第五章:最大功率点跟踪控制教学内容

合集下载

最大功率跟踪的控制原理

最大功率跟踪的控制原理

最大功率跟踪的控制原理最大功率跟踪(MPPT)是并网发电中的一项重要的关键技术,它是指控制改变太阳电池阵列的输出电压或电流的方法使阵列始终工作在最大功率点上,根据太阳电池的特性,目前实现的跟踪方法主要有以下三种:(1)恒电压法,因为太阳电池在不同光照条件下的最大功率点的电压相差不大,近似为恒定。

这种方法的误差很大,但是容易实现,成本较低;(2)爬山法,通过周期性的不断的给太阳电池阵列的输出电压施加扰动,并观察其功率输出的改变,然后决定下一次扰动的方向。

这种方法的追踪速度较慢,只适合于光强变化较小的环境;(3)导纳微分法(又称增量电导法),认为太阳电池阵列的的最大功率点处,输出功率对输出电压的一阶倒数等于零。

因此在环境光强发生改变时,根据dI/dV的计算结果是否等于-I/V,决定是否继续调整输出电压,既可实现最大功率点的跟踪。

该方法相对于恒电压法和爬山法有高速稳定的跟踪特性。

上述三种方法各有特点,但是都不同时具有低成本、高稳定性、快速追踪的特性。

第一种方法只是粗略估计了最大功率点的位置,在光强变化到很大或较小时都会产生很大的误差。

后两种方法本质上都是通过判断当前工作点是否处于最大工作点来决定是否继续调整及调整的方向,因此最终的结果是逆变器始终工作在最大功率点的左右,来回振荡,而不是真正的工作在最大功率点处,反应在太阳电池阵列的输出上就是,太阳电池阵列的输出电压或电流总是以一个直流电平为中心上下跳跃,波形很不稳定,而且在光强变化速度较快时,不能及时反应。

三、太阳能电池功率追踪访法及算法扰动观察法是目前太阳能电池最大功率追踪技术中最为成熟以及被采用最多的方法,其系统方块图如图12所示。

由图中可以很明显的看出此法的硬件需求较少,模拟/数字转换器节省得相当多,因此在制造的成本上将大为降低。

扰动观察法之缺点在于最大功率追踪过程中,当大气条件迅速改变时,由于响应速度未能因应调整,会使追踪的速度变缓,造成功率的损失,不过此一缺点可以用软件技术来加以改善,赋予系统自我调整响应速度之功能,这也是本文的研究重点,亦即以软件算法来达到太阳能电池最大功率的追踪,并分析系统操作于较高频率下,其追踪的性能。

最大功率点跟踪(MPPT)技术简介

最大功率点跟踪(MPPT)技术简介
复旦大学

谢谢!
复旦大学
复旦大学
内容
• MPPT介绍 • MPPT工作原理 • MPPT优点 • MPPT算法简介
复旦大学
MPPT工作原理
太阳能光伏阵列的输出特性具有非线性的特点,并且输出受太阳幅 照度,环境温度和负载影响,只有在某一输出电压值时,光伏阵列 的输出功率才能达到最大值,这时光伏阵列的工作点就达到了输出 功率电压曲线的最高点,称之为最大功率点(MPP-maximum power point)。为了提高太阳能转化效率,就必须使系统保持运 行在PV面板最大功率点附近。
复旦大学
内容
• MPPT介绍 • MPPT工作原理 • MPPT优点 • MPPT算法简介
复旦大学
MPPT优点
MPPT控制器可以智能调节太阳能 发电板的工作电压,使太阳能板始 终工作在V-A特性曲线的最大功率 点。 比较普通太阳能控制器,对太 阳能板发电功率的利用率提高了 10—30%
复旦大学
内容
• MPPT概述
最大功点跟踪(Maximum Power Point Tracking,简称MPPT)系统是一种 通过调节电气模块的工作状态,使光伏板能够输出更多电能的电气系 统,能够将太阳能电池板发出的直流电有效地贮存在蓄电池中,可有 效地解决常规电网不能覆盖的偏远地区及旅游地区的生活和工业用电, 不产生环境污染。光伏电池的输出功率与MPPT控制器的工作电压有 关,只有工作在最合适的电压下,它的输出功率才会有个唯一的最大 值。
光伏电池的输出功率与mppt控制器的工作电压有关只有工作在最合适的电压下它的输出功率才会有个唯一的最大复旦大学内容mppt算法简介复旦大学mppt工作原理太阳能光伏阵列的输出特性具有非线性的特点并且输出受太阳幅照度环境温度和负载影响只有在某一输出电压值时光伏阵列的输出功率才能达到最大值这时光伏阵列的工作点就达到了输出功率电压曲线的最高点称之为最大功率点mppmaximumpowerpoint

