数据结构课程设计报告Dijkstra算法求最短路径
迪杰斯特拉算法和Floyd算法实现无向图的最短路径的计算和求解

摘要本次课程设计主要核心为利用迪杰斯特拉算法和Floyd算法实现无向图的最短路径的计算和求解。
要求理解算法的具体实现流程、学会正确使用该算法求解实际问题。
本次课程设计具体内容是:通过对两个算法的理解与应用来比较两个算法的优缺点。
本程序要求结合最短路算法以及相应的数据结构的定义和使用,实现一个最短路径算法的简单应用。
本课程设计是对书本知识的简单应用,以此培养大家用书本知识解决实际问题的能力;培养实际工作所需要的动手能力;培养以科学理论和工程上能力的技术,规范地开发大型、复杂、高质量的应用软件和系统软件。
关键字:迪杰斯特拉算法,Floyd算法,最短路径,算法设计,数据结构目录摘要 --------------------------------------------------------------- 1一、Dijkstra算法--------------------------------------------------- 31.1定义概览 ---------------------------------------------------- 31.2算法描述 ---------------------------------------------------- 31.2.1算法思想:--------------------------------------------- 31.1.2算法步骤----------------------------------------------- 31.3算法代码实现 ------------------------------------------------ 41.4算法实例 ---------------------------------------------------- 5二、Floyd算法------------------------------------------------------ 72.1定义概览 ---------------------------------------------------- 72.2算法描述 ---------------------------------------------------- 72.2.1算法思想原理------------------------------------------- 72.3算法代码实现 ----------------------------------------------- 10三、结论 ---------------------------------------------------------- 11四、参考文献 ------------------------------------------------------ 12一、Dijkstra算法1.1定义概览Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。
数据结构课程设计图极点间最短路径算法

数据结构课程设计设计题目:图极点间最短路径算法专业:运算机科学与技术班级:04姓名:学号:0411指导老师:完成时间:2009-5-9—:需求分析:1.问题描述:路径问题在图论中占有重要位置,因为这与日常生活中的许多问题有着普遍的联系。
比如乘汽车旅行时,咱们总希望找岀到目的地尽可能短的线路:若是在地图上标出每两个路口之间的距离,如何找出一条最短的行车线路?在那个例子中咱们能够把地图模型化为一个图,结点表示一段公路的起点和终点,边的权值表示公路的长度。
咱们的目标是从起点动身找岀一条抵达目的地的最短路径。
一种直接的方式就是列举岀所有的路径,并计算岀每条路径的长度,然后选择最短的一条。
容易看出,即便不考虑包括回路的路径,在起点和终点之间仍然可能存在很多不同的行车线路,而其中绝大多数是没必要考虑的。
二:概要设计1.设计思想:I Dijkstra算法的大体思想:这种算法是解决有向图的最短路径问题的条件是该图所有边的权值是非负值oDijkstra算法槪念了一结点集合,从源结点到集合是任一点的最短路径的权值均已肯泄。
算法反复地从集合中挑选出其最短路径估量为最小的结点,并将最小结点插入集合,并对和最小结点相邻的所有边进行松弛。
II Bellman-ford算法的大体思想:Floyd能在边的权值为负的情形下解决单源最短路径问题。
已知有向加权图G二(V, E),设其源结点为S,加权函数w: E-R,对该图运行FLOYD算法可返回一布尔值,表有图中是不是存在一个从源结点可达的权值为负的回路。
若是存在如此的回路,则算法返回FLASE,说明该问题无解。
若不存在如此的回路,算法将产生最短路径及其权值Floyd算法运用了松弛技术,对每一个结点veV并慢慢减小从源s到”的最短路径的权值的估量值〃W)直至达到实际的最短路径0-(5, V)-III Floyd算法大体思想:设带权图G二(V,E),有N个极点,图采用邻接矩阵作为存储结构。
最短路径dijkstra算法流程

最短路径dijkstra算法流程最短路径算法是计算在带权有向图或者无向图中起点到所有其他点最短路径的一种算法,其中最短路径指的是边权值之和最少的路径。
目前最常用的算法是Dijkstra算法,它是由荷兰计算机科学家Edsger W. Dijkstra于1959年提出的。
下面将介绍Dijkstra算法的流程。
1. 初始化首先,需要将起点到每个点的最短距离都初始化为无穷大,除了起点自己的最短距离为0。
其中,起点是指算法的起点节点。
同时,需要创建一个集合S,用于记录已经确定了最短距离的点。
2. 找出未确定最短路径的节点中最小的距离,并将其标记为已确定最短路径在第一步中,只有起点节点的最短距离是确定的。
接下来,在集合S中找出剩余未确定最短路径的节点中距离最小的节点u,并将其标记为已经确定了最短路径。
在第一次执行该步骤时,节点u即为起点节点。
3. 更新最短距离将节点u所有邻居的距离进行更新。
假设节点v是节点u的邻居,其距离为d(u,v),则:如果 d(u,v) + dist(u) < dist(v),则更新节点v的最短距离为d(u,v) + dist(u),其中dist(u)表示起点节点到节点u的最短距离。
重复执行上述步骤,直到集合S中包含所有节点。
4. 输出每个节点的最短距离执行完第三步之后,每个节点的最短距离都已经确定。
此时,可以输出每个节点的最短距离。
以上就是Dijkstra算法的流程。
此外,这个算法还可以通过堆优化来提高效率。
具体来说,可以将还未确定最短距离的节点按照距离从小到大存储在堆中,每次取出堆中距离最小的节点。
(这部分由于是在原算法的基础之上的优化模型,所以该模型不友好于百科网站的格式要求,如果您有需要,也可以决定不包括,并以此作为描述结尾)总的来说,Dijkstra算法是求解最短路径问题的有效方法之一。
它适用于只有正权边的有向或者无向图,并且能够计算出起点到所有其他节点的最短路径。
因此,它可以用于路线规划、制订地图等应用情景中。
Dijkstra算法求最短路径

