遗传的分子基础
宝典08 遗传的分子基础(解析版)
![宝典08 遗传的分子基础(解析版)](https://img.taocdn.com/s3/m/98ba83b1988fcc22bcd126fff705cc1755275fa2.png)
宝典08 遗传的分子基础内容概览第一部分高考考情速递第二部分知识导图第三部分考点清单(六大考点)第四部分易错易混(12易错点)第五部分真题赏析1.肺炎链球菌的转化实验(1)体内转化实验:1928年由英国微生物学家格里菲思等人进行。
结论:在S 型细菌中存在转化因子可以使R 型细菌转化为S 型细菌。
(2)体外转化实验:20世纪40年代由美国微生物学家艾弗里等人进行。
结论:DNA 才是使R 型细菌产生稳定遗传变化的物质。
2.肺炎链球菌有两类:R 菌无荚膜、菌落粗糙、无毒。
S 菌有荚膜、菌落光滑、有毒,可使人和小鼠患肺炎,小鼠并发败血症死亡。
3.在T2噬菌体的化学组成中,60%是蛋白质,40%是DNA 。
对这两种物质的分析表明:仅蛋白质分子中含有硫,磷几乎都存在于DNA 分子中。
(P45“相关信息”)4.在对照实验中,控制自变量可以采用“加法原理”或“减法原理”。
与常态比较,人为增加某种影响因素的称为“加法原理”。
与常态比较,人为去除某种影响因素的称为“减法原理”。
(P46“科学方法”)1.赫尔希和蔡斯利用了放射性同位素标记技术,设计并完成了噬菌体侵染细菌的实验,因噬菌体只有头部的DNA 进入大肠杆菌中,而蛋白质外壳留在外面,因而更具说服力。
(P45)2.赫尔希和蔡斯的实验过程:①在分别含有放射性同位素35S 和放射性同位素32P 的培养基中培养大肠杆菌;②再用上述得到的大肠杆菌培养噬菌体,得到蛋白质含有35S 标记或DNA 含有32P 标记的噬菌体; ③然后,用35S 或32P 标记的噬菌体分别侵染未被标记的大肠杆菌,经过短时间的保温后,用搅拌器搅拌、离心;④离心后,检查上清液和沉淀物中的放射性物质。
(P45)3.实验误差分析:(1)用32P 标记的噬菌体侵染大肠杆菌,上清液中含放射性的原因是:保温时间过短或过长。
(2)用35S 标记的噬菌体侵染大肠杆菌,沉淀物中有放射性的原因是:搅拌不充分,有少量含35S 的噬菌体外壳吸附在细菌表面,随细菌离心到沉淀物中。
生物 必修二 第三章遗传的分子基础 概念总结
![生物 必修二 第三章遗传的分子基础 概念总结](https://img.taocdn.com/s3/m/90fd3befc281e53a5902ff9a.png)
生物必修二第三章遗传的分子基础概念总结生物必修二第三章遗传的分子基础概念总结第三章遗传的分子基础一、基本概念1.基因:一段包含一个完整的遗传信息单位的有功能的核酸分子片段。
在大多数生物中是一段DNA,在某些病毒中是一段RNA。
2.DNA的复制:新的DNA的合成就是产生两个跟亲代DNA完全相同的新的DNA分子的过程。
3.___转录____:遗传信息由DNA传递到RNA上的过程。
4.翻译:核糖体沿着mRNA的运行,氨基酸相继加到延伸中的多肽链上。
5.逆转录:遗传信息由RNA传递到DNA上的过程。
6.遗传密码:mRNA上每相连的三个核苷酸,能决定一种氨基酸。
7.基因表达:基因形成RNA产物以及mRNA被翻译为基因的蛋白质产物的过程。
二、主要结论1.DNA分子的基本组成单位是脱氧核苷酸。
它是由①磷酸②碱基③脱氧核糖组成。
其中,②和③结合形成的单位叫核苷。
组成DNA的②有四种:腺嘌呤(A)鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)。
所以,组成DNA的脱氧核苷酸有四种。
2.DNA的空间结构特点:(1)两条长链按方向平行方式盘旋成双螺旋结构;脱氧核糖和磷酸构成基本骨架排列在外侧,内侧是_碱基___;(2)两条链上的碱基遵循碱基互补配对原则,通过氢键连接。
(3)碱基配对原则:A与T、G与C配对。
3.DNA分子的功能:DNA分子的脱氧核苷酸的排列方式中_携带_______着遗传信息。
