面体A BCD -外接球的体积为,则这个四面体的表面积为( )A .B .C .D .2.已知空间两不同直线m 、n ,两不同平面α,β,下列命题正确的是( ) A .若m α且n α,则m n B .若m β⊥且m n ⊥,则n βC .若m α⊥且m β,则αβ⊥D .若m 不垂直于α,且n ⊂α,则m 不垂直于n3.方程2(1)sin 10x x π-+=在区间[]2,4-内的所有解之和等于( ) A .4B .6C .8D .104.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为1),则b c +=( )A .5B .C .4D .165.已知定义在R 上的函数()f x 在区间[)0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()12log 2f a f ⎛⎫<- ⎪⎝⎭,则a 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞6.已知偶函数()f x 在区间(],0-∞内单调递减,(a f =,sin 5b f π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,2314c f ⎛⎫⎛⎫⎪= ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 满足( ) A .a b c <<B .c a b <<C .b c a <<D .c b a <<7.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1)B .(0,2)C .1(,2)2D .(1,3)8.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点()1,2P ,则cos2θ=( ) A .35B .45-C .35D .459.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A .21+B .31+C .2D .510.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10°C 的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势11.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥,现从该三棱锥的4个表面中任选2个,则选取的2个表面互相垂直的概率为( )A .12B .14C .13D .2312.已知向量(1,0)a =,(1,3)b =,则与2a b -共线的单位向量为( )A .13,2⎛ ⎝⎭B .132⎛- ⎝⎭C .321⎫-⎪⎪⎝⎭或321⎛⎫⎪ ⎪⎝⎭D .13,2⎛ ⎝⎭或132⎛- ⎝⎭ 二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市2019-2020学年高考第四次大联考数学试卷含解析
江苏省泰州市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知(2sin,cos ),,2cos )2222x x x xa b ωωωω==r r ,函数()f x a b =r r ·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( ) A .85[,)52B .75[,)42C .57[,)34D .7(,2]4【答案】B 【解析】 【分析】先利用向量数量积和三角恒等变换求出()2sin()16f x x πω=++ ,函数在区间4[0,]3π上恰有3个极值点即为三个最值点,,62x k k Z ππωπ+=+∈解出,,3k x k Z ππωω=+∈,再建立不等式求出k 的范围,进而求得ω的范围. 【详解】解: ()22cos cos 12xf x x x x ωωωω=+=++ 2sin()16x πω=++令,62x k k Z ππωπ+=+∈,解得对称轴,3k x k Z ππωω=+∈,(0)2f =,又函数()f x 在区间4[0,]3π恰有3个极值点,只需 243333πππππωωωω+≤<+ 解得7542ω≤<. 故选:B . 【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成()++y A x t ωϕsin =或()++y A x t ωϕcos = 的形式; (2)根据自变量的范围确定+x ωϕ的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围. 2.已知函数()sinx12sinxf x =+的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )①绕着x 轴上一点旋转180︒; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. A .①③ B .③④C .②③D .②④【答案】D 【解析】 【分析】计算得到()()2f x k f x π+=,22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,故函数是周期函数,轴对称图形,故②④正确,根据图像知①③错误,得到答案. 【详解】()sin 12sin xf x x=+,()()()()sin 2sin 212sin 212sin x k x f x k f x x k x πππ++===+++,k Z ∈, 当沿x 轴正方向平移2,k k Z π∈个单位时,重合,故②正确;co sin 2212co s s s 12in 2x f x xx x πππ⎛⎫- ⎪⎛⎫⎝⎭-== ⎪+⎛⎫⎝⎭+- ⎪⎝⎭,co sin 2212co s s s 12in 2x f x xx x πππ⎛⎫+ ⎪⎛⎫⎝⎭+== ⎪+⎛⎫⎝⎭++ ⎪⎝⎭, 故22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,函数关于2x π=对称,故④正确;根据图像知:①③不正确; 故选:D . 【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.3.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线OL 时,表示收入完全平等.劳伦茨曲线为折线OKL 时,表示收入完全不平等.记区域A 为不平等区域,a 表示其面积,S 为OKL △的面积,将Gini aS=称为基尼系数.对于下列说法:①Gini 越小,则国民分配越公平;②设劳伦茨曲线对应的函数为()y f x =,则对(0,1)x ∀∈,均有()1f x x >; ③若某国家某年的劳伦茨曲线近似为2([0,1])y x x =∈,则1Gini 4=; ④若某国家某年的劳伦茨曲线近似为3([0,1])y x x =∈,则1Gini 2=. 其中正确的是: A .①④ B .②③ C .①③④ D .①②④【答案】A 【解析】 【分析】 【详解】对于①,根据基尼系数公式Gini aS=,可得基尼系数越小,不平等区域的面积a 越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得(0,1)x ∀∈,均有()f x x <,可得()1f x x<,所以②错误.对于③,因为1223100111()d ()|236a x x x x x =-=-=⎰,所以116Gini 132a S ===,所以③错误.对于④,因为1324100111()d ()|244a x x x x x =-=-=⎰,所以114Gini 122a S ===,所以④正确.故选A . 4.对于定义在R 上的函数()y f x =,若下列说法中有且仅有一个是错误的,则错误..的一个是( ) A .()f x 在(],0-∞上是减函数 B .()f x 在()0,∞+上是增函数C .()f x 不是函数的最小值D .对于x ∈R ,都有()()11f x f x +=-【答案】B 【解析】【分析】根据函数对称性和单调性的关系,进行判断即可. 【详解】由(1)(1)f x f x +=-得()f x 关于1x =对称,若关于1x =对称,则函数()f x 在(0,)+∞上不可能是单调的, 故错误的可能是B 或者是D , 若D 错误,则()f x 在(-∞,0]上是减函数,在()f x 在(0,)+∞上是增函数,则(0)f 为函数的最小值,与C 矛盾,此时C 也错误,不满足条件. 故错误的是B , 故选:B . 【点睛】本题主要考查函数性质的综合应用,结合对称性和单调性的关系是解决本题的关键.5.已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最大值是( )A B .1C D .2【答案】D 【解析】 【分析】如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-u u u r u u u r u u u r,计算得到答案.【详解】如图所示建立直角坐标系,则()1,0A ,12⎛-⎝⎭B ,1,2C ⎛- ⎝⎭,设()cos ,sin P θθ, 则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-u u u r u u u r u u u r222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立. 故选:D .【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键. 6.已知函数1()cos 22f x x x π⎛⎫=++ ⎪⎝⎭,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则()f x 的极大值点为( ) A .3π-B .6π-C .6π D .3π 【答案】A 【解析】 【分析】求出函数的导函数,令导数为零,根据函数单调性,求得极大值点即可. 【详解】 因为()11cos 222f x x x x sinx π⎛⎫=++=- ⎪⎝⎭, 故可得()12f x cosx '=-+, 令()0f x '=,因为,22x ππ⎡⎤∈-⎢⎥⎣⎦, 故可得3x π=-或3x π=,则()f x 在区间,23ππ⎛⎫-- ⎪⎝⎭单调递增, 在,33ππ⎛⎫-⎪⎝⎭单调递减,在,32ππ⎛⎫ ⎪⎝⎭单调递增,故()f x 的极大值点为3π-. 故选:A. 【点睛】本题考查利用导数求函数的极值点,属基础题.7.设等差数列{}n a 的前n 项和为n S ,若23S =,410S =,则6S =( ) A .21 B .22C .11D .12【答案】A 【解析】 【分析】由题意知24264,,S S S S S --成等差数列,结合等差中项,列出方程,即可求出6S 的值. 【详解】解:由{}n a 为等差数列,可知24264,,S S S S S --也成等差数列,所以()422642S S S S S -=+- ,即()62103310S ⨯-=+-,解得621S =. 故选:A. 【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少. 8.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离【答案】B 【解析】 化简圆到直线的距离,又两圆相交. 选B9.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.10.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( ).A .2B .3C .1D .6【答案】B 【解析】 【分析】首先由三视图还原几何体,进一步求出几何体的棱长. 【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为2221113l =++ 故选:B . 【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.11.设双曲线22221x y a b-=(a >0,b >0)的一个焦点为F (c,0)(c >0),若该双曲线的一条渐近线被圆x 2+y 2﹣2cx =0截得的弦长为 )A .221205x y -=B .22125100x y -=C .221520x y -=D .221525x y -=【答案】C 【解析】 【分析】由题得ca =b ==222+=a bc ,联立解方程组即可得25a =,220b =,进而得出双曲线方程. 【详解】由题得ce a== ①又该双曲线的一条渐近线方程为0bx ay -=,且被圆x 2+y 2﹣2cx =0截得的弦长为b == ②又222+=a b c ③ 由①②③可得:25a =,220b =,所以双曲线的标准方程为221520x y -=.故选:C 【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.12.过抛物线()220y px p =>的焦点F 作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=( )A .54B .43C .32D .2【答案】C 【解析】需结合抛物线第一定义和图形,得AFH V 为等腰三角形,设准线与x 轴的交点为M ,过点F 作FC AH ⊥,再由三角函数定义和几何关系分别表示转化出()cos 2pBF πα=-,()tan sin 2p AF απα=-,结合比值与正切二倍角公式化简即可【详解】如图,设准线与x 轴的交点为M ,过点F 作FC AH ⊥.由抛物线定义知AF AH =, 所以AHF AFH α∠=∠=,2FAH OFB πα∠=-=∠,()()cos 2cos 2MF pBF παπα==--,()()()tan tan sin 2sin 2sin 2CF CH p AF ααπαπαπα===---,所以()2tan tan tan 13tan 2tan 222AFBF αααπαα-====--.故选:C 【点睛】本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题 二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市2020届高三下学期调研测试数学试题(附答案解析)
江苏省泰州市2019—2020学年度第二学期调研测试 高三数学试题第I 卷(必做题,共160分)一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.)1.已知集合A ={l ,2},B ={2,4,8},则A B = .2.若实数x ,y 满足x +y i =﹣1+(x ﹣y )i (i 是虚数单位),则xy = .3.如图是容量为100的样本的频率分布直方图,则样本数据落在区间[6,18)内的频数为 .4.根据如图所示的伪代码,可得输出的S 的值为 .5.若双曲线22221x y a b-= (a >0,b >0)的一条渐近线方程为2y x =,则该双曲线的离心率为 .6.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,这两次出现向上的点数分别记为x ,y ,则1x y -=的概率是 . 7.在平面直角坐标系xOy 中,抛物线y 2=4x 上一点P 到焦点F 的距离是它到y 轴距离的3倍,则点P 的横坐标为 .8.我国古代数学名著《增删算法统宗》中有这样一首数学诗:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”它的大意是:有人要到某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都是前一天的一半,一共走了六天到达目的地.那么这个人第一天走的路程是 里. 9.若定义在R 上的奇函数()f x 满足(4)()f x f x +=,(1)1f =,则(6)f +(7)f +(8)f 的值为 .10.将半径为R 的半圆形铁皮卷成一个圆锥的侧面,若圆锥的体积为,则R = .11.若函数2()1x a x a f x x x a+≥⎧=⎨-<⎩,,只有一个零点,则实数a 的取值范围为 .12.在平面直角坐标系xOy 中,已知点A(1x ,1y ),B(2x ,2y )在圆O :224x y +=上,且满足12122x x y y +=-,则1212x x y y +++的最小值是 .13.在锐角△ABC 中,点D ,E ,F 分别在边AB ,BC ,CA 上,若AB 3AD =,AC AF λ=,且BC ED 2EF ED 6⋅=⋅=,ED 1=,则实数λ的值为 .14.在△ABC 中,点D 在边BC 上,且满足AD =BD ,3tan 2B ﹣2tanA +3=0,则BDCD的取值范围为 .二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)如图,在三棱锥P— ABC 中,PA ⊥平面ABC ,AB =AC ,点D ,E ,F 分別是AB ,AC ,BC 的中点.(1)求证:BC ∥平面PDE ;(2)求证:平面PAF ⊥平面PDE .16.(本小题满分14分)已知函数21()sin sin cos 2f x x x x =+-,x ∈R . (1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()6f α=,α∈(8π-,38π),求sin2α的值.17.(本小题满分14分)某温泉度假村拟以泉眼C 为圆心建造一个半径为12米的圆形温泉池,如图所示,M ,N 是圆C 上关于直径AB 对称的两点,以A 为四心,AC 为半径的圆与圆C 的弦AM ,AN 分别交于点D ,E ,其中四边形AEBD 为温泉区,I 、II 区域为池外休息区,III 、IV 区域为池内休息区,设∠MAB =θ.(1)当4πθ=时,求池内休息区的总面积(III 和IV 两个部分面积的和);(2)当池内休息区的总面积最大时,求AM 的长.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆M :22221x y a b+=(a >b >0)的左顶点为A ,过点A 的直线与椭圆M 交于x 轴上方一点B ,以AB 为边作矩形ABCD ,其中直线CD 过原点O .当点B 为椭圆M 的上顶点时,△AOB 的面积为b ,且AB .(1)求椭圆M 的标准方程;(2)求矩形ABCD 面积S 的最大值;(3)矩形ABCD 能否为正方形?请说明理由.19.(本小题满分16分)定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ 函数”.(1)判断函数()1x xf x e=-是否为“YZ 函数”,并说明理由; (2)若函数()ln g x x mx =-(m ∈R)是“YZ 函数”,求实数m 的取值范围;(3)已知32111()323h x x ax bx b =++-,x ∈(0,+∞),a ,b ∈R ,求证:当a ≤﹣2,且0<b <1时,函数()h x 是“YZ 函数”.20.(本小题满分16分)已知数列{}n a ,{}n b ,{}n c 满足2n n n b a a +=-,12n n n c a a +=+.(1)若数列{}n a 是等比数列,试判断数列{}n c 是否为等比数列,并说明理由; (2)若n a 恰好是一个等差数列的前n 项和,求证:数列{}n b 是等差数列;(3)若数列{}n b 是各项均为正数的等比数列,数列{}n c 是等差数列,求证:数列{}n a 是等差数列.第II 卷(附加题,共40分)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知列向量5a ⎡⎤⎢⎥⎣⎦在矩阵M = 3 41 2⎡⎤⎢⎥⎣⎦对应的变换下得到列向量2 b b -⎡⎤⎢⎥⎣⎦,求1M b a -⎡⎤⎢⎥⎣⎦.B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩(α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin()4πρθ+=,点P 为曲线C 上任一点,求点P 到直线l 距离的最大值.C .选修4—5:不等式选讲已知实数a ,b ,c 满足a >0,b >0,c >0,2223a b c b c a++=,求证:3a b c ++≤.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)如图,在多面体ABCDEF 中,平面ADE ⊥平面ABCD ,四边形ABCD 是边长为2的正方形,△ADE 是等腰直角三角形,且∠ADE =2π,EF ⊥平面ADE ,EF =1. (1)求异面直线AE 和DF 所成角的余弦值; (2)求二面角B —DF —C 的余弦值.23.(本小题满分10分)给定n (n ≥3,n N *∈)个不同的数1,2,3,…,n ,它的某一个排列P 的前k (k N *∈,1≤k ≤n )项和为k S ,该排列P 中满足2k n S S ≤的k 的最大值为P k .记这n 个不同数的所有排列对应的P k 之和为n T .(1)若n =3,求3T ;(2)若n =4l +1,l N *∈,①证明:对任意的排列P ,都不存在k (k N *∈,1≤k ≤n )使得2k n S S =;②求n T (用n 表示).2019~2020学年度第二学期调研测试高三数学答案一、填空题1. {}1,2,4,82.123. 804. 85.6.518 7. 128. 192 9. 1- 10. 611. (1](0,1]-∞- 12. - 13. 3 14. (1,2]二、解答题15.(本题满分14分)证明:(1)在ABC ∆中,因为,D E 分别是,AB AC 的中点,所以//DE BC , ……………2分 因为BC PDE ⊄平面,DE PDE ⊂平面,所以//BC PDE 平面. ……………6分(2)因为PA ABC ⊥平面,DE PDE ⊂平面, 所以PA DE ⊥,在ABC ∆中,因为AB AC =,F 分别是BC 的中点,所以AF BC ⊥, ……………8分 因为//DE BC ,所以DE AF ⊥, 又因为AFPA A =,,AF PAF PA PAF ⊂⊂平面平面,所以DE PAF ⊥平面,……………12分因为DE PDE ⊂平面,所以PAF PDE ⊥平面平面. ……………14分16.(本题满分14分)解:(1)因为21()sin sin cos 2f x x x x =+-, 所以1cos 211()sin 2222x f x x -=+-1(sin 2cos 2)2x x =- ……………2分(sin 2cos cos 2sin )244x x ππ=-)24x π=- ……………4分当2242x k πππ-=+(Z)k ∈,即3(8Z)x k k ππ=+∈时,()f x 取最大值2,所以()f x 的最大值为2,此时x 的取值集合为3,8Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭.………7分(2)因为()6f α=,则)246πα-=,即1sin(2)43πα-=, 因为3(,)88ππα∈-,所以2(,)πππα-∈-,则cos(2)43πα-===,……………10分所以sin 2sin[(2)]sin(2)cos cos(2)sin 444444ππππππαααα=-+=-+-1432326=⋅+=……………14分17.