在交通网络中,常常会提出许多这样的问题:两地之间是否有路相通?在有多条通路的情况下,哪一条最近?哪一条花费最少等。
交通网络可以用带权图表示,图中顶点表示域镇,边表示两城之间的道路,边上权值可表示两城镇间的距离,交通费用或途中所需的时间等。
以上提出的问题就是带权图中求最短路径的问题,即求两个顶点间长度最短的路径。
最短路径问题的提法很多。
在这里仅讨论单源最短路径问题:即已知有向图(带权),我们希望找出从某个源点S∈V到G中其余各顶点的最短路径。
例如:下图(有向图G14),假定以v1为源点,则其它各顶点的最短路径如下表所示:图G14从有向图可看出,顶点v1到v4的路径有3条:(v1,v2,v4),(v1,v4),(v1,v3,v2,v4),其路径长度分别为:15,20和10。
因此v1到v4的最短路径为(v1,v3,v2,v4 )。
为了叙述方便,我们把路径上的开始点称为源点,路径的最后一个顶点为终点。
那么,如何求得给定有向图的单源最短路径呢?迪杰斯特拉(Dijkstra)提出按路径长度递增产生诸顶点的最短路径算法,称之为迪杰斯特拉算法。
迪杰斯特拉算法求最短路径的实现思想是:设有向图G=(V,E),其中,V={0,2,…,n-1},cost是表示G的邻接矩阵,G.arcs [i][j] .adj 表示有向边<i,j>的权。
若不存在有向边<i,j>,则G.arcs [i][j] .adj 的权为无穷大(这里取值为32767)。
设S是一个集合,其中的每个元素表示一个顶点,从源点到这些顶点的最短距离已经求出。
设顶点v0为源点,集合S的初态只包含顶点v0。
数组D记录从源点到其他各顶点当前的最短距离,其初值为D[i]= G.arcs[v0][i].adj ,i=1,…,n-1。
从S之外的顶点集合V-S 中选出一个顶点w,使D[w]的值最小。
于是从源点到达w只通过S 中的顶点,把w加入集合S中调整D中记录的从源点到V-S中每个顶点v的距离:从原来的D[v] 和D[w]+ G.arcs [w][v] .adj中选择较小的值作为新的D[v]。
最短路径dijkstra算法过程

最短路径dijkstra算法过程
Dijkstra算法是一种用于解决最短路径问题的经典算法,其过
程如下:
1. 创建一个距离表,记录从起始节点到每个节点的距离。
初始时,除了起始节点,其他节点的距离被设置为无穷大,起始节点的距离被设置为0。
2. 创建一个集合Q,用于存放还未被访问的节点。
3. 在集合Q中找到距离最小的节点v并将其从集合Q中移除。
如果没有找到,则说明所有节点已被访问完毕,算法结束。
4. 遍历节点v的所有邻居节点u,对于每个邻居节点u,更新
其距离表中的距离。
如果通过节点v可以获得比原先距离更短的路径,则更新距离。
5. 重复步骤3和步骤4,直到集合Q为空。
6. 返回距离表,其中记录了从起始节点到其他节点的最短距离。
需要注意的是,在实现过程中,需要使用一个优先队列来快速找到集合Q中距离最小的节点v,以提高算法的效率。
以上就是Dijkstra算法的基本过程。
通过不断更新距离表,算
法可以找到从起始节点到其他节点的最短路径。
dijkstra算法 城市最短路径问题

dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
最短路径——dijkstra算法代码(c语言)

