一般数项级数的敛散性及其判别

合集下载

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳级数是数列之和的概念在数学中的推广。

级数的敛散性是数学中的一个重要问题,判别级数的敛散性常用的有几个方法,包括比较判别法、比值判别法和积分判别法。

下面我们将对这几种方法进行详细的归纳阐述。

一、比较判别法(包括比较判别法和比较判别法的极限形式)比较判别法的基本思想是用一个已知的级数和未知的级数进行比较,从而判断未知级数的敛散性。

1.比较判别法对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有a_n≤cb_n成立,那么:(1)若∑b_n收敛,则∑a_n也收敛。

(2)若∑b_n发散,则∑a_n也发散。

2.比较判别法的极限形式对于正项级数∑a_n和∑b_n,如果存在正数c和N,使得当n>N时,有lim(a_n/b_n)=c成立,那么:(1)若0<c<∞,则∑b_n收敛或发散,则∑a_n也收敛或发散。

(2)若c=0,则∑b_n收敛,则∑a_n也收敛。

(3)若c=∞,则∑b_n发散,则∑a_n也发散。

比较判别法适用于一些特殊情况,如∑(1/n^p)的敛散性可以通过与调和级数∑(1/n)做比较来判断。

二、比值判别法比值判别法的基本思想是通过比较级数的相邻项之比的极限值,从而判断级数的敛散性。

对于正项级数∑a_n,计算lim(a_(n+1)/a_n),若这个极限存在:(1)若0≤lim(a_(n+1)/a_n)<1,级数收敛;(2)若lim(a_(n+1)/a_n)>1或lim(a_(n+1)/a_n)=∞,级数发散;(3)若lim(a_(n+1)/a_n)=1,比值判别法无效,需使用其他方法。

比值判别法适用于一些具有指数函数的级数,如幂级数∑(x^n)的敛散性可以通过计算lim(x^(n+1)/x^n),进而判断。

三、积分判别法积分判别法是通过将级数转化为函数积分的形式,从而判定级数的敛散性。

对于正项级数∑a_n,若存在函数f(x),使得f(x)满足以下条件:(1)f(x)在区间[1,+∞)上连续非负递减;(2)级数∑a_n与函数积分∫f(x)dx存在以下关系:a_n=f(n),则(a)若∫f(x)dx在区间[1,+∞)上收敛,则级数∑a_n也收敛;(b)若∫f(x)dx在区间[1,+∞)上发散,则级数∑a_n也发散。

数项级数敛散性判别方法

数项级数敛散性判别方法

数项级数敛散性判别方法数项级数是由一系列项相加而得的无穷级数,其中每个项都是一个数字。

判定一个数项级数的敛散性是非常重要的,因为这决定了级数是否收敛(最终总和有一个有限的值)或者发散(最终总和无穷大)。

在数学中,有许多方法用于确定数项级数的敛散性。

下面将介绍一些常用的方法。

1.利用比较判别法:如果一个数项级数的项的绝对值可以比较为另一个已知的收敛级数或发散级数的项的绝对值的大小,那么可以通过比较判别法来判断原数项级数的敛散性。

a)如果一个级数的项的绝对值总是大于一个收敛级数的项的绝对值的大小,那么原级数也发散。

b)如果一个级数的项的绝对值总是小于一个发散级数的项的绝对值的大小,那么原级数也收敛。

c)如果一个级数的项的绝对值与一个收敛级数或发散级数的项的绝对值的大小相同,那么原级数的敛散性不能确定。

2.利用比值判别法:给定一个数项级数A,可计算相邻两项的比值,并观察这个比值的极限。

a) 如果比值极限小于1,即lim,A(n+1)/A(n), < 1,那么级数A收敛。

b) 如果比值极限大于1,即lim,A(n+1)/A(n), > 1,那么级数A发散。

c) 如果比值极限等于1,即lim,A(n+1)/A(n), = 1,那么比值判别法无法确定级数A的敛散性。

3.利用根值判别法:给定一个数项级数A,可计算相邻两项的根值,并观察这个根值的极限。

a) 如果根值极限小于1,即lim√(,A(n),) < 1,那么级数A收敛。

b) 如果根值极限大于1,即lim√(,A(n),) > 1,那么级数A发散。

c) 如果根值极限等于1,即lim√(,A(n),) = 1,那么根值判别法无法确定级数A的敛散性。

4.绝对收敛性和条件收敛性:如果一个级数的各项的绝对值所组成的级数收敛,那么称原级数是绝对收敛的。

否则称为条件收敛的。

5.交错级数的收敛判别法:交错级数是由正项和负项交替出现的级数。

a)如果交错级数的交错项(即正项和负项的绝对值所组成的级数)满足单调递减且趋于零,那么交错级数收敛。

判别数项级数敛散性的一些方法和技巧

判别数项级数敛散性的一些方法和技巧

判别数项级数敛散性的一些方法和技巧要判断数项级数的敛散性,我们可以使用一些方法和技巧。

以下是一些常见的方法和技巧:1.非负项级数的比较判别法:-比较判别法:如果一个数项级数的绝对值项与一个已知级数的绝对值项相比,可以发现后者收敛,则前者也收敛;如果后者发散,则前者也发散。

-极限判别法:如果一个数项级数的绝对值项的极限为零,而另一个已知级数的绝对值项发散,则前者也发散;如果后者收敛,则前者也收敛。

-比值判别法:如果一个数项级数的绝对值项的比值极限存在且小于1,那么级数收敛;如果比值极限大于1,那么级数发散;如果比值极限等于1,判定不确定。

2.收敛级数的性质:-绝对收敛和条件收敛:如果一个数项级数的绝对值级数收敛,那么原级数也收敛;如果绝对值级数发散,但原级数收敛,则称为条件收敛。

-级数的加减法和乘法:只要两个级数中有一个收敛,那么它们的和、差和乘积也收敛。

3.交错级数的收敛性:-莱布尼茨判别法:对于一个交错级数,如果该级数的绝对值项递减趋于零,则级数收敛;如果绝对值项不满足这个条件,则级数发散。

4.幂级数的收敛性:- 幂级数的收敛半径:对于一个幂级数∑an(x-a)^n,可以通过求其收敛半径来判断其在收敛范围内是否收敛。

收敛半径可以使用根值判别法或比值判别法进行计算。

5.特殊级数的敛散性:-调和级数:调和级数∑1/n发散,但调和级数∑1/n^p,其中p>1,收敛。

- 几何级数:几何级数∑ar^n,在,r,<1时收敛,否则发散。

6.柯西收敛准则:-柯西收敛准则:一个数项级数收敛当且仅当对于任意给定的正数ε,存在正整数N,当n>N时,级数的部分和之差的绝对值小于ε。

7.级数的整体性质:-典型例子:级数的敛散性常常可以通过和或平方根的形式来判断。

例如,级数∑1/n^2收敛,而级数∑1/n发散。

通过以上这些方法和技巧,我们可以判断数项级数的敛散性并进行求和计算。

但需要注意的是,并非所有的数项级数都可以通过这些方法和技巧来判断其敛散性,有些级数可能需要更复杂的方法来求解。

数项级数敛散性判别法

数项级数敛散性判别法

数项级数敛散性判别法数项级数是由一系列数值相加而得到的无穷级数。

在数学中,我们经常需要判断一个数项级数的敛散性,即判断它是否会无限逼近一个有限值(收敛)或者永远无法收敛(发散)。

下面将介绍一些常见的判断数项级数敛散性的方法。

1.正项级数判别法(比较判别法):对于一个数项级数∑an,如果对于所有的n,都有an≥0,并且an+1≤an,那么我们可以使用正项级数判别法来判断敛散性。

即如果极限值lim(n→∞)an=0,则级数收敛;如果极限值lim(n→∞)an>0,则级数发散。

2.比值判别法:如果存在一个正数r,使得lim(n→∞)an+1/an=r,那么根据r的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