(本题满分14分)解:(1)在Rt ABM ∆中,因为24AB =,4πθ=,所以MB AM ==24cos12124MD π=-=,所以池内休息区总面积1212)144(22S MB DM =⋅⋅==. ……………4分 (2)在Rt ABM ∆中,因为24AB =,MAB θ∠=, 所以24sin ,24cos MB AM θθ==, 24cos 12MD θ=-, 由24sin 0,24cos 120MB MD θθ=>=->得0,3πθ⎛⎫∈ ⎪⎝⎭, ……………6分 则池内休息区总面积1224sin (24cos 12)2S MB DM θθ=⋅⋅=-,0,3πθ⎛⎫∈ ⎪⎝⎭; ……………9分 设()()sin 2cos 1fθθθ=-,0,3πθ⎛⎫∈ ⎪⎝⎭,因为()()22cos 2cos 12sin 4cos cos 20cos f θθθθθθθ'=--=--=⇒=又11cos 82θ+=>,所以00,3πθ⎛⎫∃∈ ⎪⎝⎭,使得01cos 8θ+=, 则当()00,x θ∈时,()()0f f θθ'>⇒在()00,θ上单调增,当0,3x πθ⎛⎫∈ ⎪⎝⎭时,()()0f f θθ'<⇒在()00,θ上单调减, 即()0θf 是极大值,也是最大值,所以()()max 0f fθθ=,此时024cos 3AM θ==+ ……………13分 答:(1)池内休息区总面积为2144(2-m ;(2)池内休息区总面积最大时AM的长为(3AM =+m .………14分18.(本题满分16分)解:(1)由题意:22212ab b a b c =⎪=⎨⎪⎪=+⎩,解得2,a b c ===,所以椭圆M 的标准方程为22142x y +=. ……………4分 (2)显然直线AB 的斜率存在,设为k 且0k >, 则直线AB 的方程为(2)y k x =+,即20kx y k -+=,联立22(2)142y k x x y =+⎧⎪⎨+=⎪⎩得2222(12)8840k x k x k +++-=,解得222412B k x k -=+,2412B k y k=+,所以212AB k ==+, 直线CD 的方程为y kx =,即0kx y -=,所以BC ==,所以矩形ABCD面积2881122k S k k k====++≤所以当且仅当k =时,矩形ABCD 面积S的最大值为11分 (3)若矩形ABCD 为正方形,则AB BC =,=,则322220k k k -+-= (0)k >,令32()222(0)f k k k k k =-+->,因为(1)10,(2)80f f =-<=>,又32()222(0)f k k k k k =-+->的图象不间断,所以32()222(0)f k k k k k =-+->有零点,所以存在矩形ABCD 为正方形.……………16分19.(本题满分16分)解:(1)函数()1xxf x =-e是“YZ 函数”,理由如下: 因为()1x x f x =-e ,则1()x xf x -'=e,当1x <时,()0f x '>;当1x >时,()0f x '<,所以()1xx f x =-e 的极大值1(1)10f =-<e , 故函数()1x xf x =-e是“YZ 函数”. ……………4分(2)定义域为(0,)+∞, 1()g x m x'=-,当0m ≤时,1()0g x m x '=->,函数单调递增,无极大值,不满足题意;当0m >时,当10x m <<时,1()0g x m x '=->,函数单调递增,当1x m >时,1()0g x m x'=-<,函数单调递减,所以()g x 的极大值为111()ln ln 1g m m m m m=-⋅=--,由题意知1()ln 10g m m =--<,解得1m >e. ……………10分(3)证明: 2()h x x ax b '=++,因为2a ≤-,01b <<,则240a b ∆=->,所以2()0h x x ax b '=++=有两个不等实根,设为12,x x ,因为12120x x a x x b +=->⎧⎨=>⎩,所以120,0x x >>,不妨设120x x <<,当10x x <<时,()0h x '>,则()h x 单调递增; 当12x x x <<时,()0h x '<,则()h x 单调递减,所以()h x 的极大值为321111111()323h x x ax bx b =++-, ……………13分 由2111()0h x x ax b '=++=得3211111()x x ax b ax bx =--=--, 因为2a -≤,01b <<, 所以322211111111111111()()323323h x x ax bx b ax bx ax bx b =++-=--++- 221111121121633333ax bx b x bx b =+-≤-+- 2111()(1)033x b b b =--+-<.所以函数()h x 是“YZ 函数”.……………16分(其他证法相应给分)20.(本题满分16分)解:(1)设等比数列{}n a 的公比为q ,则122(21)n n n n n n c a a a q a q a +=+=+=+, 当12q =-时,0n c =,数列{}n c 不是等比数列, ……………2分 当12q ≠-时,因为0n c ≠,所以11(21)(21)n n n n c q a q c q a +++==+,所以数列{}n c 是等比数 列. ……………5分 (2)因为n a 恰好是一个等差数列的前n 项和,设这个等差数列为{}n d ,公差为d , 因为12n n a d d d =+++,所以1121n n n a d d d d ++=++++,两式相减得11n n n a a d ++-=, 因为2n n n a a b +=+,所以1312321()()()()n n n n n n n n n n b b a a a a a a a a +++++++-=---=---312n n d d d ++=-=, 所以数列{}n b 是等差数列. ……………10分 (3)因为数列{}n c 是等差数列,所以321n n n n c c c c +++-=-,又因为12n n n c a a +=+,所以43322112(2)2(2)n n n n n n n n a a a a a a a a ++++++++-+=+-+, 即 423122()()()n n n n n n a a a a a a +++++-=-+-,则212n n n b b b ++=+, 又因为数列{}n b 是等比数列,所以212n n n b b b ++=,则2112n nn n b b b b +++=⋅, 即11()(2)0n n n n b b b b ++-+=,因为数列{}n b 各项均为正数,所以1n n b b +=, ……………13分 则312n n n n a a a a +++-=-, 即321n n n n a a a a +++=+-,又因为数列{}n c 是等差数列,所以212n n n c c c +++=, 即32121(2)(2)2(2)n n n n n n a a a a a a ++++++++=+, 化简得3223n n n a a a +++=,将321n n n n a a a a +++=+-代入得2122()3n n n n n a a a a a ++++-+=,化简得212n n n a a a +++=,所以数列{}n a 是等差数列. ……………16分 (其他证法相应给分)数学Ⅱ(附加题)21. A . [选修4-2:矩阵与变换](本小题满分10分) 解:因为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡b b a 252143,所以320210a b a b +=-⎧⎨+=⎩,解得64a b =-⎧⎨=⎩,……………4分 设1m p Mn q -⎡⎤=⎢⎥⎣⎦,则34101201m p n q ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即3413402021m n p q m n p q +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得112232m n p q =⎧⎪⎪=-⎪⎨=-⎪⎪=⎪⎩, 所以⎥⎥⎦⎤⎢⎢⎣⎡--=-2321211M , ……………8分所以11-2416=13-61122b M a -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦. ……………10分B.[选修4-4:坐标系与参数方程](本小题满分10分)解:由题:直线方程即为(sin coscos sin )44ππρθθ+= 由cos x ρθ=,sin y ρθ=得直线的直角坐标方程为80x y +-=,……………4分 设P点的坐标为()cos αα,∴点P到直线的距离d ==8分 当2()62Z k k ππαπ+=-∈,即22(3Z)k k αππ=-∈时,d取得最大值此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. ……………10分C.[选修4-5:不等式选讲](本小题满分10分) 证明:由柯西不等式,得2223()()()a b c a b c b c a b c a++=++++222222]=++++ ………………5分22()a b c =++≥ 所以3a b c ++≤. ………………10分 22.(本小题满分10分)解:因为平面ADE ⊥平面ABCD ,又2ADE π∠=,即DE AD ⊥,因为DE ADE ⊂平面,ADEABCD AD =平面平面, DE ∴⊥平面ABCD ,由四边形ABCD 为边长为2的正方形, 所以,,DA DC DE 两两互相垂直.以D 为坐标原点,{,,}DA DC DE 为一组基底建立如图所示的空间直角坐标系.………2分 由EF ⊥平面ADE 且1EF =,()()()()()()0,0,0,2,0,0,0,0,2,0,2,0,2,2,0,0,1,2,D A E C B F ∴(1)()2,0,2AE =-,()0,1,2DF =,则cos ,2AE DF AE DF AE DF⋅<===⋅>,所以AE 和DF 所成角的余弦值为5. ……………5分 (2)()2,2,0DB =,()0,1,2DF =,设平面BDF 的一个法向量为(),,n x y z =,由2+2020n DB x y n DF y z ⎧⋅==⎨⋅=+=⎩ ,取1z =,得)1,2,2(-=n , 平面DFC 的一个法向量为()1,0,0m =,22cos ,313m n m n m n ⋅∴<>===⋅⨯, 由二面角B DF C --的平面角为锐角,所以二面角B DF C --的余弦值为23.……10分23.(本小题满分10分)解:(1)1,2,3的所有排列为1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1,因为36S =,所以对应的P k 分别为2,1,2,1,1,1,所以38T =; ……………3分(2)(i )设n 个不同数的某一个排列P 为12,,,n a a a ⋅⋅⋅,因为41,N n l l *=+∈,所以()()()141212n n n S l l +==++为奇数, 而2k S 为偶数,所以不存在(,1)N k k k n *∈≤≤使得2k n S S =; ……………5分(ii) 因为2k n S S ≤,即1212k k k n a a a a a a ++++⋅⋅⋅+++⋅⋅⋅+≤,又由(i )知不存在(,1)N k k k n *∈≤≤使得2k n S S =,所以1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+;所以满足2k n S S ≤的最大下标k 即满足1212k k k n a a a a a a ++++⋅⋅⋅+<++⋅⋅⋅+① 且1212k k k n a a a a a a ++++⋅⋅⋅++>+⋅⋅⋅+②, 考虑排列P 的对应倒序排列:P '11,,,n n a a a -⋅⋅⋅,①②即2121n k k k a a a a a a +++⋅⋅⋅+<++⋅⋅⋅++,2121n k k k a a a a a a +++⋅⋅⋅++>+⋅⋅⋅++, 由题意知1P k n k '=--,则1P P k k n '+=-; ……………8分 又1,2,3,,n ⋅⋅⋅,这n 个不同数共有!n 个不同的排列,可以构成!2n 个对应组合(),P P ', 且每组(),P P '中1P P k k n '+=-,所以()!12n n T n =-. ……………10分。
江苏省泰州市2019-2020学年高考数学教学质量调研试卷含解析
江苏省泰州市2019-2020学年高考数学教学质量调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,正三棱柱111ABC A B C -各条棱的长度均相等,D 为1AA 的中点,,M N 分别是线段1BB 和线段1CC 的动点(含端点),且满足1BM C N =,当,M N 运动时,下列结论中不正确...的是A .在DMN ∆内总存在与平面ABC 平行的线段B .平面DMN ⊥平面11BCC BC .三棱锥1A DMN -的体积为定值D .DMN ∆可能为直角三角形【答案】D【解析】【分析】A 项用平行于平面ABC 的平面与平面MDN 相交,则交线与平面ABC 平行;B 项利用线面垂直的判定定理;C 项三棱锥1A DMN -的体积与三棱锥1N A DM -体积相等,三棱锥1N A DM -的底面积是定值,高也是定值,则体积是定值;D 项用反证法说明三角形DMN 不可能是直角三角形.【详解】A 项,用平行于平面ABC 的平面截平面MND ,则交线平行于平面ABC ,故正确;B 项,如图:当M 、N 分别在BB 1、CC 1上运动时,若满足BM=CN,则线段MN 必过正方形BCC 1B 1的中心O,由DO 垂直于平面BCC 1B 1可得平面DMN ⊥平面11BCC B ,故正确;C 项,当M 、N 分别在BB 1、CC 1上运动时,△A 1DM 的面积不变,N 到平面A 1DM 的距离不变,所以棱锥N-A 1DM 的体积不变,即三棱锥A 1-DMN 的体积为定值,故正确;D 项,若△DMN 为直角三角形,则必是以∠MDN 为直角的直角三角形,但MN 的最大值为BC 1,而此时DM,DN 的长大于BB 1,所以△DMN 不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.2.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( )A .5ln 2+B .5ln 2-C .3ln 2+D .3ln 2-【答案】A【解析】【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值.【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴= 那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a 在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以minmin 42()25ln 2AB f a f ===+⎝⎭故选:A .【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.3.下图所示函数图象经过何种变换可以得到sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 【答案】D【解析】【分析】 根据函数图像得到函数的一个解析式为()sin 23f x x π⎛⎫=+⎪⎝⎭,再根据平移法则得到答案. 【详解】设函数解析式为()()sin f x A x b ωϕ=++,根据图像:1,0A b ==,43124T πππ=-=,故T π=,即2ω=, sin 1126f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,2,3k k Z πϕπ=+∈,取0k =,得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭, 函数向右平移6π个单位得到sin 2y x =. 故选:D .【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用. 4.已知随机变量X 的分布列是 X1 2 3 P 12 13 a则()2E X a +=( )A .53B .73C .72D .236【答案】C【解析】【分析】利用分布列求出a ,求出期望()E X ,再利用期望的性质可求得结果.【详解】 由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=, 因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭. 故选:C. 【点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查. 5.下列图形中,不是三棱柱展开图的是( )A .B .C .D .【答案】C【解析】【分析】根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD 选项可以围成三棱柱,C 选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.6.设函数()()f x x R ∈满足()(),(2)()f x f x f x f x -=+=,则()y f x =的图像可能是A .B .C .D .【答案】B【解析】根据题意,确定函数()y f x =的性质,再判断哪一个图像具有这些性质.由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B .7.阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的23,且球的表面积也是圆柱表面积的23”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为24π,则该圆柱的内切球体积为( )A .43πB .16πC .163πD .323π 【答案】D【解析】【分析】设圆柱的底面半径为r ,则其母线长为2l r =,由圆柱的表面积求出r ,代入圆柱的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【详解】设圆柱的底面半径为r ,则其母线长为2l r =,因为圆柱的表面积公式为2=22S r rl ππ+圆柱表,所以222224r r r πππ+⨯=,解得2r =,因为圆柱的体积公式为2=2V Sh r r π=⋅圆柱,所以3=22=16V ππ⨯⨯圆柱,由题知,圆柱内切球的体积是圆柱体积的23, 所以所求圆柱内切球的体积为 2232=16=333V V ππ=⨯圆柱. 故选:D【点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.8.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,,A B 是C 的左、右顶点,点P 在过1F 且PAB △为等腰三角形,120ABP ∠=︒,则C 的渐近线方程为( )A .12y x =±B .2y x =±C .33y x =±D .3y x =±【答案】D【解析】【分析】根据PAB △为等腰三角形,120ABP ∠=︒可求出点P 的坐标,又由1PF 的斜率为3可得出,a c 关系,即可求出渐近线斜率得解.【详解】 如图,因为PAB △为等腰三角形,120ABP ∠=︒,所以||||2PB AB a ==,60PBM ∠=︒,||cos602,||sin603P P x PB a a y PB a ∴=⋅︒+==⋅︒=, 又130324PF a k a c -==+, 2a c ∴=223a b ∴=,解得3b a= 所以双曲线的渐近线方程为3y x =,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于中档题.9.已知集合{}2230A x x x =--≤{}2B x x =<,则A B =I ( )A .()1,3B .(]1,3C .[)1,2-D .()1,2-【答案】C【解析】【分析】解不等式得出集合A ,根据交集的定义写出A∩B .【详解】集合A ={x|x 2﹣2x ﹣3≤0}={x|﹣1≤x ≤3}, ={x x<2}B ,{|1<2}A B x x ∴⋂=≤﹣故选C .【点睛】本题考查了解不等式与交集的运算问题,是基础题. 10.已知i 是虚数单位,则(2)i i +=( )A .12i +B .12i -+C .12i --D .12i -【答案】B【解析】【分析】根据复数的乘法运算法则,直接计算,即可得出结果.【详解】 () 22112i i i i +=-=-+.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.11.如图,平面四边形ACBD 中,AB BC ⊥,3AB =,2BC =,ABD △为等边三角形,现将ABD △沿AB 翻折,使点D 移动至点P ,且PB BC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823【答案】A【解析】【分析】 将三棱锥P ABC -补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心O 应在棱柱上下底面三角形的外心连线上,在Rt OBE V 中,计算半径OB 即可.【详解】由AB BC ⊥,PB BC ⊥,可知BC ⊥平面PAB .将三棱锥P ABC -补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心O 应在棱柱上下底面三角形的外心连线上,记ABP △的外心为E ,由ABD △为等边三角形,可得1BE =.又12BC OE ==,故在Rt OBE V 中,2OB = 此即为外接球半径,从而外接球表面积为8π.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12.双曲线2212y x -=的渐近线方程为( ) A .32y x =± B .y x =± C .2y x = D .3y x =【答案】C【解析】【分析】根据双曲线的标准方程,即可写出渐近线方程.【详解】Q 双曲线2212y x -=, ∴双曲线的渐近线方程为2y x =±,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市2019-2020学年中考数学四模试卷含解析