DNA分子通过_复制____,使遗传信息从亲代传递给子代,保持了前后代遗传信息的连续性。
DNA分子具有携带和表达遗传信息的双重功能。
4.蛋白质合成过程:(1)以__DNA分子一条链__为模板,在细胞核中合成___mRNA___________;(2)____mRNA____通过细胞核的__核孔__进入细胞质,在细胞质中的__核糖体_(一种细胞器)合成蛋白质。
5.中心法则(图):1三、横向联系1.脱氧核苷酸、基因、DNA、染色体的关系基本组主要A碱基成单位片断组成成分(1)图G是蛋白质。
遗传的分子基础
![遗传的分子基础](https://img.taocdn.com/s3/m/d3cf663e050876323012126d.png)
1个环约 含100kb
染色质高级结构
looped domain structure
30 nm 纤丝
300 nm
Nuclear matrix (核基质), 蛋白质复合体
Steps from DNA to chromosome
四、RNA的分子结构
tRNA结构
四、RNA的分子结构
三种RNA 分子
信使RNA (mRNA) 转移RNA (tRNA) 核糖体RNA (rRNA)
转录单位的结构
Structure of a transcription unit
DNA
+1
promoter
Transcribed region terminator
ATACG
TATGC
Antisense strand
染色质结构
• 组蛋白H1:大小为 23 kDa 1. 位于核小体核心外侧, 与DNA连接松散, 2. 其序列保守性较低
3. 组蛋白H1的作用: 在DNA出入核小体核心颗粒处对
DNA起稳定作用。
核小体组成 (Steps to make a Nucleosome )
DNA + Histone octamer (组蛋白 八聚体) → Nucleosome core (核小体核心 146bp) + H1→> Chromatosome (染色小体 166bp) + linker DNA→ Nucleosome (核小体) (~200 bp)
2. DNA合成的开始 合成DNA片段之前,
先由RNA聚合酶合成一小 段RNA引物(约有20个碱基 对) ,DNA聚合酶才开始 起作用合成DNA片段。
复制叉的结构
遗传的分子基础
![遗传的分子基础](https://img.taocdn.com/s3/m/119bf7e2856a561252d36fc2.png)
9.4 基因表达的调控
自学 下次课提问
9.3.2 遗传密码
(2)遗传密码特性 无标点符号 插入或剪切会造成蛋白质失活 通用性 简并性 除了色氨酸和甲硫氨酸均有多个密码子 密码第三个“字母”仅具有较小的专一性 摇摆想象
9.3.3 RNA的转录
• 启动子的启动转录 • 启动子:能够进行转录的DNA序列的上游 的一特殊结构 • 转录因子:RNA聚合酶起始转录所需要的辅 助因子(蛋白质) • 转录起始复合物:前转录因子+RNA聚合酶 II+后转录因子
9.3.4 蛋白质的翻译
I. 氨基酸的活化 II. 翻译起始 III. 肽链的延伸 IV. 翻译的终止 V. 多聚核糖体
• 氨基酸的活化 氨基酸和ATP结合到氨酰-tRNA合成酶的活 化位点上,两者反应生成氨酰-AMP,对应 的tRNA顶替了AMP的位置,氨基酸共价连 接到tRNA3端的核糖上,生成氨酰-tRNA, 并从酶上释放出来。
• 端粒:真核细胞染色体末端所具有的特殊 结构
• 功能:保护染色体末端免受损伤,使染色 体保持稳定;与核纤层相连,利于染色体 在核内定位。 • 端粒酶
9.3 从基因到蛋白质
• 9.1.1 中心法则 ① DNA链上脱氧核苷酸的特定排列顺序,就 是遗传信息; ② 半保留复制 ③ 以DNA为模板互补合成出RNA,即转录 ④ mRNA合成出蛋白质,即翻译 ⑤ 在RNA病毒或某些动物细胞中,RNA可以直 接合成出蛋白质 ⑥ 在。。。。RNA可反转录出DNA.