最短路径——dijkstra算法代码(c语⾔)最短路径问题看了王道的视频,感觉云⾥雾⾥的,所以写这个博客来加深理解。
(希望能在12点以前写完)()⼀、总体思想1.初始化三个辅助数组s[],dist[],path[]s[]:这个数组⽤来标记结点的访问与否,如果该结点被访问,则为1,如果该结点还没有访问,则为0;dist[]:这个数组⽤来记录当前从v到各个顶点的最短路径长度,算法的核⼼思想就是通过不断修改这个表实现; path[]:这个数组⽤来存放最短路径;2.遍历图,修改上⾯的各项数组,每次只找最短路径,直到遍历结束⼆、代码实现1void dijkstra(Graph G, int v)2 {3int s[G.vexnum];4int dist[G.vexnum];5int path[G.vexnum];6for(int i = 0; i < G.vexnum; i++)7 {8 s[i] = 0;9 dist[i] = G.edge[v][i];10if(G.edge[v][i] == max || G.edge[v][i] == 0)11 {12 path[i] = -1;13 }14else15 {16 path[i] = v;17 }18 s[v] = 1;19 }2021for(int i = 0; i < G.vexnum; i++)22 {23int min = max;24int u;25for(int j = 0; j < G.vexnum; j++)26 {27if(s[j] != 1 && dist[j] < min)28 {29 min = dist[j];30 u = j;31 }32 }33 s[u] = 1;34for(int j = 0; j < G.vexnum; j++)35 {36if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])37 {38 dist[j] = dist[u] + G.edge[u][j];39 path[j] = u;40 }41 }42 }43 }三、代码解释先⾃⼰定义⼀个⽆穷⼤的值max#define max infdijkstra算法传⼊的两个参为图Graph G;起点结点 int v;⾸先我们需要三个辅助数组1int s[G.vexnum];//记录结点时是否被访问过,访问过为1,没有访问过为02int dist[G.vexnum];//记录当前的从v结点开始到各个结点的最短路径长度3int path[G.vexnum];//记录最短路径,存放的是该结点的上⼀个为最短路径的前驱结点初始化三个数组1for(int i = 0; i < G.vexnum; i++)2 {3 s[i] = 0;//⽬前每个结点均未被访问过,设为04 dist[i] = G.edge[v][i];//dist[]数组记录每个从v结点开到其他i结点边的长度(权值)5if(G.edge[v][i] == max || G.edge[v][i] == 0)6 {7 path[i] = -1;8 }//如果v到i不存在路径或者i就是v结点时,将path[i]设为-1,意为⽬前v结点不存在路径到i9else10 {11 path[i] = v;12 }//反之,若v到i存在路径,则v就是i的前驱结点,将path[i] = v13 s[v] = 1;//从遍历起点v开始,即已经访问过顶点s[v]=114 }开始遍历数组并且每次修改辅助数组以记录⽬前的情况,直⾄遍历结束1for(int i = 0; i < G.vexnum; i++)2 {3int min = max;//声明⼀个min = max⽤来每次记录这次遍历找到的最短路径的长度(权值)4int u;//声明u来记录这次历找到的最短路径的结点5for(int j = 0; j < G.vexnum; j++)//开始遍历找⽬前的最短路径6 {7if(s[j] != 1 && dist[j] < min)8 {9 min = dist[j];10 u = j;11 }//找出v到结点j的最短路径,并且记录下最短路径的结点u = j12 }13 s[u] = 1;//找到结点u,即已访问过u,s[u] = 114for(int j = 0; j < G.vexnum; j++)//开始遍历修改辅助数组的值15 {16if(s[j] != 1 && dist[j] > dist[u] + G.edge[u][j])17 {18 dist[j] = dist[u] + G.edge[u][j];19 path[j] = u;20 }//如果v→j的路径⽐v →u→j长,那么修改dist[j]的值为 dist[u] + G.edge[u][j],并且修改j的前驱结点为path[j] = u21 }22 }遍历结束后,数组dist[]就是存放了起点v开始到各个顶点的最短路径长度最短路径包含的结点就在path数组中例如我们得到如下的path[]数组1 path[0] = -1;//0到⾃⼰⽆前驱结点2 path[1] = 0;//1的前驱为结点0,0⽆前驱结点,即最短路径为0 →13 path[2] = 1;//2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →24 path[3] = 0;//3的前驱为结点0,0⽆前驱结点,即最短路径为0 →35 path[4] = 2;//4的前驱结为点2,2的前驱结为点1,1的前驱结点0,0⽆前驱结点,即最短路径为0 →1 →2 →4 dijkstra对于存在负权值的图不适⽤,明天再更新Floyd算法叭。
dijkstra最短路径算法详解

dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
dijkstra算法 java最短路径

dijkstra算法java最短路径Dijkstra算法是一种用于寻找图中两个节点之间最短路径的算法。
它采用的是贪心策略,将图中的节点分为两个集合:已访问节点集S和未访问节点集T。
算法从源节点开始,每次从T中选择到源节点距离最短的节点加入S集合,并更新S集合中各节点到源节点的最短路径。
直到T集合中的节点全部加入S集合,算法结束。
Dijkstra算法的Java实现如下:●public class Dijkstra{●public static void main(String[]args){●创建图●Graph graph=new Graph();●graph.addVertex("A");●graph.addVertex("B");●graph.addVertex("C");●graph.addEdge("A","B",10);●graph.addEdge("A","C",20);●graph.addEdge("B","C",30);●计算最短路径●dijkstra(graph,"A");}●private static void dijkstra(Graph graph,String startVertex){●初始化●Set<String>visited=new HashSet<>();●Map<String,Integer>distances=new HashMap<>();●for(String vertex:graph.getVertices()){●distances.put(vertex,Integer.MAX_VALUE);}●distances.put(startVertex,0);●遍历所有节点●for(String vertex:graph.getVertices()){●找到未访问节点中距离源节点最小的节点●String nearestVertex=findNearestVertex(distances,visited);●将该节点加入已访问节点集合●visited.add(nearestVertex);●更新该节点到其他节点的最短路径●for(String neighbor:graph.getAdjacentVertices(nearestVertex)){●intnewDistance=distances.get(nearestVertex)+graph.getEdgeWeight(nearestVertex,neighbor ●if(newDistance<distances.get(neighbor)){●distances.put(neighbor,newDistance);}}}●输出结果●System.out.println("从"+startVertex+"到其他节点的最短路径:");●for(String vertex:graph.getVertices()){●System.out.println(vertex+"的最短路径是:"+distances.get(vertex));}}●private static String findNearestVertex(Map<String,Integer>distances,Set<String>visited){●int minDistance=Integer.MAX_VALUE;●String nearestVertex=null;●for(String vertex:distances.keySet()){●if(!visited.contains(vertex)&&distances.get(vertex)<minDistance){●minDistance=distances.get(vertex);●nearestVertex=vertex;}}●return nearestVertex;}}该算法的工作原理如下:1.初始化距离表,将所有节点的距离初始化为无穷大。
dijkstra最短路径算法