mppt控制技术

mppt控制技术

MPPT控制技术引言在太阳能发电系统中,最大功率点跟踪(MPPT)控制技术是一种关键的技术。

MPPT控制技术可以提高太阳能电池板的发电效率,使太阳能发电系统能够更好地适应不同的环境条件,并最大限度地利用太阳能资源。

本文将介绍MPPT控制技术的基本原理以及常用的几种实现方法。

MPPT控制技术的原理MPPT控制技术的基本原理是通过调节太阳能电池板的工作电压和电流,使其输出功率达到最大值。

太阳能电池板的输出功率与其工作电压和电流之间存在着一定的关系。

对于太阳能电池板来说,其最大功率点就是工作电压和电流组合中产生最大功率的点。

MPPT控制技术通过监测太阳能电池板的输出电压和电流,以及太阳能辐射的强度等环境参数,不断调节太阳能电池板的工作电压和电流,使其运行在最佳的工作点上,从而达到最大功率输出的目的。

MPPT控制技术的实现方法基于功率导数的MPPT控制方法基于功率导数的MPPT控制方法是一种比较简单的实现方式。

它利用功率与电压的关系,通过对太阳能电池板的工作电压进行微小的扰动,然后通过测量扰动后的功率变化来判断太阳能电池板的工作点是否在最大功率点附近。

如果功率变化为正值,则说明太阳能电池板的工作点在最大功率点的左边;如果功率变化为负值,则说明太阳能电池板的工作点在最大功率点的右边。

通过不断微调太阳能电池板的工作点,最终可以找到最大功率点。

基于 perturb and observe 算法的MPPT控制方法基于 perturb and observe 算法的MPPT控制方法是一种比较常用的实现方式。

它通过周期性地进行电压扰动,然后观察功率的变化情况来判断当前工作点的位置。

如果功率变化为正值,则说明太阳能电池板的工作点在最大功率点的左边;如果功率变化为负值,则说明太阳能电池板的工作点在最大功率点的右边。

根据功率变化的情况,调整扰动的幅度和方向,直到找到最大功率点。

基于模型预测控制的MPPT控制方法基于模型预测控制的MPPT控制方法是一种相对较复杂的实现方式。

光伏最大功率点跟踪原理

光伏最大功率点跟踪原理

光伏最大功率点跟踪原理光伏最大功率点跟踪(Maximum Power Point Tracking,简称MPPT)是一种用于光伏发电系统中的技术,旨在寻找并保持光伏电池组的最大功率输出。

