大学基础物理学第2版习题答案(供参考)
大学物理下册课后习题答案第二版
大学物理下册课后习题答案第二版
《大学物理下册课后习题答案第二版》
大学物理是一门重要的学科,它涉及到我们周围的一切物质和现象。
在学习大学物理的过程中,课后习题是非常重要的一环,它可以帮助我们巩固所学的知识,提高解决问题的能力。
而《大学物理下册课后习题答案第二版》则是一本非常有用的辅助教材,它为我们提供了课后习题的详细答案,让我们可以更好地检验自己的学习成果。
这本答案集包含了大学物理下册所有习题的答案,从力学、热学、电磁学到光学等各个章节都有详细的解答。
通过这本答案集,我们可以及时找到自己在学习中遇到的问题的解决方法,加深对知识点的理解,提高解题能力。
同时,它也可以帮助我们及时发现学习中存在的问题,及时进行纠正,避免在考试中出现失误。
除了对习题的详细解答,这本答案集还提供了一些解题技巧和注意事项,帮助我们更好地应对各种类型的物理问题。
它还提供了一些典型例题的解析,让我们可以更深入地理解一些重要的知识点。
这对于我们在复习阶段提高解题速度和准确度非常有帮助。
总之,《大学物理下册课后习题答案第二版》是一本非常实用的辅助教材,它可以帮助我们更好地巩固所学的知识,提高解题能力,是我们学习大学物理的好帮手。
希望大家在学习大学物理的过程中能够充分利用这本答案集,取得更好的学习成绩。
大学物理第二版习题答案
13级应用化学(2)班物理习题详解习题精解1-1某质点的速度为j t i v 82-=,已知t=0时它经过点(3,7),则该质点的运动方程为( )A.j t i t 242-B.()()j t i t 74322+-+ C.j 8- D.不能确定解:本题答案为B.因为 dt rd v =所以 ()dt j t i r d82-=于是有()d t j t i r d t rr ⎰⎰-=0820即 j t i t r r2042-=-亦即 ()j t i t j i r 24273-=-- 故 ()()j t i t r 74322+-+=1-2 一质点在平面上作曲线运动,1t 时刻位置矢量为j i r 621+-=,2t 时刻的位置矢量为j i r 422+=,求:(1)在12t t t -=∆时间内质点的位移矢量式;(2)该段时间内位移的大小和方向;(3)在坐标图上画出21,r r及r∆。
解 (1)在12t t t -=∆时间内质点的位移矢量式为()()m j i r r r 2412-=-=∆ (2)该段时间内位移的大小 ()()m r 522422=+=∆该段时间内位移的方向与轴的夹角为 ︒-=⎪⎭⎫⎝⎛-=-6.2642tan 1α (3)坐标图上的表示如图1.1所示1-3某质点作直线运动,其运动方程为214x t t =+- ,其中x 以m 计,t 以s 计,求:(1)第3s 末质点的位置;(2)头3s 的位移大小;(3)头3s 内经过的路程。
解 (1)第3s 末质点的位置为2(3)14334()x m =+⨯-=(2)头3s 的位移大小为 ()(3)03()x x m -=(3)因为质点做反向运动是有()0v t =,所以令0dxdt=,即420,2t t s -==因此头3s 内经过的路程为 (3)(2)(2)(0)45515()x x x x m -+-=-+-=1-4 已知某质点的运动方程为22,2x t y t ==-,式中t 以s 计,x 和y 以m 计。
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理2课后习题答案.docx
解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
大学物理第二版课后习题答案
大学物理第二版课后习题答案《大学物理第二版课后习题答案》在大学物理学习过程中,课后习题是非常重要的一部分。
通过做习题,我们可以巩固课堂上学到的知识,加深对物理概念的理解,提高解决问题的能力。
因此,对于大学物理第二版的课后习题答案,我们需要认真对待,不仅要做好习题,还要对答案进行深入的分析和思考。
首先,大学物理第二版的课后习题答案包含了丰富的知识点和解题方法。
通过仔细研读答案,我们可以了解到不同类型的物理问题是如何解决的,学会运用不同的物理原理和公式来解决问题。
这对于我们的物理学习是非常有益的,可以帮助我们建立起扎实的物理基础,为将来的学习和工作打下坚实的基础。
其次,课后习题答案也可以帮助我们检验自己的学习成果。
通过对比自己的答案和标准答案,我们可以发现自己在哪些地方存在错误或者不足,及时进行纠正和补充。
这样可以帮助我们及时发现自己的学习问题,及时进行调整和改进,提高学习效率,取得更好的学习成绩。
最后,课后习题答案也可以帮助我们拓展物理知识。
在阅读答案的过程中,我们可以了解到一些新的物理概念和知识点,这些知识点可能在课堂上没有涉及到,但却是非常重要的。
通过课后习题答案的学习,我们可以不断拓展自己的物理知识,提高自己的综合能力。
总之,大学物理第二版的课后习题答案对于我们的物理学习是非常重要的。
通过认真对待习题答案,我们可以巩固知识,提高解决问题的能力,检验自己的学习成果,拓展物理知识,为将来的学习和工作打下坚实的基础。
希望大家在学习物理的过程中能够认真对待课后习题答案,不断提高自己的物理水平,取得更好的学习成绩。
大学基础物理学第2版习题答案
大学基础物理学第2版习题答案大学物理课后习题答案
2
3 用十年光阴交换半生痴狂ゆ
4
5 用十年光阴交换半生痴狂ゆ
6
7 用十年光阴交换半生痴狂ゆ
8
9 用十年光阴交换半生痴狂ゆ
10
11 用十年光阴交换半生痴狂ゆ
12
13 用十年光阴交换半生痴狂ゆ
14
15 用十年光阴交换半生痴狂ゆ
16
17 用十年光阴交换半生痴狂ゆ
18
19 用十年光阴交换半生痴狂ゆ
20
21 用十年光阴交换半生痴狂ゆ
22
23 用十年光阴 交换半生痴狂 ゆ
24
25 用十年光阴交换半生痴狂ゆ
26
27 用十年光阴交换半生痴狂ゆ
28
29 用十年光阴交换半生痴狂ゆ
30
31 用十年光阴交换半生痴狂ゆ
32
33 用十年光阴交换半生痴狂ゆ
34
35 用十年光阴交换半生痴狂ゆ
36
37 用十年光阴交换半生痴狂ゆ
38
39 用十年光阴交换半生痴狂ゆ
40
41 用十年光阴交换半生痴狂ゆ
42
43 用十年光阴交换半生痴狂ゆ
44
45 用十年光阴交换半生痴狂ゆ
46
47 用十年光阴交换半生痴狂ゆ
48
49 用十年光阴交换半生痴狂ゆ
50
51 用十年光阴交换半生痴狂ゆ
52
53 用十年光阴交换半生痴狂ゆ
54
55 用十年光阴交换半生痴狂ゆ
56。
基础物理学第二版习题解答
习题二2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。