图解迪杰斯特拉(Dijkstra)最短路径算法目录前言一、最短路径的概念及应用二、Dijkstra迪杰斯特拉1.什么是Dijkstra2.逻辑实现总结前言无论是什么程序都要和数据打交道,一个好的程序员会选择更优的数据结构来更好的解决问题,因此数据结构的重要性不言而喻。
数据结构的学习本质上是让我们能见到很多前辈在解决一些要求时间和空间的难点问题上设计出的一系列解决方法,我们可以在今后借鉴这些方法,也可以根据这些方法在遇到具体的新问题时提出自己的解决方法。
(所以各种定义等字眼就不用过度深究啦,每个人的表达方式不一样而已),在此以下的所有代码都是仅供参考,并不是唯一的答案,只要逻辑上能行的通,写出来的代码能达到相同的结果,并且在复杂度上差不多,就行了。
一、最短路径的概念及应用在介绍最短路径之前我们首先要明白两个概念:什么是源点,什么是终点?在一条路径中,起始的第一个节点叫做源点;终点:在一条路径中,最后一个的节点叫做终点;注意!源点和终点都只是相对于一条路径而言,每一条路径都会有相同或者不相同的源点和终点。
而最短路径这个词不用过多解释,就是其字面意思:在图中,对于非带权无向图而言,从源点到终点边最少的路径(也就是BFS广度优先的方法);而对于带权图而言,从源点到终点权值之和最少的路径叫最短路径;最短路径应用:道路规划;我们最关心的就是如何用代码去实现寻找最短路径,通过实现最短路径有两种算法:Dijkstra迪杰斯特拉算法和Floyd弗洛伊德算法,接下来我会详细讲解Dijkstra迪杰斯特拉算法;二、Dijkstra迪杰斯特拉1.什么是DijkstraDijkstra迪杰斯特拉是一种处理单源点的最短路径算法,就是说求从某一个节点到其他所有节点的最短路径就是Dijkstra;2.逻辑实现在Dijkstra中,我们需要引入一个辅助变量D(遇到解决不了的问题就加变量[_doge]),这个D我们把它设置为数组,数组里每一个数据表示当前所找到的从源点V开始到每一个节点Vi的最短路径长度,如果V到Vi有弧,那么就是每一个数据存储的就是弧的权值之和,否则就是无穷大;我们还需要两个数组P和Final,它们分别表示:源点到Vi的走过的路径向量,和当前已经求得的从源点到Vi的最短路径(也就是作为一个标记表示该节点已经加入到最短路径中了);那么对于如下这个带权无向图而言,我们应该如何去找到从V0到V8的最短路径呢;在上文中我们已经描述过了,在从V0到V8的这一条最短路径中,V0自然是源点,而V8自然是终点;于是我根据上文的描述具现化出如下的表格;在辅助向量D中,与源点V0有边的就填入边的权值,没边就是无穷大;构建了D、P和Final,那么我们要开始遍历V0,找V0的所有边中权值最短的的边,把它在D、P、Final中更新;具体是什么意识呢?在上述带权无向图中,我们可以得到与源点有关的边有(V0,V1)和(V0,V2),它们的权值分别是1和5,那么我们要找到的权值最短的的边,就是权值为1 的(V0,V1),所以把Final[1]置1,表示这个边已经加入到最短路径之中了;而原本从V0到V2的距离是5,现在找到了一条更短的从V0 -> V1 -> V2距离为4,所以D[2]更新为4,P[2]更新为1,表示源点到V2经过了V1的中转;继续遍历,找到从V0出发,路径最短并且final的值为0的节点。
迪杰斯特拉算法计算最短路径

利用Dijkstra算法计算最短路径摘要福格环游地球问题是一个十分典型的最短路径求解问题,题设给出了当时世界上主要交通网络图及交通通畅的城市之间来往所需时长,并限定了福格的出行方向(福格选择的是往东走),给出起止地点后要求找出福格环游世界天数最短的最佳路径。
我们认为,这个问题的实质在于最短路径的求解和优化。
我们对比图论中的多种最短路径算法,决定利用Dijkstra算法解决这个问题。
由于Dijkstra算法要求输入图G的关联矩阵,且图G为二维赋权图,而题中给出的地图可看成是三维环状地图,因此,我们对题设地图做相关处理,将其从起点处“切断”并展开为二维图,然后根据此图建立关联矩阵。
同时,我们考虑到最短路径可能会与切断线有交点,在切断线以西找出若干地点一分为二,修改关联矩阵。
对于题目中缺失的两处数据,本文将以当时的交通数据为基础,经过合理的数据处理,结合Google Earth测距软件与题目数据的合理类比,补充缺失数据,完成关联矩阵。
得到关联矩阵后,我们分别以伦敦、纽约和上海作为起点,调整关联矩阵起点和终点,用matlab编程进行求解得到最短环游时间和最短路径,进而判断出所选择的路径是否能让他赢得赌注。
根据我们的求解结果,在这三个城市,福格均能在80天内环游地球,赢得赌注。
本文进一步对此种算法的优缺点、灵敏度与推广性进行了分析,同时初步提出了两种优化方法。
关键词:最短路径算法 dijkstra算法算法优化一、问题重述儒勒•凡尔纳的著名小说《环游世界80天》中,英国绅士福格在伦敦与人打赌能够在80天内环游世界,这在当时的1872年是一个了不起的壮举。
当时最快的旅行方式是火车和轮船,然而世界上大部分地区还是靠马车、大象、驴子或者步行来旅行。
下面是一个从伦敦环游世界不同路线的交通网络图,福格选择的是往东走,每段路线所需要的天数显示在图上(见附录一),旅行的时间基于1872年能采用的旅行方式以及距离。
我们将解决以下问题:1.我们将设计一个算法为福格选择一条最佳路径,即环游世界天数最短,并判断所选择的路径是否能让他赢得赌注。
最短路径dijkstra算法例题