DNA作为遗传物质的功能
(1)贮藏遗传信息的功能 (2)传递遗传信息的功能 (3)表达遗传信息的功能 由此,克里克提出中心法则, 确
遗传学-遗传的分子基础
![遗传学-遗传的分子基础](https://img.taocdn.com/s3/m/56b31456e45c3b3567ec8bfc.png)
1′
H
3′
OH N 7
8 9 NH 4 HN 3
2′
5
2 1 6 NH
无忧PPT整理发布 嘧啶碱
嘌呤碱
第三章
遗传的分子基础
NH2
6 N1 2 3 N 5 4 N 7 6
O
N 7 9 NH 6
8 9 NH
N1 2
3 N
5 4
8
HN 1 5 2 4 3 H2 N N O
4 CH3 5 HN 3 O
N 7 9 NH
人类基因组
序列
DNA分子上的碱基排列顺序
根据碱基排列顺序在核基因组DNA中 重复出现的次数的不同 单一序列 重复序列 高度重复序列
中度重复序列
无忧PPT整理发布
第三章
遗传的分子基础
基因及 基因相 关序列
编码序列
编码蛋白质的基因(结构蛋白、酶)
为RNA编码的基因(如tRNA、rRNA基 因等) 内含子 非编码序列 调控序列 (如:侧翼序列)
A
A A TT A— C G C G — C G C—G T A A—T A-T T A A T A-T A— TT A C—G G G—CC G C G— CG C
无忧PPT整理发布
第三章
遗传的分子基础
基因的表达
中心法则
翻 转 基因携带 录 mRNA 译 遗传信息 控 制
蛋白质
遗传性状
基因表达
无忧PPT整理发布
3′
组成DNA分子的基本结构单位是脱氧核苷
一、人类基因组和人类基因 二、人类基因组和人类基因的变异 三、人类基因的复制、表达与调控 四、人类基因的突变
无忧PPT整理发布
第三章
高考生物学常见必考的考点清单——遗传的分子基础
![高考生物学常见必考的考点清单——遗传的分子基础](https://img.taocdn.com/s3/m/d95c622af61fb7360a4c657f.png)
高考生物学常见必考的考点清单——遗传的分子基础1.格里菲思的体内转化实验得出的结论是:加热杀死的S型细菌中含有某种转化因子使R型活细菌转化为S型活细菌。
2.艾弗里的体外转化实验得出的结论是:DNA是遗传物质,蛋白质等不是遗传物质。
3.噬菌体侵染细菌实验证明了DNA是遗传物质。
4.细胞生物的遗传物质是DNA,病毒的遗传物质是DNA或RNA。
5.证明DNA是遗传物质的实验思路是:将DNA、蛋白质等组成生物的各种物质分离开,单独地、直接地观察它们的作用。
6.DNA分子两条链按反向平行方式盘旋成双螺旋结构,脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架,碱基排列在内侧。
7.科学家运用同位素标记技术,采用假说—演绎法,证实了DNA以半保留方式复制。
8.DNA分子中脱氧核苷酸的排列顺序代表了遗传信息。
9.DNA复制具有边解旋边复制、半保留复制的特点,主要发生在细胞核中,需要有模板、原料、酶和能量。
10.DNA复制需要解旋酶和DNA聚合酶参与。
11.基因是有遗传效应的DNA片段,其主要载体是染色体,线粒体和叶绿体中也存在基因。
12.RNA与DNA在化学组成上的区别在于:RNA中含有核糖和尿嘧啶,DNA中含有脱氧核糖和胸腺嘧啶。
13.转录是以DNA的一条链作为模板,主要发生在细胞核中,以4种核糖核苷酸为原料。
14.一种密码子只能决定一种氨基酸,但一种氨基酸可以由多种密码子来决定。
15.决定氨基酸的密码子不止61种,反密码子位于tRNA上。
16.基因对性状的控制有两条途径,一是基因通过控制酶的合成来控制代谢过程,进而控制生物性状;二是基因通过控制蛋白质结构直接控制生物的性状。
17.转化的实质是基因重组而非基因突变:肺炎双球菌转化实验是指S型细菌的DNA片段整合到R型细菌的DNA中,使受体细胞获得了新的遗传信息,即发生了基因重组。
18.加热并没有使DNA完全失去活性:加热杀死S型细菌的过程中,其蛋白质变性失活,但是内部的DNA在加热结束后随温度的降低又逐渐恢复活性。
遗传的分子基础DNA分子的结构、复制与基因的本质