江苏省泰州市2019-2020学年中考数学四模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.2.一组数据:6,3,4,5,7的平均数和中位数分别是( )A.5,5 B.5,6 C.6,5 D.6,63.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1 2 3 5方案2 3 2 5方案3 2.5 2.5 5则最省钱的方案为()A.方案1 B.方案2C.方案3 D.三个方案费用相同4.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90°D.四边形AFCE 是矩形5.下列运算正确的是()A.2a+3a=5a2B.(a3)3=a9C.a2•a4=a8D.a6÷a3=a26.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1057.|﹣3|=()A.13B.﹣13C.3 D.﹣38.一元一次不等式组的解集中,整数解的个数是()A.4 B.5 C.6 D.79.下列运算正确的是( )A.4x+5y=9xy B.(−m)3•m7=m10C.(x3y)5=x8y5D.a12÷a8=a410.如图,矩形ABCD中,E为DC的中点,AD:AB=3:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②2BF=PB•EF;③PF•EF=22AD;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④11.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.6cm C.2.5cm D.5cm12.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为()A.810 年B.1620 年C.3240 年D.4860 年二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x 元(10≤x≤20且x 为整数)出售,可卖出(20﹣x )件,若使利润最大,则每件商品的售价应为_____元. 14.因式分解:4x 2y ﹣9y 3=_____.15.如图,在ABC 中,AB=AC=62,∠BAC=90°,点D 、E 为BC 边上的两点,分别沿AD 、AE 折叠,B 、C 两点重合于点F ,若DE=5,则AD 的长为_____.16.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细).则所得扇形AFB (阴影部分)的面积为_____.17.若代数式5xx +有意义,则实数x 的取值范围是____. 18.已知抛物线23y x mx =--与直线25y x m =-在22x -<…之间有且只有一个公共点,则m 的取值范围是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)20.(6分)已知抛物线y=﹣x 2﹣4x+c 经过点A (2,0). (1)求抛物线的解析式和顶点坐标;(2)若点B (m ,n )是抛物线上的一动点,点B 关于原点的对称点为C . ①若B 、C 都在抛物线上,求m 的值;②若点C在第四象限,当AC2的值最小时,求m的值.21.(6分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.23.(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)24.(10分)计算:(-13)-2– 2(34+)+ 112- 25.(10分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?26.(12分)如图,在▱ABCD 中,AB=4,AD=5,tanA=43,点P 从点A 出发,沿折线AB ﹣BC 以每秒1个单位长度的速度向中点C 运动,过点P 作PQ ⊥AB ,交折线AD ﹣DC 于点Q ,将线段PQ 绕点P 顺时针旋转90°,得到线段PR ,连接QR .设△PQR 与▱ABCD 重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒). (1)当点R 与点B 重合时,求t 的值;(2)当点P 在BC 边上运动时,求线段PQ 的长(用含有t 的代数式表示); (3)当点R 落在▱ABCD 的外部时,求S 与t 的函数关系式; (4)直接写出点P 运动过程中,△PCD 是等腰三角形时所有的t 值.27.(12分)如图,在四边形ABCD 中,E 为AB 的中点,DE AB ⊥于点E ,66A ∠=o ,90ABC ∠=o ,BC AD =,求C ∠的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.2.A【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.平均数为:×(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.故选A.考点:中位数;算术平均数.3.A【解析】【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为235a b+,方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.4.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.5.B【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2•a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.6.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.C【解析】【分析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.8.C【解析】试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.考点:一元一次不等式组的整数解.9.D【解析】【分析】各式计算得到结果,即可作出判断.【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3•m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12÷a8=a4,正确;故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.B【解析】【分析】由条件设,AB=2x,就可以表示出CP=3x,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴,CD=2x∵CP:BP=1:2∴,BP=3x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCECtan∠EBC=ECBC∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴PF=2PB=43x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·EF=433x·322AD2=2×3)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴23x∵tan ∠PAB=PB AB =3 ∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt △AOB 和Rt △POB 中,由勾股定理得,AO=3x ,PO=33x ∴4AO·PO=4×3x·33x=4x 2 又EF·EP=23x·233x=4x 2 ∴EF·EP=4AO·PO .故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.11.D【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可.详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=1cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt △EBC 中,22224845BE EC +=+=∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴OF OCBE BC=,即4OF=解得:故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.12.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,∵10≤x≤20,∴当x=1时,二次函数有最大值25,故答案是:1.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.14.y(2x+3y)(2x-3y)【解析】【分析】直接提取公因式y,再利用平方差公式分解因式即可.【详解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.15.或【解析】【分析】过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.【详解】如图所示,过点A作AG⊥BC,垂足为G,∵,∠BAC=90°,∴,∵AB=AC,AG⊥BC,∴AG=BG=CG=6,设BD=x,则EC=12-DE-BD=12-5-x=7-x,由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,∴DF=x,EF=7-x,在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=4,当BD=3时,DG=3,=,当BD=4时,DG=2,=∴AD的长为故答案为:或【点睛】本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.16.1【解析】【分析】【详解】解:∵正六边形ABCDEF 的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF 的长=3×6﹣3﹣3═12,∴扇形AFB (阴影部分)的面积=12×12×3=1. 故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.17.x≠﹣5.【解析】【分析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.18.517m -<„或83m =-【解析】【分析】联立方程可得2(2)530x m x m -++-=,设2(2)53y x m x m =-++-,从而得出2(2)53y x m x m =-++-的图象在22x -<„上与x 轴只有一个交点,当△0=时,求出此时m 的值;当△0>时,要使在22x -<„之间有且只有一个公共点,则当x=-2时和x=2时y 的值异号,从而求出m的取值范围;【详解】联立2325y x mx y x m ⎧=--⎨=-⎩可得:2(2)530x m x m -++-=,令2(2)53y x m x m =-++-, ∴抛物线23y x mx =--与直线25y x m =-在22x -<„之间有且只有一个公共点,即2(2)53y x m x m =-++-的图象在22x -<„上与x 轴只有一个交点,当△0=时,即△2(2)4(53)0m m =+--=解得:8m =±当8m =+ 2522m x +==+>当8m =-252m x +==- 当△0>时,∴令2x =-,75y m =+,令2x =,33y m =-,(75)(33)0m m ∴+-<, ∴517m -<< 令2x =-代入20(2)53x m x m =-++- 解得:57m =-, 此方程的另外一个根为:237-, 故57m =-也满足题意,故m 的取值范围为:517m -<„或8m =-故答案为: 517m -<„或8m =-【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.2.7米【解析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.20.(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①3或m=﹣3m的值为4622-.【解析】分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.详解:(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),∴﹣4﹣8+c=0,即c=12,∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,∵点B关于原点的对称点为C,∴C(﹣m,﹣n),∵C落在抛物线上,∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,解得:﹣m2+4m+12=m2﹣4m﹣12,解得:m=2或m=﹣2;②∵点C(﹣m,﹣n)在第四象限,∴﹣m>0,﹣n<0,即m<0,n>0,∵抛物线顶点坐标为(﹣2,16),∴0<n≤16,∵点B在抛物线上,∴﹣m2﹣4m+12=n,∴m2+4m=﹣n+12,∵A(2,0),C(﹣m,﹣n),∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,当n=时,AC2有最小值,∴﹣m2﹣4m+12=,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C (-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=12时,AC2有最小值,在解方程求得m的值即可.21.(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(52,74).【解析】【分析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)∴30 9330 a ba b-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1,延长PE交x轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t ﹣1+(3﹣t ),解得:t=52, ∴P (52,74). 【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.22.(1)y=-6x ,y=-2x-4(2)1 【解析】【分析】(1)将点A 坐标代入反比例函数求出m 的值,从而得到点A 的坐标以及反比例函数解析式,再将点B 坐标代入反比例函数求出n 的值,从而得到点B 的坐标,然后利用待定系数法求一次函数解析式求解; (2)设AB 与x 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.【详解】(1)将A (﹣3,m+1)代入反比例函数y=m x得, -3m =m+1, 解得m=﹣6,m+1=﹣6+1=2,所以,点A 的坐标为(﹣3,2),反比例函数解析式为y=﹣6x, 将点B (n ,﹣6)代入y=﹣6x 得,﹣6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得,326k b k b -+=⎧⎨+=-⎩, 解得24k b =-⎧⎨=-⎩, 所以,一次函数解析式为y=﹣2x ﹣4;(2)设AB 与x 轴相交于点C ,令﹣2x ﹣4=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=1.考点:反比例函数与一次函数的交点问题.23.隧道最短为1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=BDAD,即4003AD=∴3(米),在Rt△BCD中,∵tan45°=BDCD,即4001CD=,∴CD=400(米),∴3(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.24.0【解析】【分析】本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式=9-23-8+23-1=0.【点睛】本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.25.(1)见解析;(2)1;(3)估计全校达标的学生有10人【解析】【分析】(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.26.(1)127;(2)45(9﹣t);(3)①S =﹣23t2+163t﹣327;②S=﹣27t2+1.③S=24175(9﹣t)2;(3)3或215或4或173.【解析】【分析】(1)根据题意点R与点B重合时t+43t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在□ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S △PQR ﹣S △KBR =12×3×3﹣12×t×47t=﹣27t 2+1. ③如图3中,当3<t <9时,重叠部分是△PQK .S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53, ∴t=9﹣103=173.综上所述,满足条件的t的值为3或215或4或173.【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.27.78o【解析】【分析】连接BD,根据线段垂直平分线的性质得到DA DB=,根据等腰三角形的性质、三角形内角和定理计算即可.【详解】连接BD,∵E为AB的中点,DE AB⊥于点E,∴AD BD=,∴DBA A∠=∠,∵66A∠=o,∴66DBA∠=o,∵90ABC∠=o,∴24DBC ABC DBA∠=∠-∠=o,∵AD BC=,∴BD BC=,∴C BDC∠=∠,∴180782DBCC-∠∠==oo.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.。
江苏省泰州市2019-2020学年高考数学第四次调研试卷含解析
江苏省泰州市2019-2020学年高考数学第四次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在平面直角坐标系xOy 中,已知角θ的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边落在直线2y x =上,则3sin 22πθ⎛⎫+= ⎪⎝⎭( ) A .45 B .45-C .35D .35-【答案】C 【解析】 【分析】利用诱导公式以及二倍角公式,将3sin 22πθ⎛⎫+⎪⎝⎭化简为关于tan θ的形式,结合终边所在的直线可知tan θ的值,从而可求3sin 22πθ⎛⎫+ ⎪⎝⎭的值. 【详解】因为222222223sin cos tan 1sin 2cos 2sin cos 2sin cos tan 1πθθθθθθθθθθ--⎛⎫+=-=-== ⎪++⎝⎭,且tan 2θ=, 所以3413sin 22415πθ-⎛⎫+==⎪+⎝⎭. 故选:C. 【点睛】本题考查三角函数中的诱导公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解22sin cos m n θθ+值的两种方法:(1)分别求解出sin ,cos θθ的值,再求出结果;(2)将22sin cos m n θθ+变形为222222sin cos tan sin cos tan 1m n m nθθθθθθ++=++,利用tan θ的值求出结果. 2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( )A B .C .D 【答案】A 【解析】 【分析】在12PF F ∆中,由余弦定理,得到2||PF ,再利用12||||2PF PF a -=即可建立,,a b c 的方程. 【详解】由已知,1||HF b ===,在12PF F ∆中,由余弦定理,得2||PF ===1133PF HF b ==,12||||2PF PF a -=,所以32b a =,32b a ⇒=e =∴= 故选:A. 【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立,,a b c 三者间的关系,本题是一道中档题.3.若0.60.5a =,0.50.6b =,0.52c =,则下列结论正确的是( ) A .b c a >> B .c a b >>C .a b c >>D .c b a >>【答案】D 【解析】 【分析】根据指数函数的性质,取得,,a b c 的取值范围,即可求解,得到答案. 【详解】由指数函数的性质,可得0.50.50.610.60.50.50>>>>,即10b a >>>, 又由0.512c =>,所以c b a >>. 故选:D. 【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得,,a b c 的取值范围是解答的关键,着重考查了计算能力,属于基础题.4.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A .3B .32C .53D .2【答案】D 【解析】 【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,'Rt CBF ∆和'Rt FBF ∆中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF , 设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =; 'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故10e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5.已知函数3sin ()(1)()x x x xf x x m x e e-+=+-++为奇函数,则m =( ) A .12B .1C .2D .3【答案】B 【解析】 【分析】根据()f x 整体的奇偶性和部分的奇偶性,判断出m 的值. 【详解】依题意()f x 是奇函数.而3sin y x x =+为奇函数,x xy e e -=+为偶函数,所以()()()1gx x m x =+-为偶函数,故()()0gx g x --=,也即()()()()110x m x x m x +---+=,化简得()220m x -=,所以1m =.故选:B 【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.6.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的关于直线1y =-对称的点在()1g x kx =-的图像上,则k 的取值范围是( )A .13(,)34B .13(,)24C .1(,1)3D .1(,1)2【答案】D 【解析】 【分析】根据对称关系可将问题转化为()f x 与1y kx =--有且仅有四个不同的交点;利用导数研究()f x 的单调性从而得到()f x 的图象;由直线1y kx =--恒过定点()0,1A -,通过数形结合的方式可确定(),AC AB k k k -∈;利用过某一点曲线切线斜率的求解方法可求得AC k 和AB k ,进而得到结果.【详解】()1g x kx =-关于直线1y =-对称的直线方程为:1y kx =--∴原题等价于()f x 与1y kx =--有且仅有四个不同的交点由1y kx =--可知,直线恒过点()0,1A - 当0x >时,()ln 12ln 1f x x x '=+-=-()f x ∴在()0,e 上单调递减;在(),e +∞上单调递增由此可得()f x 图象如下图所示:其中AB 、AC 为过A 点的曲线的两条切线,切点分别为,B C由图象可知,当(),AC AB k k k -∈时,()f x 与1y kx =--有且仅有四个不同的交点 设(),ln 2C m m m m -,0m >,则ln 21ln 10AC m m m k m m -+=-=-,解得:1m =1AC k ∴=-设23,2B n n n ⎛⎫+ ⎪⎝⎭,0n ≤,则23132220ABn n k n n ++=+=-,解得:1n =- 31222AB k ∴=-+=-11,2k ⎛⎫∴-∈-- ⎪⎝⎭,则1,12k ⎛⎫∈ ⎪⎝⎭本题正确选项:D 【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.7.已知定义在R 上的函数()f x ,若函数()2y f x =+为偶函数,且()f x 对任意1x ,[)22,x ∈+∞()12x x ≠,都有()()21210f x f x x x -<-,若()()31f a f a ≤+,则实数a 的取值范围是( )A .13,24⎡⎤-⎢⎥⎣⎦B .[]2,1--C .1,2⎛⎤-∞- ⎥⎝⎦D .3,4⎛⎫+∞⎪⎝⎭【答案】A 【解析】 【分析】根据题意,分析可得函数()f x 的图象关于2x =对称且在[)2,+∞上为减函数,则不等式()()31f a f a ≤+等价于231a a -≥-,解得a 的取值范围,即可得答案. 