最短路径dijkstra算法例题最短路径问题是图论中的一个重要问题,它的解决方法有很多种,其中最著名的算法之一就是Dijkstra算法。
本文将介绍Dijkstra算法的基本思想和实现过程,并通过一个例题来展示其具体应用。
一、Dijkstra算法的基本思想Dijkstra算法是一种贪心算法,它以起点为中心向外扩展,每次选择当前距离起点最短的点作为下一个扩展点,并更新其周围节点到起点的距离。
这个过程不断重复直至所有节点都被扩展完毕。
具体实现时,可以使用一个数组dist来存储每个节点到起点的距离,初始时所有节点到起点的距离都设为无穷大(表示不可达),起点到自己的距离设为0。
同时还需要使用一个visited数组来记录每个节点是否已经被扩展过。
在每次扩展时,从未被扩展过且与当前扩展节点相邻的节点中选择距离起点最短的节点作为下一个扩展节点,并更新其周围节点到起点的距离。
这个过程可以使用优先队列来实现。
二、Dijkstra算法实现例题下面我们通过一个例题来演示Dijkstra算法的具体实现过程。
例题描述:给定一个有向带权图,求从起点s到终点t的最短路径。
解题思路:根据Dijkstra算法的基本思想,我们可以使用一个优先队列来实现。
具体实现步骤如下:1. 初始化dist数组和visited数组。
2. 将起点s加入优先队列,并将其距离起点的距离设为0。
3. 重复以下步骤直至优先队列为空:(1)取出优先队列中距离起点最近的节点u。
(2)如果该节点已经被扩展过,则跳过此节点,否则将其标记为已扩展。
(3)如果该节点就是终点t,则返回其到起点的距离。
(4)否则,遍历该节点的所有邻居节点v,并更新它们到起点的距离。
如果某个邻居节点v之前未被扩展过,则将其加入优先队列中。
更新dist[v]后,需要将v加入优先队列中以便后续扩展。
4. 如果经过以上步骤仍然没有找到终点t,则表示不存在从起点s到终点t的路径。
代码实现:```#include <iostream>#include <queue>#include <vector>using namespace std;const int INF = 0x3f3f3f3f;const int MAXN = 1005;int n, m, s, t;int dist[MAXN], visited[MAXN];vector<pair<int, int>> graph[MAXN];void dijkstra() {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, s));dist[s] = 0;while (!pq.empty()) {pair<int, int> p = pq.top();pq.pop();int u = p.second;if (visited[u]) {continue;}visited[u] = 1;if (u == t) {return;}for (int i = 0; i < graph[u].size(); i++) {int v = graph[u][i].first;int w = graph[u][i].second;if (!visited[v] && dist[v] > dist[u] + w) {dist[v] = dist[u] + w;pq.push(make_pair(dist[v], v));}}}}int main() {cin >> n >> m >> s >> t;for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;graph[u].push_back(make_pair(v, w));}memset(dist, INF, sizeof(dist));memset(visited, 0, sizeof(visited));dijkstra();if (dist[t] == INF) {cout << "No path from " << s << " to " << t << endl;} else {cout << "Shortest path from " << s << " to " << t << ": " << dist[t] << endl;}}```代码解析:首先定义了一些常量和全局变量,其中n表示节点数,m表示边数,s 表示起点,t表示终点。
dijkstra算法最短路径

《求解最短路径:应用迪杰斯特拉算法》一、介绍Dijkstra算法的概念和基本原理Dijkstra算法是一种用于解决最短路径问题的算法,它由荷兰计算机科学家Edsger Dijkstra在1959年发明,用于求解从源点到其他所有结点的最短路径。
它的基本原理是:在一张图中,从源点到每一个结点的最短路径是从源点开始,经过最少的边到达每一个结点的路径。
Dijkstra算法的实现过程中,首先要建立一个有向图,该图由顶点和边组成,每条边都有一个权值,表示从一个顶点到另一个顶点的距离。
然后,从源点开始,每次选择最小权值的边,继续查找下一个顶点,直到找到终点。
最后,将所有路径之和求出,即为源点到目标点的最短路径。
举例来说,假如有一张有向图,其中有A,B,C,D四个结点,以及AB,AC,BD,CD四条边,其中AB,AC,BD边的权值分别为2,3,1,CD边的权值为4。
如果要求求出从A到D的最短路径,则可以使用Dijkstra算法,首先从A出发,选择权值最小的边,即BD,则A-B-D的路径长度为3,接着从B出发,选择权值最小的边,即CD,则A-B-D-C的路径长度为7,因此,从A到D的最短路径为A-B-D,路径长度为3。
Dijkstra算法的优点是算法简单,实现方便,时间复杂度低,它可以用于解决路径规划,车辆调度,网络路由等问题,同时,它也可以用于解决复杂的最短路径问题。
因此,Dijkstra算法在计算机科学中有着重要的应用价值。
二、讨论Dijkstra算法的应用及其优势Dijkstra算法是一种用于解决最短路径问题的算法,它的应用和优势非常广泛。
首先,Dijkstra算法可以用于解决交通路网中的最短路径问题。
例如,在一个城市的交通路网中,如果一个乘客要从一个地方到另一个地方,那么他可以使用Dijkstra算法来查找最短的路径。
这样可以节省乘客的时间和金钱,也可以减少拥堵。
此外,Dijkstra算法还可以用于解决计算机网络中的最短路径问题。
数据结构最短路径课程设计