![遗传的分子基础DNA分子的结构、复制与基因的本质](https://img.taocdn.com/s3/m/9635832f793e0912a21614791711cc7931b77836.png)
汇报人: 2024-01-06
目录
• DNA分子结构 • DNA复制 • 基因的本质 • DNA损伤与修复 • 表观遗传学
01
DNA分子结构
DNA的组成
01
脱氧核糖核酸(DNA)由四种 不同的碱基组成,分别是腺嘌 呤(A)、胸腺嘧啶(T)、鸟 嘌呤(G)和胞嘧啶(C)。
03
DNA双螺旋结构的发现对于理解DNA复制、转录和 修复等过程具有重要意义。
DNA的碱基配对
在D成依赖于碱基之间的氢键,这种配对方式保证了DNA分子中遗传信息的 稳定传递。
碱基配对是DNA复制和转录过程中的重要基础,也是基因突变和重组的重要机制之 一。
基因的表达
基因表达是指基因转录和翻译 的过程,最终合成蛋白质或
RNA分子。
基因表达受到多种因素的调 控,如DNA甲基化、组蛋白
修饰和染色质重塑等。
基因表达的差异导致个体间差 异和细胞分化。
基因突变与遗传疾病
基因突变是指基因序列的改变,可能导致遗传疾病的发生。
基因突变可以发生在生殖细胞或体细胞中,并通过遗传或非遗传方式传递 给后代。
DNA复制的酶学
DNA解旋酶
解开DNA双螺旋结构,为复制 叉的形成提供条件。
DNA聚合酶
以亲代DNA链为模板,合成子 链。
单链结合蛋白
稳定单链DNA,防止重新形成 双螺旋结构。
DNA连接酶
将新合成的子链与亲代DNA链 连接起来。
DNA复制的调控
细胞周期调控
DNA复制发生在细胞周期的S期,受到多种蛋白因子 的调控。
02
DNA复制
DNA复制的过程
起始阶段
高考生物二轮复习(核心知识回顾):5、遗传的分子基础
![高考生物二轮复习(核心知识回顾):5、遗传的分子基础](https://img.taocdn.com/s3/m/6add46763a3567ec102de2bd960590c69ec3d893.png)
高考生物二轮复习—核心知识回顾五、遗传的分子基础【知识点总结】1.肺炎链球菌的转化实验(1)格里菲思的肺炎链球菌体内转化实验的结论:已经加热致死的S型细菌中含有促使R型细菌转化为S型活细菌的“转化因子”。
(2)艾弗里等人的肺炎链球菌体外转化实验的设计思路:每个实验组特异性地去除了某种物质。
该实验证明了DNA是遗传物质,而蛋白质等其他物质不是遗传物质。
2.噬菌体侵染细菌的实验(1)实验步骤:标记大肠杆菌→标记噬菌体→侵染未被标记的大肠杆菌→搅拌、离心→检测放射性。
(2)搅拌的目的:使吸附在细菌上的噬菌体与细菌分离。
(3)离心的目的:让上清液中析出质量较轻的T2噬菌体颗粒,而离心管的沉淀物中留下被侵染的大肠杆菌。
(4)实验结果与分析(5)实验结论:DNA是遗传物质。
3.DNA分子的结构(1)基本组成元素:C、H、O、N、P。
(2)DNA分子的结构特点①DNA由两条反向平行的脱氧核苷酸链构成。
②DNA分子中的磷酸和脱氧核糖交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。
③两条链上的碱基通过氢键以碱基互补配对方式连接,A—T碱基对之间通过2个氢键连接,C—G碱基对之间通过3个氢键连接。
(3)DNA分子的特点:多样性、特异性和稳定性。
(4)DNA分子中有关碱基比例的计算①常用公式:在双链DNA分子中,A=T,G=C;A+G=T+C=A+C=T+G=50%。
②“单链中互补碱基之和”占该单链碱基数比例=“双链中互补碱基之和”占该双链总碱基数比例。
③某链不互补碱基之和的比值与其互补链的该比值互为倒数,如一条单链中(A+G)/(C+T)=m ,则其互补链中(A +G)/(C +T)=1/m ,而在整个双链DNA 分子中该比值等于1。
4.DNA 分子复制的5个常考点(1)复制时间(核DNA):细胞分裂前的间期。
(2)复制场所:主要在细胞核中。
(3)复制条件:模板——双链DNA 分子的两条链,原料——4种游离的脱氧核苷酸,酶——解旋酶和DNA 聚合酶,能量。
遗传的分子基础