3.根值判别法:如果存在一个正数r,使得lim(n→∞)√(n)(an) = r,那么根据r 的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

4.绝对收敛与条件收敛:如果一个级数的各项都是正数,并且该级数收敛,那么称该级数是绝对收敛的。

如果一个级数是收敛的,但其对应的绝对值级数是发散的,则称该级数是条件收敛的。

5.莱布尼茨判别法:对于一个交替级数∑((-1)^(n+1)*bn),如果满足以下条件,那么该级数收敛:- bn>0,即各项都是正数;- bn≥bn+1(递减趋势);- lim(n→∞)bn=0。

6.积分判别法:如果能够找到一个函数f(x),使得f(x)在[1,∞)上连续且单调递减,并且∑an与∫f(x)dx之间有关系,那么可以使用积分判别法来判断敛散性。

具体判别如下:- 如果∫f(x)dx收敛,那么∑an也收敛;- 如果∫f(x)dx发散,那么∑an也发散。

关于数项数敛散性的判定

关于数项数敛散性的判定

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n 的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*N N ∈∃,使得当m N >以及*N p ∈∀,都有ε<++++++p m m m u u u 21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121mp m m pm m m 21212121212121<-=+++<++++ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u 21成立,故由柯西准则可推出原级数收敛.2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n n naq aq aq a aq,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =∙<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a aa t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n 1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+∙+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑∙nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=∙++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u , ,2,1,11=⎪⎪⎭⎫⎝⎛-=+n u u n R n nn .(i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性. 解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()( ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11lim lim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2sin 1sin 1x kx k ≤∑∞=,即∑∞=1sin n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n 收敛,所以原级数绝对收敛. 3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫ ⎝⎛+-1111n n n收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na 和级数∑∞=12n nb 都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a 收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n n a 收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M k n k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=∙-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+-=-=⎪⎭⎫ ⎝⎛+-=22121111ln 11n o n n n n n nn e e e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o ne 12111 ~()∞→n n e2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若() ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p nn n p p p 的敛散性. 解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫ ⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫⎝⎛∞→n f x ,因而()01l i m l i m 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫ ⎝⎛-11cos 1n n n e n π的敛散性. 解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数 ⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-xx x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定摘要:就数项级数敛散性的判定进行了深入细致的分析、探究与总结,重点论述了正项级数及一般项级数的敛散性判别方法,提出了数项级数敛散性判定的一般步骤,以及判定过程中需要注意的一些问题。

使得对数项级数敛散性的知识有了更深的认识,提高了解题能力。

关键词:数项级数;正项级数;交错级数;一般项级数;敛散性 引言:无穷级数是高等数学的一个重要组成部分,是研究“ 无穷项相加” 的理论 ,它是表示函数、研究函数的性质以及进行数值计算的一种工具。

如今,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的有力工具,而应用的前提是级数收敛,所以其收敛性的判别就显得十分重要,判断级数敛散的理论和方法很多,本文的根本目的是对数项级数敛散性的判定进行深入的研究与总结。

1.预备知识: 1.1级数的定义及性质定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式......21++++n u u u称为数项级数。

其中n u 称为该数项级数的通项。

数项级数的前n 项之和记为:∑=+++==nk n k n u u u u S 121...。

称为数项级数第n 个部分和。

定义2:若数项级数的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称数项级数收敛。

若{}n S 是发散数列,则称数项级数发散。

即:n n S ∞→lim 不存在或为∞。

性质:(1)级数收敛的柯西准则:级数收敛的充要条件:0>∀ε,0>∃N ,使得当N m >以及对任意正整数P ,都有 ε<++++++p m m m u u u (21)推论:级数收敛的必要条件:若级数收敛,则0lim =∞→n n u 。

(2)设有两收敛级数n u s ∑=,n v ∑=σ,则其和与差)(n n v u ±∑也收敛,并且σ±=±∑s v un n)(。

8.2数项级数敛散性判定(一)

8.2数项级数敛散性判定(一)

(上界)

正项级数 un收敛
它的部分和数列 Sn有界.
n1
否则,
若数列

Sn
无界, 则

lim
n
Sn
,
从而
正项级数 un发散, 记为 un .
n1
n1
二、正项级数的敛散性判别法
正项级数敛散性的判别法较多, 只介绍几个最基本、
最常用的判别法。


定理(比较判别法1) 设 un和 vn均为正项级数,
且 un

vn(n

1, 2,
),
n1
n1
(1)若 vn 收敛,则 un 收敛; (大敛则小敛)
n1
n1
(2)若 un 发散,则 vn 发散. (小散则大散)
证明
n1
(1) 设 Sn
n
n1
uk , Tn
n
vk , un vn ,
且 Sn u1
第二节
数项级数 敛散性判别法
一、比较判别法
第七章 无穷级数
二、比值判别法
三、根值判别法
四、绝对收敛与条件收敛
复习
(一)数项级数的基本概念

un u1 u2 u3 un
n1
前n项部分和Sn u1 u2 un , 部分和数列 Sn
(二)级数的基本性质
23
n

1 (1)n1
1 01 0
均为正项级数
...
n1
2
一、正项级数及其敛散性
由正项级数的定义,可得正项级数的性质
性质 如果正项级数 un的部分和为 Sn , 则 n1

判别数项级数敛散性的常用方法与技巧

判别数项级数敛散性的常用方法与技巧

判别数项级数敛散性的常用方法与技巧判断数项级数的敛散性是数学分析中的一个重要问题。

对于数项级数a₁+a₂+a₃+⋯,判断它的敛散性可以使用多种方法和技巧。

以下是判别数项级数敛散性的常用方法和技巧:1.部分和序列法(也称柯西收敛准则):数项级数收敛的必要条件是它的部分和序列收敛。

即,如果部分和序列Sₙ=a₁+a₂+⋯+aₙ收敛,则数项级数也收敛。

这个方法常用于证明一些级数的发散。

2.比较判别法:将待判别的级数与已知级数进行比较,从而确定待判别级数的敛散性。

-比较判别法一:如果对于所有n,都有0≤bₙ≤aₙ,且∑aₙ收敛,则∑bₙ也收敛。

如果∑aₙ发散,则∑bₙ也发散。

-比较判别法二:如果对于所有n,都有aₙ≤bₙ≥0,且∑aₙ发散,则∑bₙ也发散。

如果∑aₙ收敛,则∑bₙ也收敛。

比较判别法常见的应用有比较无穷大级数、比较一致收敛级数和比较正项级数等。

3. 极限判别法(拉阿贝尔判别法):对于正项级数(非负数列构成的级数),如果存在极限lim(n→∞)(aₙ/aₙ₊₁),则:-若极限存在且大于1,则级数发散;-若极限存在且小于1,则级数绝对收敛;-若极限等于1,则不能确定级数的敛散性。