【详解】解:因为函数()2y f x =+为偶函数, 所以函数()f x 的图象关于2x =对称,因为()f x 对任意1x ,[)22,x ∈+∞ ()12x x ≠,都有()()21210f x f x x x -<-,所以函数()f x 在[)2,+∞上为减函数,则()()()()312312231f a f a f a f a a a ≤+⇔-≤+-⇔-≥-, 解得:1324a -≤≤. 即实数a 的取值范围是13,24⎡⎤-⎢⎥⎣⎦.故选:A. 【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.8.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=u u u v u u u u v ,222AF F B =u u u u v u u u u v,则椭圆E 的离心率为( )A .23B .34C D 【答案】C 【解析】 【分析】根据222AF F B =u u u u r u u u r表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出,a c 关系,求出离心率. 【详解】222AF F B =u u u u r u u u u r Q设2BF x =,则22AF x =由椭圆的定义,可以得到1122,2AF a x BF a x =-=-120AF AF ⋅=u u u r u u u u rQ ,12AF AF ∴⊥在1Rt AF B V 中,有()()()2222232a x x a x -+=-,解得3a x =2124,33a a AF AF ∴==在12Rt AF F △中,有()22242233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭整理得225=9c a ,5c e a ∴==故选C 项. 【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出,a c 关系,得到离心率.属于中档题. 9.设2,(10)()[(6)],(10)x x f x f f x x -≥⎧=⎨+<⎩ ,则(5)f =( )A .10B .11C .12D .13【答案】B 【解析】 【分析】根据题中给出的分段函数,只要将问题转化为求x≥10内的函数值,代入即可求出其值. 【详解】∵f (x )()()()210610x x f f x x ⎧-≥⎪=⎨⎡⎤+⎪⎣⎦⎩<,∴f (5)=f[f (1)] =f (9)=f[f (15)] =f (13)=1. 故选:B . 【点睛】本题主要考查了分段函数中求函数的值,属于基础题.10.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><≤的图象如图所示,则下列说法错误的是( )A .函数()f x 在1711,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减 B .函数()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上单调递增 C .函数()f x 的对称中心是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭ D .函数()f x 的对称轴是()5212k x k Z ππ=-∈ 【答案】B 【解析】 【分析】根据图象求得函数()y f x =的解析式,结合余弦函数的单调性与对称性逐项判断即可. 【详解】由图象可得,函数的周期5263T πππ⎛⎫=⨯-=⎪⎝⎭,所以22T πω==. 将点,03π⎛⎫⎪⎝⎭代入()()2cos 2f x x ϕ=+中,得()2232k k Z ππϕπ⨯+=-∈,解得()726k k Z πϕπ=-∈,由0ϕπ<≤,可得56πϕ=,所以()52cos 26f x x π⎛⎫=+ ⎪⎝⎭.令()52226k x k k Z ππππ≤+≤+∈,得()51212k x k k πππ-≤≤π+∈Z , 故函数()y f x =在()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递减, 当1k =-时,函数()y f x =在1711,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减,故A 正确;令()52226k x k k Z ππππ-≤+≤∈,得()1151212k x k k Z ππππ-≤≤-∈, 故函数()y f x =在()115,1212k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦上单调递增. 当2k =时,函数()y f x =在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,故B 错误; 令()5262x k k Z πππ+=+∈,得()26k x k Z ππ=-∈,故函数()y f x =的对称中心是,026k ππ⎛⎫- ⎪⎝⎭()k Z ∈,故C 正确; 令526x k ππ+=()k Z ∈,得5212k x ππ=-()k Z ∈,故函数()y f x =的对称轴是5212k x ππ=-()k Z ∈,故D 正确. 故选:B. 【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.11.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3- B .{}1,0-C .{}0,3D .{}1,0,3-【答案】A 【解析】 【分析】先求得全集包含的元素,由此求得集合A 的补集. 【详解】由()()130x x +-≤解得13x -≤≤,故{}1,0,1,2,3U =-,所以{}1,3U C A =-,故选A. 【点睛】本小题主要考查补集的概念及运算,考查一元二次不等式的解法,属于基础题.12.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A . B .C .1D .2【答案】C 【解析】 【分析】每一次成功的概率为,服从二项分布,计算得到答案.【详解】每一次成功的概率为,服从二项分布,故.故选:.【点睛】本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力. 二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市2019-2020学年度第二学期调研测试高三数学试题含附加题
y ⎩江苏省泰州市 2019—2020 学年度第二学期调研测试高三数学试题第I 卷(必做题,共 160 分)一、填空题(本大题共 14 小题,每小题 5 分,共 70 分,请将答案填写在答题卷相应的位置上.) 1.已知集合 A ={l ,2},B ={2,4,8},则 A B = . 2. 若实数 x ,y 满足 x +y i =﹣1+(x ﹣y )i (i 是虚数单位),则 xy = .3. 如图是容量为 100 的样本的频率分布直方图,则样本数据落在区间[6,18)内的频数为 .4. 根据如图所示的伪代码,可得输出的 S 的值为 .5.若双曲线 x a 2 2- = 1(a >0,b >0)的一条渐近线方程为 y = 2x ,则该双曲线的离心率b 2为 .6. 将一颗质地均匀的骰子(一种各个面上分别标有 1,2,3,4,5,6 个点的正方体玩具) 先后抛掷 2 次,这两次出现向上的点数分别记为 x ,y ,则 x - y = 1的概率是.7. 在平面直角坐标系 xOy 中,抛物线 y 2=4x 上一点 P 到焦点 F 的距离是它到 y 轴距离的 3倍,则点 P 的横坐标为 .8. 我国古代数学名著《增删算法统宗》中有这样一首数学诗:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”它的大意是:有人要到某关口,路程为 378 里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都是前一天的一半, 一共走了六天到达目的地.那么这个人第一天走的路程是 里. 9.若定义在 R 上的奇函数 f (x ) 满足 f (x + 4) = f (x ) , f (1) = 1,则 f (6) + f (7) + f (8)的值为.10. 将半径为 R 的半圆形铁皮卷成一个圆锥的侧面,若圆锥的体积为9 3π,则 R =.⎧x + a ,x ≥ a 1. 若函数 f (x ) = ⎨x 2 -1,x < a 只有一个零点,则实数 a 的取值范围为.22 12. 在平面直角坐标系 xOy 中,已知点 A( x , y ),B( x , y )在圆 O : x 2 + y 2= 4 上,1122且满足 x 1x 2 + y 1 y 2 = -2 ,则 x 1 + x 2 + y 1 + y 2 的最小值是.13. 在锐角△ABC 中,点 D ,E ,F 分别在边 AB ,BC ,CA 上,若AB = 3AD ,AC = λAF ,且BC ⋅ ED = 2EF ⋅ ED = 6 , ED = 1,则实数λ的值为.14. 在△ABC 中,点 D 在边 BC 上,且满足 AD =BD ,3tan 2B ﹣2tanA +3=0,则BD的取CD值范围为 .二、解答题(本大题共 6 小题,共计 90 分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分 14 分)如图,在三棱锥 P — ABC 中,PA ⊥平面 ABC ,AB =AC ,点 D ,E ,F 分別是 AB ,AC , BC 的中点.(1) 求证:BC ∥平面 PDE ; (2) 求证:平面 PAF ⊥平面 PDE .16.(本小题满分 14 分)已知函数 f (x ) = sin 2x + sin x cos x - 1,x ∈R .2(1)求函数 f (x ) 的最大值,并写出相应的 x 的取值集合;π 3π (2)若 f (α) =,α∈( - , ),求 sin2α的值.6 8 817.(本小题满分14分)某温泉度假村拟以泉眼C 为圆心建造一个半径为12 米的圆形温泉池,如图所示,M,N 是圆C 上关于直径AB 对称的两点,以A 为四心,AC 为半径的圆与圆C 的弦AM,AN 分别交于点D,E,其中四边形AEBD 为温泉区,I、II 区域为池外休息区,III、IV 区域为池内休息区,设∠MAB=θ.(1)当θ=π时,求池内休息区的总面积(III和IV两个部分面积的和);4(2)当池内休息区的总面积最大时,求AM 的长.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆M:xa2y2+= 1(a>b>0)的左顶点为A,过点b2A的直线与椭圆M交于x轴上方一点B,以AB为边作矩形ABCD,其中直线CD过原点O.当点B 为椭圆M 的上顶点时,△AOB 的面积为b,且AB=3b .(1)求椭圆M 的标准方程;(2)求矩形ABCD 面积S 的最大值;(3)矩形ABCD 能否为正方形?请说明理由.19.(本小题满分16分)2定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“YZ函数”.(1)判断函数f (x) =xe x-1是否为“YZ函数”,并说明理由;(2)若函数g(x) = ln x -mx (m∈R)是“YZ函数”,求实数m的取值范围;(3)已知h(x) =1x3 +1ax2 +bx -1b ,x∈(0,+∞),a,b∈R,求证:当a≤﹣2,3 2 3且0<b<1时,函数h(x)是“YZ函数”.20.(本小题满分16分)已知数列{a n},{b n},{c n}满足b n=a n+2-a n,c n=2a n+1+a n.(1)若数列{a n}是等比数列,试判断数列{c n}是否为等比数列,并说明理由;(2)若a n恰好是一个等差数列的前n项和,求证:数列{b n}是等差数列;(3)若数列{b n}是各项均为正数的等比数列,数列{c n}是等差数列,求证:数列{a n}是等差数列.第II 卷(附加题,共40 分)2 )+ + = + + ≤ 21.【选做题】本题包括 A ,B ,C 三小题,请选定其中两题作答,每小题 10 分共计 20 分,解答时应写出文字说明,证明过程或演算步骤.A. 选修 4—2:矩阵与变换已知列向量⎡a ⎤ 在矩阵 M = ⎡3 4⎤ 对应的变换下得到列向量⎡b - 2⎤ ,求M -1 ⎡b ⎤ .⎢5 ⎥ ⎢1 2 ⎥ ⎢ b ⎥ ⎢a ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦B. 选修 4—4:坐标系与参数方程⎧⎪x = cos α在平面直角坐标系 xOy 中,曲线 C 的参数方程为⎨⎪⎩ y = (α为参数).以坐标原 3 sin α点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为ρsin(θ+ π= 4 , 4点 P 为曲线 C 上任一点,求点 P 到直线 l 距离的最大值.C. 选修 4—5:不等式选讲已知实数 a ,b ,c 满足 a >0,b >0,c >0,a 2b 2c 23 ,求证:a b c 3 . b c a【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,在多面体ABCDEF 中,平面ADE⊥平面ABCD,四边形ABCD 是边长为2 的π正方形,△ADE 是等腰直角三角形,且∠ADE=,EF⊥平面ADE,EF=1.2(1)求异面直线AE 和DF 所成角的余弦值;(2)求二面角B—DF—C 的余弦值.23.(本小题满分10分)给定n(n≥3,n∈ N*)个不同的数1,2,3,…,n,它的某一个排列P 的前k(k∈ N*,1≤k≤n)项和为Sk ,该排列P 中满足2Sk≤Sn的k 的最大值为kP.记这n 个不同数的所有排列对应的kP 之和为Tn.(1)若n=3,求T3;(2)若n=4l+1,l∈ N*,①证明:对任意的排列P,都不存在k(k∈ N*,1≤k≤n)使得2Sk =Sn;②求Tn(用n 表示).2 2 2 2 12019~2020 学年度第二学期调研测试高三数学答案一、填空题 1. {1, 2, 4,8}2. 12 513. 804. 85.6.7.1828. 192 9. -1 10. 6 11. (-∞ -1] (0,1] 二、解答题12. -2 13. 314. (1, 2]15.(本题满分 14 分)证明:(1)在 ∆ABC 中,因为 D , E 分别是 AB , AC 的中点,所以 DE / / B C , .............................................................................................................. 2 分 因为 BC ⊄ 平面PDE , DE ⊂ 平面PDE ,所以 BC / /平面PDE . ................................................................................................. 6 分 (2)因为 PA ⊥ 平面ABC , DE ⊂ 平面PDE ,所以 PA ⊥ DE ,在∆ABC 中,因为 AB = AC , F 分别是 BC 的中点, 所 以 AF ⊥ BC , ............................................................................................................ 8 分 因为 DE / / BC ,所以 DE ⊥ AF ,又因为 AF PA = A , AF ⊂ 平面PAF , PA ⊂ 平面PAF ,所以 DE ⊥ 平面PAF , .............................................................................................. 12 分因为 DE ⊂ 平面PDE ,所以平面PAF ⊥ 平面PDE . ..................................... 14 分16.(本题满分 14 分)解:(1)因为 f (x ) = sinx + sin x cos x - , 21- c os 2x 所 以 f (x ) = +1 sin 2x - 1 = 1 (sin 2x - cos 2x )……………2 分2 2 2 2 = (sin 2x cos π- cos 2x sin π = sin(2x - π)……………4 分2 4 4 2 4当 2x - π = 2k π+ π(k ∈ Z) ,即 x = k π+3π(k ∈ Z) 时, f (x ) 取最大值 , 4 28252)2 2 2 2 1± 3388 ))) ( ) α- ∈ , ) ) ] ) cos ) sin 所以 f (x ) 的最大值为2 ,此时 x 的取值集合为⎧x x = k π+3π,k ∈ ⎫.………7 分⎨Z ⎬ 2⎩ ⎭(2)因为 f (α) =,则 2 sin(2α- π =,即sin(2α- π = 1 ,6 2 46 4 3因为α∈(- π , 3π ) ,所以 2 π (- π π , 8 8 4 2 2 π π 1 则cos(2α- ) = 1 -sin 2(2α- = 1 - 2 = , ................................. 10 分4 4 3 3所以sin 2α= sin[(2α- π + π = sin(2α- π π+ cos(2α- π π4 4 4 4 4 4= 1⋅ 2 + 2 2 ⋅ 2 = 4 + 2 . ……………14 分 3 2 3 2 617.(本题满分 14 分)解:(1)在 Rt ∆ABM 中,因为 AB = 24 ,θ= π,4所以 MB = AM = 12 , MD = 24 cos π-12 = 12 4-12 ,所以池内休息区总面积 S = 2 ⋅ 1MB ⋅ DM = 12 2(12 2-12) = 144(2 - 2) .(2)在 Rt ∆ABM 中,因为 AB = 24 , ∠MAB =θ, ……………4 分所以 MB = 24sin θ, AM = 24 cos θ, MD = 24 cos θ-12 ,由 MB = 24sin θ> 0, MD = 24 c os θ-12 > 0 得θ∈⎛ 0,π⎫ , .................................... 6 分 3⎪⎝⎭则池内休息区总面积 S = 2 ⋅ 1MB ⋅ DM = 24sin θ(24 cos θ-12) ,θ∈⎛ 0,π⎫; 23 ⎪设 f (θ) = sin θ(2 cos θ-1) ,θ∈⎛ 0,π⎫,因为⎝ ⎭……………9 分3 ⎪ ⎝ ⎭f '(θ) = cos θ(2 cos θ-1) - 2sin 2 θ= 4 cos 2 θ- cos θ- 2 = 0 ⇒ cos θ= ,又cos θ=1+ 33 > 1 ,所以∃θ ∈ ⎛ 0,π⎫,使得cos θ = 1+ 33 , 8 2 0 3 ⎪ 0 8⎝ ⎭则当 x ∈(0,θ0 ) 时, f '(θ) > 0 ⇒ f (θ) 在(0,θ0 )上单调增, 2 2 2a 2+ b 22 4 1+ k 21+ k 21+ k 22 24 1+ k 2 ⎨ 2 ⎩2 当 x ∈⎛θ,π⎫时, f '(θ) < 0 ⇒ f (θ) 在(0,θ ) 上单调减, 0 3 ⎪ 0⎝ ⎭即 f (θ0 )是极大值,也是最大值,所以 f max (θ) =f (θ0 ),此时 AM = 24 cos θ0 = 3+ 3 . ................................................................................ 13 分答:(1)池内休息区总面积为144(2 - 2)m 2;(2)池内休息区总面积最大时 AM 的长为 AM = (3 + 3 33)m .………14 分18.(本题满分 16 分)⎧ = ⎪ 解:(1)由题意: ⎪ 1ab = b ⎪3b ,解得 a = 2, b = c = ,⎪a 2 = b 2 + c 22所以椭圆 M 的标准方程为x+y= 1. ........................................................... 4 分4 2(2) 显然直线 AB 的斜率存在,设为 k 且 k > 0 ,则直线 AB 的方程为 y = k (x + 2),即 kx - y + 2k = 0 ,⎧ y = k (x + 2) ⎪ 2 2 2 2联立⎨ x 2 + y 2 = ⎩ 4 2得(1+ 2k ) x + 8k x + 8k - 4 = 0 ,解得 x B = 2 - 4k 2 1+ 2k 2 , y B = 4k 1+ 2k 2 ,所以 AB = = 1+ 2k 2 ,直线CD 的方程为 y = kx ,即 kx - y = 0 ,所以 BC ==2k ,4 1 + k 22k 8k88所以矩形 ABCD 面积 S =1+ 2k2⋅= = 1+ 2k 21 + 2k k≤ = 2 , 2 2所以当且仅当 k =时,矩形 ABCD 面积 S 的最大值为 2 2(3) 若矩形 ABCD 为正方形,则 AB = BC ,. .............. 11 分 即 1+ 2k 22k ,则 2k 1+ k 23 - 2k 2+ k - 2 = 0 (k > 0) , 33 (x + 2)2 + y 2B B2k 1+ k 22 = 1x 1 2 令 f (k ) = 2k 3 - 2k 2+ k - 2(k > 0) ,因为 f (1) = -1 < 0, f (2) = 8 > 0 ,又 f (k ) = 2k 3- 2k 2+ k - 2(k > 0) 的图象不间断, 所以 f (k ) = 2k 3- 2k 2+ k - 2(k > 0) 有零点,所以存在矩形 ABCD 为正方形.19.(本题满分 16 分)解:(1)函数 f (x ) = -1是“Y Z 函数”,理由如下:e x……………16 分因 为 f (x ) = xe x -1,则f '(x ) =1- x , e x当 x < 1时, f '(x ) > 0 ;当 x > 1 时, f '(x ) < 0 ,x 1所 以 f (x ) = -1的极大值 f (1) = -1 < 0 ,e x e x故函数 f (x ) = -1是“Y Z 函数”. ............................................................ 4 分e x(2)定义域为(0, +∞) , g '(x ) = 1- m ,x当 m ≤ 0 时, g '(x ) = 1- m > 0 ,函数单调递增,无极大值,不满足题意;x 当 m > 0 时,当0 < x <1 时, g '(x ) = 1- m > 0 ,函数单调递增, m x 当 x > 1 时, g '(x ) = 1- m < 0 ,函数单调递减,m x1 1 1所以 g ( x ) 的极大值为 g ( ) = ln - m ⋅ = - ln m -1,m m m1 1由题意知 g ( ) = - ln m -1 < 0 ,解得 m > m . (10)分 e(3)证明: h '(x ) = x 2 + ax + b ,因为 a ≤ -2 , 0 < b < 1,则∆ = a 2 - 4b > 0 ,所以 h '(x ) = x 2+ ax + b = 0 有两个不等实根,设为 x , x ,⎧x 1 + x 2 = -a > 0因为⎨x x = b > 0,所以 x 1 > 0, x 2 > 0 ,不妨设0 < x 1 < x 2 , ⎩ 1 2当0 < x < x 1 时, h '(x ) > 0 ,则 h (x ) 单调递增; 当 x 1 < x < x 2 时, h '(x ) < 0 ,则 h (x ) 单调递减,1 所以 h (x ) 的极大值为 h (x ) = 1x 3+ 1ax 2+ bx - b , .......................... 