光伏电池的输出功率受到光照强度、温度、负载电阻等多种因素的影响,而MPPT技术能够通过实时追踪光伏电池组的工作状态,调整工作点,从而实现最大功率输出。

光伏电池的输出功率与其工作电压和工作电流有关。

在光照强度变化的情况下,光伏电池的工作电压和工作电流也会发生变化,从而影响光伏电池的输出功率。

为了实现最大功率输出,MPPT技术需要实时监测光伏电池的工作电压和工作电流,并根据这些数据来调整光伏电池组的工作状态。

MPPT技术的实现主要依赖于功率追踪算法。

常见的功率追踪算法包括传统的扫描法和现代的模型预测控制法。

传统的扫描法通过改变负载电阻的方式来扫描出光伏电池组的最大功率点。

该方法的原理较为简单,但实时性较差,且对于复杂光照条件下的功率追踪效果较差。

而模型预测控制法则是通过建立光伏电池组的数学模型,预测出最大功率点的位置,并通过控制电流或电压来实现功率跟踪。

该方法的原理更为精确,能够在复杂的光照条件下实现较好的功率追踪效果。

为了实现MPPT技术,光伏发电系统通常配备一个MPPT控制器。

该控制器能够实时监测光伏电池组的工作状态,包括光伏电池的工作电压和工作电流。

通过对这些数据的处理和分析,MPPT控制器能够确定光伏电池组的最大功率点,并通过调整光伏电池组的工作状态来实现最大功率输出。

MPPT技术的应用可以提高光伏发电系统的效率和稳定性。

通过实时跟踪光伏电池组的最大功率点,MPPT技术能够最大限度地利用光能,提高光伏发电系统的发电效率。

同时,MPPT技术还可以适应不同的光照条件,自动调整光伏电池组的工作状态,确保系统的稳定运行。

光伏最大功率点跟踪技术是一种关键的技术,能够有效提高光伏发电系统的效率和稳定性。

通过实时追踪光伏电池组的工作状态,并通过调整工作点来实现最大功率输出,MPPT技术能够最大限度地利用光能,提高光伏发电系统的发电效率。

最大功率点跟踪方法

最大功率点跟踪方法

3.5传统的最大功率点跟踪方法3.5.1 定电压跟踪法通过图3-10a 、3-10b 可知,当辐照度大于一定值并且温度变化不大时,光伏电池的输出P -U 曲线上最大功率点几乎分布于一条垂直直线的两侧附近。

定电压跟踪法正是利用这一特性。

根据实际系统设定一个恒定不变的运行电压,使系统在设定的电压下运行,从而尽可能使系统输出的功率最大。

在外界环境变化不大时,可以近似认为太阳能电池始终工作在最大功率点处[24]。

mpp U 表示光伏阵列的最大功率点电压,oc U 表示光伏阵列的开路电压,经研究发现,mpp U 和oc U 有着近似的线性关系:mpp OC U k U ≈ (3.14)式(3.14)中,k 为比例系数,取决于光伏电池的特性,一般其取值为0.8左右。

该算法结构简单,容易实现,但是由于该算法只是一种近似的MPPT 控制算法,在外界环境发生变化时,很容易偏离最大功率点。

因此,电压跟踪法常用在控制要求低,成本低廉的简易系统中[25]。

3.5.2 电导增量法根据光伏阵列的P-U 输出特性曲线可知,它是一条连续可导的单峰曲线,在最大功率点处,功率对电压的导数为零,也就是说,最大功率点的跟踪实质就是搜索满足0dP dU =条件的工作点。

考虑光伏电池的瞬时输出功率为:P UI = (3.15)将上式两边对光伏电池输出电压U 求导,则dP dI I U dU dU=+ (3.16) 当0dP dU =时,光伏电池的输出功率达到最大。

则可以推导出工作点位于最大功率点时需满足以下关系:dI I dU U=- (3.17) 即当光伏电池阵列工作在最大功率点时,需满足(3.17)式。

电导增量法的优点是与太阳能电池组件特性及参数无关,因而能够适应光照强度快速变化的情况,而且该方法的电压波动小,并具有较高的控制精度;其缺点是该方法实现起来复杂,并且容易受到其他信号的干扰而出现误动作。

一般情况下dI 和dU 值取的很小,那么就需要光伏阵列输出电压、输出电流等参数的采样精度很高,而传感器的采样精度有限,所以必然会存在误差,另外,电导增量法存在振荡问题。

光伏发电系统中的最大功率点跟踪

光伏发电系统中的最大功率点跟踪

光伏发电系统中的最大功率点跟踪摘要:所谓MPPT(最大功率点跟踪),即是指控制器能够实时侦测太阳能电池板的发电电压,并追踪最高电压电流值(VI),使得光伏组件工作在最大功率点输出状态下,实现光伏逆变器的最大功率输入,提高阳光的利用率。

光伏电池输出特性具有明显的非线性,受到外部环境包括日照强度、温度、负载以及本身技术指标如输出阻抗等影响,只有在某一电压下才能输出最大功率,这时光伏阵列的工作点就达到了输出功率电压曲线的最高点,称之为最大功率点。

由于目前光伏电池的光电转换效率比较低,为了有效利用光伏电池,对光伏发电进行最大功率跟踪(MaximumPowerPointTracking ,简称MPPT)显得非常重要。

太阳能光伏并网发电系统太阳能电池原理太阳能电池由硅半导体PN 结构成,在硅半寻体中从硅原子的价电子层中分离出一个电子需要一定的能量,该能量称为硅的禁带宽度(在室温下硅的禁带宽度为1.12eV ),当一定强度的光照射到硅半导体时,能量大于硅的禁带宽度的光子将使硅半导体中的价电子受到激发而成为自由电子,从而在半导体内形成光生电子-空穴对,这些电子-空穴对由于热运动会向各个方向扩散。

当这些电子、空穴扩散到PN 结边界时在内建电场作用下,在N 区的电子-空穴会进入P 区,而在P 区的电子则在电场作用下进入N 区,从而在PN 结的两侧产生正负电荷的积累,使P 型层带正电,N 型层带负电,因此在PN 结上产生了电动势。