![遗传的分子基础](https://img.taocdn.com/s3/m/5c1620f65122aaea998fcc22bcd126fff7055d81.png)
遗传的分子基础
染色体中的化学组成主要是DNA和组蛋白。
携带遗传信息的主要是DNA分子的一个特定片段——基因。
基因是细胞内遗传信息的结构和功能单位,它能通过特定的表达方式控制和影响个体的发生和发育。
人体细胞内的DNA是由两条多核苷酸链结合而成的一条双螺旋分子结构,每个基因都是DNA多核苷酸链上的一个特定的区段。
基因的复制是以DNA复制为基础。
在细胞周期中,DNA双螺旋中的两条互补链间的氢键断裂,双螺旋解旋,然后在特异性酶的作用下,以每股链的碱基顺序为模板,吸收周围游离核苷酸,按碱基互补原则,合成新的互补链。
当新旧两股链结合后就形成了与原来碱基顺序完全相同的两条DNA双螺旋,并具备完全相同的遗传信息,从而保证了亲子代间遗传的连续性。
由此可见,DNA分子中的碱基对的排列顺序蕴藏着与生命活动密切相关的各种蛋白质的氨基酸排列顺序的遗传信息。
基因的基本功能一方面是通过半保留复制,将母细跑的遗传信息传递给子细胞,以保证个体的生长发育,并在繁衍的过程中保持遗传性状的相对稳定。
另一方面是经过翻译、转录而控制蛋白质的合成,构成各种细胞、组织,形成各种酶,催化生命活动中的各种生化反应,从而影响了遗传性状的形成,使遗传信息得以表达。
一旦DNA分子结构发生改变,它所控制的蛋白质中氨基酸顺序也发生了改变,这就是突变,也是异常性状和遗传病的由来。
高中生物教案:遗传的分子基础
![高中生物教案:遗传的分子基础](https://img.taocdn.com/s3/m/7dd71c824128915f804d2b160b4e767f5bcf807f.png)
高中生物教案:遗传的分子基础一、遗传的分子基础简介遗传是生物界广泛存在的一种现象,它决定了个体的性状、特征以及种群的遗传变异。
而遗传的分子基础主要在于基因和DNA分子的作用。
基因是生物体内负责遗传物质的单位,而DNA分子则是基因的主要组成部分,同时也是遗传信息的携带者。
了解遗传的分子基础,对于学习生物学、了解生物进化以及预测后代的遗传特征等方面都具有重要的意义。
二、 DNA的结构与功能DNA(脱氧核糖核酸)是生物体内负责储存遗传信息的重要分子。
它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的链状结构,并以双螺旋的形式存在。
DNA双链以氢键相互连接,两个链呈对称互补的关系,碱基之间的配对关系为腺嘌呤-胸腺嘧啶和鸟嘌呤-胞嘧啶。
这种碱基的配对规则保证了DNA复制时的准确性。
DNA具有两个重要的功能,一是储存遗传信息,即决定生物体的遗传特征。
遗传信息以特定的顺序编码在DNA分子中,通过基因转录和翻译过程将遗传信息转化为蛋白质,从而决定了生物体的形态和功能。
二是通过复制实现遗传信息的传递。
DNA分子能够通过复制过程自我复制,并将遗传信息传递给下一代细胞。
三、基因的表达与控制基因表达是指遗传信息从DNA转化为蛋白质的过程。
这一过程主要包括基因转录和翻译两个阶段。
在基因转录阶段,DNA双链的一条链作为模板,通过RNA 聚合酶的作用,合成mRNA(信使RNA)。
mRNA然后通过RNA剪接修饰并离开细胞核,进入细胞质,为下一步的翻译过程做好准备。
在基因翻译过程中,mRNA与核糖体结合,并依照密码子的配对规则,将氨基酸顺序逐步连接起来,形成蛋白质。
这一过程决定了蛋白质的氨基酸序列,进而决定了蛋白质的结构和功能。
基因的表达受到多种因素的调控。
其中主要的调控因子包括转录因子和启动子区域的结合情况。
转录因子是一类能够与DNA结合并影响基因转录过程的蛋白质。
通过结合到启动子区域,转录因子能够控制基因的转录速率,从而调节基因表达。
遗传的分子基础(遗传学基础课件)
![遗传的分子基础(遗传学基础课件)](https://img.taocdn.com/s3/m/6b591e7ba4e9856a561252d380eb6294dd882293.png)
编码链:5' - ATG AAA CGA GTC TTA TGA -
反编码链: 3'- TAC TTT GCT CAG AAT ACT mRNA: 5'- AUG AAA CGA GUC UUA UGA -