13 分13 12 113由 h '(x ) = x 2 + ax + b = 0 得 x 3 = x (-ax - b ) = -ax 2- bx ,1 1 1因为 a ≤ -2 , 0 < b < 1,所以 h (x ) = 1x 3+ 1ax 2+ bx 1 1 1 1 1- 1b = 1(-ax 2 - bx ) + 1ax 2 + bx - 1b13 12 1 13 31 1 21 1 3 = 1 ax2 + 2 bx - 1 b ≤ - 1 x 2 + 2 bx - 1 b6 1 3 13 3 1 3 1 3= - 1 (x - b )2 + 1b (b -1) < 0 .3 1 3所以函数 h (x ) 是“Y Z 函数”. ........................................................................ 16 分(其他证法相应给分)20.(本题满分 16 分)解:(1)设等比数列{a n }的公比为 q ,则 c n = 2a n +1 + a n = 2a n q + a n = (2q +1)a n , 当 q = - 1时, c = 0 ,数列{c }不是等比数列, ............................................. 2 分2n n1c n +1(2q +1)a n +1当 q ≠ - 2时,因为 c n ≠ 0 ,所以 c=(2q +1)a = q ,所以数列{c n }是等比数nn列. .............................................................................................................................. 5 分(2) 因为 a n 恰好是一个等差数列的前 n 项和,设这个等差数列为{d n } ,公差为 d ,因为 a n = d 1 + d 2 + + d n ,所以 a n +1 = d 1 + d 2 + + d n + d n +1 , 两式相减得 a n +1 - a n = d n +1 , 因为 a n +2 = a n + b n ,所以b n +1 - b n = (a n +3 - a n +1 ) - (a n +2 - a n ) = (a n +3 - a n +2 ) - (a n +1 - a n ) = d n +3 - d n +1 = 2d ,所以数列{b n }是等差数列. .......................................................................................... 10 分(3) 因为数列{c n }是等差数列,所以c n +3 - c n +2 = c n +1 - c n ,又因为c n = 2a n +1 + a n ,所以 2a n +4 + a n +3 - (2a n +3 + a n +2 ) = 2a n +2 + a n +1 - (2a n +1 + a n ) ,即 2(a n +4 - a n +2 ) = (a n +3 - a n +1) + (a n +2 - a n ) ,则 2b n +2 = b n +1 + b n ,又因为数列{b }是等比数列,所以b= b b,则b = b ⋅ b n +1 + b n ,n即(b n +1 - b n )(2b n +1 + b n ) = 0 ,n +1 n n +2n +1 n 2222 n q 1 2 n q 0 1 ⎪ ⎪ ⎪ ⎦⎪ ⎣ 因为数列{b n }各项均为正数,所以b n +1 = b n , .......................................................... 13 分则 a n +3 - a n +1 = a n +2 - a n , 即 a n +3 = a n +2 + a n +1 - a n ,又因为数列{c n }是等差数列,所以 c n +2 + c n = 2c n +1 , 即(2a n +3 + a n +2 ) + (2a n +1 + a n ) = 2(2a n +2 + a n +1) , 化简得 2a n +3 + a n = 3a n +2 ,将 a n +3 = a n +2 + a n +1 - a n 代入得2(a n +2 + a n +1 - a n ) + a n = 3a n +2 ,化简得 a n +2 + a n = 2a n +1 ,所以数列{a n }是等差数列. .....................................16 分 (其他证法相应给分)数学Ⅱ(附加题)21. A . [选修 4-2:矩阵与变换](本小题满分 10 分)⎡3 解:因为 4⎤⎡a ⎤ = ⎡b - 2⎤ ,所以⎧3a + 20 = b - 2 ,解得⎧a = -6 , .............. 4 分 ⎢1 2⎥⎢5⎥ ⎢ b ⎥⎨ a +10 = b ⎨ b = 4 ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎩ ⎩设 M -1= ⎡m p ⎤ ,则⎡3 4⎤ ⎡m p ⎤ = ⎡1 0⎤ ,⎢⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎦ ⎧m = 1⎧3m + 4n = 1 ⎪3 p + 4q = 0 ⎪n = - 1 ⎡ 1 - 2⎤ ⎪ ⎪ 即 ,解得 2 , 所 以 M -1 = ⎢ 13 ⎥ , .............................. 8 分 ⎨m + 2n = 0 ⎪⎩ p + 2q = 1 ⎨ p = -2 ⎪q = 3 ⎢⎣- 2 2 ⎥⎦ ⎩ 2⎡b ⎤ ⎡ 1 -2⎤⎡ 4 ⎤ ⎡ 16 ⎤ 所 以 M -1 ⎢ ⎥ = ⎢ 1 3 ⎥ ⎢ ⎥ = ⎢ ⎥10分⎣a ⎦ ⎢-⎥ ⎣-6⎦ ⎣-11⎦ 2 2B.[选修 4-4:坐标系与参数方程](本小题满分 10 分)ππ解:由题:直线方程即为ρ(sin θcos + cos θsin) = 4 ,4 4由ρcos θ= x , ρsin θ= y 得直线的直角坐标方程为 x + y - 8 = 0 , ..................... 4 分设 P 点的坐标为(cos α, 3 sin α),cos α+ 3 sin α- 812 +122AE ⋅ DF = [( b )2 2sin ⎛α+ π⎫ - 86 ⎪ ∴ 点 P 到直线的距离 d = = ⎝ ⎭ , 8 分当α+ π = 2k π- π(k ∈ Z ) ,即α= 2k π- 2π(k ∈ Z) 时, d 取得最大值5,6 2 3此时点 P 的坐标为⎛ - 1 , - 3 ⎫10 分2 2 ⎪ ⎝ ⎭C.[选修 4-5:不等式选讲](本小题满分 10 分)证明:由柯西不等式,得3(a + b + c ) = (b + c + a )( a + b 2 + c b c a)2 ]………………5 分a ⋅ )所以 a + b + c ≤ 3 . .............................................................................................. 10 分 22.(本小题满分 10 分)π解:因为平面 ADE ⊥ 平面 ABCD ,又∠ADE = ,2即 DE ⊥ AD ,因为 DE ⊂ 平面ADE ,平面ADE 平面ABCD = AD , ∴ DE ⊥ 平面 ABCD ,由四边形 ABCD 为边长为 2 的正方形, 所以 DA , DC , DE 两两互相垂直.以 D 为坐标原点,{DA , DC , DE }为一组基底建立如图所示的空间直角坐标系 ......... 2 分由 EF ⊥ 平面 ADE 且 EF = 1 ,∴ D (0, 0, 0), A (2, 0, 0), E (0, 0, 2),C (0, 2, 0), B (2, 2, 0), F (0,1, 2),(1) AE = (-2, 0, 2) , DF = (0,1, 2) ,则cos < AE , DF >=AE ⋅ DF = 4 = 10 ,2 2 ⨯ 5 52 ≥ ( b ⋅ 22 )+ ( c )2 + ( a )2][( a )2 + ( b )2 + ( c b c a a + c ⋅ b + b c c 2 a = (a + b + c ) 2⎧ ⋅ n (n +1) m n 所以 AE 和 DF 所成角的余弦值为10 (5)分 5(2) DB = (2, 2, 0) , DF = (0,1, 2) ,设平面 BDF 的一个法向量为n = ( x , y , z ) ,n ⋅ DB = 2x +2 y = 0 由⎨,取 z = 1,得 n = (2,-2,1) , ⎩n ⋅ DF = y + 2z = 0平面 DFC 的一个法向量为 m = (1, 0, 0) ,∴cos < >= m ⋅n = 2 = 2 ,m ,n 3⨯1 32由二面角 B - DF - C 的平面角为锐角,所以二面角 B - DF - C 的余弦值为 3.……10 分23.(本小题满分 10 分)解:(1)1, 2, 3的所有排列为1, 2,3;1,3, 2; 2,1,3; 2,3,1;3,1, 2;3, 2,1,因为 S 3 = 6 ,所以对应的 k P 分别为 2,1, 2,1,1,1,所以T 3 = 8 ; ............................... 3 分(2)(i )设 n 个不同数的某一个排列 P 为 a 1 , a 2 , ⋅⋅⋅, a n ,因为 n = 4l +1,l ∈ N *,所以 S n == (4l + 1)(2l + 1) 为奇数,2而 2S k 为偶数,所以不存在 k (k ∈ N *,1≤ k ≤ n ) 使得 2S k = S n ; ...........................5 分 (ii) 因为 2S k ≤ S n ,即 a 1 + a 2 + ⋅⋅⋅ + a k ≤ a k +1 + a k +2 + ⋅⋅⋅ + a n , 又由(i )知不存在 k (k ∈ N *,1≤ k ≤ n ) 使得 2S k = S n , 所以 a 1 + a 2 + ⋅⋅⋅ + a k < a k +1 + a k +2 + ⋅⋅⋅ + a n ;所以满足 2S k ≤ S n 的最大下标 k 即满足 a 1 + a 2 + ⋅⋅⋅ + a k < a k +1 + a k +2 + ⋅⋅⋅ + a n ① 且 a 1 + a 2 + ⋅⋅⋅ + a k + a k +1 > a k +2 + ⋅⋅⋅ + a n ②, 考虑排列 P 的对应倒序排列 P ' : a n , a n -1, ⋅⋅⋅, a 1 ,①②即 a n + ⋅⋅⋅ + a k +2 < a k +1 + a k + ⋅⋅⋅ + a 2 + a 1 , a n + ⋅⋅⋅ + a k +2 + a k +1 > a k + ⋅⋅⋅ + a 2 + a 1 , 由题意知 k P ' = n - k -1,则 k P + k P ' = n - 1 ; ..................................................................................................... 8 分 又1, 2, 3,⋅⋅⋅, n ,这 n 个不同数共有 n !个不同的排列,可以构成 n !个对应组合( P , P ') ,2且每组( P , P ') 中 k P + k P ' = n - 1 ,所以T n =n !(n -1) . .................................... 10 分2。
江苏省泰州中学高一数学下学期4月空中课堂效果检测试题(含解析)
学习资料江苏省泰州中学2019—2020学年高一数学下学期4月空中课堂效果检测试题(含解析)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求)1.直线50x +-=的倾斜角为( ) A 。
30- B 。
150C. 120D 。
60【答案】B 【解析】 【分析】设直线的倾斜角为α,则tan α=,解方程即可.【详解】由已知,设直线的倾斜角为α,则tan α=,又[0,180)α∈, 所以150α=. 故选:B【点睛】本题考查已知直线的斜率求倾斜角,考查学生的基本计算能力以及对基本概念的理解,是一道容易题.2。
已知经过两点(5,)m 和(,8)m 的直线的斜率大于1,则m 的取值范围是( )A. (5,8)B. (8,)+∞ C 。
13(,8)2D 。
13(5,)2【答案】D 【解析】 【分析】根据两点斜率公式解分式不等式. 【详解】由题意得815m m ->-,即21305m m ->-,解得1352m <<.故选D 。
【点睛】直线斜率两种计算方法:1、斜率的两点坐标公式;2、直线斜率等于直线倾斜角的正切.3。
设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A 。
若////m n αα,,则//m nB. 若//m n αβαβ⊂⊂,,,则//m nC. 若m n n m αβα=⊂⊥,,,则n β⊥ D. 若//m m n n αβ⊥⊂,,,则αβ⊥【答案】D 【解析】 【分析】根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【详解】选项A 错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面; 选项B 错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C 错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交; 选项D 正确,由m α⊥,//m n 便得n α⊥,又n β⊂,βα∴⊥,即αβ⊥。
2020届江苏省泰州中学高三下学期4月质量检测数学试题(解析版)
2020届江苏省泰州中学高三下学期4月质量检测数学试题一、填空题1.已知集合{|02}A x x =<<,{|1}B x x =>,则A B =I ______ 【答案】{|12}x x <<【解析】直接由集合的交集运算,即可得到本题答案. 【详解】因为集合{|02}A x x =<<,{|1}B x x =>, 所以{|12}A B x x =<<I . 故答案为:{|12}x x << 【点睛】本题主要考查集合的交集运算,属基础题. 2.已知i 为虚数单位,则复数11z i=-在复平面内对应的点位于第_______象限 【答案】一【解析】先化简得到z ,即可求出本题答案. 【详解】 由题,得11111(1)(1)22i z i i i i +===+--+, 所以复数z 在复平面对应的点为11,22⎛⎫⎪⎝⎭,位于第一象限. 故答案为:一 【点睛】本题主要考查复数的四则运算以及复数的几何意义,属基础题.3.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[]40,80中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[)40,60内的汽车有______辆.【答案】80【解析】试题分析:时速在区间[40,60)内的汽车有200(0.010.03)1080.⨯+⨯=【考点】频率分布直方图4.袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于______.【答案】3 5【解析】分析:通过枚举法写出摸出2个球的所有情况,再找出摸出1个黑球和1个白球的情况,由此能求出概率.详解:设3个黑球用A,B,C表示;2个白球用甲,乙表示,摸出2个球的所有情况:(A,B)、(A,C)、(A,甲)、(A,乙)、(B,C)、(B,甲)、(B,乙)、(C,甲)、(C,乙)、(甲,乙)共10种,其中摸出1个黑球和1个白球的情况有6种,所以,摸出1个黑球和1个白球的概率为63105 P==.故答案为3 5 .点睛:本题考查利用古典概型的概率公式求事件的概率,解题时要注意枚举法的合理运用.5.在一次知识竞赛中,抽取5名选手,答对的题数分布情况如表,则这组样本的方差为______.答对题数48910人数分布1121【答案】22 5【解析】根据表中数据计算平均数和方差即可.【详解】根据表中数据,计算平均数为()1x 48921085=⨯++⨯+=, 方差为(22222122s [(48)(88)(98)2108)55⎤=⨯-+-+-⨯+-=⎦. 故答案为:225.【点睛】本题考查了平均数与方差的计算问题,熟记计算公式,准确计算是关键,是基础题. 6.如图所示的算法流程图中,最后输出值为______.【答案】25【解析】分析:由流程图可知,该算法为先判断后计算的当型循环,模拟执行程序,即可得到答案. 详解:程序执行如下2018T <Ti15Y 5 10Y 5015Y750 20Y 1500025故2018T <不成立时,25i =. 故答案为25.点睛:本题考查了循环结构的程序框图,正确判断循环的类型和终止循环的条件是解题关键7.已知,m n 是两条不同的直线,,αβ是两个不同的平面. ①若m α⊂,m β⊥,则αβ⊥;②若m α⊂,n αβ=I ,αβ⊥,则m n ⊥; ③若m α⊂,n β⊂,//αβ,则//m n ④若//m α,m β⊂,n αβ=I ,则//m n .上述命题中为真命题的是______(填空所有真命题的序号). 【答案】①④【解析】由平面与平面垂直的判定定理可知①正确;②中,m n 的关系无法确定垂直;③中两个平面平行,两个平面内的直线可能平行也可能异面;由直线与平面平行的性质定理可得④正确. 【详解】对于①,由平面与平面垂直的判定定理可知正确;对于②,若m α⊂,n αβ=I ,αβ⊥,则,m n 可能平行,也可能相交,垂直; 对于③,若m α⊂,n β⊂,//αβ,则,m n 可能平行,也可能异面; 对于④,由直线与平面平行的性质定理可得④正确. 故答案为:①④. 【点睛】本题主要考查空间直线与平面间的位置关系,借助已知定理和身边的实物模型能方便解决这类问题,侧重考查直观想象的核心素养.8.公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织尺布的增加量为______尺.(1匹4=丈,1丈10=尺)【答案】1629【解析】分析:设该女子织布每天增加d 尺,由等差数列前n 项和公式求出d 即可. 详解:设该女子织布每天增加d 尺,由题意知,15a =尺,3010(943)390S =⨯+=尺 又由等差数列前n 项和公式得3013029303902S a ⨯=+=,解得1629d =尺 故答案为1629点睛:本题考查等差数列的实际应用,解题时要认真审题,注意等差数列性质的合理运用.9.若πcos α2cos α4⎛⎫=+⎪⎝⎭,则πtan α8⎛⎫+= ⎪⎝⎭______.【解析】πcos α2cos α4⎛⎫=+⎪⎝⎭,可得ππππcos α2cos α8888⎛⎫⎛⎫+-=++ ⎪⎪⎝⎭⎝⎭,利用和差公式、同角三角函数基本关系式及其倍角公式即可得出. 【详解】πcos α2cos α4⎛⎫=+ ⎪⎝⎭Q ,ππππcos α2cos α8888⎛⎫⎛⎫∴+-=++ ⎪ ⎪⎝⎭⎝⎭,ππππππππcos αcos sin αsin 2cos αcos 2sin αsin 88888888⎛⎫⎛⎫⎛⎫⎛⎫∴+++=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化为:ππππcos αcos 3sin αsin 8888⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, ππ3tan αtan 188⎛⎫∴+= ⎪⎝⎭,2π2tanπ8tan 1π41tan 8==-Q,解得πtan 18=.π1tan α83⎛⎫∴+==⎪⎝⎭,故答案为213+ 【点睛】本题考查了余弦和正切和差公式、同角三角函数基本关系式及其倍角公式,考查了推理能力与计算能力,属于中档题.10.如图,已知O 为矩形ABCD 内的一点,且OA 2=,OC 4=,AC 5=,则OB OD u u u r u u u r⋅=______.【答案】52-【解析】建立坐标系,设()O m,n ,()C a,b ,根据条件得出O ,C 的坐标之间的关系,再计算OB OD ⋅u u u r u u u r的值. 【详解】以A 为原点,以AB ,AD 为坐标轴建立平面直角坐标系,设()O m,n ,()B a,0,()D 0,b ,则()C a,b ,OA 2Q =,OC 4=,AC 5=,222222a b 25m n 4()()16m a n b ⎧+=⎪∴+=⎨⎪-+-=⎩,整理可得:13am bn 2+=.又()OB a m,n =--u u u r ,()OD m,b n u u u r=--,()()()22135OB OD m m a n n b m n am bn 422∴⋅=-+-=+-+=-=-u u u r u u u r .故答案为52-. 【点睛】本题考查了平面向量的数量积运算,建立坐标系是突破点,准确计算是关键,属于中档题.11.已知关于x 的方程()x x a 1-=在()2,∞-+上有三个相异实根,则实数a 的取值范围是______. 【答案】5,22⎛⎫-- ⎪⎝⎭【解析】分析:将方程问题转换为函数()f x x a =-与1()g x x=的图象在()2,-+∞上有三个不同交点.根据函数图象可以求出答案.详解:Q 方程()1x x a -=在()2,-+∞上有3个相异实根,∴函数()f x x a =-与1()g x x=的图象在()2,-+∞上有三个不同交点, 在坐标系中画出函数的图象,由图象可知,在(2,0)x ∈-上,函数()y f x =与()y g x =有两个不同的交点,在(0,)x ∈+∞上,函数()y f x =与()y g x =有一个交点Q 1,0()=1,0x xg x x x⎧>⎪⎪⎨⎪->⎪⎩,联立1y x y x a ⎧=-⎪⎨⎪=-⎩,整理得210x ax -+=,24a ∆=-∴240(2)(2)a g f ⎧∆=->⎨>⎩,即240122a a⎧->⎪⎨>--⎪⎩,解得522a -<<-∴实数a 的取值范围为5(,2)2--故答案为5,22⎛⎫-- ⎪⎝⎭点睛:本题主要考查方程的根与函数图象交点的关系,考查数形结合的思想以及分析问题解决问题的能力. 12.已知a 0>,b 0>,且111a b +=,则b3a 2b a++的最小值等于______. 【答案】11【解析】分析:构造基本不等式模型1132()(32)b ba b a b a a b a++=+++,化简整理,应用基本不等式,即可得出答案.详解:Q 111a b+=, ∴1132()(32)53()b b b aa b a b a a b a a b++=+++=++Q 0a >,0b >,∴0b a >,0ab>,∴2b aa b+≥,当且仅当2a b ==时取等号. 325611ba b a ++≥+=.∴32ba b a++的最小值等于11.故答案为11.点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用. 13.如图,已知AC 8=,B 为AC 的中点,分别以AB ,AC 为直径在AC 的同侧作半圆,M ,N 分别为两半圆上的动点(不含端点A ,B ,C),且BM BN ⊥,则AM CN ⋅u u u u r u u u r的最大值为______.【答案】4【解析】以A 为坐标原点,AC 所在直线为x 轴,建立如图所示的直角坐标系,求得A ,B ,C 的坐标,可得以AB 为直径的半圆方程,以AC 为直径的半圆方程,设出M ,N的坐标,由向量数量积的坐标表示,结合三角函数的恒等变换可得α2β=,再由余弦函数、二次函数的图象和性质,计算可得最大值. 