这个现像被称为“光生伏特效应”。

R光照图错误!文档中没有指定样式的文字。

.1光伏电池原理太阳能电池特性目前光伏系统中使用的电池多为硅太阳电池,包括单晶硅、多晶硅以及多晶硅薄膜电池,这些硅电池的输出具有强烈的非线性特性,他们的输出受太阳光照强度、环境温度以及负载的影响,如图错误!文档中没有指定样式的文字。

.2所示是在恒度温度下,不同光照强度时太阳能硅电池的输出特性。

(温度为25℃)图错误!文档中没有指定样式的文字。

直驱式永磁同步风力发电机最大功率跟踪的基本控制方法

直驱式永磁同步风力发电机最大功率跟踪的基本控制方法

直驱式永磁同步风力发电机最大功率跟踪的基本控制方法一、最大风能捕获控制的基本原理风能作用在风轮上,风能只有一部分可以被风轮吸收。

风力机从风能中捕获的功率Pw可表示为式中Pw——风力机从风能中捕获的风功率;ρ——空气密度;A——风力机扫风面积;v——风速;C p ——风力机的风能利用系数。

在桨距角一定的情况下,Cp是叶尖速比λ的函数,λ为式中ωw——风力机机械角速度;Rtur——风轮半径;v——风速。

在实际应用中常用风能利用系数Cp对叶尖速比λ的变化曲线表示该风轮的空气动力特性,如图7-4和图7-5所示。

图7-4 风轮气动特性(Cp-λ)曲线图7-5 永磁同步发电机不同转速从短路状态到开路状态的全特性曲线时就可以获得最大风能利当桨距角一定时,风力机运行于最佳叶尖速比λopt,此时风力机的转换效率最高,即用系数Cpmax式中ω——风力机的最优机械角速度;optλ——最佳叶尖速比。

opt成比例调节,以保持λ总在最优。

上式要求风轮机组的转速ω可以随风速v1在直驱式永磁同步风力发电系统中,风力发电机与风力机直接相连,风力发电机组的动态特性可以用一个简单的数学模型描述为——风力发电机组的转动惯量;式中Jtur——风力机的气动转矩;TturT——风力发电机电磁转矩。

em为风力机气动转矩Ttur其中式中ρ——空气密度;β——桨距角;CT——风力机转矩系数;Cp——风能利用系数。

稳态时,当风力机运行在一个最佳叶尖速比λopt 时,有一个最佳功率系数Cpopt与之对应,且转矩系数CT =Cpopt/λopt=CTopt也为常数,此时捕获的风能为最大,为式中S——风轮扫风面积。

稳态时,当忽略摩擦阻力转矩,发电机的电磁转矩应该与风力机气动转矩相等,即式(7-7)是在稳态条件下推导出来的发电机电磁转矩与转速之间的关系,它可以作为用于控制电机转矩的给定值,是发电机转速的函数。

即当风速在额定风速以下时,发电机的电磁转矩按照式(7-12)的关系控制,整个系统就能够实现最大风能的捕获,这就是额定风速以下最大风能捕获的基本原理。

第五章:最大功率点跟踪控制讲解

第五章:最大功率点跟踪控制讲解

最大功率点跟踪(MPPT)maximum power point tracking
图1 输出功率曲线与负载 在光伏发电系统中,当光照强
在一定的光照强度和环境温度下, 电阻不同时,光伏电池可以有不 同的输出电压。但是只有在某一输 出电压值时,光伏阵列的输出功率才能达
到最大值,这时光伏阵列的工作点就达到了
图4-A中五条曲线的MPP趋势与图3-A中的MPP趋势相反;这是由于图 4-A的实测条件下,随着光照增强同时温度也在增加,使得PV组件的 开路电压UOC随温度升高而降低所致。
恒电压控制的原理详述
当忽略温度效应时,硅 型光伏阵列的输出特性
光伏阵列在不同光照强度 下的最大功率输出点 a‘,b’,c‘,d’和e‘总 是近似在某一个恒定的电 压值附近。
第五章 光伏阵列最大功率点跟踪
1.自动追光系统可 以使电池板始终正 对太阳
2.最大功率点跟踪 是通过改变负载电 阻大小来影响输出 功率. 自动追光系统与最大功率点跟踪不同:
不同照度下和不同温度下光伏阵列的伏安特性曲线
太阳能电池板伏安特性曲线
光伏阵列输出特性具有非线性特征,并且其输出受 环境(主要包括日照强度,温度)和负载情况影响。
CVT方法的应用前景
采用CVT代替MPPT控制,由于其良好的 可靠性和稳定性,目前在光伏系统中仍被较 多使用。随着光伏发电系统中数字信号处理 技术的应用,CVT方法逐渐被新方法取代。
5.2.最大功率点跟踪控制
5.4 现代最大功率点跟踪方法
与上页论述差不多,可作 为参考
在接入光伏发电系统之后,由 汇编语言的控制,对电路实行 最大功率跟踪控制。设定一定 得占空比,测量目前功率p0, 并加入扰动产生电流电压变化, 利用电压电流传感器测得此时 的u1,i1,并计算出p1=u1*i1。 对p0,p1,进行比较,若p1大 于p0,则说明扰动是让系统向 其最大功率输出方向变动,则 继续这种扰动,反之,则改变 扰动方式,通过MPPT控制,送 出这时的控制信号,再对比这 次扰动前后的功率值,循环进 行下去,直至系统功率值在某 一点左右变化为止。