极限判别法适用于有常数项的级数以及指数函数和幂函数构成的级数。

4. 积分判别法:对于正项级数∑aₙ,如果存在连续函数f(x),满足aₙ = f(n)且f(x)在x≥1上单调递减,则∑aₙ和∫f(x)dx同敛散。

即,级数与积分的敛散性相同。

积分判别法适用于正项级数,特别适用于有幂函数构成的级数。

5.序列收敛法:将待判别级数的项化为序列的形式,然后判断这个序列是否收敛。

如果序列收敛,则级数收敛;如果序列发散或趋于正无穷,则级数发散。

序列收敛法适用于特定结构的级数,如差分级数。

以上是常用的判别数项级数敛散性的方法和技巧。

在具体问题中,可以结合使用不同的方法确定级数的敛散性。

需要注意的是,判别数项级数敛散性的方法与技巧是基于数学分析中的定理和推理的,需要熟练掌握并灵活运用。

正项级数敛散性的判别方法

正项级数敛散性的判别方法

正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。

判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。

一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。

2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。

二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。

三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。

四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。

五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。

这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。

同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。

数项级数的敛散性判别法-数项级数敛散性判别法

数项级数的敛散性判别法-数项级数敛散性判别法

的敛散性.

例3. 判别级数
的敛散性.
解:根据比较判别法的极限形式知
例4. 判别级数
解:根据比较判别法的极限形式知

定理4 . 比值判别法
设 为正项级数, 且

(1) 当(2) 当证: (1)
时, 级数收敛;或 时, 级数发散.
收敛, 由比较判别法可知
因此
所以级数发散.
2) 若
调和级数与 p 级数是两个常用的比较级数.若存在 对一切
发散.
证: 因为
而级数
发散
根据比较判别法可知, 所给级数发散.
例2. 证明级数
定理3. (比较判别法的极限形式) 设两正项级数满足 则有
当 0 < l <∞ 时, 两个级数同时收敛或发散;当 l = 0当 l =∞证: 据极限定义,
由定理 2 可知
(3) 当l = ∞时,

由定理2可知, 若
发散,
(1) 当0 < l <∞时, 同时收敛或同时发散;
由定理2 知
(2) 当l = 0时,若 收敛,
是两个正项级数,
(1) 当
特别取
(2) 当

(3) 当
时, 两个级数同时收敛或发散;收敛时, 也收敛;
且 发散时, 也发散.对正项级数 可得如下结论:
第二节
数项级数敛散性判别法一、正项级数敛散性判别法二、交错级数与任意项级数的敛散性
第五章
一、正项级数及其判别法
收敛
部分和序列
有界.
收敛,
∴部分和数列
有界, 故
又已知
故有界.
若 则称定理 1. 正项级数
为正项级数.

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*NN ∈∃,使得当m N >以及*Np ∈∀,都有ε<++++++p m m m u u u 21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121mp m m p m m m 21212121212121<-=+++<++++ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u 21成立,故由柯西准则可推出原级数收敛. 2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n n naq aq aq a aq,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =∙<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a a a t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+∙+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑∙nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=∙++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u , ,2,1,11=⎪⎪⎭⎫⎝⎛-=+n u u n R n nn .(i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性. 解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()( ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11limlim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2s in 1s in 1x kx k ≤∑∞=,即∑∞=1s in n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n 收敛,所以原级数绝对收敛. 3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫⎝⎛+-1111n n n 收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na 和级数∑∞=12n nb 都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a 收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n n a 收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M kn k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=∙-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+-=-=⎪⎭⎫ ⎝⎛+-=22121111ln 11n o n n n n n n n e e e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o ne 12111 ~()∞→n n e2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若() ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p nn n p p p 的敛散性. 解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫ ⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫⎝⎛∞→n f x ,因而()01l i m l i m 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫ ⎝⎛-11cos 1n n n e n π的敛散性. 解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数 ⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-x x x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