【详解】以A 为坐标原点,AC 所在直线为x 轴,建立如图所示的直角坐标系,可得()A 0,0,()B 4,0,()C 8,0,以AB 为直径的半圆方程为22(x 2)y 4(x 0,y 0)-+=>>, 以AC 为直径的半圆方程为22(x 4)y 16(x 0,y 0)-+=>>, 设()M 22cos α,2sin α+,()N 44cos β,4sin β+,0α<,βπ<,BM BN ⊥,可得()()BM BN 22cos α,2sin α4cos β,4sin β0u u u u r u u u r⋅=-+⋅=,即有()8cos β8cos αcos βsin αsin β0-++=, 即为cos βcos αcos βsin αsin β=+, 即有()cos βcos αβ=-,又0α<,βπ<,可得αββ-=,即α2β=,则()()AM CN 22cos α,2sin α44cos β,4sin β⋅=+⋅-+u u u u r u u u r()88cos α8cos β8cos αcos βsin αsin β=--+++288cos α16cos β16cos β16cos β=--+=-2116(cos β)42=--+,可得1cos β02-=,即πβ3=,2πα3=时,AM CN ⋅u u u u r u u u r 的最大值为4.故答案为4. 【点睛】本题考查了平面向量的数量积运算问题,也考查了圆的方程与应用问题,建立平面直角坐标系,用坐标表示向量是解题的关键.14.若关于x 的不等式3230x x ax b -++<对任意的实数[1,3]x ∈及任意的实数[2,4]b ∈恒成立,则实数a 的取值范围是______【答案】(,2)-∞-【解析】由题,得243a x x x <-+-在[1,3]x ∈恒成立,通过求24()3g x x x x=-+-在[1,3]x ∈的最小值,即可得到本题答案.【详解】关于x 的不等式3230x x ax b -++<对任意的实数[1,3]x ∈及任意的实数[2,4]b ∈恒成立,等价于3234x x ax -+<-对任意的实数[1,3]x ∈恒成立,即243a x x x<-+-在[1,3]x ∈恒成立,设24()3g x x x x=-+-,则()222(2)224()23x x x g x x x x -++'=-++=,令()0g x '>,得12x <<,令()0g x '<,得23x <<, 所以()g x 在(1,2)递增,在(2,3)递减,又4(1)2,(3)3g g =-=-, 所以min ()(1)2g x g ==-,所以2a <-,即a 的取值范围是(,2)-∞-, 故答案为:(,2)-∞- 【点睛】本题主要考查不等式的恒成立问题,参变分离是解决此题的关键,考查学生的转化能力,以及运算求解能力.二、解答题15.已知ABC V 内接于单位圆,且()()112tanA tanB ++=,()1求角C()2求ABC V 面积的最大值.【答案】(1)34C π=(2【解析】()1变形已知条件可得1tanA tanB tanA tanB +=-⋅,代入可得()11tanA tanBtanC tan A B tanAtanB+=-+=-=--,可得C 值;()2由正弦定理可得c ,由余弦定理和基本不等式可得ab 的取值范围,进而可得面积的最值. 【详解】()()()1112tanA tanB ++=Q1tanA tanB tanA tanB ∴+=-⋅,()11tanA tanBtanC tan A B tanAtanB+∴=-+=-=--,()3C 0,4C ππ∈∴=Q ()2ABC QV 的外接圆为单位圆,∴其半径1R =由正弦定理可得2c RsinC ==由余弦定理可得2222c a b abcosC =+-,代入数据可得222a b =+(22ab ab ≥+=,当且仅当a=b 时,“=”成立ab ∴≤ABC V ∴的面积11222S absinC =≤=,B AC ∴V 面积的最大值为:12【点睛】本题考查两角和与差的正切,涉及正余弦定理和三角形的面积公式,基本不等式的应用,熟记定理,准确计算是关键,属中档题.16.如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AFACλ=.(1)若//EF 平面ABD ,求实数λ的值; (2)求证:平面BCD ⊥平面AED . 【答案】(1)见解析(2)见解析【解析】(1)由线面平行的性质得出//EF AB ,可以判断点F 为AC 的中点,从而求出λ的值;(2)由AB AC DB DC ===,点E 是BC 的中点,得到BC AE ⊥,BC DE ⊥,由面面垂直的判断定理即可证明平面BCD ⊥平面AED . 【详解】(1)因为//EF 平面ABD ,得EF ⊂平面ABC , 平面ABC I 平面=ABD AB , 所以//EF AB ,又点E 是BC 的中点,点F 在线段AC 上, 所以点F 为AC 的中点, 由AFAC λ=,得1=2λ; (2)因为AB AC DB DC ===,点E 是BC 的中点, 所以BC AE ⊥,BC DE ⊥,又=AE DE E ⋂,AE ⊂平面AED ,DE ⊂平面AED , 所以BC ⊥平面AED , 又BC ⊂平面BCD , 所以平面BCD ⊥平面AED . 【点睛】本题主要考查线面平行的性质和面面垂直的证明,考查学生空间想象能力,属于基础题. 17.如图,长方形材料ABCD 中,已知23AB =4=AD .点P 为材料ABCD 内部一点,PE AB ⊥于E ,PF AD ⊥于F ,且1PE =,3PF =现要在长方形材料ABCD 中裁剪出四边形材料AMPN ,满足150MPN ∠=︒,点M 、N 分别在边AB ,AD 上.(1)设FPN θ∠=,试将四边形材料AMPN 的面积表示为θ的函数,并指明θ的取值范围;(2)试确定点N 在AD 上的位置,使得四边形材料AMPN 的面积S 最小,并求出其最小值.【答案】(1)见解析;(2)当23AN =时,四边形材料AMPN 的面积S 最小,最小值为323+. 【解析】分析:(1)通过直角三角形的边角关系,得出NF 和ME ,进而得出四边形材料AMPN 的面积的表达式,再结合已知尺寸条件,确定角θ的范围.(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点N 在AD 上的位置.详解:解:(1)在直角NFP ∆中,因为3PF =FPN θ∠=, 所以3tan NF θ=, 所以()1113tan 322NAP S NA PF θ∆=⋅= 在直角MEP ∆中,因为1PE =,3EPM πθ∠=-,所以tan 3ME πθ⎛⎫=-⎪⎝⎭, 所以113tan 1223AMP S AM PE πθ∆⎡⎤⎛⎫=⋅=-⨯ ⎪⎢⎥⎝⎭⎦, 所以NAP AMP S S S ∆∆=+ 31tan tan 3223πθθ⎛⎫=+- ⎪⎝⎭0,3πθ⎡⎤∈⎢⎥⎣⎦.(2)因为31tan tan223S πθθ⎛⎫=+-+ ⎪⎝⎭3tan 2θ=令1t θ=,由0,3πθ⎡⎤∈⎢⎥⎣⎦,得[]1,4t ∈,所以243S t t ⎫==++⎪⎝⎭2233≥=+当且仅当t =时,即tan θ=时等号成立,此时,3AN =,min 23S =+,答:当AN =时,四边形材料AMPN 的面积S 最小,最小值为2+. 点睛:本题考查三角函数的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意换元法和基本不等式的合理运用.换元法求函数的值域,通过引入新变量(辅助式,辅助函数等),把所有分散的已知条件联系起来,将已知条件和要求的结果结合起来,把隐藏在条件中的性质显现出来,或把繁琐的表达式简化,之后就可以利用各种常见的函数的图象和性质或基本不等式来解决问题.常见的换元方法有代数和三角代换两种.要特别注意原函数的自变量与新函数自变量之间的关系.18.已知椭圆E :2229(0)x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与E 有两个交点A ,B ,线段AB 的中点为M .()1若3m =,点K 在椭圆E 上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;()2证明:直线OM 的斜率与l 的斜率的乘积为定值;()3若l 过点,3mm ⎛⎫ ⎪⎝⎭,射线OM 与椭圆E 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时直线l 斜率;若不能,说明理由. 【答案】(1)[]7,1- (2)见证明;(3)见解析【解析】()13m =,椭圆E :2219x y +=,两个焦点()1F -,()2F ,设(),K x y ,求出12KF KF ⋅u u u r u u u u r的表达式,然后求解范围即可.()2设A ,B 的坐标分别为()11,x y ,()22,x y ,利用点差法转化求解即可.()3直线l 过点,3mm ⎛⎫ ⎪⎝⎭,直线l 不过原点且与椭圆E 有两个交点的充要条件是0k >且1.3k ≠设(),P P P x y ,设直线()()0,03ml y k x m m k =-+≠≠:,代入椭圆方程,通过四边形OAPB 为平行四边形,转化求解即可. 【详解】()13m =,椭圆E :2219x y +=,两个焦点()1F -,()2F设(),K x y,()1F K x y =+u u u u r,()2F K x y =-u u u u r,()()2221212881KF KF FK F K x y x y x y y ⋅=⋅=+⋅-=+-=-+u u u r u u u u r u u u u r u u u u r,11y -≤≤Q ,12KF KF ∴⋅u u u r u u u u r的范围是[]7,1-()2设A ,B 的坐标分别为()11,x y ,()22,x y ,则222112222299.x y m x y m ⎧+=⎨+=⎩两式相减, 得()()()()1212121290x x x x y y y y +-++-=,()()()()12121212190y y y y x x x x +-+=+-,即190OM l k k +⋅=,故19OM l k k ⋅=-; ()3设(),P P P x y ,设直线()()0,03m l y k x m m k =-+≠≠:,即3m l y kx km =-+:, 由()2的结论可知19OM y x k =-:,代入椭圆方程得,2222991P m k x k =+, 由()3m y k x m =-+与19y x k =-,联立得222933,9191m km k m km M k k ⎛⎫- ⎪-- ⎪++ ⎪⎝⎭若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以2M p x x =,即2222229394()9191k m km m k k k -=++,整理得29810k k -+=解得,k =.经检验满足题意所以当k =时,四边形OAPB 为平行四边形. 【点睛】本题考查直线与椭圆的位置关系的综合应用,点差法,直线与椭圆的交点,考查分析问题解决问题的能力,准确转化平行四边形是关键,是中档题19.已知函数f (x )=ae x ,g (x )=ln x -ln a ,其中a 为常数,且曲线y =f (x )在其与y 轴的交点处的切线记为l 1,曲线y =g (x )在其与x 轴的交点处的切线记为l 2,且l 1∥l 2. (1)求l 1,l 2之间的距离;(2)若存在x 使不等式()x mf x -成立,求实数m 的取值范围; (3)对于函数f (x )和g (x )的公共定义域中的任意实数x 0,称|f (x 0)-g (x 0)|的值为两函数在x 0处的偏差.求证:函数f (x )和g (x )在其公共定义域内的所有偏差都大于2.【答案】(1;(2)()0-∞,;(3)见解析【解析】(1)先根据导数的几何意义求出两条切线,然后利用平行直线之间的距离公式求出求l 1,l 2之间的距离;(2)利用分离参数法,求出h (x )=x e x 的最大值即可; (3)根据偏差的定义,只需要证明()()f x g x -的最小值都大于2. 【详解】(1)f ′(x )=ae x ,g ′(x )=1x, y =f (x )的图象与坐标轴的交点为(0,a ), y =g (x )的图象与坐标轴的交点为(a ,0), 由题意得f ′(0)=g ′(a ),即a =1a, 又∵a >0,∴a =1. ∴f (x )=e x ,g (x )=ln x ,∴函数y =f (x )和y =g (x )的图象在其坐标轴的交点处的切线方程分别为: x -y +1=0,x -y -1=0,∴.(2)由()x m f x -xx me -,故m<x x在x∈[0,+∞)有解,令h(x)=x x,则m<h(x)max,当x=0时,m<0;当x>0时,∵h′(x)=1-)e x,∵x>0,,e x>1,∴e x,故h′(x)<0,即h(x)在区间[0,+∞)上单调递减,故h(x)max=h(0)=0,∴m<0,即实数m的取值范围为(-∞,0).(3)解法一:∵函数y=f(x)和y=g(x)的偏差为:F(x)=|f(x)-g(x)|=e x-ln x,x∈(0,+∞),∴F′(x)=e x-1x,设x=t为F′(x)=0的解,则当x∈(0,t),F′(x)<0;当x∈(t,+∞),F′(x)>0,∴F(x)在(0,t)单调递减,在(t,+∞)单调递增,∴F(x)min=e t-ln t=e t-ln 1t e=e t+t,∵F′(1)=e-1>0,F′(12)<0,∴12<t<1,故F(x)min=e t+t 12+12=2,即函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.解法二:由于函数y=f(x)和y=g(x)的偏差:F(x)=|f(x)-g(x)|=e x-ln x,x∈(0,+∞),令F1(x)=e x-x,x∈(0,+∞);令F2(x)=x-ln x,x∈(0,+∞),∵F1′(x)=e x-1,F2′(x)=1-1x=1xx-,∴F1(x)在(0,+∞)单调递增,F2(x)在(0,1)单调递减,在(1,+∞)单调递增,∴F1(x)>F1(0)=1,F2(x)≥F2(1)=1,∴F (x )=e x -ln x =F 1(x )+F 2(x )>2,即函数y =f (x )和y =g (x )在其公共定义域内的所有偏差都大于2. 【点睛】本题主要考查导数的应用,利用导数的几何意义解决曲线的切线问题,利用导数求解函数的最值问题,属于难度题.20.设数列{}n a 的前n 项和为n S ,23n n S a +=,*n N ∈.()1求数列{}n a 的通项公式;()2设数列{}n b 满足:对于任意的*n N ∈,都有11213211()333n n n n n a b a b a b a b n ---+++⋯+=+-成立.①求数列{}n b 的通项公式;②设数列n n n c a b =,问:数列{}n c 中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.【答案】(1)113n n a -⎛⎫= ⎪⎝⎭,*n N ∈.(2)①21n b n =-,*n N ∈.②见解析.【解析】分析:(1)当2n ≥时,类比写出1123n n S a --+=,两式相减整理得113n n a a -=,当1n =时,求得10a ≠,从而求得数列{}n a 的通项公式.;(2)①将113n n a -⎛⎫= ⎪⎝⎭代入已知条件,用与(1)相似的方法,变换求出数列{}n b 的通项公式;②由n c 的通项公式分析,得12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,且s p r <<,则2p s r c c c =+,即()1112212121333p s r p s r ------=+,根据数列{}n c 的单调性,化简得722p ≤<,将2p =或3p =代入已知条件,即可得到结论. 详解:解:(1)由23n n S a +=, ① 得()11232n n S a n --+=≥, ② 由①-②得120n n n a a a -+-=,即()1123n n a a n -=≥,对①取1n =得,110a =≠,所以0n a ≠,所以113n n a a -=为常数, 所以{}n a 为等比数列,首项为1,公比为13,即113n n a -⎛⎫= ⎪⎝⎭,*n N ∈.(2)①由113n n a -⎛⎫= ⎪⎝⎭,可得对于任意*n N ∈有2111211111333333n n n n n b b b b n ----⎛⎫⎛⎫⎛⎫++++=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L , ③则()()2221231111131323333n n n n n b b b b n n L -----⎛⎫⎛⎫⎛⎫++++=+--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ④则()23111231111112233333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫⎛⎫++++=+-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L , ⑤由③-⑤得()212n b n n =-≥, 对③取1n =得,11b =也适合上式, 因此21n b n =-,*n N ∈. ②由(1)(2)可知1213n n n n n c a b --==, 则()11412121333n n n n nn n n c c +--+--=-=, 所以当1n =时,1n n c c +=,即12c c =,当2n ≥时,1n n c c +<,即{}n c 在2n ≥且*n N ∈上单调递减, 故12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,其中s ,p ,*r N ∈,由于12345c c c c c =>>>>…,可不妨设s p r <<,则2p s r c c c =+(),即()1112212121333p s r p s r ------=+, 因为s ,p ,*r N ∈且s p r <<,则1s p ≤-且2p ≥, 由数列{}n c 的单调性可知,1s p c c -≥,即12212333s p s p ----≥,因为12103r r r c --=>,所以()11122212121233333p s r p p s r p --------=+>, 即()122212333p p p p ---->,化简得72p <, 又2p ≥且*p N ∈,所以2p =或3p =,当2p =时,1s =,即121c c ==,由3r ≥时,21r c c <=,此时1c ,2c ,r c 不构成等差数列,不合题意,当3p =时,由题意1s =或2s =,即1s c =,又359p c c ==,代入()式得19r c =,因为数列{}n c 在2n ≥且*n N ∈上单调递减,且519c =,4r ≥,所以5r =, 综上所述,数列{}n c 中存在三项1c ,3c ,5c 或2c ,3c ,5c 构成等差数列.点睛:本题考查了数列递推关系、等比数列与等差数列的定义、通项公式,涉及到等差和等比数列的判断,数列的单调性等知识的综合运用,考查分类讨论思想与逻辑推理能力,属于难题.已知数列{}n a 的前n 项和n S 与n a 的关系式,求数列的通项公式的方法如下: (1)当1n =时, 11a S =求出1a ;(2)当2n ≥时,用1n -替换n S 中的n 得到一个新的关系,利用1n n S S --(2)n ≥便可求出当2n ≥时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.21.如图,AB 是半圆的直径,C 是AB 延长线上一点,CD 切半圆于点D ,CD =2,DE ⊥AB ,垂足为E ,且E 是OB 的中点,求BC 的长.23【解析】连接OD ,则OD DC ⊥,在Rt OED ∆中,1122OE OB OD ==,则6ODE π∠=,在Rt OCD ∆中,π6DCO ?,由CD =2,求出BC 即可. 【详解】 解:连接OD ,则OD DC ⊥,在Rt OED ∆中,由E 是OB 的中点,则1122OE OB OD ==, 则6ODE π∠=,在Rt OCD ∆中,π6DCO?, 由CD =2,则23tan 63OD DC π==, 则2223432()3OC =+=, 故432323BC OC OB OC OD =-=-=-=. 【点睛】本题考查了圆的切线问题,重点考查了运算能力,属基础题.22.已知矩阵1202A ⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵111202=B -⎡⎤⎢-⎥⎢⎥⎣⎦,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦【解析】由11001B B -⎡⎤=⎢⎥⎣⎦,求出矩阵B ,再由矩阵的乘法,即可求解. 【详解】解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d -⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即1110220122a c b d cd ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦, 故1121022021a c b d c d ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d =⎧⎪⎪=⎪⎨=⎪⎪=⎪⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因此,151121*********AB ⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦. 【点睛】 本题考查用待定系数法求逆矩阵,以及矩阵乘法计算,属于基础题.23.已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值. 【答案】87【解析】直接根据柯西不等式,即可得到本题答案.【详解】由柯西不等式,得()2222222[(2)(3)]1(2)(3)x y z x y z ⎡⎤+-+-+-+-++⎣⎦„, 即()2222(23)14x y z x y z--++„, 即()2221614x y z++„, 所以22287x y z ++≥, 当且仅当23y z x ==--, 即246,,777x y z --===时,222x y z ++取最小值87. 【点睛】本题主要考查柯西不等式的应用,属基础题.24.已知230123(1)(1)(1)(1)(1),n n n x a a x a x a x a x +=+-+-+-++-L (其中*n N ∈)(1)求0a 及1nn ii S a ==∑; (2)试比较n S 与2(2)22n n n -+的大小,并说明理由.【答案】(1)02n a =,32n n n S =-(2)见解析【解析】【详解】(Ⅰ)令1x =,则02n a =,令2x =,则03n n i i a==∑,∴32n n n S =-;(Ⅱ)要比较n S 与2(2)22n n n -+的大小,即比较:3n 与2(1)22n n n -+的大小,当1n =时,23(1)22n n n n >-+;当2,3n =时,23(1)22n n n n <-+;当4,5n =时,23(1)22n n n n >-+;猜想:当4n ≥时,23(1)22n n n n >-+,下面用数学归纳法证明:由上述过程可知,4n =时结论成立,假设当(4)n k k =≥时结论成立,即23(1)22k k k k >-+,两边同乘以3 得:1212233[(1)22]22(1)[(3)2442]k k k k k k k k k k k ++>-+=+++-+--而22(3)2442(3)24(2)6(2)24(2)(1)60k k k k k k k k k k k k -+--=-+--+=-+-++>∴1123[(1)1]22(1)k k k k ++>+-++即1n k =+时结论也成立,∴当4n ≥时,23(1)22n n n n >-+成立.综上得,当1n =时,23(1)22n n n n >-+;当2,3n =时,23(1)22n n n n <-+;当4,n n N *≥∈时,23(1)22n n n n >-+【考点】数学归纳法。