最大功率跟踪的控制原理

最大功率跟踪的控制原理

最大功率跟踪(MPPT)是并网发电中的一项重要的关键技术,它是指控制改变太阳电池阵列的输出电压或电流的方法使阵列始终工作在最大功率点上,根据太阳电池的特性,目前实现的跟踪方法主要有以下三种:(1)恒电压法,因为太阳电池在不同光照条件下的最大功率点的电压相差不大,近似为恒定。

这种方法的误差很大,但是容易实现,成本较低;(2)爬山法,通过周期性的不断的给太阳电池阵列的输出电压施加扰动,并观察其功率输出的改变,然后决定下一次扰动的方向。

这种方法的追踪速度较慢,只适合于光强变化较小的环境;(3)导纳微分法(又称增量电导法),认为太阳电池阵列的的最大功率点处,输出功率对输出电压的一阶倒数等于零。

因此在环境光强发生改变时,根据dI/dV的计算结果是否等于-I/V,决定是否继续调整输出电压,既可实现最大功率点的跟踪。

该方法相对于恒电压法和爬山法有高速稳定的跟踪特性。

上述三种方法各有特点,但是都不同时具有低成本、高稳定性、快速追踪的特性。

第一种方法只是粗略估计了最大功率点的位置,在光强变化到很大或较小时都会产生很大的误差。

后两种方法本质上都是通过判断当前工作点是否处于最大工作点来决定是否继续调整及调整的方向,因此最终的结果是逆变器始终工作在最大功率点的左右,来回振荡,而不是真正的工作在最大功率点处,反应在太阳电池阵列的输出上就是,太阳电池阵列的输出电压或电流总是以一个直流电平为中心上下跳跃,波形很不稳定,而且在光强变化速度较快时,不能及时反应。

三、太阳能电池功率追踪访法及算法扰动观察法是目前太阳能电池最大功率追踪技术中最为成熟以及被采用最多的方法,其系统方块图如图12所示。

由图中可以很明显的看出此法的硬件需求较少,模拟/数字转换器节省得相当多,因此在制造的成本上将大为降低。

扰动观察法之缺点在于最大功率追踪过程中,当大气条件迅速改变时,由于响应速度未能因应调整,会使追踪的速度变缓,造成功率的损失,不过此一缺点可以用软件技术来加以改善,赋予系统自我调整响应速度之功能,这也是本文的研究重点,亦即以软件算法来达到太阳能电池最大功率的追踪,并分析系统操作于较高频率下,其追踪的性能。

风力发电机组控制系统设计-—最大功率点跟踪控制

风力发电机组控制系统设计-—最大功率点跟踪控制

课程设计说明书风力发电机组控制系统设计-最大功率点跟踪控制专业新能源科学与工程学生姓名喻绸绢班级能源121学号1210604122指导教师薛迎成完成日期2015年12月14日目录1。

控制功能设计要求 01。

1任务 02.设计 (2)2.1 介绍对象(风力发电系统的最大功率点跟踪控制技术研究)22.2控制系统方案 (2)2。

2.1风力机最大功率点跟踪原理 (2)2。

2.2风力机发电系统 (5)2.2.3风速变化时的系统跟踪过程 (10)3。

硬件设计 (12)4.软件设计 (15)5。

仿真或调试 (16)参考文献 (18)1。

控制功能设计要求1。

1任务能源与环境是当今人类生存和发展所要解决的紧迫问题而传统能源已被过度消耗,因此,可再生能源的开发利用越来越受到重视和关注,其中风能具有分布广、储量大、利用方便、无污染等优点是最具大规模开发利用前景的新能源之一.目前,变速恒频风力发电系统已经广泛用于实际风机中,在低于额定风速的情况下根据风速变化的情况调节风机转速,使其运行于最优功率点,从而捕获最大风能;在高于额定风速时,通过对桨距角的调节,使风机以额定功率输出。