若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化?解:以m 、M 整体为研究对象, 有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小Mm mFF m M=+ 发生变化。
2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2 ,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2=4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m 与M 2之间的作用力是否发生变化?解: 受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有 111T M g M a -= 又 12T T =,则2M m F =1122M mgM M m++当124M M m ==时 当125,3M m M m ==时2109M m mgF =,发生变化。
2-3.质量为M 的气球以加速度a v匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。
若气球仍能向上加速,求气球的加速度减少了多少?解:设f r为空气对气球的浮力,取向上为正。
分别由解图2-3(a )、(b)可得 由此解得题图2-2题图2-1解图2-1解图2-2解图2-32-4.如题图2-4所示,人的质量为60kg,底板的质量为40kg。
人若想站在底板上静止不动,则必须以多大的力拉住绳子?解:设底板和人的质量分别为M,m,以向上为正方向,受力图如解图2-4(a)、(b)所示,分别以底板、人为研究对象,则有3'0T F mg+-=F为人对底板的压力,'F为底板对人的弹力。
大学物理2课后习题答案.docx
解:回路磁通=BS = Bn r 2感应电动势大小:£— = — (B TI r 2) = B2n r — = 0A0 V At dr dr10-2^-Bcosa2同理,半圆形ddc 法向为7,则0”2鸟与亍夹角和另与7夹角相等,a = 45°①和=Bn R 2 cos a10-6解:0/z? =BS = 5—cos(^ + 久)叫一加&sin (血+久)dr _2Bit r~O) Bn r~2 _ 2 2 2Bf2n f =兀 2『BfR R 解:取半圆形"a 法向为Z ,dt — HR? ABcos a —— dt -8.89 xlO'2V方向与cbadc 相反,即顺时针方向. 题10-6图(1)在Ob 上取尸T 尸+ dr 一小段71 同理•• • r 1 9 % - 3 ca^BAr = 一 Bco, °"」) 18 1 2 1 , £ab - £aO +% =(一花' + 石)广=(2)・・・£ah >0即U a -U h <0 :.b 点电势高.10-11在金属杆上取dr 距左边直导线为r ,则(2) |nj 理, £dc = 碇・d7>0U d -U c v0即 / >U d10-15 设长直电流为/ ,其磁场通过正方形线圈的互感磁通为%蓄绘/警5210-16Q)见题10-16图Q),设长直电流为/,它产生的磁场通过矩形线圈的磁通为丛(丄+丄)d- I 2龙 r 2a-r •:实际上感应电动势方向从g T A , 即从图中从右向左,71 a-b10-14•d5 知, 此吋E 旋以。
为中心沿逆时针方向.(1) V ab 是直径,在〃上处处E 旋与ab m§E 旋• d7 = 0• • £亦也 U Q =Ub心 2n r 2TI 由样旋• M -/z 0/v a + b71 a-b(a (b12-4解:⑴由0 =—,务=£_知,各级条纹向棱边方 2/ 2向移动,条纹间距不变;(2)各级条纹向棱边方向移动,H.条纹变密. 12 5解:工件缺陷是凹的.故各级等厚线(在缺陷附近的)向棱边方向弯曲・按题意,每一条纹弯曲部分的顶点恰与左邻的直线部分连线相切,说明弯曲部分相当于条纹2向棱边移动了一条,故相应的空气隙厚度差为Ae = -,这也是工件缺陷的程度.2 12-6 ・・・ A/ = ^^- = A^^ln2 = 2.8xlO~6 H1 2JI(b)・・•长直电流磁场通过矩形线圈的磁通*2 = 0,见题10-16图(b)・・・ M = O10-17如图10-17图所示,取dS = /dr①二U(如+ ^_炖=做 广「丄)做(In 厶-In 丄) 2〃r 2兀(d-r)2兀 “ r r-d 2K a d-a = ^Il_Xn d-a_7i a:.L / =如1门上£I TI a10-18•・•顺串时厶=厶+厶2 +2M反串联时//二厶+厶2-2M・•・ L_L f = 4MM = --------- = 0.15 H 412-1 y 不变,为波源的振动频率;A,n =— 变小;u = A n v 变小. n 12- 2由心=三久知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零 a级明纹向下移动.12- 3解:不同媒质若光程相等,则其儿何路程定不相冋其所需吋间相同,为&€・因为△中已经将光在介质中的路程折算为光在真空中所走的路程。
物理学教程 第二版习题答案
质点运动学习题一、选择题C B D D DB C B B D二.填空题1. v=A ωcos ωt , v=22y -A ω.2. v 0+Ct 3/3 , x 0+v 0t+Ct 4/12 .3. v M =h 1v/(h 1-h 2) .4. 4.19m, 4.13×10-3m/s, 与x 轴成60︒.5. B , (A 2/R )+4πB .6. g sin θ, g cos θ . 三.计算题1. 坐标如图,设V 、v 、u 分别为质点对地、质点对斜面、斜面对地的速度,有V =v +uV x =v x +u x = gy 2cos α+u V y =v y +u y = gy 2sin α当y=h 时 V=(V x 2+V y 2)1/2=[u 2+2gh +2u gh 2cos α]1/2 V 与x 轴的夹角 β=arcot(V y /V x )=arctg[gh 2sin α /(gh 2cos α+u )]2. 因 v 2/v 1=R ω2 /(R ω1)= k t 22/( k t 12)= t 22/ t 12 故 v 1= v 2 t 12/ t 22=8m/sa n =v 12/R=32m/s 2a t =d v/d t=d(R ω)/d t =d(Rkt 2)/d t =2Rkt=2Rkt 2/t=2v 1/t 1=16m/s 2所以 a=(a n 2+a t 2)1/2=35.8m/s 23. 由 a=d v/d t=(d v/d x )(d x/d t ) =v (d v/d x )=-kv 2有 d v/v =-k d x()⎰⎰-=xv v x k v v 0d d 0 ln(v/v 0)=-kx故 v=v 0e -kx5. (1)Bt A e B ν-=- 2(1)Bt A A y t e B B -=+- 牛顿定律习题一. 