江苏省泰州市数学高三文数4月教学质量检测试卷
江苏省泰州市数学高三文数4月教学质量检测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高一上·肇庆期末) 集合M={-1,0,1},N={x∈Z|-1<x<1},则M∩N等于()A . {-1,0,1}B . {-1}C . {1}D . {0}2. (2分)已知i为虚数单位,且,则实数a的值为()A . 1B . 2C . 1或﹣1D . 2或﹣23. (2分)(2017·淮北模拟) 已知三个数1,a,9成等比数列,则圆锥曲线的离心率为()A .B .C . 或D . 或4. (2分)有位同学参加某项选拔测试,每位同学能通过测试的概率都是,假设每位同学能否通过测试是相互独立的,则至少有一位同学通过测试的概率为()A .B .C .D .5. (2分)(2017·邯郸模拟) 若x,y满足,则下列不等式恒成立的是()A . y≥0B . x≥2C . 2x﹣y+1≥0D . x+2y+1≥06. (2分) (2017高二下·西安期末) 已知,则p是q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. (2分)执行下边的程序框图,则输出的n是()A . 4C . 6D . 78. (2分)tan210°的值是()A . -B .C . -D .9. (2分)若,则()A . a>b>cB . b>a>cC . c>a>bD . b>c>a10. (2分) (2015高三上·荣昌期中) 在等差数列{an}中,有a6+a7+a8=12,则此数列的前13项之和为()A . 24B . 39C . 52D . 10411. (2分) (2017高二下·鸡泽期末) 已知函数f(x)=x3-ax-1,若f(x)在(-1,1)上单调递减,则a的取值范围为()A . a≥3C . a≤3D . a<312. (2分) (2020高一下·郧县月考) 在海岸A处,发现北偏东方向,距离A为海里的B处有一艘走私船,在A处北偏西方向,距离A为2海里的C处有我方一艘辑私艇奉命以海里/小时的速度追截走私船,B在C的正东方向,此时走私船正以10海里/小时的速度从B处向北偏东方向逃窜,问辑私艇沿()方向追击,才能最快追上走私船.A . 北偏东30°B . 北偏东45°C . 北偏东60°D . 北偏东75°二、填空题 (共4题;共4分)13. (1分)(2018·门头沟模拟) 已知两个单位向量的夹角为60°, ,若,则 =________。
江苏省泰州市2019-2020学年高考数学三模考试卷含解析
江苏省泰州市2019-2020学年高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T 取最大值时n 的值为( ) A .2020 B .20l9C .2018D .2017【答案】B 【解析】 【分析】根据题意计算20190a >,20200a <,201920200a a +>,计算201810b <,201910b >,20182019110b b +>,得到答案. 【详解】n S 是等差数列{}n a 的前n 项和,若201820202019S S S <<,故20190a >,20200a <,201920200a a +>,12n n n n b a a a ++=,故1211n n n n a a b a ++=, 当2017n ≤时,10nb >,2018201820192020110a a a b =<,2019201920202021110a a a b =>, 2019202020182019201820192020201920202021201820192020202111110b a a a a a a a a a a a a b ++=+=>,当2020n ≥时,10nb <,故前2019项和最大. 故选:B . 【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.2.设集合{}12M x x =<≤,{}N x x a =<,若M N M ⋂=,则a 的取值范围是( ) A .(),1-∞ B .(],1-∞C .()2,+∞D .[)2,+∞【答案】C 【解析】 【分析】由M N M ⋂=得出M N ⊆,利用集合的包含关系可得出实数a 的取值范围.【详解】{}12M x x =<≤Q ,{}N x x a =<且M N M ⋂=,M N ∴⊆,2a ∴>.因此,实数a 的取值范围是()2,+∞. 故选:C. 【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 3.已知()()cos 0,0,,2f x A x A x R πωϕωϕ⎛⎫=+>><∈ ⎪⎝⎭的部分图象如图所示,则()f x 的表达式是( )A .32cos 24x π⎛⎫+⎪⎝⎭B .2cos 4x π⎛⎫+⎪⎝⎭C .2cos 24x π⎛⎫- ⎪⎝⎭D .32cos 24x π⎛⎫-⎪⎝⎭【答案】D 【解析】 【分析】由图象求出A 以及函数()y f x =的最小正周期T 的值,利用周期公式可求得ω的值,然后将点,26π⎛⎫⎪⎝⎭的坐标代入函数()y f x =的解析式,结合ϕ的取值范围求出ϕ的值,由此可得出函数()y f x =的解析式. 【详解】由图象可得2A =,函数()y f x =的最小正周期为542663T πππ⎛⎫=⨯-=⎪⎝⎭,232T πω∴==. 将点,26π⎛⎫⎪⎝⎭代入函数()y f x =的解析式得32cos 2626f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,得cos 14πϕ⎛⎫+= ⎪⎝⎭,22ππϕ-<<Q ,3444πππϕ∴-<+<,则04πϕ+=,4πϕ∴=-, 因此,()32cos 24x f x π⎛⎫=- ⎪⎝⎭. 故选:D. 【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.4.已知函数()f x 满足:当[)2,2x ∈-时,()()22,20log ,02x x x f x x x ⎧+-≤≤=⎨<<⎩,且对任意x ∈R ,都有()()4f x f x +=,则()2019f =( )A .0B .1C .-1D .2log 3【答案】C 【解析】 【分析】由题意可知()()20191f f =-,代入函数表达式即可得解. 【详解】由()()4f x f x +=可知函数()f x 是周期为4的函数,∴()()()()20191450511121f f f =-+⨯=-=-⨯-+=-.故选:C. 【点睛】本题考查了分段函数和函数周期的应用,属于基础题. 5.定义运算()()a a b a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ).A .B .C .D .【答案】A【解析】 【分析】 【详解】由已知新运算a b ⊕的意义就是取得,a b 中的最小值, 因此函数()1,0122,0xxx f x x >⎧=⊕=⎨≤⎩, 只有选项A 中的图象符合要求,故选A.6.已知定义在R 上的偶函数()f x 满足()()11f x f x +=-,当[]0,1x ∈时,()1f x x =-+,函数()1x g x e--=(13x -≤≤),则函数()f x 与函数()g x 的图象的所有交点的横坐标之和为( )A .2B .4C .5D .6【答案】B 【解析】 【分析】由函数的性质可得:()f x 的图像关于直线1x =对称且关于y 轴对称,函数()1x g x e--=(13x -≤≤)的图像也关于1x =对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线1x =对称,则()f x 与()g x 的图像所有交点的横坐标之和为4得解.【详解】由偶函数()f x 满足()()11f x f x +=-,可得()f x 的图像关于直线1x =对称且关于y 轴对称, 函数()1x g x e--=(13x -≤≤)的图像也关于1x =对称,函数()y f x =的图像与函数()1x g x e--=(13x -≤≤)的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线1x =对称, 则()f x 与()g x 的图像所有交点的横坐标之和为4. 故选:B 【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题. 7.己知全集为实数集R ,集合A={x|x 2 +2x-8>0},B={x|log 2x<1},则()R A B ⋂ð等于( ) A .[-4,2] B .[-4,2)C .(-4,2)D .(0,2)【答案】D 【解析】 【分析】求解一元二次不等式化简A ,求解对数不等式化简B ,然后利用补集与交集的运算得答案. 【详解】解:由x 2 +2x-8>0,得x <-4或x >2, ∴A={x|x 2 +2x-8>0}={x| x <-4或x >2}, 由log 2x<1,x >0,得0<x <2, ∴B={x|log 2x<1}={ x |0<x <2}, 则{}|42R A x x =-≤≤ð, ∴()()0,2R A B =I ð. 故选:D. 【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.8.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e = D .01a <<【答案】C 【解析】 【分析】根据不动点的定义,利用换底公式分离参数可得ln ln xa x =;构造函数()ln x g x x=,并讨论()g x 的单调性与最值,画出函数图象,即可确定a 的取值范围. 【详解】由log a x x =得,ln ln xa x=. 令()ln xg x x=,则()21ln xg x x-'=, 令()0g x '=,解得x e =,所以当()0,x e ∈时,()0g x '>,则()g x 在()0,e 内单调递增; 当(),x e ∈+∞时,()0g x '<,则()g x 在(),e +∞内单调递减; 所以()g x 在x e =处取得极大值,即最大值为()ln 1e g e e e==, 则()ln xg x x=的图象如下图所示:由()f x 有且仅有一个不动点,可得得ln 0a <或1ln a e=, 解得01a <<或1e a e =. 故选:C 【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.9.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩………,则32y x --的取值范围为( )A .3,42⎡⎤⎢⎥⎣⎦B .(1,2]C .(,0][2,)-∞+∞UD .(,1)[2,)-∞⋃+∞【答案】C 【解析】 【分析】 设32y k x -=-,则k 的几何意义为点(,)x y 到点(2,3)的斜率,利用数形结合即可得到结论. 【详解】 解:设32y k x -=-,则k 的几何意义为点(,)P x y 到点(2,3)D 的斜率, 作出不等式组对应的平面区域如图:由图可知当过点D 的直线平行于x 轴时,此时302y k x -==-成立; 32y k x -=-取所有负值都成立; 当过点A 时,32y k x -=-取正值中的最小值,1(1,1)0x A x y =⎧⇒⎨-=⎩,此时3132212y k x --===--; 故32y x --的取值范围为(,0][2,)-∞+∞U ; 故选:C. 【点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是解题关键.对于直线斜率要注意斜率不存在的直线是否存在. 10.已知函数()cos sin 2f x x x =,下列结论不正确的是( ) A .()y f x =的图像关于点(),0π中心对称 B .()y f x =既是奇函数,又是周期函数C .()y f x =的图像关于直线2x π=对称D .()y f x =3【答案】D 【解析】 【分析】通过三角函数的对称性以及周期性,函数的最值判断选项的正误即可得到结果. 【详解】解::(2)cos(2)sin 2(2)cos sin 2()A f x x x x x f x πππ-=--=-=-,正确; :()cos()sin 2()cos sin 2()B f x x x x x f x -=--=-=-,为奇函数,周期函数,正确; :()cos()sin 2()cos sin 2()C f x x x x x f x πππ-=--==,正确;D : 232sin cos 2sin 2sin y x x x x ==-,令sin t x =,[]1,1t ∈-则()322g t t t =-,()226g t t '=-,[1t ∈-,1],则33t -<<时()0g t '>,13t -<<-或13t >>()0g t '<,即()g t在,33⎛- ⎝⎭上单调递增,在1,⎛- ⎝⎭和⎫⎪⎪⎝⎭上单调递减;且g =⎝⎭()10g -=,max y g ∴==<⎝⎭,故D 错误. 故选:D . 【点睛】本题考查三角函数周期性和对称性的判断,利用导数判断函数最值,属于中档题.11.若()*3n x n N ⎛∈ ⎝的展开式中含有常数项,且n 的最小值为a,则aa-=( ) A .36π B .812πC .252πD .25π【答案】C 【解析】()*3x nn N ∈展开式的通项为()52133,0,1,,rn r n rrn r r r n n T C x C x r n ---+===L ,因为展开式中含有常数项,所以502n r -=,即25r n =为整数,故n 的最小值为1.所以5252aπ--⎰=⎰=.故选C 点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.12.若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( )A .b >c >aB .c >b >aC .a >b >cD .b >a >c【答案】A 【解析】 【分析】利用指数函数、对数函数的单调性直接求解. 【详解】∵x ∈(0,1), ∴a =lnx <0, b =(12)lnx >(12)0=1, 0<c =e lnx <e 0=1,∴a ,b ,c 的大小关系为b >c >a . 故选:A . 【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。
江苏省泰州市2019-2020学年度第二学期调研测试高三数学试题(含答案)
因为 a ≤ −2 , 0 < b < 1 ,则 ∆= a2 − 4b > 0 ,
所以 h′(x) = x2 + ax + b = 0 有两个不等实根,设为 x1, x2 ,
因为
x1 + x2 x1x2=
=−a b>0
>
0
,所以
x1
>
0,
x2
>
0
,不妨设 0
<
x1
<
x2
,
当 0 < x < x1 时, h′(x) > 0 ,则 h(x) 单调递增;
33
,
8
又= cosθ
1+ 33 8
>
1 2
,所以 ∃θ0
∈
0,
π 3
,使得
cosθ
0
=
1+ 8
33
,
则当 x ∈(0,θ0 ) 时, f ′(θ ) > 0 ⇒ f (θ ) 在 (0,θ0 ) 上单调增,
当
x
∈
θ0
,
π 3
时,
f ′(θ ) < 0 ⇒
f
(θ ) 在 (0,θ0 ) 上单调减,
因为 f (1) =−1 < 0, f (2) =8 > 0 ,又 f (k)= 2k3 − 2k 2 + k − 2(k > 0) 的图象不间断,
所以 f (k)= 2k3 − 2k 2 + k − 2(k > 0) 有零点,所以存在矩形 ABCD 为正方形.
19.(本题满分 16 分)
解:(1)函数 f (x=)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明一、填空题1.已知集合{|02}A x x =<<,{|1}B x x =>,则AB =______ 2.已知i 为虚数单位,则复数11z i=-在复平面内对应的点位于第_______象限 3.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[]40,80中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[)40,60内的汽车有______辆.4.袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于______.5.在一次知识竞赛中,抽取5名选手,答对的题数分布情况如表,则这组样本的方差为______.6.如图所示的算法流程图中,最后输出值为______.7.已知,m n 是两条不同的直线,,αβ是两个不同的平面.①若m α⊂,m β⊥,则αβ⊥;②若m α⊂,n αβ=,αβ⊥,则m n ⊥;③若m α⊂,n β⊂,//αβ,则//m n④若//m α,m β⊂,n αβ=,则//m n . 上述命题中为真命题的是______(填空所有真命题的序号).8.公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织尺布的增加量为______尺.(1匹4=丈,1丈10=尺)9.若πcos α2cos α4⎛⎫=+ ⎪⎝⎭,则πtan α8⎛⎫+= ⎪⎝⎭______.10.如图,已知O 为矩形ABCD 内的一点,且OA 2=,OC 4=,AC 5=,则OB OD ⋅=______.11.已知关于x 的方程()x x a 1-=在()2,∞-+上有三个相异实根,则实数a 的取值范围是______.12.已知a 0>,b 0>,且111a b +=,则b 3a 2b a++的最小值等于______. 13.如图,已知AC 8=,B 为AC 的中点,分别以AB ,AC 为直径在AC 的同侧作半圆,M ,N 分别为两半圆上的动点(不含端点A ,B ,C),且BM BN ⊥,则AM CN ⋅的最大值为______.14.若关于x 的不等式3230x x ax b -++<对任意的实数[1,3]x ∈及任意的实数[2,4]b ∈恒成立,则实数a 的取值范围是______二、解答题15.已知ABC ∆内接于单位圆,且()()1tan 1tan 2A B ++=,(1)求角C(2)求ABC 面积的最大值.16.如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AF ACλ=.(1)若//EF 平面ABD ,求实数λ的值;(2)求证:平面BCD ⊥平面AED .17.如图,长方形材料ABCD 中,已知AB =4=AD .点P 为材料ABCD 内部一点,PE AB ⊥于E ,PF AD ⊥于F ,且1PE =,PF =现要在长方形材料ABCD 中裁剪出四边形材料AMPN ,满足150MPN ∠=︒,点M 、N 分别在边AB ,AD 上.(1)设FPN θ∠=,试将四边形材料AMPN 的面积表示为θ的函数,并指明θ的取值范围;(2)试确定点N 在AD 上的位置,使得四边形材料AMPN 的面积S 最小,并求出其最小值.18.已知椭圆E :2229(0)x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与E 有两个交点A ,B ,线段AB 的中点为M .()1若3m =,点K 在椭圆E 上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅的范围; ()2证明:直线OM 的斜率与l 的斜率的乘积为定值;()3若l 过点,3mm ⎛⎫ ⎪⎝⎭,射线OM 与椭圆E 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时直线l 斜率;若不能,说明理由.19.已知函数f (x )=ae x ,g (x )=ln x -ln a ,其中a 为常数,且曲线y =f (x )在其与y轴的交点处的切线记为l 1,曲线y =g (x )在其与x 轴的交点处的切线记为l 2,且l 1∥l 2.(1)求l 1,l 2之间的距离;(2)若存在x 使不等式()x m f x -成立,求实数m 的取值范围; (3)对于函数f (x )和g (x )的公共定义域中的任意实数x 0,称|f (x 0)-g (x 0)|的值为两函数在x 0处的偏差.求证:函数f (x )和g (x )在其公共定义域内的所有偏差都大于2.20.设数列{}n a 的前n 项和为n S ,23n n S a +=,*n N ∈.()1求数列{}n a 的通项公式;()2设数列{}n b 满足:对于任意的*n N ∈,都有11213211()333n n n n n a b a b a b a b n ---+++⋯+=+-成立. ①求数列{}n b 的通项公式;②设数列n n n c a b =,问:数列{}n c 中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.21.如图,AB 是半圆的直径,C 是AB 延长线上一点,CD 切半圆于点D ,CD =2,DE ⊥AB ,垂足为E ,且E 是OB 的中点,求BC 的长.22.已知矩阵1202A ⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵111202=B -⎡⎤⎢-⎥⎢⎥⎣⎦,求矩阵AB . 23.已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值.参考答案1.{|12}x x <<【解析】【分析】直接由集合的交集运算,即可得到本题答案.【详解】因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}A B x x =<<.故答案为:{|12}x x <<【点睛】本题主要考查集合的交集运算,属基础题.2.一【解析】【分析】先化简得到z ,即可求出本题答案.【详解】 由题,得11111(1)(1)22i z i i i i +===+--+, 所以复数z 在复平面对应的点为11,22⎛⎫⎪⎝⎭,位于第一象限. 故答案为:一【点睛】 本题主要考查复数的四则运算以及复数的几何意义,属基础题.3.80【解析】试题分析:时速在区间[40,60)内的汽车有200(0.010.03)1080.⨯+⨯=考点:频率分布直方图4.35【解析】分析:通过枚举法写出摸出2个球的所有情况,再找出摸出1个黑球和1个白球的情况,由此能求出概率.详解:设3个黑球用A ,B ,C 表示;2个白球用甲,乙表示,摸出2个球的所有情况:(A ,B )、(A ,C )、(A ,甲)、(A ,乙)、(B ,C )、(B ,甲)、(B ,乙)、(C ,甲)、(C ,乙)、(甲,乙)共10种,其中摸出1个黑球和1个白球的情况有6种,所以,摸出1个黑球和1个白球的概率为63105P ==. 故答案为35. 点睛:本题考查利用古典概型的概率公式求事件的概率,解题时要注意枚举法的合理运用. 5.225【解析】【分析】根据表中数据计算平均数和方差即可.【详解】 根据表中数据,计算平均数为()1x 48921085=⨯++⨯+=, 方差为(22222122s [(48)(88)(98)2108)55⎤=⨯-+-+-⨯+-=⎦. 故答案为:225. 【点睛】本题考查了平均数与方差的计算问题,熟记计算公式,准确计算是关键,是基础题. 6.25【解析】分析:由流程图可知,该算法为先判断后计算的当型循环,模拟执行程序,即可得到答案. 详解:程序执行如下故2018T <不成立时,25i =.故答案为25.点睛:本题考查了循环结构的程序框图,正确判断循环的类型和终止循环的条件是解题关键 7.①④【解析】【分析】由平面与平面垂直的判定定理可知①正确;②中,m n 的关系无法确定垂直;③中两个平面平行,两个平面内的直线可能平行也可能异面;由直线与平面平行的性质定理可得④正确.