常用最大功率捕获方法主要有功率反馈法、模糊控制法、混合控制法等。

为了充分利用风能,提高风电机组的发电总量,本文分析风机特性及最大功率点跟踪(maximum pow er point tracking MPPT)工作原理.众多的MPPT实现方法各有千秋,对于不同的应用场所各有所长,对于多种方案,需要进行大量细致的实验工作和数据分析.风能是一种具有随机性、不稳定性特征的能源,风能的获取不仅与风力发电机的机械特性有关,还与其采用的控制方法有关。

在某一风机转速情况下,风速越大时风力机的输出功率越大,而对某一风速而言,总有一最大功率点存在.只有当风力发电机工作在最佳叶尖速比时,才能输出最大功率.好的控制方法可使风轮的转速迅速跟踪风速变化,使风力发电机始终保持在最佳叶尖速比上运行,从而最大限度地获得风能.要保证最大限度地将捕获到的风能转化为电能,目前一般采用最大功率点追踪控制(MPPT)控制策略.最大功率点跟踪(MPPT)是在可变风速条件下提高风力机能量转换效率的有效方法. 变速风电系统目前一般采用最大功率点追踪(Maximum Power Point Tracking,MPPT)的控制策略.2。

最大功率点跟踪(MPPT)

最大功率点跟踪(MPPT)

电子知识最大功率点(2)MPPT(14)MPPT控制器的全称“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。

所谓最大功率点跟踪,即是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最高的效率对蓄电池充电。

下面我们用一种机械模拟对比的方式来向大家解释MPPT太阳能控制器的基本原理。

要想给蓄电池充电,太阳板的输出电压必须高于电池的当前电压,如果太阳能板的电压低于电池的电压,那么输出电流就会接近0。

所以,为了安全起见,太阳能板在制造出厂时,太阳能板的峰值电压(Vpp)大约在17V左右,这是以环境温度为25°C时的标准设定的。

这样设定的原因,(有意思的是,不同于我们普通人的主观想象,下面的结论可能会让我们吃惊)在于当天气非常热的时候,太阳能板的峰值电压Vpp会降到15V左右,但是在寒冷的天气里,太阳能的峰值电压Vpp可以达到18V!现在,我们再回头来对比MPPT太阳能控制器和传统太阳能控制器的区别。

传统的太阳能充放电控制器就有点象手动档的变速箱,当发动机的转速增高的时候,如果变速箱的档位不相应提高的话,势必会影响车速。

但是对于传统控制器来说,充电参数都是在出厂之前就设定好的,这就像车的档位被固定设置在了1档。

那么不管你怎样用力的踩油门,车的速度也是有限的。

MPPT控制器就不同了,它是自动挡的。

它会根据发动机的转速自动调节档位,始终让汽车在最合理的效率水平运行。

就是说,MPPT控制器会实时跟踪太阳能板中的最大的功率点,来发挥出太阳能板的最大功效。

电压越高,通过最大功率跟踪,就可以输出更多的电量,从而提高充电效率。

理论上讲,使用MPPT控制器的太阳能发电系统会比传统的效率提高50%,但是跟据我们的实际测试,由于周围环境影响与各种能量损失,最终的效率也可以提高20%-30%。