选择题C C B E A 二.填空题1. 460m, 5.5×103N.2.3. 1/cos 2θ. 三.计算题1.受力图、坐标、所设角α如图 对A 有 T 1-m A g=0 对B 有 f -T 1sin α=0N+T 1 cos α-m B g =0对O 有 T 2=2T 1 cos(α/2)因CO 的延长线是α的角分线,故α=60°,有 T 1 cos α= T 1 cos60°=m B g -N=10×10-80=20N 得 T 1=40N 有 m A = T 1/g=4kgf= T 1sin α=T 1sin60°=34.6NT 2=2T 1 cos(α/2)=2T 1 cos30°=69.3N动量守恒定律和能量守恒定律习题一.选择题 A A A C D C D C C D 二.填空题1. 2Qv , 水流入方向.2. F ∆ t 1/(m 1+m 2),F ∆ t 1/(m 1+m 2)+ F ∆t 2/m 2. 3. -F 0R 4. 12J. 5. mgl/50.6. kx 02; -kx 02/2; kx 02/2 .三.计算题1. 子弹与物体组成的系统水平方向动量守恒,设子弹刚穿出物体时的物体速度为v ' , 有 mv 0=mv+Mv 'v '=m (v 0-v )/M(1)绳中张力 T=Mg+M v ' 2/l = Mg+ m 2(v 0-v )2/( Ml )=26.5N (2)子弹所受冲量 I = m (v -v 0)=-4.7N·s 负号表示与子弹入射方向相反.2. (1) A =()r r GMm RhR d 2⎰+-=GMm [1/R -1/(R+h )]= GMm h /[R (R+h )](2)由动能定理 A=E k -E k0 有 GMm h /[R (R+h )]=mv 2/2 v= {2GM h /[R (R+h )]}1/28. 煤粉接触传送带时速度为v 0=gh 2,方向向下.取时间微元∆t , 落入传送带上的煤粉质量∆m=q m ∆t , 设传送带对煤粉的平均作用力为f , 按如图坐标, 由动量定理得A A gBB g(2)A gOx yf x ∆t =∆m (v 2x - v 1x )=∆m (v -0)= ∆mv (f y -∆mg )∆t ≈f y ∆t=∆m (v 2y - v 1y )=∆m [0-(-v 0)]= ∆mv 0 f x =q m v f y = q m v 0故 f=(f x 2+ f y 2)1/2= q m (v 2+ v 02)1/2 = q m (v 2+2gh )1/2=149N f 与x 轴夹角α=arctg((f y /f x )= arctg(v 0/ v ) =arctg(gh 2/ v )=57.4︒所以煤粉对传送带的作用力f '的大小为 f '=149N 方向与x 轴夹角为 α'=180︒+57.4︒=237.4︒四.证明题1.(1) P=Fv=mav=mv d v /d tP d t= mv d v⎰⎰=tvv mv t P 0d d有 Pt/m v 2=(2) Pt/m v 2==d x /d t d x =Pt/m 2d tx=⎰⎰=txt Pt/m x 0d 2d =(2/3)/m Pt 32=3/2)(98t m P/刚体转动习题一.选择题C A C C B A B D A B二.填空题1. 4s, -15m/s.2. 203. 3ML 2/4, mgL/2, 2g /(3L ) .三.计算题1.飞轮受绳的张力T 产生的力矩和阻力矩M μ , 重锤受绳的张力T 和重力mg .对飞轮和重锤分别用转动定律和牛顿定律列方程, 有 TR -M μ =J α=Ja/R mg -T=ma h=at 2/2得 mgR -M μ=( J/R+mR )2h/t 2当重锤质量分别为m 1和m 2时, 重锤下落时间分别为t 1和t 2 ,于是有 m 1gR -M μ=( J/R+m 1R )2h/t 12 m 2gR -M μ=( J/R+m 2R )2h/t 22 相减得 (m 1-m 2)gR=(2hJ/R )(1/t 12-1/t 22)+(2hR )( m 1/t 12-m 2/t 22)=2hJ (t 22-t 12)/(R t 12t 22)+2hR (m 1t 22 -m 2t 12)/( t 12t 22) 有 J=[(m 1-m 2)gR2 t 12t 22/[2h (t 22-t 12)]- R 2(m 1t 22 -m 2t 12)/(t 22-t 12)=1.06×103kg·m 22.(1)子弹击中圆盘的过程中,子弹和圆盘组成的系统对O 点的角动量守恒 mv 0R=( MR 2/2+mR 2)ω ω=2mv 0/[(M+2m )R ](2)求圆盘的摩擦阻力矩.取圆环微元d r,其摩擦阻力矩为 d M μ=μd mgr=μσ2πr d rgr=2πμσgr 2d r⎰=Rr gr M 02d 2πμσμ=2πμσgR 3/3=2μMgR/3(3) -M μ∆t=0-J ω ∆t=J ω /M μ=( MR 2/2+mR 2){2mv 0/[(M+2m )R ]}/(2μMgR/3) =3mv 0 /2μMg3. (1)定滑轮受绳的张力T 产生的力矩, 重物受绳的张力T 和重力mg .取初角速度ω 0的方向为坐标正向,对定滑轮和重物分别列方程,有 -TR =J α= (MR 2/2)αT -mg=ma= mR α得 α=-2mg/[(2m +M )R ]=-81.7rad/s 2负号表示方向与初角速度ω 0的方向相反 (2) ω 2-ω02=-ω02=2α ∆θ∆θ=-ω02/(2α)=ω02(2m +M )R /(4mg ) h=R ∆θ=ω02(2m +M )R 2/(4mg )=6.12×10-2m(3) 物从最大高度回到原位置定滑轮转角∆θ'=-∆θ=-ω02(2m +M )R /(4mg )有ω' 2=2α∆θ'=()mgR M m R M m mg -42)(242+-⋅+ω=ω02 所以当物体回到原位置时 ω' =ω0=10.0rad/s 方向与初角速度ω 0的方向相反振动习题一. 选择题B C D A B B B B B A二.填空题1. A cos(2πt /T -π/2); A cos(2πt /T +π/3).2. 9.9×102J.3. ⎜A 2-A 1⎜; x=⎜A 2-A 1⎜cos(2πt /T +π/2). 三.计算题1.取水面为坐标原点,向上为x 正向,木块质心坐标为x .木块与水的密度分别为ρ与ρ',木块 受向下的重力l 3ρg 与向上的浮力l 2( l /2-x )ρ'g .