【详解】对于①,由平面与平面垂直的判定定理可知正确;对于②,若m α⊂,n αβ=,αβ⊥,则,m n 可能平行,也可能相交,垂直; 对于③,若m α⊂,n β⊂,//αβ,则,m n 可能平行,也可能异面;对于④,由直线与平面平行的性质定理可得④正确.故答案为:①④.【点睛】本题主要考查空间直线与平面间的位置关系,借助已知定理和身边的实物模型能方便解决这类问题,侧重考查直观想象的核心素养.8.1629【解析】分析:设该女子织布每天增加d 尺,由等差数列前n 项和公式求出d 即可.详解:设该女子织布每天增加d 尺,由题意知,15a =尺,3010(943)390S =⨯+=尺又由等差数列前n 项和公式得3013029303902S a ⨯=+=,解得1629d =尺 故答案为1629点睛:本题考查等差数列的实际应用,解题时要认真审题,注意等差数列性质的合理运用. 9【解析】【分析】πcos α2cos α4⎛⎫=+ ⎪⎝⎭,可得ππππcos α2cos α8888⎛⎫⎛⎫+-=++ ⎪ ⎪⎝⎭⎝⎭,利用和差公式、同角三角函数基本关系式及其倍角公式即可得出.【详解】πcos α2cos α4⎛⎫=+ ⎪⎝⎭,ππππcos α2cos α8888⎛⎫⎛⎫∴+-=++ ⎪ ⎪⎝⎭⎝⎭, ππππππππcos αcos sin αsin 2cos αcos 2sin αsin 88888888⎛⎫⎛⎫⎛⎫⎛⎫∴+++=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化为:ππππcos αcos 3sin αsin 8888⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, ππ3tan αtan 188⎛⎫∴+= ⎪⎝⎭, 2π2tan π8tan 1π41tan 8==-,解得πtan18=.π1tan α83⎛⎫∴+==⎪⎝⎭, 故答案为13【点睛】本题考查了余弦和正切和差公式、同角三角函数基本关系式及其倍角公式,考查了推理能力与计算能力,属于中档题. 10.52-【解析】 【分析】建立坐标系,设()O m,n ,()C a,b ,根据条件得出O ,C 的坐标之间的关系,再计算OB OD ⋅的值. 【详解】以A 为原点,以AB ,AD 为坐标轴建立平面直角坐标系,设()O m,n ,()B a,0,()D 0,b ,则()C a,b ,OA 2=,OC 4=,AC 5=,222222a b 25m n 4()()16m a n b ⎧+=⎪∴+=⎨⎪-+-=⎩,整理可得:13am bn 2+=.又()OB a m,n =--,()OD m,b n =--,()()()22135OB OD m m a n n b m n am bn 422∴⋅=-+-=+-+=-=-. 故答案为52-. 【点睛】本题考查了平面向量的数量积运算,建立坐标系是突破点,准确计算是关键,属于中档题.11.5,22⎛⎫-- ⎪⎝⎭【解析】分析:将方程问题转换为函数()f x x a =-与1()g x x=的图象在()2,-+∞上有三个不同交点.根据函数图象可以求出答案. 详解:方程()1x x a -=在()2,-+∞上有3个相异实根,∴函数()f x x a =-与1()g x x=的图象在()2,-+∞上有三个不同交点, 在坐标系中画出函数的图象,由图象可知,在(2,0)x ∈-上,函数()y f x =与()y g x =有两个不同的交点,在(0,)x ∈+∞上,函数()y f x =与()y g x =有一个交点1,0()=1,0x xg x x x⎧>⎪⎪⎨⎪->⎪⎩,联立1y x y x a ⎧=-⎪⎨⎪=-⎩,整理得210x ax -+=,24a ∆=-∴240(2)(2)a g f ⎧∆=->⎨>⎩,即240122a a⎧->⎪⎨>--⎪⎩,解得522a -<<-∴实数a 的取值范围为5(,2)2--故答案为5,22⎛⎫-- ⎪⎝⎭点睛:本题主要考查方程的根与函数图象交点的关系,考查数形结合的思想以及分析问题解决问题的能力. 12.11【解析】分析:构造基本不等式模型1132()(32)b ba b a b a a b a++=+++,化简整理,应用基本不等式,即可得出答案.详解:111a b+=, ∴1132()(32)53()b b b aa b a b a a b a a b++=+++=++0a >,0b >,∴0ba >,0ab>,∴2b aa b+≥,当且仅当2a b ==时取等号. 325611ba b a ++≥+=.∴32ba b a++的最小值等于11.故答案为11.点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用. 13.4 【解析】 【分析】以A 为坐标原点,AC 所在直线为x 轴,建立如图所示的直角坐标系,求得A ,B ,C 的坐标,可得以AB 为直径的半圆方程,以AC 为直径的半圆方程,设出M ,N 的坐标,由向量数量积的坐标表示,结合三角函数的恒等变换可得α2β=,再由余弦函数、二次函数的图象和性质,计算可得最大值. 【详解】以A 为坐标原点,AC 所在直线为x 轴,建立如图所示的直角坐标系,可得()A 0,0,()B 4,0,()C 8,0,以AB 为直径的半圆方程为22(x 2)y 4(x 0,y 0)-+=>>, 以AC 为直径的半圆方程为22(x 4)y 16(x 0,y 0)-+=>>, 设()M 22cos α,2sin α+,()N 44cos β,4sin β+,0α<,βπ<,BM BN ⊥,可得()()BM BN 22cos α,2sin α4cos β,4sin β0⋅=-+⋅=,即有()8cos β8cos αcos βsin αsin β0-++=, 即为cos βcos αcos βsin αsin β=+, 即有()cos βcos αβ=-,又0α<,βπ<,可得αββ-=,即α2β=, 则()()AM CN 22cos α,2sin α44cos β,4sin β⋅=+⋅-+()88cos α8cos β8cos αcos βsin αsin β=--+++288cos α16cos β16cos β16cos β=--+=-2116(cos β)42=--+,可得1cos β02-=,即πβ3=,2πα3=时,AM CN ⋅的最大值为4.故答案为4. 【点睛】本题考查了平面向量的数量积运算问题,也考查了圆的方程与应用问题,建立平面直角坐标系,用坐标表示向量是解题的关键. 14.(,2)-∞- 【解析】 【分析】由题,得243a x x x <-+-在[1,3]x ∈恒成立,通过求24()3g x x x x=-+-在[1,3]x ∈的最小值,即可得到本题答案. 【详解】关于x 的不等式3230x x ax b -++<对任意的实数[1,3]x ∈及任意的实数[2,4]b ∈恒成立,等价于3234x x ax -+<-对任意的实数[1,3]x ∈恒成立,即243a x x x<-+-在[1,3]x ∈恒成立,设24()3g x x x x =-+-,则()222(2)224()23x x x g x x x x-++'=-++=, 令()0g x '>,得12x <<,令()0g x '<,得23x <<, 所以()g x 在(1,2)递增,在(2,3)递减,又4(1)2,(3)3g g =-=-, 所以min ()(1)2g x g ==-,所以2a <-,即a 的取值范围是(,2)-∞-, 故答案为:(,2)-∞- 【点睛】本题主要考查不等式的恒成立问题,参变分离是解决此题的关键,考查学生的转化能力,以及运算求解能力.15.(1)34C π=;(2)12. 【解析】 【分析】(1)变形已知条件可得tan tan 1tan tan A B A B +=-,代入可得tan tan tan tan()11tan tan A BC A B A B+=-+=-=--,可得C 值;(2)由正弦定理可得c ,由余弦定理和基本不等式可得ab 的取值范围,进而可得面积的最值. 【详解】 解:(1)(1tan )(1tan )2A B ++=tan tan 1tan tan A B A B ∴+=-,tan tan tan tan()11tan tan A BC A B A B+∴=-+=-=--,34C π∴=(2)ABC 得外接圆为单位圆,∴其半径1R =由正弦定理可得2sin c R C ==由余弦定理可得2222cos c a b ab C =+-,代入数据可得222a b =+22(2ab ab +=,22ab∴+,当且仅当a b =时取等号,ABC ∴得面积122sin 222S ab C -==+,ABC ∴面积的最大值为:12【点睛】本题考查两角和与差的正切,涉及正余弦定理和三角形的面积公式,基本不等式的应用,熟记定理,准确计算是关键,属于中档题. 16.(1)见解析(2)见解析 【解析】 【分析】(1)由线面平行的性质得出//EF AB ,可以判断点F 为AC 的中点,从而求出λ的值; (2)由AB AC DB DC ===,点E 是BC 的中点,得到BC AE ⊥,BC DE ⊥,由面面垂直的判断定理即可证明平面BCD ⊥平面AED . 【详解】(1)因为//EF 平面ABD ,得EF ⊂平面ABC , 平面ABC平面=ABD AB ,所以//EF AB ,又点E 是BC 的中点,点F 在线段AC 上, 所以点F 为AC 的中点, 由AFAC λ=,得1=2λ; (2)因为AB AC DB DC ===,点E 是BC 的中点, 所以BC AE ⊥,BC DE ⊥,又=AE DE E ⋂,AE ⊂平面AED ,DE ⊂平面AED ,所以BC ⊥平面AED , 又BC ⊂平面BCD , 所以平面BCD ⊥平面AED . 【点睛】本题主要考查线面平行的性质和面面垂直的证明,考查学生空间想象能力,属于基础题.17.(1)见解析;(2)当AN =时,四边形材料AMPN 的面积S 最小,最小值为2+. 【解析】分析:(1)通过直角三角形的边角关系,得出NF 和ME ,进而得出四边形材料AMPN 的面积的表达式,再结合已知尺寸条件,确定角θ的范围.(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点N 在AD 上的位置.详解:解:(1)在直角NFP ∆中,因为PF =FPN θ∠=,所以NF θ=,所以()11122NAP S NA PF θ∆=⋅= 在直角MEP ∆中,因为1PE =,3EPM πθ∠=-,所以tan 3ME πθ⎛⎫=-⎪⎝⎭,所以11tan 1223AMP S AM PE πθ∆⎤⎛⎫=⋅=-⨯ ⎪⎥⎝⎭⎦,所以NAP AMP S S S ∆∆=+ 31tan tan 223πθθ⎛⎫=+-+ ⎪⎝⎭0,3πθ⎡⎤∈⎢⎥⎣⎦.(2)因为31tan tan 223S πθθ⎛⎫=+-+ ⎪⎝⎭3tan 2θ=令1t θ=,由0,3πθ⎡⎤∈⎢⎥⎣⎦,得[]1,4t ∈,所以24233S t t ⎫==++⎪⎝⎭ 2≥=当且仅当t =时,即tan θ=时等号成立,此时,3AN =,min 23S =+,答:当3AN =时,四边形材料AMPN 的面积S 最小,最小值为23+. 点睛:本题考查三角函数的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意换元法和基本不等式的合理运用.换元法求函数的值域,通过引入新变量(辅助式,辅助函数等),把所有分散的已知条件联系起来,将已知条件和要求的结果结合起来,把隐藏在条件中的性质显现出来,或把繁琐的表达式简化,之后就可以利用各种常见的函数的图象和性质或基本不等式来解决问题.常见的换元方法有代数和三角代换两种.要特别注意原函数的自变量与新函数自变量之间的关系.18.(1)[]7,1- (2)见证明;(3)见解析 【解析】 【分析】()13m =,椭圆E :2219x y +=,两个焦点()1F -,()2F ,设(),K x y ,求出12KF KF ⋅的表达式,然后求解范围即可.()2设A ,B 的坐标分别为()11,x y ,()22,x y ,利用点差法转化求解即可.()3直线l 过点,3m m ⎛⎫⎪⎝⎭,直线l 不过原点且与椭圆E 有两个交点的充要条件是0k >且1.3k ≠设(),P P P x y ,设直线()()0,03m l y k x m m k =-+≠≠:,代入椭圆方程,通过四边形OAPB 为平行四边形,转化求解即可. 【详解】()13m =,椭圆E :2219x y +=,两个焦点()1F -,()2F设(),K x y ,()1F K x y =+,()2F K x y =-,()()2221212881KF KF FK F K x y x y x y y ⋅=⋅=+⋅-=+-=-+,11y -≤≤,12KF KF ∴⋅的范围是[]7,1-()2设A ,B 的坐标分别为()11,x y ,()22,x y ,则222112222299.x y m x y m ⎧+=⎨+=⎩两式相减, 得()()()()1212121290x x x x y y y y +-++-=,()()()()12121212190y y y y x x x x +-+=+-,即190OM l k k +⋅=,故19OM l k k ⋅=-; ()3设(),P P P x y ,设直线()()0,03m l y k x m m k =-+≠≠:,即3m l y kx km =-+:,由()2的结论可知19OM y x k =-:,代入椭圆方程得,2222991P m k x k =+, 由()3m y k x m =-+与19y x k =-,联立得222933,9191m km k m km M k k ⎛⎫- ⎪-- ⎪++ ⎪⎝⎭若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以2M p x x =,即2222229394()9191k m km m k k k -=++,整理得29810k k -+=解得,49k =.经检验满足题意所以当k =时,四边形OAPB 为平行四边形. 【点睛】本题考查直线与椭圆的位置关系的综合应用,点差法,直线与椭圆的交点,考查分析问题解决问题的能力,准确转化平行四边形是关键,是中档题19.(1;(2)()0-∞,;(3)见解析【解析】 【分析】(1)先根据导数的几何意义求出两条切线,然后利用平行直线之间的距离公式求出求l 1,l 2之间的距离;(2)利用分离参数法,求出h (x )=xe x 的最大值即可;(3)根据偏差的定义,只需要证明()()f x g x -的最小值都大于2. 【详解】(1)f ′(x )=ae x ,g ′(x )=1x, y =f (x )的图象与坐标轴的交点为(0,a ), y =g (x )的图象与坐标轴的交点为(a ,0), 由题意得f ′(0)=g ′(a ),即a =1a, 又∵a >0,∴a =1. ∴f (x )=e x ,g (x )=ln x ,∴函数y =f (x )和y =g (x )的图象在其坐标轴的交点处的切线方程分别为: x -y +1=0,x -y -1=0,.(2)由()x m f x -xx me -,故m <x x 在x ∈[0,+∞)有解,令h (x )=x e x ,则m <h (x )max , 当x =0时,m <0;当x >0时,∵h ′(x )=1-e x ,∵x >0,,e x >1,e x ,故h ′(x )<0,即h (x )在区间[0,+∞)上单调递减, 故h (x )max =h (0)=0,∴m <0, 即实数m 的取值范围为(-∞,0). (3)解法一:∵函数y =f (x )和y =g (x )的偏差为:F (x )=|f (x )-g (x )|=e x -ln x ,x ∈(0,+∞), ∴F ′(x )=e x -1x,设x =t 为F ′(x )=0的解, 则当x ∈(0,t ),F ′(x )<0;当x ∈(t ,+∞),F ′(x )>0, ∴F (x )在(0,t )单调递减,在(t ,+∞)单调递增,∴F (x )min=e t -ln t =e t -ln1t e =e t+t , ∵F ′(1)=e -1>0,F ′(12)<0,∴12<t <1,故F (x )min =e t +t=12+12=2,即函数y =f (x )和y =g (x )在其公共定义域内的所有偏差都大于2. 解法二:由于函数y =f (x )和y =g (x )的偏差:F (x )=|f (x )-g (x )|=e x -ln x ,x ∈(0,+∞), 令F 1(x )=e x -x ,x ∈(0,+∞);令F 2(x )=x -ln x ,x ∈(0,+∞), ∵F 1′(x )=e x -1,F 2′(x )=1-1x=1xx -, ∴F 1(x )在(0,+∞)单调递增,F 2(x )在(0,1)单调递减,在(1,+∞)单调递增, ∴F 1(x )>F 1(0)=1,F 2(x )≥F 2(1)=1, ∴F (x )=e x -ln x =F 1(x )+F 2(x )>2,即函数y =f (x )和y =g (x )在其公共定义域内的所有偏差都大于2. 【点睛】本题主要考查导数的应用,利用导数的几何意义解决曲线的切线问题,利用导数求解函数的最值问题,属于难度题.20.(1)113n n a -⎛⎫= ⎪⎝⎭,*n N ∈.(2)①21n b n =-,*n N ∈.②见解析.【解析】分析:(1)当2n ≥时,类比写出1123n n S a --+=,两式相减整理得113n n a a -=,当1n =时,求得10a ≠,从而求得数列{}n a 的通项公式.;(2)①将113n n a -⎛⎫= ⎪⎝⎭代入已知条件,用与(1)相似的方法,变换求出数列{}n b 的通项公式;②由n c 的通项公式分析,得12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,且s p r <<,则2p s r c c c =+,即()1112212121333p s r p s r ------=+,根据数列{}n c 的单调性,化简得722p ≤<,将2p =或3p =代入已知条件,即可得到结论. 详解:解:(1)由23n n S a +=, ① 得()11232n n S a n --+=≥, ② 由①-②得120n n n a a a -+-=,即()1123n n a a n -=≥, 对①取1n =得,110a =≠,所以0n a ≠,所以113n n a a -=为常数, 所以{}n a 为等比数列,首项为1,公比为13,即113n n a -⎛⎫= ⎪⎝⎭,*n N ∈.(2)①由113n n a -⎛⎫= ⎪⎝⎭,可得对于任意*n N ∈有2111211111333333n n n n n b b b b n ----⎛⎫⎛⎫⎛⎫++++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ③则()()2221231111131323333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫++++=+--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ④则()23111231111112233333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫⎛⎫++++=+-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ⑤由③-⑤得()212n b n n =-≥,对③取1n =得,11b =也适合上式, 因此21n b n =-,*n N ∈. ②由(1)(2)可知1213n n n n n c a b --==, 则()11412121333n n n n n n n n c c +--+--=-=, 所以当1n =时,1n n c c +=,即12c c =,当2n ≥时,1n n c c +<,即{}n c 在2n ≥且*n N ∈上单调递减, 故12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,其中s ,p ,*r N ∈,由于12345c c c c c =>>>>…,可不妨设s p r <<,则2p s r c c c =+(*), 即()1112212121333p s r p s r ------=+, 因为s ,p ,*r N ∈且s p r <<,则1s p ≤-且2p ≥, 由数列{}n c 的单调性可知,1s p c c -≥,即12212333s p s p ----≥, 因为12103r r r c --=>,所以()11122212121233333p s r p p s r p --------=+>, 即()122212333p p p p ---->,化简得72p <, 又2p ≥且*p N ∈,所以2p =或3p =,当2p =时,1s =,即121c c ==,由3r ≥时,21r c c <=,此时1c ,2c ,r c 不构成等差数列,不合题意,当3p =时,由题意1s =或2s =,即1s c =,又359p c c ==,代入(*)式得19r c =, 因为数列{}n c 在2n ≥且*n N ∈上单调递减,且519c =,4r ≥,所以5r =, 综上所述,数列{}n c 中存在三项1c ,3c ,5c 或2c ,3c ,5c 构成等差数列.点睛:本题考查了数列递推关系、等比数列与等差数列的定义、通项公式,涉及到等差和等比数列的判断,数列的单调性等知识的综合运用,考查分类讨论思想与逻辑推理能力,属于难题.已知数列{}n a 的前n 项和n S 与n a 的关系式,求数列的通项公式的方法如下: (1)当1n =时, 11a S =求出1a ;(2)当2n ≥时,用1n -替换n S 中的n 得到一个新的关系,利用1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.21【解析】 【分析】连接OD ,则OD DC ⊥,在Rt OED ∆中,1122OE OB OD ==,则6ODE π∠=,在Rt OCD ∆中,π6DCO,由CD =2,求出BC 即可. 【详解】解:连接OD ,则OD DC ⊥,在Rt OED ∆中,由E 是OB 的中点,则1122OE OB OD ==, 则6ODE π∠=,在Rt OCD ∆中,π6DCO , 由CD =2,则tan63OD DC π==,则3OC ==,故333BC OC OB OC OD =-=-=-=【点睛】本题考查了圆的切线问题,重点考查了运算能力,属基础题.22.51401⎡⎤⎢⎥⎢⎥-⎣⎦【解析】 【分析】由11001B B -⎡⎤=⎢⎥⎣⎦,求出矩阵B ,再由矩阵的乘法,即可求解.【详解】解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d -⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1110220122a c b d cd ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦, 故1121022021a cb dcd ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d =⎧⎪⎪=⎪⎨=⎪⎪=⎪⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因此,151121440210102AB ⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦.【点睛】本题考查用待定系数法求逆矩阵,以及矩阵乘法计算,属于基础题. 23.87【解析】 【分析】直接根据柯西不等式,即可得到本题答案. 【详解】由柯西不等式,得()2222222[(2)(3)]1(2)(3)x y z x y z ⎡⎤+-+-+-+-++⎣⎦, 即()2222(23)14x y z x y z --++,即()2221614x y z ++,所以22287x y z ++≥, 当且仅当23y z x ==--, 即246,,777x y z --===时,222x y z ++取最小值87.【点睛】本题主要考查柯西不等式的应用,属基础题.。