从这个意义上讲,MPPT太阳能充放电控制器,势必会最终取代传统太阳能控制器为什么要使用MPPT ?太阳能电池组件的性能可以用U-I曲线来表示。

mpp设备操作规程

mpp设备操作规程

mpp设备操作规程MPP设备操作规程第一章: 概述1.1 目的与范围MPP设备操作规程的目的是确保MPP设备的正常运行,保证人员的安全和设备的稳定工作。

本规程适用于所有使用和操作MPP设备的人员。

1.2 定义MPP设备: 又称为最大功率点跟踪装置,是一种用于太阳能光伏系统中,通过追踪太阳能光伏电池阵列输出最大功率点的装置。

第二章: MPP设备操作规程2.1 设备操作前的准备2.1.1 确保操作人员熟悉MPP设备的使用方法和技术参数,了解设备的操作原理和工作过程。

2.1.2 定期对MPP设备进行巡检和维护,检查设备的运行状态和安全性能;及时清理设备周围的杂物和灰尘,确保设备的散热良好。

2.1.3 检查设备的电源供应,确保设备的供电稳定。

2.1.4 穿戴适当的个人防护装备,如安全帽、防护眼镜、防护手套等。

2.2 设备操作2.2.1 操作人员应严格按照设备操作手册的要求进行操作,不得随意更改设备的参数和设置。

2.2.2 操作人员应根据实际需要,合理调整设备的工作模式和运行参数,使其能够更好地满足系统的需求。

2.2.3 在操作过程中,严禁用湿手触摸设备,禁止随意触碰设备的内部元件和线路。

2.2.4 在操作过程中,如果发现设备异常情况,如设备发生故障或报警,应立即停止操作,并上报相关部门处理。

2.2.5 在操作过程中,禁止向设备中存放易燃、易爆物品,以免引发安全事故。

2.3 设备维护与保养2.3.1 定期对设备进行检查和维护,包括清洁设备、检查设备的连接线路和连接器、检查设备的散热系统等。

2.3.2 定期对设备进行标定和校准,确保设备的测量精度和输出精度符合要求。

2.3.3 在设备维护和保养过程中,应按照设备操作手册的要求进行操作,遵守相关的安全规定和操作规程。

第三章: 安全注意事项3.1 在操作过程中,严禁使用湿手触摸设备,以免触电或短路引发事故。

3.2 在操作过程中,严禁随意更改设备的参数和设置,以免引发设备的故障和失效。

最大功率跟踪的控制原理

最大功率跟踪的控制原理

最大功率跟踪(MPPT)是并网发电中的一项重要的关键技术,它是指控制改变太阳电池阵列的输出电压或电流的方法使阵列始终工作在最大功率点上,根据太阳电池的特性,目前实现的跟踪方法主要有以下三种:(1)恒电压法,因为太阳电池在不同光照条件下的最大功率点的电压相差不大,近似为恒定。

这种方法的误差很大,但是容易实现,成本较低;(2)爬山法,通过周期性的不断的给太阳电池阵列的输出电压施加扰动,并观察其功率输出的改变,然后决定下一次扰动的方向。

这种方法的追踪速度较慢,只适合于光强变化较小的环境;(3)导纳微分法(又称增量电导法),认为太阳电池阵列的的最大功率点处,输出功率对输出电压的一阶倒数等于零。

因此在环境光强发生改变时,根据dI/dV 的计算结果是否等于-I/V ,决定是否继续调整输出电压,既可实现最大功率点的跟踪。

该方法相对于恒电压法和爬山法有高速稳定的跟踪特性。

上述三种方法各有特点,但是都不同时具有低成本、高稳定性、快速追踪的特性。

第一种方法只是粗略估计了最大功率点的位置,在光强变化到很大或较小时都会产生很大的误差。

后两种方法本质上都是通过判断当前工作点是否处于最大工作点来决定是否继续调整及调整的方向,因此最终的结果是逆变器始终工作在最大功率点的左右,来回振荡,而不是真正的工作在最大功率点处,反应在太阳电池阵列的输出上就是,太阳电池阵列的输出电压或电流总是以一个直流电平为中心上下跳跃,波形很不稳定,而且在光强变化速度较快时,不能及时反应。

三、太阳能电池功率追踪访法及算法扰动观察法是目前太阳能电池最大功率追踪技术中最为成熟以及被采用最多的方法,其系统方块图如图12所示。

由图中可以很明显的看出此法的硬件需求较少,模拟/数字转换器节省得相当多,因此在制造的成本上将大为降低。

扰动观察法之缺点在于最大功率追踪过程中,当大气条件迅速改变时,由于响应速度未能因应调整,会使追踪的速度变缓,造成功率的损失,不过此一缺点可以用软件技术来加以改善,赋予系统自我调整响应速度之功能,这也是本文的研究重点,亦即以软件算法来达到太阳能电池最大功率的追踪,并分析系统操作于较高频率下,其追踪的性能。

动态最大功率点的跟踪

动态最大功率点的跟踪

动态最大功率点的跟踪随着可再生能源的快速发展,光伏电池系统作为一种重要的可再生能源转换技术,得到了广泛应用。

然而,由于光照强度的变化以及电池本身的非线性特性,光伏电池系统的输出功率存在着动态变化的特点。

因此,如何实现光伏电池系统的动态最大功率点跟踪成为了一个热门的研究课题。

动态最大功率点跟踪(Dynamic Maximum Power Point Tracking,简称MPPT)是指在光伏电池系统中,根据光照强度和温度等环境条件的变化,实时调整电池工作点,以保证系统输出功率达到最大。