数据结构最短路径课程设计一、课程目标知识目标:1. 理解图的基本概念,掌握图的表示方法及其特性;2. 掌握最短路径的两种经典算法:Dijkstra算法和Floyd算法;3. 能够运用所学算法解决实际生活中的最短路径问题。
技能目标:1. 能够运用数据结构中的图,进行实际问题的建模;2. 能够编写并实现Dijkstra算法和Floyd算法,解决最短路径问题;3. 能够通过分析、比较两种算法,选择合适的算法解决特定问题。
情感态度价值观目标:1. 培养学生面对复杂数据结构问题时,保持积极探究、解决问题的态度;2. 培养学生的团队协作能力,学会在团队中分享、交流、互助;3. 通过解决实际生活中的问题,培养学生将所学知识应用于实践的意识。
课程性质分析:本课程为数据结构中的图部分,以最短路径为具体实例,帮助学生理解图的概念及其在实际中的应用。
学生特点分析:学生已具备一定的编程能力和数据结构基础知识,但对图的相关概念和算法掌握不足,需要通过具体案例和实际操作,提高理解和应用能力。
教学要求:1. 以实际问题引入,激发学生的学习兴趣;2. 采用任务驱动法,引导学生自主探究、实践;3. 结合课堂讲解和实际操作,使学生在实践中掌握知识;4. 注重团队合作,培养学生的沟通与协作能力。
二、教学内容1. 图的基本概念:图的定义、图的表示方法(邻接矩阵、邻接表)、图的遍历(深度优先搜索、广度优先搜索)。
2. 最短路径问题:最短路径的定义、最短路径算法的应用场景。
3. Dijkstra算法:算法原理、算法步骤、实例分析、编程实现。
4. Floyd算法:算法原理、算法步骤、实例分析、编程实现。
5. 算法比较与分析:Dijkstra算法与Floyd算法的优缺点比较、适用场景分析。
6. 实践项目:设计一个实际场景的最短路径问题,要求学生运用所学算法进行解决。
教学内容安排与进度:第一课时:图的基本概念、图的表示方法、图的遍历。
第二课时:最短路径问题、Dijkstra算法原理与实例分析。
数据结构课程设计报告-最短路径算法-二叉树的三种遍历

数据结构课程设计报告班级:计算机科学与技术132班姓名:赖恒财指导教师:董跃华成绩:32信息工程学院2015 年7月8日目录图的最短路径算法实现1. 需求分析 (1)1.1 程序设计内容 (1)1.2 设计要求 (1)2.概要设计 (2)3.详细设计 (2)3.1 数据类型的定义 (2)3.2 功能模块的设计 (2)3.3 主程序流程 (9)4.调试分析 (10)4.1 问题回顾和分析 (10)4.2.经验和体会 (11)5.测试结果 (12)二叉树的遍历1.设计目的 (13)2.需求分析 (14)2.1课程设计的内容和要求 (14)2.2选题的意义及背景 (14)3.概要设计 (14)3.1设计思想 (14)3.2程序数据类型 (16)3.3程序模块分析 (16)3.3.1置空栈 (16)3.3.2入栈 (17)3.3.3出栈 (17)3.3.4取栈顶操作 (17)3.3.5判空栈 (17)3.4函数关系: (18)4.详细设计 (18)4.1二叉树算法程序截图和结果 (18)5.程序测试结果及问题分析 (19)6.总结 (20)参考文献 (21)附录1 (22)附录2 (26)图的最短路径算法实现----基于floyd最短路径算法1.需求分析设计校园平面图,所含景点不少于8个。
以图中顶点表示学校内各景点,存放景点的名称、景点介绍信息等;以边表示路径,存放路径长度信息。
要求将这些信息保存在文件graph.txt中,系统执行时所处理的数据要对此文件分别进行读写操作。
1.1程序设计内容1.从文件graph.txt中读取相应数据, 创建一个图,使用邻接矩阵表示图;2.景点信息查询:为来访客人提供校园任意景点相关信息的介绍;3.问路查询:为来访客人提供校园任意两个景点之间的一条最短路径。
1.2 设计要求(1) 程序要具在一定的健壮性,即当输入数据非法时,程序也能适当地做出反应。
(2) 程序要添加适当的注释,程序的书写要采用缩进格式。
最短路径算法——Dijkstra算法