数学毕业论文级数敛散性的判别方法

数学毕业论文级数敛散性的判别方法

淮北师范大学信息学院2012 届学士学位论文级数敛散性的判别方法系别:数学系专业:数学与应用数学学号: 20081884083姓名: 赵高指导教师: 陈冬君指导教师职称: 讲师2012年 5 月10 日级数敛散性的判别方法赵高(淮北师范大学信息学院,淮北,235000)摘要级数有很多重要的性质,其中敛散性是级数的一个非常重要的性质,敛散性的判别方法也一直是人们研究的热点.通过判别级数的敛散性进一步了解级数的性质.本文探论了正项级数、交错级数以及任意项级数敛散性的判别方法,正项级数、交错级数、任意项级数通项的多变性,决定了判别正项级数、交错级数、任意项级数敛散性的方法会有多种,主要有达朗贝尔判别法、柯西判别法、莱布尼茨判别法、狄利克雷判别法.当然由于通项的特殊性也会有特殊的方法判别.本文通过归纳一些判别正项级数与交错级数敛散性的方法,让人们在学习过程中对级数敛散性的判别能够很好的把握,并掌握这些判别法成立的条件.关键词:正项级数、交错级数、敛散性、判别法.The Convergence of the Series of Discriminant MethodZhao GaoCollege of Information Technology Huaibei Normal University, Huaibei,235000AbstractThe series has a lot of important properties, which is the series convergence and divergence of a very important properties, criteria for convergence and divergence has been the focus of study. Through judging the convergence of series to further understand the series nature. This article of the series of positive terms, staggered series as well as any series convergence and divergence sexual discriminant method, a series of positive terms, staggered series, series of any general variability, determines the identification of series of positive terms, staggered series, any of the convergence of the series will have a variety of methods, mainly the d'Alembert discriminant method, Cauchy method, Leibniz method, di Like dilichlet discriminance. Of course due to the particularity of the general will also have the special methods of discriminant. This paper summarized some criteria for positive term series and the convergence of alternate series method, let people in the learning process of convergence of series of discriminant can be a very good grasp of, and grasp the discriminant conditions.Key words: Series of positive terms,Alternating series,Convergence and divergence,Discriminant analysis method目录引言 (1)一、级数及其敛散性的有关概念 (1)二、正项级数敛散性的判别方法 (2)1、比式判别法(达朗贝尔判别法) (2)2、根式判别法(柯西判别法) (3)3、拉贝判别法 (4)4、高斯判别法 (5)5、对数判别法 (5)6、隔项比值判别法 (5)7、运用微分中值定理判别级数敛散性 (6)8、利用数列判别级数的敛散性 (6)9、运用等价无穷小替换判别级数的敛散性 (7)三、交错级数敛散性的判别方法 (8)1、利用级数敛散性定义判定 (8)2、莱布尼茨判别法 (9)3、极限判别法 (10)4、添加括号法 (11)5、通项变形法 (12)6、微分形式判别法 (13)7、比值判别法或根值判别法 (14)四、任意项级数敛散性判别法 (15)总结 (16)参考文献 (16)致谢 (17)引言级数是数学的一个重要组成部分,它是表示函数、研究函数的性质以及数值计算的一种工具.对于一个级数,我们首先要讨论其敛散性,然后才讨论其求和问题.本文就级数的敛散性的判别方法作了一些探讨.正项级数和交错级数是整个级数家族中比较重要和特殊的.对其敛散性的判别方法也有别于一般的级数,除适用于一般级数的敛散性判别法外,还有许多专门针对正项级数和交错级数敛散性的判别方法,常见的如达朗贝尔判别法、柯西判别法、拉贝判别法、莱布尼茨判别法、狄利克雷判别法、微分形式判别法等.其实正项级数敛散性的判别方法远不止这些,下面就介绍几种级数敛散性的判别法.一、级数及其敛散性的有关概念定义1 给定数列{n u }:1u ,2u ,,nu则式子=1n n u ∞∑=12n u u u ++++称为无穷级数,简称为级数.定义2 如果级数=1n n u ∞∑满足n u ≥0(n =1,2,)则称=1n n u ∞∑为正项级数.如果级数是正负项交错出现的,即11234=1=+u n n n u u u u ∞---+∑(-1),或11234=1=+u +u n n n u u u ∞---∑(-1)(n u ≥0,n =1,2) 则称为交错级数.由定义,级数表示无穷多个数的和,但不能理解为无穷多个数逐次求和.事实上,这样也做不到.利用数列极限可以表示级数的和,同时给出级数敛散性的定义.定义3 级数=1n n u ∞∑前n 项之和记为S n =12n u u u +++,称为级数=1n n u ∞∑的第n 次部分和. 当n 分别取1,2, ,n ,时,得到级数=1n n u ∞∑的部分和数列{n S }:12,,,,n S S S 如果当n →∞时,n S 的极限存在,即lim =n n S S →∞时,则称级数=1n n u ∞∑是收敛的,且S 称为级数=1nn u∞∑的和,记为S ==1n n u ∞∑;如果当n →∞时,n S 的极限不存在, 即lim n n S →∞不存在,则称级数=1n n u ∞∑是发散的.由定义,只有收敛的级数才有和的问题,发散的级数没有和,或者说发散级数的和不存在.所以有必要研究级数的敛散性.由于正项级数是各项的符号均为正号的级数,它是数项级数中最简单也是最有代表意义的数项级数. 所以它收敛的最基本的判别方法也是从级数的判敛性质中引出,因此本文先讨论正项级数的敛散性. 有了着一方法来判断某些简单的正项级数的敛散性后,以它作为参照,可以判断另外一些稍微复杂的正项级数的敛散性.下面先来介绍正项级数敛散性的判别方法.二、正项级数敛散性的判别方法1、比式判别法(达朗贝尔判别法)定理[]11 设有正项级数=1n n u ∞∑,如果+1lim=n n nu l u →+∞,则(1) 当0≤l <1时,级数收敛; (2) 当1<l ≤+∞时,级数发散; (3) 当l =1时,此法失效. 例1 判断正项级数=12nn n∞∑的敛散性. 解:1121(1)limlim lim lim ()2(1)(1)1n n n n n n n n n n n n n n n n n n en++→+∞→+∞→+∞→+∞+=<==+++<1所以满足定理1中的(1),故正项级数=12nn n∞∑收敛. 例2 判别正项级数=12!n n ∞∑的敛散性. 解:由2!1(1)!lim lim lim 02(1)!1!n n n n n n n n →+∞→+∞→+∞+===++可知满足定理1中的(1),所以正项级数=12!n n ∞∑收敛. 像正项级数 =1x !nn n ∞∑(x>0)、=1!10n n n ∞∑等都可采用此法判断.2、根式判别法(柯西判别法)定理[]12 设有正项级数=1n n u ∞∑,如果n l ,则(1)当0≤l <1时,级数收敛; (2)当1<l ≤+∞时,级数发散; (3)当l =1时,此法失效.例3 研究级数=12+12nnn ∞-∑()的敛散性. 解:由于12n n →∞=<所以级数2+12nn-∑()是收敛的. 注:级数=12n n n ∞∑、=1+1nn na n ∞⎛⎫ ⎪⎝⎭∑ (0)a >、-1=1n n n αβ∞∑(α>0,β>0)等都可采用此法判 断.比式判别法与根式判别法都是建立在正项级数比较判别法基础上的,所用的比较级数是收敛速度相对比较快的等比级数.这两种方法虽然更方便,但是它们也只能用于判别那些比等比级数收敛速度更快的级数,而对于那一类比等比级数收敛速度更缓慢的级数,这两种判别法就无能为力了.这两种判别方法是我们用得比较多,因为它们用起来很方便.但是,对于比值判别法与根值判别法存在两点不足:1) 当=1l 时,判别法失效,既有收敛的,也有发散的级. 2) 判别法可能由于 l 根本不存在而失效.3、拉贝判别法定理[]43 (拉贝判别法) 设n u >0 (n =1,2,3)1。

数项级数敛散性判别

数项级数敛散性判别

an
发散时, n1

b
n

散。 (一般常用作比较级数的有等比级数 n1
aq
n
和 p 级数 n1

n
1
p
)使用

比较判别法时一般来说多用其极限推论形式:正项级数
lim
an
n 1
和 n1
b
n

an l 0 l a b l 0 bn n n n b n 1 n 如果 ,则当 时, n1 与 n 1 同敛散;当 时, n n
由这个式子可以看出{Sn}有上界 1,故该数项级数收敛。 ③cauchy 积分判别法:这种方法使用的要求是 an =f(n)对应的 f(x)在[a,+∞)上单调递减,并且非负(a 的取值可以不是 1,视具 体情况而定)这种方法的理论依据是一般判别法,通过借用无穷积分 的敛散性来判断正项级数有无上界实现正项级数敛散性判断。
当 n>N,对于 p N 都成立,所以如果通项比较容易放缩的话,比较 容易看出 散性)

an1 an 2 ...... an p
是否成立,从而判断出数项级数的敛
②正项级数的一般判别法: 正项级数 n 1
a
n
收敛的充要条件是部分
和数列{Sn}有上界(这是单调递增有上界的数列必有极限的一个应 用,这种解法的关键之处是找出上界)
n
①cauchy 收敛准则适用一些通项比较容易被放缩的级数,例如
n 1
n(n 1)
sin n
sin n
这样的式子的放缩很显然很直接( n(n 1)