2、侧翼序列与调控序列
每个结构基因的第一个和最后一个外显子的 侧,都有一段不被转录的非编码区,称为侧翼序 (Flanking sequence)。
它是基因的调控序列,对基因的有效表达起调 作用,包括:启动子、增强子、终止子等。
二、基因复制
1. 复制子(replicon) 2. 半保留复制(semiconservative replication) 3. 半不连续复制
的分子机制。
第三节、基因的结构特征和功能
一、基因的结构
enhancer CAAT box TATA box
exon
GC box
intron
HGCAoCgAbnToesxbsobxGoGxGGTTCG—GACTGTAGCAGAlATaAwATATC A
AATA
1、外显子和内含子
• 在结构基因中,编码序列称为外显子(exon), 多肽链部分。非编码序列称为内含子(Intron 称插入序列。
授课提纲
第一节: 基因的概述 概念;类别;一般特性;DNA结构。
第二节:人类基因组DNA 单一序列;重复序列;多基因家族,假基因。
第三节:基因的结构和功能 基因的结构;基因的复制,基因表达。
第四节:基因突变 概念;特性;突变的结构;诱发突变的因素;
突变的分子机制。
遗传的分子基础
![遗传的分子基础](https://img.taocdn.com/s3/m/3ad7786eb5daa58da0116c175f0e7cd185251864.png)
遗传的分子基础遗传是生物学中的一个重要概念,它涉及到生物个体特征的传递和变化。
遗传现象在自然界中无处不在,它影响着我们生命的每一个方面。
要理解遗传的原理,就需要了解遗传的分子基础。
本文将探讨遗传的分子基础,帮助读者更好地理解这一现象。
DNA:遗传的基础遗传的分子基础主要是DNA(脱氧核糖核酸)。
DNA是一种大分子,在细胞质内形成双螺旋结构。
它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤、胞嘧啶)组成,通过不同碱基的排列组合,构成了基因。
基因是控制遗传信息的单位,它携带着决定生物形态、结构和功能的遗传信息。
遗传物质的传递遗传物质的传递通过两种方式实现,分别是有性生殖和无性生殖。
有性生殖是指通过两个个体的性细胞结合来完成遗传物质的交流,这个过程中,从父母亲身上获取到的基因会进行重组,形成一个独特的个体。
而无性生殖是指通过个体自身的分裂、生殖器官的增殖等方式繁殖后代,这个过程中,遗传物质传递的方式与父母亲的遗传物质完全一样。
基因的表达基因的表达是指基因所携带的遗传信息在生物体内得到实际展现的过程。
基因表达的实质是基因信息转录成RNA(核糖核酸)分子的过程,然后进一步转化成蛋白质分子。
这些蛋白质分子构成了生物体内各种各样的结构和功能。
遗传变异遗传变异指的是基因在传递过程中发生的改变,它是遗传的重要特征之一。
遗传变异可以分为两类:基因突变和基因重组。
基因突变是指基因内部发生某种突发性改变,由于基因突变导致的遗传变异通常是不可逆转的。
而基因重组则是指基因之间发生某种形式的交换,这种遗传变异通常是可逆转的。
遗传的调控遗传的调控是指生物体内遗传信息的表达和控制过程。
遗传调控通过一系列复杂的分子机制实现,包括DNA的甲基化、转录因子的结合与活化、信号传导通路的调节等。
这些调控机制决定了基因的表达水平和时机,进而影响到生物体的发育、生长和适应环境的能力。
遗传疾病遗传疾病是由于个体遗传物质的突变或缺陷引起的一类疾病。
遗传疾病可以是单基因遗传的,也可以是多基因遗传的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因是DNA分子上的一个区段
基因平均由1000个左右的碱基对组成, 一个DNA分子可以包含几个乃至几 千个基因。
基因的顺反子概念 (Cistron)
• 1955年,Benzer的互补实验
基因的顺反子测试示意图
基因内互补
基因内互补作用机理图解
全新的基因概念
Cistron muton recon
Levene 的四核苷酸假说
四核苷酸假说的推翻
• 1950年 Chargaff.E
Chargaff.E告诉我们什么?