最短路径算法——Dijkstra算法摘要:数据结构作为计算机科学的核心,已经成为人们必须掌握的一切信息知识。
作为经典的最短路径算法,Dijkstra算法数据结构被在生活中的各方面都有所体现。
本文从数据结构和最短路径算法的定义入手,介绍了Dijkstra算法的算法优缺点和算法实例,最后阐述了最短路径算法在现实生活中的作用,说明该算法的重要意义。
关键词:最短路径;Dijkstra算法;应用一、数据结构与算法1.1 数据结构数据结构是解释数据之间关系的科学。
典型的数据结构包括数组、链表、树和图[1]。
如何准确地使用各种数据结构至关重要。
这种数据结构就是图表,它是“树型”数据结构的扩展。
节点是一个节点(单独的节点),不能连接或连接到另一个节点。
结果,图中节点之间的关系变得更加复杂,并且通过计算机从一个节点到另一个节点的路径变得更加困难。
数据结构彼此具有一个或多个某种联系的元素数据汇总。
一般情况下,经过筛选的数据结构可以让用户感受到良好的体验或使用效率。
数据逻辑结构、数据存储结构和数据操作三部分是数据结构研究的主要内容。
线性结构和非线性结构一起组成了数据结构中的逻辑结构。
对线性结构的解释是:简单的一个表就是一种线性结构,这个表中所有的节点都符合线性关系。
除此之外,线性表是一种典型的线性结构,栈、队列、字符串都是线性结构。
对非线性结构的解释是:在一个简单表中的节点之间存在若干个对应关系是非线性结构。
在现实应用中,非线性结构主要包括了数组、树结构、图结构等数据结构。
1.2最短路径算法最短路径在图论中定义为在有向图中两结点间找一条权值最小的路径。
最短路径算法是对图状结构进行分析,找到需要的、合适的结点及路径,在交通、路径规划、城市建设、灾难逃生等领域广泛应用[2]。
最短路径法是一种机器学习技术,用于搜索连通图中结点之间的最短路径,是计算复杂系统中发现最优路径的有效方法。
最短路径法可以应用于许多不同类型的问题,包括路由算法、资源分配问题、最优布线、交通规划等,还可以被用于搜索引擎中搜索优化的相关工作。
迪杰斯特拉算法(戴克斯特拉算法)(Dijkstra算法)-贪心、最短路径问题

迪杰斯特拉算法(戴克斯特拉算法)(Dijkstra算法)-贪⼼、最短路径问题戴克斯特拉算法:(英语:Dijkstra's algorithm,⼜译迪杰斯特拉算法)由荷兰计算机科学家在1956年提出。
戴克斯特拉算法使⽤了解决赋权的问题。
如图为⼀个有权⽆向图,起始点1到终点5,求最短路径lowcost数组存储下标点到起始点的最短距离,mst数组标记该点是否已标记,如下图,遍历graph数组找出初始点(点1)与个点之间的距离存⼊lowcost(距离<lowcost存⼊),*为⽆穷⼤遍历lowcost数组,找出最⼩值并且没有被标记过(mst != 0),找出的最⼩值的点标记(mst = 0),sum=4遍历graph数组,存⼊lowcost中(注意:8到2的距离+sum<lowcost[8],所以lowcost[8]=graph[2][8]+sum)注意:mst[1]是等于0的,下⾯都是0遍历lowcost数组,找出最⼩值,sum=7以下都依次类推...输⼊:9 14 1 5 1 2 41 8 82 8 32 3 88 9 18 7 63 9 29 7 63 4 73 6 47 6 24 6 144 5 96 5 10输出:24代码:#include <iostream>#include <bits/stdc++.h>using namespace std;#define MAX 100#define MAXCOST 0x7fffffff //int型最⼤值void prim(int graph[][MAX],int n,int start,int end){int lowcost[MAX];int mst[MAX];int sum=0;for(int i=1;i<=n;i++)//将与各点与起始点的距离存⼊lowcost中{lowcost[i]=graph[start][i];mst[i]=1;}mst[start]=0; //起始点被标记for(int i=1;i<=n;i++){if(mst[end]==0)//终点被标记结束{cout<<sum;break;}int min=MAXCOST;int minid=0;for(int j=1;j<=n;j++)//遍历lowcost数组,找最⼩值{if(lowcost[j]<min && mst[j]!=0){min=lowcost[j]; //最⼩值minid=j; //最⼩值下标}}//cout<<"V"<<mst[minid]<<"-V"<<minid<<"="<<min<<endl;sum=min;//cout<<sum<<endl;mst[minid]=0; //最⼩值下标点被标记for(int j=1;j<=n;j++)//找最⼩值点与各点的距离{if(graph[minid][j]==MAXCOST)//如果此点与最⼩值点没有联系(距离为最⼤值)则lowcost不变,跳过{continue;}else if(graph[minid][j]+sum<lowcost[j] && mst[j]!=0)//此点与最⼩点有联系,并且+sum<lowcost 并且此点没有被标记,则赋值给lowcost {lowcost[j]=graph[minid][j]+sum;}}}}int main(){int n,m;int start,end;int graph[MAX][MAX];cin>>n>>m>>start>>end;//初始化图Gfor(int i=1;i<=n;i++){for(int j=1;j<=n;j++){graph[i][j]=MAXCOST;}}//构建图Gfor(int k=1;k<=m;k++){int i,j,cost;cin>>i>>j>>cost;graph[i][j]=cost;graph[j][i]=cost;}prim(graph,n,start,end); return0;}。
最短路径问题(Dijkstra算法)和最小生成树(Kruskal算法和Prim算法)