1 1 1 n(n 1) n n 1 ) 。

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。(总结)

n 1
u
n
绝对
收敛;若级数 n1 un
收敛,而级数 n1
un
发散,则称级数
n 1
u
n
条件收敛.易
(1)n1 1
(1) n1 1
知 n1
n2 是绝对收敛级数,而 n1
n 是条件收敛级数.
定理八、 若 n1 un 收敛,则 n1 un 必收敛.
对于有些特殊级数,既不是正项级数也不是交错级数,可以通过
an a1 a2 a3 a4 ...............
常见的几类重要的常数项级数 正项级数:级数中所有项均大于等于零。 交错级数:级数中的项正负相间的级数。 等比级数
a aq aq2 aq3 ....... aqn ...... aqn
调和级数
1 1 1 1
23
n
1
n1 ,则对任何正数 A, f (x) 在
[1,A]上可积,从而有
n
f (n)
f (x)dx
n1
f (n 1) , n 2,3,
依次相加,得
m
m
m
m1
f (n) f (x)dx f (n 1) f (n)
1
n2
n2
n1
若反常积分收敛,则对m ,有
关键词:数项级数,敛散性,判断,方法。
英文题目 Abstract:Single out examples to learn a number of series, we all know which
way to go. But wait until all of the methods after completing their studies are given topics, everyone seems confused and do not know what kind of way. Some students even one by one swab of each method, although it is also feasible. But for one series, using different methods to determine the convergence and divergence of the degree of difficulty, if the appropriate choice of the way to a multiplier effect, but if the hanging has chosen the wrong way, may have spent nine cattle tigers after the power, the result is wrong. So we need to sum up to determine the convergence and divergence, and to understand their characteristics, in order to make better use of them.

函数项级数敛散性的判别方法及其应用毕业论文精要

函数项级数敛散性的判别方法及其应用毕业论文精要

函数项级数敛散性的判别方法及其应用Discrimination Methods of Convergence and Divergence of Series of Functions and ItsApplication专业:数学与应用数学作者:指导老师:二○一五年五月摘要本文介绍了函数项级数敛散性判别法,如柯西判别法、阿贝尔判别法、达朗贝尔判别法和它们的极限形式,以及多种特殊函数项级数敛散性的判别方法. 然后介绍了这些判别法在实际解题中的应用. 本文探究和总结了一些判别函数项级数敛散性的方法, 为今后处理函数项级数敛散性的判别提供理论基础.关键词: 函数项级数; 一致收敛; 判别法;AbstractThis paper introduces discrimination methods of convergence and divergence of series of functions, such as Cauchy criterion, Abel discrimination method, Darren Bell discrimina- tion method and their respective forms, and series of discrimination methods of convergence and divergence of a variety of special functions. Then the paper introduces these disctimina- tion methods in the application of the practical problems. This paper discusses and summari- zes discrimination methods of convergence and divergence of series of functions ,which pro- vide theory for practical problems.Keywords: series of functions, uniform convergence, discrimination method目录0引言 (1)1预备知识 (1)2函数项级数敛散性的判别方法 (2)3判别法的一些应用 (6)致谢 (11)参考文献 (12)0 引言函数项级数在现代工程技术方面有着普遍的应用,它在数学分析中也具有重要地位,是学习数学分析的重难点所在,不易被掌握和应用.而我们要理解和掌握函数项级数,就必须要先研究它的敛散性,而这项工作往往是比较困难的.书本上介绍了一些判别函数项级数敛散性的基本方法,但是这些方法往往只能解决一些比较常规的问题.因此对于不同类型的函数项级数,往往需要寻求不同的方法来判别其敛散性.目前已经有许多学者们在判别函数项级数敛散性方面做出了很多贡献,但很多都具有其本身的局限性.本文从三个层面展开论述:首先论述函数列、函数项级数的定义及其敛散性的概念.然后分别列出函数项级数敛散性的一些常见判别法以及在这些判别法上推出的一些定理. 最后用一些实际例题来验证这些判别法.1 预备知识设12,,,,n f f f 为一列定义在同一数集D 上的函数,称为定义在D 上的函数列.该函数也可简单地写作()n f x 或 n f ,1,2,...n =.定义[1]1 设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n N >时,对一切x D ∈,都有()()n f x f x ε-<, 那么称函数列{}n f 在D 上一致收敛于f ,记作()()n f x f x ⇒ ()n →∞,x D ∈.设{()}n u x 为定义在数集D 上的一个函数列,则D x x u x u x u n∈++++,)()()(21称为定义在D 上的函数项级数,简记为()n u x ∑,并称1()(),,1,2,...nn k k s x u x x E n ==∈=∑为函数项级数的部分和函数列.定义[1]2 若函数项级数)(1x u n n ∑∞=的部分和函数列{})(x S n 在数集D 上一致收敛于)(x S ,则称函数项级数)(1x u n n ∑∞=在D 上一致收敛于)(x S 或称)(1x u n n ∑∞=在D 上一致收敛.2 函数项级数敛散性的判别方法定理]1[1(柯西一致收敛准则)函数项级数)(x u n ∑在数集D 上一致收敛的充要条件:对于任意的正数ε,总存在个某正整数N ,使得当N n >时,对一切D x ∈和一切正整数p 都有 |)()(x s x s n p n -+|<ε或 |)()()(21x u x u x u p n n n ++++++ |<ε.柯西收敛准则和定义是数学分析中判断一致收敛的常用方法,我们还可以根据级数各项的特征去判定其敛散性.下面讨论定义在区间I 上形如++++=∑)()()()()()()()(2211x v x u x v x u x v x u x v x un n n n(2.1)的函数项级数敛散性的判别.推论1(柯西准则逆否命题)函数项级数()∑x u n 在区间D 上非一致收敛的充要条件为0o ε∃>,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1.这里最关键的是要找出o x 与o n 及p 之间的关系,然后凑出o ε,此类型题目也有一个简便方法,即取1=p 能适用于许多题型.这种做法比较实用,优先考虑.推论2 函数列(){}x u n 在数集D 上非一致收敛于0,那么函数项级数()∑x u n 在数集D 上非一致收敛.推论3[]9 如果函数项级数()∑x u n 在区间D 上逐点收敛,并在区间D 中存在点列{}n x ,使()0lim ≠∞→n n n x u ,有函数项级数()∑x u n 在区间D 上非一致收敛. 定理2[1](M 判别法)设定义在数集D 上的函数项级数()x u n ∑, ∑M n 为收敛的正项级数,如果对一切D x ∈,有(),,2,1, =≤n x M u n n 那么函数项级数()x u n ∑在D 上一致收敛.定理3[1](阿贝尔判别法)设 (1))(x u n ∑在区间I 上一致收敛; (2)对于每一个)}({,x v I x n ∈是单调的;(3))}({x v n 在I 上一致有界,即对任意I x ∈和正整数n ,存在正数M ,使,|)(|M x v n ≤ 那么原级数在I 上一致收敛. 定理4[1](狄利克雷判别法)(1)∑)(x u n 的部分和函数列)()(1x u x U nk k n ∑== )2,1( =n 在I 上一致有界;(2)对于每一个{})(,x v I x n ∈是单调的; (3)在I 上)(0)(∞→⇒n x v n , 则级数(2.1)在I 上一致收敛.定理5(比式判别法) 设()n u x 是定义在数集D 上的函数列,且()0n u x >, ,2,1=n 记)()()(1x u x u x q n n n +=,存在正整数N 和实数M q ,使得()1n q x q ≤<,()N u x M ≤对任意的N n >, x D ∈成立,那么函数项级数1()n n u x ∞=∑在D 上一致收敛.此定理的极限形式为:设)(x u n 为数集D 上的正函数列,)()()(1x u x u x q n n n +=,因为lim ()()1n n q x q x q →∞=≤<,且)(x u n 在D 上一致有界,则函数项级数)(1x un n∑∞=在D 上一致收敛.定理6[5](根式判别法)设)(x u n 为定义在数集D 上的函数列,若存在正整数N ,使1|)(|<≤q x u nn ,对∀Nn > ,D x ∈ 成立,那么函数项级数∑∞=1)(n n x u 在D 上一致收敛.该定理的极限形式为:设)(1x u n n ∑∞-为数集D上的函数列,()1n q x q ≤<,对D x ∈∀成立,有函数项级数在D 上一致收敛定理7[5](对数判别法) 设)(x u n 为定义在数集D 上正的函数列,若存在l n ()l i m ()ln n n u x p x n→∞-=那么(1)若对∀x D ∈,()1p x p >>,则函数项级数)(1x u n n ∑∞=在D 非一致收敛;(2)若对∀x D ∈,()1p x p <<,则函数项级数)(1x u n n ∑∞=在D 上非一致收敛;定理8(端点判别法)设()n u x 在[,]a b 上单调(1,2,...)n =,若(),()n n u a u b ∑∑绝对收敛,则()n u x ∑在[,]a b 绝对且一致收敛。