平衡时木块质心坐标为a 有 l 2(l /2-a )ρ'g -l 3ρg=0a= l /2-l ρ/ρ'=-0.4l=-0.04m(1)木块质心坐标为x 时l 2(l /2-x )ρ'g -l 3ρg=ma= l 3ρd 2x/d t 2(l /2-x )ρ'g - (l /2-a )ρ'g =ma= l ρd 2x/d t 2 d 2x/d t 2+(x -a ) g ρ'/(ρ l ) =0令X= x -a 有 d 2X/d t 2+[ g ρ'/(ρ l )]X=0即木块作简谐振动X=A cos (ωt+ϕ0)其中ω=[ gρ'/(ρ l)]1/2=10.4rad/s(2)取放手时刻为t=0,有x0=-0.05m,X0=-0.01m;v0=0;得A=0.01m,ϕ0=π.X=A cos (ωt+ϕ0)= 0.01cos (10.4t+π) (SI)所以, 木块质心相对水面的振动方程为x=X+a=-0.04+ 0.01cos (10.4t+π) (SI)2.设杆向右摆动为角坐标θ正向.摆动过程中杆受重力矩和弹性力矩.当杆向右摆动θ角时, 重力矩和弹性力矩均与θ相反,有-(1/2)MgL sinθ-kL2sinθ=J d2θ/d t2当作微小振动时,sinθ≈θ, 且J=ML2/3,有d2θ/d t2+( Mg/2+kL) Lθ /J =0d2θ/d t2+[3( Mg+2kL)/(2ML)]θ=0杆作微小振动的周期T=2π/[3( Mg+2kL)/(2ML)]1/2=2π{(2ML) /[3( Mg+2kL)]}1/2波动习题一.选择题A B C B C二.填空题1. 0.1cos(4πt-π) (SI); -1.26m/s.2. π/3.3. R22/R12.4.三.计算题1. (1)原点处质点在t=0时刻y0=A cosϕ0=0 v0=-Aωsinϕ0>0所以ϕ0=-π/2.而T=λ/v=0.40/0.08=5(s)故该波的波动方程为y=0.04cos[2π( t/5-x/0.4)-π/2] (SI) (2) P 处质点的振动方程y P =0.04cos[2π( t/5-0.2/0.4)-π/2]= 0.04cos(0.4π t -3π/2) (SI)2. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =, φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A所以 244πππ-=-ν, ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s 波长λ = u /ν = 160 m波动表达式]21)16016(2cos[π-+π=x t A y (SI)3、解:(1) x = λ /4处)22cos(1ππ-=t A y ν , 22cos(22)y A t ν=+ππ∵y 1,y 2反相∴合振动振幅 A A A A s =-=2,且合振动的初相φ 和y 2的初相一样为2π. 合振动方程 )22cos(ππ+=t A y ν (2)x = λ /4处质点的速度)2cos(2)2 2sin(2/d d v ππππππ+=+-==t A t A t y νννν四.证明题1.(1) 设小球向右摆动为角坐标θ正向.摆动过程中小球受重力和弧形轨道的支持力. 重力的切向分力使小球获得切向加速度.当小球向右摆动θ角时, 重力的切向分力与θ相反,有-mg sin θ=ma t =mR d 2θ/d t 2当作小幅度运动时,sin θ ≈θ, 有d 2θ/d t 2+(g/R ) θ=0故小球作间谐振动 θ=θA cos(R g t +ϕ) (2)周期为 T=2π/ω=2π /R g =2πg R气体动理论习题一. 选择题 B A B D B二.填空题1. 1.33×105Pa.2. 5/3; 10/3. 3. 210K; 240K.三.计算题1. (1) 因T 等,有()2O k ε=()2H k ε=6.21×10-21Jm v k ε22==483m/s(2) T=2k ε/(3k )=300K2. 平均平动动能的总和E t =(3/2)(M/M mol ) RT=(3/2)(ρV /M mol )RT =7.31×106J 内能增加∆E=(i /2)(M/M mol ) R ∆T=(i /2)(ρV/M mol )R ∆T =4.16×104J2v 的增量∆(2v )=∆(mol 3M RT )=()[]T RT/M d 3d mol ∆T=()[]1mol 13T M R ∆T/2=0.856m/s4解:根据分析,当气体温度为T=273K 时,可得(1)氧分子的平均平动动能JkT kt 21107.523-⨯==ε氧分子的平均转动动能JkT kr 21108.323-⨯==ε (2)氧气的内能JRT i M m E 233101.727331.82510321042⨯=⨯⨯⨯⨯⨯='=-- (3)氦气的内能JRT i M m E 233104.327331.8231041042⨯=⨯⨯⨯⨯⨯='=-- 热力学基础习题一.选择题B B A B A A D C B B C 二.填空题1. 166J.2. (2),(3),(2),(3)3. 33.3%; 50%; 66.7%4. V 2; (V 1/V 2)γ -1T 1; (RT 1/V 2)(V 1/V 2)γ -1 三.计算题 1. (1)由V =p a ,得p=a 2/V 2,所以A=()()⎰⎰-==21212122211d d V V V V V /V /a V V aV p(2)由状态方程p 1V 1/T 1= p 2V 2/T 2知T 1/T 2=( p 1V 1)/( p 2V 2) = (V 1a 2/V 12)/( V 2 a 2/V 22) = V 2/V 12. 单原子分子i=3, C V =3R/2, C p =5R/2. ca 等温 T a =T cab 等压 V a /T a =V b /T b T b =(V b /V a )T a =(V b /V a )T c (1) ab 等压过程系统吸热为Q ab =(M/M mol )C p (T b -T a ) = (5R/2)(V b /V a -1) T c =-6232.5J bc 等容过程系统吸热为Q bc =(M/M mol )C V (T c -T b ) = (3R/2)(1-V b /V a )T c =3739.5J ca 等温过程系统吸热为Q ca =(M/M mol )RT c ln(V a /V c )= RT c ln2=3456J (2) 经一循环系统所作的净功 A= Q ab + Q bc + Q ca =963J循环的效率η=A/Q 1= A/( Q bc + Q ca )=13.4%3. (1) A da =p a (V a -V d )= -5.065⨯10-3J(2) ∆E ab =(M/M mol )(i /2)R (T b -T a )= (i /2)(p b -p a )V a =3.039⨯104J(3) A bc =(M/M mol )RT b ln(V c /V b )=p b V b ln(V c /V b )=1.05⨯104J A=A bc +A da =5.47⨯103J(4) Q 1=Q ab +Q bc =∆E ab +A bc =4.09⨯104J η=A/Q 1=13.4%静电场习题一、选择题 CBCCD BACBD 二、填空题 1. λ1d/(λ1+λ2).2. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右.3. -Q/ε0, -2Q r 0/(9πε0R 2), -Q r 0/(2πε0R 2).4. (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和5.)222(812310q q q R++πε.6. Ed cos α.7. -q/(6πε0R )8.. 25.9. R 1/R 2, 4πε0(R 1+R 2), R 2/R 1. 三、计算题1. 取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2) d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θE x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x =Q/(2π2ε0R 2)E y =⎰d E y = ()⎰-2/32/2024d sin ππεπθθR Q =0故 E=E x =()2022R Q επ 方向沿x 轴正向.取园弧微元d q=λd l=[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2) d E x =d E cos θ d E y =d E sin θE x =()/2220/2d cos d 4x E Q R ππθθπε-=⎰⎰=Q/(2π2ε0R 2) E y =⎰d E y =)/2220/2sin d 4Q R ππθθπε-⎰=0故 E=E x =()2022R Q επ 方向沿x 轴正向.2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)]Φe =⎰d Φ ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b cxc ac -⋅=πελ=λa arctan[b /(2c )]/(πε0)λ2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2. 为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE == E 1=ρr 1/(2ε0) 方向垂直于轴指向外; 为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S 0224επQ E r =球内r<a Q=-ρ4πr 23/3 E 2= -πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3 E 2= -πa 3/(3ε0r 22) 负号表示方向指向球心. 对于O 点E 1=ρd/(2ε0), E 2= -πr 2/(3ε0)=0 (因r 2=0) 得 E O =ρd/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2= -πa 3/(12ε0d 2)得 E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.4. 课后9-85. 课后9-146. 课后9-207. 课后9-218. 解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R 23-R 13)]球内,球层中,球外电场依次为 E 1=0,E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2)故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E =0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2)=ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)]静电场中的导体和电介质一、 选择题 AACDD DBABCA 二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.4. 取向, 取向; 位移, 位移.5. 1/εr , 1/εr .6. 3.36×105N/C .7. ε0εr U 2/(2d 2) 三、计算题1. B 球接地,有 U B =U ∞=0, U A =U ABU A =(-Q+Q B )/(4πε0R 3) U AB =[Q B /(4πε0)](1/R 2-1/R 1)Q得Q B=QR1R2/( R1R2+ R2R3- R1R3)U A=[Q/(4πε0R3)][-1+R1R2/(R1R2+R2R3-R1R3)]= -Q(R2-R1)/[4πε0(R1R2+R2R3-R1R3)]2.球形电容器C=4πε0RQ1=C1V1=4πε0RV1 Q2=C2V2=4πε0RV2W0=C1V12/2+C2V22/2=2πε0R (V12+V22)两导体相连后C=C1+C2=8πε0RQ=Q1+Q2= C1V1+C2V2=4πε0R(V1+V2)W=Q2/(2C)= [4πε0R(V1+V2)]2/(16πε0R)=πε0R(V1+V2)2静电力作功A=W0-W=2πε0R (V12+V22)-πε0R(V1+V2)2=πε0R(V1-V2)2=1.11×10-7J4.稳恒磁场习题一、选择题BAAAB DBCBC CDBD二、填空题1.I1+ I2+ I3+ I4=02.所围面积,电流,法线(n).3. 0.4. 0.16T.5. μ0Qv /(8πl 2), z 轴负向.6. 环路L 所包围的电流, 环路L 上的磁感应强度,内外.7. μ0I , 0, 2μ0I .8. IBR .9. 10-2, π/2 10. 7.96×105A/m, 2.42×102A/m.三、计算题1.(1) 在距球心r 处沿电流方向取微元长度d r ,导电截面为2πr2.则此微元长度电阻为d R=ρd r/(2πr 2) 接地电阻为()[]⎰∞=adr r R 22πρ=ρ/(2πa )(2) j=I/S=I/(2πr 2)j 1/j 2=[I/(2πr 12)]/[I/(2πr 22)]= r 22/r 122. 取宽为d l 细圆环电流,dI =I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ20d sin d RNI B B =μ0NI/(4R )3. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1) 求磁场, 电流元在中心轴线上激发磁场的方向沿轴线, 且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=R Rxrx r r xr rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++R xrx r x r 0232222220d 4σωμ-()()⎰++R xrx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RR x r xx r 02222202σωμ=⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2) 求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/44. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度 的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2 方向如图.有 B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向5. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2 在平面①的上方向右,在平面①的下方向左; 电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左, 故有 B=B 1+B 2=μ0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反, 故有B=B 1-B 2=0I 1I 2 ①②6. 在圆环上取微元 I 2d l = I 2R d θ 该处磁场为 B =μ0I 1/(2πR cos θ) I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ/(2πcos θ)⎰-=222102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右电磁感应习题一、选择题 DBDAD CDCBA 二、填空题1. t I r r ωωπμcos 202210,22102Rr I r πμ . 2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.4. er 1(d B /d t )/(2m ),向右; eR 2(d B /d t )/(2r 2m ),向下. 5. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt . 6.ε=πR 2k/4,从c 流至b . 7. 0.8. ΦAB =ΦBA . 9. μ0I 2L /(16π)10. 1.33×102 W/m 2 , 2.51×10-6J/m 3.三、计算题1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里. 取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B =()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a bIlln 20πμ εi = -d Φm /d t=()dtdIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ= -5.18×10-8VI 1y负号表示逆时针2. (1) 导线ab 的动生电动势为 εi = ⎰l (v×B )·d l=vBl sin(π/2+θ)=vBl cos θ I i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为 F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θ mg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B el B mgR v θθθ222cos 2221cos sin --= (2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .3.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为 E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/Rεi =⎰⋅N Ml E i d =⎰N M i x E θcos d =()⎰-⋅RRr Rr x t B R 22d d d=⎰-+⋅RR Rx xt B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )RR-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅NMl E i d =⎰⋅-MNl E i d=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.4. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad a r r Il πμ2d 0+()⎰--a d a r d rIl πμ2d 0 +⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )] +[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )波动光学习题二.填空题1. 2πd sin θ /λ.2. 2π(n -1)e/λ; 4×104.3. D λ/dn .4. 1.40.5. λ/(2L ).6. 5λ/(2n θ).7. 916.8. 1×10-6.9. 遵守普通的折射;不遵守普通的折射. 10. 见图.三.计算题1. (1) 明纹坐标 x k =kD λ/a∆x=12k k x x -=(k 2-k 1)D λ/a=20D λ/a =0.11m(2) 零级明纹即光程差为零的明纹,玻璃片覆盖上一条缝后,δ= r 2-[r 1+ (n -1)e ]=0 r 2-r 1=(n -1)e设此处为不复盖玻璃片时的k 级明纹,应有 r 2-r 1= k λ所以有 (n -1)e = k λ故玻璃片复盖一缝后,零级明纹移至原来明纹的级次为k= (n -1)e/λ=6.96~72. 解:插入介质前的光程差1121r r k λ∆=-=(对应1k 级明纹)插入介质后的光程差2122(1)n d r r k λ∆=-+-= (对应2k 级明纹) 光程差的变化量为2121(1)()n d k k λ∆-∆=-=- 式中21()k k -为移过点P 的条纹数 (1) 插入介质后的光程差 212(1)n d r r ∆=-+-则新的中央明纹所在的屏上位置对应的光程差 212(1)0n d r r ∆=-+-=显然要求r 1<r 2, 即条纹上移。