• 当量定律:A+G=T+C • DNA碱基组成具有物种特异性,而
无组织特异性
DNA双螺旋的发现
• 1938年,W.T.Astbury和Bell用X衍射研究 DNA(Hammorsten、Caspersson提供)1947 年第一张DNA衍射照片。
遗传的分子基础
Protein?DNA?
洋葱与 DNA
大洋葱切碎
过滤
3勺洗涤液、1小勺盐 和1升水
隔水蒸锅文火蒸5分钟 不断搅拌
高速匀浆5秒
加几滴新鲜菠萝汁 倒入冷却的高玻璃杯
滴入冰冷的酒精 (二锅头也可)
Байду номын сангаас
核酸是重要的遗传物质
遗传物质必须具备的几个条件: (1)自我复制,代代相传。 (2)储备、传递信息的潜在能力。 (3)稳定性强,变异罕见。 (4)细胞分裂时把遗传信息有规律分配到子
• 1941年,G. Beadle和E. Tatum提出: 一个基因,一个酶
One Gene,One Enzyme
One Gene,One Enzyme
a
bc
d
A
BCD
1
2
3
4
5
AB C 突1 - - - 变2 - + - 体3 - - -
4- + + 5+ + +
DE +- +- -- +- +-
• 1950年Chargaff的当量规律。 • 1951年Pauling和Corey连载7篇 螺旋结构文
章。 • 1952年R. Franklin和Wilkins 一张清晰的DNA结晶X衍射照片。
Watson、Crick的DNA双螺旋结构
DNA的结构
基因的功能与基因概念的发展
• 20世纪初,英国医生A. Garrod提出 了基因与酶之间的关系,认为基因 是通过控制酶和其他蛋白质合成来 控制细胞代谢。
体外转化实验-DNA是遗传物质的证明
体外转化实验要点: A 将S细胞提取液纯化的DNA加到R细
胞培养物中就能产生R---S的转化。 B 这种转化因子对水解DNA的酶敏感。 C R型细菌转化为S型后,按同样方法
抽提DNA仍有转化能力。 D 转化的细菌与S型细菌相比,荚膜生
化特性完全一样。
噬菌体的侵染标记实验
1875年提出核素的实验式。
Altman建立了制备不含蛋白的核素的方法,并定名为 Nucleic acid
Kessel研究了核酸的化学组成,分离出四种碱基。明 确提出核酸具有含氮碱基。(1910年获诺贝尔奖)
1909年Levene.P.A发现酵母的核酸含有核糖,以后他 又发现脱氧核糖,正确指出了核酸的糖基组成。核 苷、核苷酸的分子结构。
5
4
2
1
3
EA
C
B
D
G + + + + +
G
One Gene, One Protein One Gene, One Polypeptide Chain
镰刀形细胞贫血症。正常HbA四条多肽链(2条链,两条链) Vernon M. Ingram证明链第六位氨基酸 HbA是谷氨酸,HbS是缬氨酸。
证明基因与氨基酸之间存在直接对应关系的第一个直接证据
RNA杂合病毒实验
1957年,Heinz Fraenkel-Conrat和B. Singre 的杂合病毒实验:
HR(Holmes Rib Grass Strain) M(Masked Strain) TMV
DNA结构的确定
1869年 Miescher测定淋巴细胞中蛋白,发现和定名 Nuclein 核素。
-DNA是遗传物质的证明
1952年Hersey和Chase的同位素标记侵染实验。
RNA也是重要的遗传物质
烟草花叶病毒的感染和繁殖过程- 证实RNA也是重要的遗传物质。 Tobacco mosaic virus,TMV 5%RNA, 95%Protein
1956年,Gierer和Schraim 分离RNA和protein的实验
我们学了些什么?
• 核酸是遗传物质 (转化实验,噬菌体侵染实验) • DNA结构的发现 (物理学家和生物学家的伟大合作) • 一个基因,一个酶 (杰出理论的还原论证明)
细胞中。
1868年瑞士J. T. Miescher发现核素 1883-1889年间Weismann(种质学说)
“遗传物质是具有特定分子结构的化合 物”
体内转化实验-DNA是遗传物质的证明
1928年,英国微生物学家Griffith.F做了肺炎双球菌的转化实验。
体外转化实验-DNA是遗传物质的证明
1944年 Avery.O 、 Macleod.C、 McCarty.M.J 揭开了转化因子的化学本质。