比值法判断级数敛散性

比值法判断级数敛散性

比值法判断级数敛散性
1、先判断这是正项级数还是交错级数。

2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。

若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。

3、判定交错级数的敛散性:利用莱布尼茨判别法进行分析判定;利用绝对级数与原级数之间的关系进行判定;一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散;有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定。

4、求幂级数的收敛半径、收敛区间和收敛域。

若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域;对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径。

5、求幂级数的和函数与数项级数的和:求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几
何级数的形式,再求和;求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值。

6、将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。

一般数项级数的敛散性及其判别

一般数项级数的敛散性及其判别

则有 ⑴
∑ vn 和 ∑ wn 均为正项级数,且有 0 ≤ vn ≤ | u n | 和 0 ≤ wn ≤ | u n | ;
n =1
n =1
1235
⑵ 2
| u n |= v n + wn , u n = v n − wn 。
变正项级数的性质 ⑴ 若

定理 3.3
∑ u n < +∞ , 则 ∑ vn < +∞ , ∑ wn < +∞ 。
ρ − ε > 1 ,即
| un +1 | > ρ − ε > 1 ,或 | un +1 |>| un | ,从而 n > N 时, {| un |} 单调增加, | un |

因此 lim | un |≠ 0 ,必有 lim un ≠ 0 ;根据级数收敛的必要条件 ∑ un 发散。
n →∞ n →∞ n =1
据定理 3.3, 且有
n
∑v
n
n
′ 和 ∑ wn 收敛。由上述⑴所证,有 ∑ v ′ n < +∞ , ∑ wn < +∞ ,
n n n n n
∑ v = ∑ v ′ , ∑ w ∑ u = ∑ w′ , ⇒ ∑ u = ∑ u ′ 。
回答是肯定的。条件收敛的级数有个一般的结果,这是下面
由该定理可见,绝对收敛级数满足加法交换律。是否只有绝对收敛级数才满 足加法交换律呢 ? 的 Riemann 定理。 定理 3.5(Riemann) 若级数 ∑ u n 条件收敛,则对任意实数 s ( 甚至是
例3.3 证明级数 ∑ (−1) n −1
n =1
2n − 1 为条件收敛。 n2