《大学物理学》第二版上册习题解答
大学物理学习题答案习题一答案 习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆ 和r ∆ 有区别吗?v ∆ 和v ∆有区别吗?0dv dt = 和0d v dt= 各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-= 最初s 2内的平均速度为: 00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dxv t t dt==- s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
基础物理学第二版习题解答
习题二 2-1.两质量分别为m 和M ()M m ≠的物体并排放在光滑的水平桌面上,现有一水平力F 作用在物体m 上,使两物体一起向右运动,如题图2-1所示,求两物体间的相互作用力。
若水平力F 作用在M 上,使两物体一起向左运动,则两物体间相互作用力的大小是否发生变化解:以m 、M 整体为研究对象, 有()F m M a =+…①以m 为研究对象,如解图2-1(a ),有Mm F F ma -=…②由①、②两式,得相互作用力大小若F 作用在M 上,以m 为研究对象,如题图2-1(b )有Mm F ma =…………③由①、③两式,得相互作用力大小Mm mFF m M=+ 发生变化。
2-2. 在一条跨过轻滑轮的细绳的两端各系一物体,两物体的质量分别为M 1和M 2 ,在M 2上再放一质量为m 的小物体,如题图2-2所示,若M 1=M 2= 4m ,求m 和M 2之间的相互作用力,若M 1=5m ,M 2=3m ,则m与M 2之间的作用力是否发生变化解: 受力图如解图2-2,分别以M 1、M 2和m 为研究对象,有 111T M g M a -= 又 12T T =,则2M m F =1122M mgM M m++当124M M m ==时 当125,3M m M m ==时2109M m mg F =,发生变化。
2-3.质量为M 的气球以加速度a 匀加速上升,突然一只质量为m 的小鸟飞到气球上,并停留在气球上。
若气球仍能向上加速,求气球的加速度减少了多少解:设f 为空气对气球的浮力,取向上为正。
题图2-2题图2-1解图2-1解图2-2解图2-3分别由解图2-3(a)、(b)可得由此解得2-4.如题图2-4所示,人的质量为60kg,底板的质量为40kg。
人若想站在底板上静止不动,则必须以多大的力拉住绳子解:设底板和人的质量分别为M,m,以向上为正方向,受力图如解图2-4(a)、(b)所示,分别以底板、人为研究对象,则有3'0T F mg+-=F为人对底板的压力,'F为底板对人的弹力。
大学基础物理习题答案
大学基础物理习题答案
《大学基础物理习题答案》
在大学基础物理课程中,学生们经常会遇到各种各样的习题和问题。
这些习题
涵盖了从力学到热力学、电磁学等各个领域,考察了学生对物理学知识的掌握
程度和解决问题的能力。
在这篇文章中,我们将给出一些常见的大学基础物理
习题的答案,并希望能够帮助学生更好地理解物理学知识。
1. 一个质量为2kg的物体以速度5m/s沿水平方向运动,受到一个沿运动方向
的恒力,力的大小为10N。
求物体在10s后的速度。
答案:根据牛顿第二定律,物体受到的加速度为$a=F/m=10N/2kg=5m/s^2$。
物体在10s后的速度为$v=v_0+at=5m/s+5m/s^2*10s=55m/s$。
2. 一个弹簧的劲度系数为200N/m,当受到一个力为20N时,弹簧的伸长量为
多少?
答案:根据胡克定律,弹簧的伸长量为$x=F/k=20N/200N/m=0.1m=10cm$。
3. 一个电阻为10Ω的电路中,通过电流为2A,求电路中的电压。
答案:根据欧姆定律,电路中的电压为$V=IR=10Ω*2A=20V$。
通过以上几个例题的解答,我们可以看到,物理学习不仅仅是理论知识的学习,更重要的是能够运用所学知识解决实际问题。
希望同学们在学习物理的过程中,能够多加练习,提高自己的解决问题的能力,从而更好地掌握物理学知识。
大学物理2习题答案共25页
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
大学物理2·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
大学物理(二)习题参考答案
大学物理(二)习题参考答案14-2、 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为普适气体常量,则该理想气体的分子数为多少? 解:由理想气体状态方程 N p nkT kT V== 得理想气体的分子数 pV N kT=14-8、温度为0ºC 和100ºC 时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1e V ,气体的温度需是多少?解:(1)232111331.3810273 5.651022w kT J J --==⨯⨯⨯=⨯ (2)23212233 1.3810(273100)7.721022w kT J J --==⨯⨯⨯+=⨯(3)193323322 1.60107.73107.4610233 1.3810w w kT T K K k --⨯⨯=⇒===⨯≈⨯⨯⨯℃ 14-9、某些恒星的温度可达到约1.0×108K ,这是发生聚变反应(也称热核反应)所需的温度。
通常在此温度下恒星可视为由质子组成。