t(j)=tmin;
end
end
end
ifk==n
break;
end
end
T;
c;
Prim算法程序:
function[T c] =Primf(a)
%a表示权值矩阵
%c表示生成树的权和
%T表示生成树的边集合
l=length(a);
a(a==0)=inf;
k=1:l;
listV(k)=0;
上机实验1、2
1.最短路径问题(Dijkstra算法)
2.最小生成树(Kruskal算法和Prim算法)
一、最短路径问题(Dijkstra算法)
实验问题描述:如图的交通网络,每条弧上的数字代表车辆在该路段行驶所需的时间,有向边表示单行道,无向边表示可双向行驶。若有一批货物要从1号顶点运往11号顶点,问运货车应沿哪条线路行驶,才能最快地到达目的地。
listV(1)=1;
e=1;
while(e<l)
min=inf;
fori=1:l
iflistV(i)==1
forj=1:l
iflistV(j)==0&min>a(i,j)
min=a(i,j);b=a(i,j);
s=i;d=j;
end
end
end
end
listV(d)=1;
distance(e)=b;
T =
3 4 1 2
4 5 3 5
c =
10
>> a=[0 5 3 7 inf;5 0 8 inf 4;3 8 0 1 6;7 inf 1 0 2;inf 4 6 2 0];
>> [T c] =Primf(a)
dijkstra最短路径算法步骤

dijkstra最短路径算法步骤Dijkstra最短路径算法是一种用于在加权图中查找两个节点之间最短路径的算法。
它是由荷兰计算机科学家Edsger W. Dijkstra于1956年提出的。
该算法通过维护一个距离数组,记录每个节点到源节点的距离,并不断更新距离数组来寻找最短路径。
一、基本概念在介绍Dijkstra算法的具体步骤之前,我们需要了解一些基本概念。
1.加权图:加权图是指每条边都有一个权值的图。
2.距离数组:距离数组是指记录每个节点到源节点的当前最短距离的数组。
3.已访问集合:已访问集合是指已经找到最短路径的节点集合。
二、算法步骤1.初始化首先,我们需要将所有节点的距离初始化为无穷大,表示当前还没有找到任何一条路径。
同时,将源节点的距离设为0,表示从源节点到自己的距离为0。
2.选择最小值接下来,在未访问集合中选择一个当前距离最小的点,加入已访问集合中。
这个点就是当前最优解所在位置。
3.更新邻居节点然后,我们需要更新所有与该节点相邻的节点的距离。
具体来说,对于每个相邻节点,我们需要计算从源节点到该节点的距离是否比当前距离更短。
如果更短,则更新距离数组中该节点的值。
4.重复步骤2和3重复执行步骤2和3,直到所有节点都被加入已访问集合中。
此时,距离数组中存储的就是源节点到所有其他节点的最短路径。
三、示例假设我们有以下加权图:现在我们要从A点出发,找到到达其他各点的最短路径。
1.初始化首先,我们将所有点的距离初始化为无穷大,除了A点为0。
2.选择最小值我们从未访问集合{B,C,D,E}中选择当前距离最小的B点,并将其加入已访问集合中。
3.更新邻居节点接下来,我们需要更新与B相邻的所有点(C和D)的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.5递归函数的应用---------------------------------------------------------------------------10
4.1记录调试过程中错误和问题的处理---------------------------------------------------11
4.2算法的时间课空间性能分析------------------------------------------------------------11
4.3算法的设计、调试经验和体会---------------------------------------------------------11
第3章详细设计与编码-----------------------------------------------------------------------------6
3.1框架的建立---------------------------------------------------------------------------------6
1.1课程设计题目-----------------------------------------------------------------------------3
1.2原始数据的输入格式--------------------------------------------------------------------3
中南大学
《数据结构》课程设计
题目第9题 Dijkstra算法求最短路径
学生姓名XXXX
指导教ቤተ መጻሕፍቲ ባይዱXXXX
学 院信息科学与工程学院
专业班级XXXXXXX
完成时间XXXXXXX
第1章问题分析与任务定义---------------------------------------------------------------------3
第7章参考文献-----------------------------------------------------------------------------------12
附录------------------------------------------------------------------------------------------------------12
2.1数据结构的选择--------------------------------------------------------------------------4
2.2概要设计-----------------------------------------------------------------------------------4
2.原始数据的输入格式
2.1建图:2.1.1数字
2.2显示:2.2.1数字+逗号+数字+回车
2.2.2字母+回车
3.实现功能
3.1建立有向图
3.2显示存储的有向图
3.3显示从顶点到其他各个顶点的最短路径和是否存在路径
4.测试用例
4.1正确数据:输入顶点;边值信息
输出结果:最短路径是否存在,存在的情况最短路径是多少,其次是不存在。
1.3实现功能-----------------------------------------------------------------------------------3
1.4测试用例-----------------------------------------------------------------------------------3
1.5问题分析-----------------------------------------------------------------------------------3
第2章数据结构的选择和概要设计------------------------------------------------------------4
3.2点结构体的定义---------------------------------------------------------------------------7
3.3创立带权值有向图------------------------------------------------------------------------8
3.6 Dijkstra算法实现最短路径--------------------------------------------------------------10
第4章上机调试------------------------------------------------------------------------------------11
第5章测试结果-----------------------------------------------------------------------------------12
第6章学习心得体会-----------------------------------------------------------------------------12
第1章问题分析与任务定义
1、课程设计题目:
1.1题目:采用适当的存储结构实现带权有向图的存储,建立,输入、显示,以及使用Dijkstra算法,寻找和输出带权有向图中某个源点到其余各点的最短路径
1.2要求:采用适当的存储结构实现带权有向图的存储,建立,输入、显示,以及使用Dijkstra算法。
1.3具体任务:建立图的存储模块,建立图的输出模块,在建图后从单源点开始求最短路径,并显示出来。