数项级的敛散性判别法

数项级的敛散性判别法

第六讲 数项级数的敛散性判别法§1 柯西判别法及其推广比较原理适用于正项级数,高等数学中讲过正项级数的比较原理: 比较原理I :设1n n u ∞=∑,1nn v∞=∑都是正项级数,存在0c >,使(i ) 若1nn v∞=∑收敛,则1nn u∞=∑也收敛;(ii ) 若1nn u∞=∑发散,则1nn v∞=∑也发散.比较原理II (极限形式)设1n n u ∞=∑,1nn v∞=∑均为正项级数,若则1n n u ∞=∑、1nn v∞=∑同敛散.根据比较原理,可以利用已知其敛散性的级数作为比较对象来判别其它级数的敛散性.柯西判别法和达朗贝尔判别法是以几何级数作为比较对象而 得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法. 定理1(柯西判别法1)设1nn u∞=∑为正项级数,(i )若从某一项起(即存在N ,当n N >1q ≤<(q 为常数), 则1nn u∞=∑收敛;(ii1≥,则1n n u ∞=∑发散.证(i )若当n N >1q ≤<,即nn u q≤,而级数1nn q∞=∑收敛,根据比较原理I 知级数1nn u∞=∑也收敛.(ii )1≥,则1n u ≥,故lim 0n n u →∞≠,由级数收敛的必要条件知1nn u ∞=∑发散.定理证毕.定理2(柯西判别法2) 设1nn u∞=∑为正项级数,n r =,则:(i )当1r <时,1nn u ∞=∑收敛;(ii ) 当1r>(或r =+∞)时,1n n u ∞=∑发散;(iii )当1r =时,法则失效. 例1 判别下列正项级数的敛散性23123(1)()()()35721nn n ++++++;n nn e∞-∑n=1(2)n n x α∞∑n=1(3)(α为任何实数,0x >).解 (1) 因为112n r==<,所以原级数收敛.(2) 因为lim n n nre→∞===∞,所以原级数发散.(3) 对任意α,n rx ==.当01x <<时收敛;当1x >时发散;当1x =时,此时级数是p -级数,要对p α=-进行讨论,当1α->,即1α<-时收敛;当1α-≤时,即1α≥-时发散.例2 判别级数11[(1)]3n nnn ∞=+-∑的敛散性. 解 由于不存在,故应用定理2无法判别级数的敛散性.又因为 由定理1(柯西判别法1)知原级数收敛.例3(98考研)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数111nn n a ∞=⎛⎫ ⎪+⎝⎭∑是否收敛?并说明理由.解 答案:级数111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛,证明如下:由于{}n a 单调减少且0,n a ≥根据单调有界准则知极限lim n n a →∞存在.设lim ,n n a a →∞=则0a ≥.如果0,a =则由莱布尼兹判别法知1(1)nnn a∞=-∑收敛,这与1(1)nnn a∞=-∑发散矛盾,故0a >.再由{}n a 单调减少,故0,n a a >>取111q a =<+, 根据柯西判别法1知111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛.下面介绍柯西判别法的两个推广,称它们为广义柯西判别法. 定理3(广义柯西判别法1) 设1nn u∞=∑为正项级数,如果它的通项n u 的()0an b a +>次根的极限等于r,即lim an n r →∞=.则当1r <时,级数收敛;当1r >时,级数发散;当1r =级数可能收敛也可能发散.证因为lim an n r →∞=,即对任给正数ε,存在正整数1N ,当1n N >时,有()()an r r εε-<<+ (1)对于任给常数b ,总存在2N ,当有2n N >时有0an b +> (2)取{}12max ,N N N =,当n N >时,式(1)和式(2)同时成立.当1r <时,取ε足够小,使1r q ε+=<.由上述讨论,存在N ,当n N >时,式(1)和式(2)同时成立,那么有an bn u q+<,正项级数11()an bba nn n qqq∞∞+===∑∑收敛(因为其为等比级数且公比01nq <<),由比较审敛法知,级数1nn u∞=∑收敛.当1r >时,取ε足够小,使1r q ε-=>,由上面的讨论,存在N ,当n N >时,式(1)和式(2)同时成立,则an bn u q+>,正项级数11()an bba nn n qqq∞∞+===∑∑发散,由比较审敛法知,级数1nn u∞=∑发散.当1r =时,取1n pu n =,那么,对任何0,a b >为常数,有/()1lim lim 1an p an b n n n +→∞→∞==.而11n n ∞=∑发散,211n n∞=∑收敛.说明此时级数可能收敛也可能发散.定理证毕. 例4 判别级数211131n n n -∞=⎛⎫ ⎪-⎝⎭∑的收敛性.解因为21lim lim01,31n n n →∞→∞==<-由广义柯西判别法1知,级数211131n n n -∞=⎛⎫ ⎪-⎝⎭∑收敛.注 例4也可用柯西判别法2(定理2),但比较麻烦,而用广义柯西判别法1要简单得多. 定理4(广义柯西判别法2) 设1nn u∞=∑为正项级数,如果它的一般项n u 的m n (m 是大于1的正整数)次根的极限等于r,即lim n r →∞=.则当1r <时,级数收敛;当1r >时,级数发散;当1r =时,级数可能收敛也可能发散.证因为lim n r →∞=,即对任给的正数ε,存在正整数N ,当n N >时有当1r <时,取ε足够小,使1r q ε+=<.由上面的讨论,存在N ,当n N >时, 有m n n u q <.因为mn nqq <,又正项级数1nn q ∞=∑收敛(因(0,1)q ∈),由比较审敛法知1mnn q ∞=∑收敛 ,所以1nn u∞=∑收敛.当1r >时,取ε足够小,使1r q ε-=>.由上面的讨论,存在N ,当n N >时,有1mn n u q>>,那么lim 0n n u →∞≠,所以级数1n n u ∞=∑发散.当1r =时,同样取()10n p u p n=>,那么 这说明1r =时,级数可能收敛也可能发散.定理证毕.注 广义柯西判别法是柯西判别法2(定理2)的推广[1].事实上,在广义柯西判别法1中,取1,0a b ==,在广义柯西判别法2中,取1m =便得定理2(柯西判别法2).例5 判断级数2121n n n n ∞=⎛⎫⎪+⎝⎭∑的收敛性. 解因为1lim lim lim1212n n n n n →∞→∞→∞===<+,由广义柯西判别法2知原级数收敛.定理5(广义柯西判别法3) 设,0,0,(1,2,)n n n n n w u v u v n =≥≥=,若n u =,1limnn n v v v →∞-=.则当1uv <时,级数1n n w ∞=∑收敛;当1uv >时,级数1n n w ∞=∑发散[2].为证明定理5,需要一些预备知识:Stolz 定理 设{}n a 、{}n b 为两个数列,数列{}n b 在某顶之后单调递增,且lim n n b →∞=+∞,若11limn n n n n a a l b b -→∞--=-,(或+∞),则lim n n nal b →∞=(或+∞).命题1 设数列{}n x .若lim n n x l →∞=,则12lim lim nn n n x x x l x n→∞→∞+++==。

级数敛散性判别方法的归纳-级数的敛散性

级数敛散性判别方法的归纳-级数的敛散性

级数敛散性判别方法的归纳(西北师大)摘要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。

关键词:级数;收敛;判别 ;发散一. 级数收敛的概念和基本性质给定一个数列{n u },形如n u u u +++21①称为无穷级数(常简称级数),用∑∞=1n n u 表示。

无穷级数①的前n 项之和,记为∑==nn n n u s 1=n u u u +++ 21②称它为无穷级数的第n 个部分和,也简称部分和。

若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞=1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。

研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。

由于级数的复杂性,以下只研究正项级数的收敛判别。

二 正项级数的收敛判别各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。(总结)

数项级数敛散性判别法。

(总结)数项级数是一类由无穷多个项组成的数列,它们的和是一个数。

在数学中,我们通常利用一些方法来判断数项级数的收敛性和发散性。

以下是数项级数敛散性判别法的总结:1. 正项级数收敛判别法:如果数列中的每一项都是非负数,且后一项大于等于前一项,那么这个数项级数收敛。

2. 比较判别法:如果一个数项级数的绝对值序列能够被一个已知的收敛数项级数和一个已知的发散数项级数所夹逼,那么这个数项级数与已知的收敛数项级数具有相同的收敛情况,与已知的发散数项级数具有相同的发散情况。

3. 极限比值判别法:对于一个数项级数,如果存在一个常数$q$,使得 $0\leq q<1$,并且对于充分大的 $n$,有$|\frac{a_{n+1}}{a_n}|<q$,那么数项级数收敛。

如果存在一个常数 $r>1$,并且对于充分大的 $n$,有$|\frac{a_{n+1}}{a_n}|>r$,那么数项级数发散。

如果 $q=1$,那么该方法不确定。

4. 根号(拉阔)判别法:对于一个数项级数,如果$\limsup\sqrt[n]{|a_n|}<1$,那么数项级数收敛;如果$\limsup\sqrt[n]{|a_n|}>1$,那么数项级数发散;如果$\limsup\sqrt[n]{|a_n|}=1$,那么该方法不确定。

5. 积分判别法:对于一个递减的正项函数 $f(x)$,如果数项级数 $\sum_{n=1}^{\infty} a_n$ 可以表示成积分$\int_{1}^{\infty}f(x)dx$ 的形式,且该积分收敛,那么数项级数也收敛。

如果积分发散,那么数项级数也发散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

据定理 3.3, 且有
n
∑v
n
n
′ 和 ∑ wn 收敛。由上述⑴所证,有 ∑ v ′ n < +∞ , ∑ wn < +∞ ,
n n n n n
∑ v = ∑ v ′ , ∑ w ∑ u = ∑ w′ , ⇒ ∑ u = ∑ u ′ 。
回答是肯定的。条件收敛的级数有个一般的结果,这是下面
由该定理可见,绝对收敛级数满足加法交换律。是否只有绝对收敛级数才满 足加法交换律呢 ? 的 Riemann 定理。 定理 3.5(Riemann) 若级数 ∑ u n 条件收敛,则对任意实数 s ( 甚至是
n =1

收敛,由比较判别法知,级数 ∑ ( u n + u n ) 收敛,再由收敛级数的线性性知,级
n =1

数 ∑ u n 收敛。
n =1

判定任意项级数 ∑ u n 的敛散性的方法如下:
n =1


首先考察 ∑ u n 是否收敛,若收敛,则 ∑ u n 收敛,其次若 ∑ u n 不收
n =1 n =1 n =1

(− 1)n−1 条件收敛。说明
n
2
收敛 ⇒ /
绝对收敛与收敛的关系
1233
定理 3.2 (绝对收敛与收敛的关系)
∑ u n < +∞ ,
n =1