求: (1)质子的平均动能是多大? (2)质子的方均根速率是多大? 解:(1)质子的平均动能为 23815331.3810 1.0102.071022w kT J J --==⨯⨯⨯⨯=⨯ (2) 质子的方均根速率是2161121.5710rps w mv v s m s --===⋅=⨯⋅或1611.5710rpsv s m s --==⋅=⨯⋅ 14-12、解: (1)KK E E N w w N=⇒=A molMN N M =⋅ 5321234.141032108.27102.66 6.0210k mol A E M w J J MN --⨯⨯⨯∴===⨯⨯⨯(2) 21233228.2710400233 1.3810w w kT T K K k --⨯⨯=⇒==≈⨯⨯ 14-17、解:(1)253122522 6.7510 1.35105 2.010mol mol mol M M PV RT P RT M V M E E P M i iV V E RT M P Pa Pa -⎫=⇒=⎪⎪⇒==⎬⎪=⎪⎭⨯⨯==⨯⨯⨯(2)221223333 6.751027.51055 5.4102w kT E E w J J E i i N N kT N ε-⎫=⎪⨯⨯⎪⇒=⋅===⨯⎬⨯⨯⎪==⎪⎭21223227.510 3.621033 1.3810w T K K k --⨯⨯===⨯⨯⨯ 14-18、解:已知,V ,P ,i22mol mol M i E RT M i E PV M PV RT M ⎫=⎪⎪⇒=⎬⎪=⎪⎭15-2解:已知Q,E ∆由,5552.6610 4.1810 1.5210Q E W W Q E J J J =∆+⇒=-∆=⨯-⨯=-⨯,外界对系统做功。
大学物理2习题参考答案
题1-3图第一章 流体力学1.概念(3)理想流体:完全不可压缩又无黏性的流体。
(4)连续性原理:理想流体在管道中定常流动时,根据质量守恒定律,流体在管道内既不能增 多,也不能减少,因此单位时间内流入管道的质量应恒等于流出管道的质量。
(6)伯努利方程:C gh v P =++ρρ221(7)泊肃叶公式:LPR Q ηπ84∆=2、从水龙头徐徐流出的水流,下落时逐渐变细,其原因是( A )。
A. 压强不变,速度变大; B. 压强不变,速度变小;C. 压强变小,流速变大;D. 压强变大,速度变大。
3、 如图所示,土壤中的悬着水,其上下两个液面都与大气相同,如果两个页面的曲率半径分别为R A 和R B (R A <R B ),水的表面张力系数为α,密度为ρ,则悬着水的高度h 为___)11(2BA R R g -ρα__。
(解题:BB A A A B R P P R P P gh P P ααρ2,2,00-=-==-) 4、已知动物的某根动脉的半径为R, 血管中通过的血液流量为Q , 单位长度血管两端的压强差为ΔP ,则在单位长度的血管中维持上述流量需要的功率为____ΔPQ ___。
5、城市自来水管网的供水方式为:自来水从主管道到片区支管道再到居民家的进户管道。
一般说来,进户管道的总横截面积大于片区支管的总横截面积,主水管道的横截面积最小。
不考虑各类管道的海拔高差(即假设所有管道处于同水平面),假设所有管道均有水流,则主水管道中的水流速度 大 ,进户管道中的水流速度 小 。
10、如图所示,虹吸管的粗细均匀,略去水的粘滞性,求水流速度及A 、B 、C 三处的压强。
221.2 理想流体的定常流动'2gh v C =∴222121'CC D D v P v gh P ρρρ+=++0,0≈==D C D v P P P 练习5:如图,虹吸管粗细均匀,略去水的粘滞性,求管中水流流速及A 、B 、C 三处的压强。
大学物理2习题册(含答案)
题1第⼀一章流体⼒力力学1、基本概念(3)理理想流体:完全不不可压缩,没有粘滞性的流体。
(4)连续性原理理:流管上⼀一节流速与截⾯面积的乘积是⼀一个常量量,截⾯面⼤大的流速⼩小,反之⼤大(6)伯努利利⽅方程:P 1+12ρv 12+ρg h 1=P 2+12ρv 22+ρg h 2=c(7)泊肃叶公式:2、从⽔水⻰龙头徐徐流出的⽔水流,下落时逐渐变细,其原因是(A )。
A.压强不不变,速度变⼤大; B.压强不不变,速度变⼩小;C.压强变⼩小,流速变⼤大;D.压强变⼤大,速度变⼤大。
3、如图所示,⼟土壤中的悬着⽔水,其上下两个液⾯面都与⼤大⽓气相同,如果两个⻚页⾯面的曲率半径分别为R A 和R B (R A <R B ),⽔水的表⾯面张⼒力力系数为α,密度为ρ,则悬着⽔水的⾼高度h 为_____。
4、已知动物的某根动脉的半径为R,⾎血管中通过的⾎血液流量量为Q ,单位⻓长度⾎血管两端的压强差为ΔP ,则在单位⻓长度的⾎血管中维持上述流量量需要的功率为ΔPQ 。
5、城市⾃自来⽔水管⽹网的供⽔水⽅方式为:⾃自来⽔水从主管道到⽚片区⽀支管道再到居⺠民家的进户管道。
⼀一般说来,进户管道的总横截⾯面积⼤大于⽚片区⽀支管的总横截⾯面积,主⽔水管道的横截⾯面积最⼩小。
不不考虑各类管道的海海拔⾼高差(即假设所有管道处于同⽔水平⾯面),假设所有管道均有⽔水流,则主⽔水管道中的⽔水流速度⼤大,进户管道中的⽔水流速度⼩小。
6、如图所示,虹吸管的粗细均匀,略略去⽔水的粘滞性,求⽔水流速度及A 、B 、C 三处的压强。
题1-10图解:在管外液⾯面上任选⼀一点D ,CD 两点:BC两点:AC两点:7、⼀一开⼝口容器器截⾯面积为S1,底部开⼀一截⾯面积为S2的孔。
当容器器内装的液体⾼高度为h时,液体从孔中喷出的速度为多⼤大?设液体为理理想流体且作定常流动。
解:由于液体为理理想流体且作定常流动,根据连续性原理理,有根据伯努利利⽅方程,有从上两式联⽴立解得8、⼀一圆筒中的⽔水深为H=0.70m,底⾯面积S1=0.06m2,桶底部有⼀一⾯面积为1.0×10-4m2的⼩小孔。
大学物理二练习册答案
3. 如图所示,一电容器由两个同轴圆筒组成,内筒半径为 a,外筒半径为 b,筒长都是 L,中间充满相对介电常量为r 的各向同性均匀电介质. 内、 外筒分别带有等量异号电荷+Q 和-Q.设 (b- a) << a,L >> b,可以忽略边缘效应,求: (1) 圆柱形电容器的电容; (2) 电容器贮存的能量.
思考题 3:有一上下极板成 θ 角的非平行板电容器(长为 a ,宽为 b) ,其电 容如何计算?
参考解答: 设 一 平 行 板 电 容 器 是 由 长 为 a , 宽 为 b 的 两 导 体板 构 成 , 板 间 距 为 d , 则 电 容 为
ab , 若该电容器沿两极板的长度同一方向有 d x的长度增 d a (b d x ) a d x 量,则电容为 C C0 , 在此基础上推广到 d d
L b a
解:由题给条件 ( b a) a 和 L b ,忽略边缘效应, 应用高斯定理可求出两 筒之间的场强为: 两筒间的电势差 电容器的电容 电容器贮存的能量
E Q /(2 0 r Lr )
b
U
Q dr Q b ln 2 0 r L r 2 0 r L a a
3
参考解答: 由极性分子组成的电介质(极性电介质)放在外电场中时,极性分子的固有电矩将沿外 电场的方向取向而使电介质极化。 由于极性分子还有无规则热运动存在, 这种取向不可能完 全整齐。 当电介质的温度升高时,极性分子的无规则热运动更加剧烈,取向更加不整齐,极化的 pi 效果更差。此情形下,电极化强度 P 将会比温度升高前减小。 V 在电介质中的电场 E 不太强时,各向同性电介质的 P 和 E 间的关系为 P 0 ( r 1) E . 很明显,在同样的电场下,当温度升高后,相对介电常量 εr 要减小。