∑u
n =1

n
收敛。
证 1
已知正项级数
∑u
n =1

n
收 敛 , 根 据 级 数 的 Cauchy 收 敛 准 则 ,
∀ε > 0, ∃N ∈ N + , ∀n > N , ∀p ∈ N + ,有 u n +1 + u n + 2 + … u n + p < ε 。从而,有

lim S n = S ,即级数 ∑ (−1) n +1 u n 收敛。
n→∞ n =1

1232
由证明数列 { S 2 n } 有界性可见, 0 ≤ ∑ ( − 1 ) n +1 u n ≤ u1 。余和
n =1

k = n +1
∑ (−1)

k +1
u k 亦为
Leibniz 型级数, ⇒ 余和 rn 与 u n +1 项同号,且估计式为
Cantor 闭区间套定理知,存在唯一的一个数 S,使
m →∞
lim S 2 m −1 = lim S 2 m = S 。
m→∞

故数列 {S n } 收敛,即级数 ∑ (−1) n +1 u n 收敛。其它如前证。
n =1
例3.1 判别级数 ∑ ( − 1 ) n
n =1

xn n
( x > 0) 的敛散性。
控制。于是, ∑ u n < +∞ , ⇒
∑ u′
n
< +∞ ,且和相等。
n
⑵ 对于一般的 u n ,∑ u n =
∑v
− ∑ wn ,⇒n n n
′ 和 ∑ wn ′ 分别是正项级数 ∑ v n 和 ∑ wn 的更序,由 ∑ | u n | < +∞ , 正项级数 ∑ v n
u n +1 + u n + 2 + … u n + p ≤ u n +1 + u n + 2 + … u n + p < ε 。 即级数 ∑ u n 收敛。
n =1

证 2 注意到 u n = ( u n + u n ) − u n , 因为 0 ≤ u n + u n ≤ 2 u n , 而级数 ∑ u n
即交换其项之后的新级数,其和却是
1 A 。由此可见,收敛级数不满足交换 2
律。这是有限和与无限和(收敛级数)的区别之一。
′ 是 ∑ u n 的一个更序。若 ∑ | u n | < +∞ ,则 ∑ | u ′ 定理 3.4 设 ∑ u n n | < +∞ , ′ = ∑ un 。 且 ∑ un


′ 和 ∑ u n 是正项级数,且它们的部分和可以互相 若 u n ≥ 0 ,则 ∑ u n

绝对收敛级数的可重排性
已知有限和的计算满足结合律、交换律和分配律。收敛级数是无限和,那么 收敛级数的运算是否也满足结合律、 交换律与分配律?定理 1.3 已回答收敛级数 满足结合律。一般来说,收敛级数不满足交换律与分配律。 例如,已知交错级数 ∑
n =1

(− 1)n−1 收敛,设其和为 A ,即

S 2 n 单调上升;又 S 2 n = u1 − (u 2 − u 3 ) − " − (u 2 n − 2 − u 2 n −1 ) − u 2 n ≤ u1 ,即数列
{ S 2 n } 有界。由单调有界原理,数列 { S 2 n } 收敛。
设 S 2 n → S , (n → ∞) 。 S 2 n +1 = S 2 n + u 2 n +1 → S , (n → ∞) 。




敛,再用其它方法考察 ∑ u n 的敛散性;
n =1

因 ∑ u n 为正项级数,其敛散性可以用正项级数的判敛法判定;
n =1
∞ ∞ ∞

⑶ 一般如果 ∑ | un | 发散,推不出级数 ∑ un 一定发散;但是如果 ∑ | un | 的
n =1 n =1 n =1
发散性是用根值法或比值法确定的,此时可以由 ∑ | un | 发散推出 ∑ un 发散;例
为调和级数 ∑
∑ (−1)
n =1

n −1
2n − 1 为条件收敛。 n2
3.3
绝对收敛级数的性质 1 变正项级数 对级数 ∑ u n ,令
n =1

vn =
| u n | +u n ⎧u n , u n > 0 , =⎨ 2 ⎩ 0 , un ≤ 0 .


wn =
| u n | −u n ⎧− u n , u n < 0 , =⎨ 2 ⎩ 0 , un ≥ 0 .
n =1
n =1

n =1
由 u n = v n − wn , wn = v n − u n 以及 而 | u n |= v n + wn , ⇒ 3

∑v
n =1

n
< +∞ 和 ∑ u n 收敛, ⇒
∑w
n =1

n
< +∞ 。
∑ u n < +∞ ,与 ∑ u n 条件收敛矛盾。
n =1 n =1
n
n −1
(− 1) 1 1 1 1 1 A = 1− + − + − +"+ n 2 3 4 5 6
交替排列,即
+"。
如果将其项作如下交换:按此级数原有的正项与负项的顺序,一项正两项负
1−
1 1 1 1 1 1 1 1 − + − − + − − +"。 2 4 3 6 8 5 10 12
假设此级数收敛,作如下的结合:
⎛ 1⎞ 1 ⎛1 1⎞ 1 ⎛1 1 ⎞ 1 ⎜1 − ⎟ − + ⎜ − ⎟ − + ⎜ − ⎟ − + " ⎝ 2 ⎠ 4 ⎝ 3 6 ⎠ 8 ⎝ 5 10 ⎠ 12
=
1 1 1 1 1 1 − + − + − +" 2 4 6 8 10 12
1236
1⎛ 1 1 1 1 1 ⎞ 1 = ⎜1 − + − + − + " ⎟ = A 。 2⎝ 2 3 4 5 6 ⎠ 2
例3.3 证明级数 ∑ (−1) n −1
n =1
2n − 1 为条件收敛。 n2



首先,由 Leibniz 交错级数判敛法知级数 ∑ (−1) n −1
n =1
2n − 1 是收敛的;级 n2
数 ∑ (−1) n −1
n =1
∞ n 1 2n − 1 2n − 1 2n − 1 n + (n − 1) = 为正项级数,而 2 = > 2 = ,因 ∑ 2 2 2 n n n n n n n =1 ∞ 1 2n − 1 是 发 散 的 , 所 以 级 数 ∑ (−1) n −1 是发散的,因此, n2 n =1 n n =1 ∞
n =1

2
交错级数的 Leibniz 定理 Leibniz 型级数必收敛, 且余和的符号与余和首项
定理 3.1(Leibniz 判别法) 相同,并有 证1
| rn | ≤ u n +1 。
S 2 ( n +1) = (u1 − u 2 ) + (u 3 − u 4 ) + " + (u 2 n −1 − u 2 n ) + (u 2 n +1 − u 2 n + 2 ) ≥ (u1 − u 2 ) + (u 3 − u 4 ) + " + (u 2 n −1 − u 2 n ) = S 2 n ,
则有 ⑴
∑ vn 和 ∑ wn 均为正项级数,且有 0 ≤ vn ≤ | u n | 和 0 ≤ wn ≤ | u n | ;
n =1
相关文档
最新文档