这一过程需要通过控制电池的电压和电流来实现。

目前,常见的MPPT控制方法主要包括开环控制和闭环控制两种。

开环控制方法根据光照强度和温度等环境条件变化的预测模型,通过数学计算来确定电池的工作点。

虽然这种方法简单易实现,但由于预测模型的误差,导致了跟踪效果不佳。

闭环控制方法则通过实时测量电池的电压和电流,并根据测量值进行调整,以实现最大功率点的跟踪。

闭环控制方法具有更高的精度和稳定性,但由于传感器的成本和能耗较高,限制了其在实际系统中的应用。

近年来,随着人工智能技术的发展,基于机器学习的MPPT 控制方法逐渐受到关注。

这种方法通过训练神经网络或其他机器学习算法,从大量的数据中学习出最佳的控制策略。

相较于传统的控制方法,基于机器学习的MPPT控制方法具有更高的自适应性和泛化能力,在复杂环境中能够实现更好的跟踪效果。

然而,动态最大功率点的跟踪仍然面临着一些挑战。

首先,光伏电池系统的非线性特性导致了系统的复杂性和不确定性,使得寻找最佳控制策略变得困难。

其次,MPPT控制方法需要实时测量和处理大量的数据,对硬件和算法的要求较高。

此外,光伏电池系统的稳定性和可靠性也是需要考虑的问题。

综上所述,动态最大功率点的跟踪是光伏电池系统中的一个重要问题。

开发高效、稳定、可靠的MPPT控制方法,是实现光伏电池系统最大利用率的关键。

随着科技的不断进步和创新,相信我们能够克服这些挑战,为可再生能源的应用和发展做出更大的贡献。

最大功率点跟踪原理

最大功率点跟踪原理

最大功率点跟踪原理最大功率点跟踪(MaximumPowerPointTracking,简称MPPT)是一种可以提高太阳能发电效率的技术。

它可以通过检测太阳能电池特性动态调整系统参数以获得最大功率输出,从而提高发电效率,节能降耗和节省成本。

太阳能电池作为一种可再生能源,受到环境变化影响较大,因此其输出功率会随着环境变化而变化。

太阳能电池具有一定的特性,即电压和电流之间存在一个特定的最大功率点,在此最大功率点,太阳能电池可获得最大的转换效率。

在这种情况下,最大功率点跟踪系统的目的就是为了检测当前环境的变化,自动调整系统参数,使太阳能电池能够达到最大功率。

最大功率点跟踪的基本原理如下:首先,它通过一种复杂的控制算法,监测控制电路对太阳能电池的当前电压和电流,并识别出当前系统的最大功率点。

然后,系统会将功率调节系统的输出调节到最大功率点来达到最大效率。

最大功率点跟踪系统主要由逆变器、控制电路和传感器等部件组成。

其中,逆变器是核心组件,其作用是把直流电源转换成交流电源,而控制电路则负责把外部的电压和电流信号变换成内部的控制信号,以此控制逆变器的工作状态。

传感器则可以实时检测太阳能电池的输出电压和电流,再根据特定算法反馈给控制电路,以使系统输出更贴近最大功率点。

最大功率点跟踪技术的好处不仅仅是它可以提高系统的发电效率,还能节省成本。

通过该技术的应用,大大减少了太阳能发电过程中的电池损耗,有效的提升了系统的性能,节省了电力成本。

此外,MPPT技术只需要少量的功耗,却可以提高发电效率,减少太阳能发电损耗,从而节约用电量,从而节省用电成本。

最后,MPPT技术还可以减少太阳能发电系统的故障率,从而使系统利用率更高,节约投资成本。

总之,最大功率点跟踪技术是一项先进的可再生能源技术,它的应用可以有效的提高太阳能发电效率,减少电池损耗,节约用电成本,节省投资成本,减少故障率,从而推动可再生能源发电的发展。

本文分析了最大功率点跟踪原理,从而有效的提高太阳能发电效率,节省成本,从而促进可再生能源发电的发展。

太阳能光伏发电系统中的最大功率点跟踪技术应用

太阳能光伏发电系统中的最大功率点跟踪技术应用

太阳能光伏发电系统中的最大功率点跟踪技术应用太阳能光伏发电是一种绿色、可再生的能源,得到了广泛的应用和发展。

在太阳能光伏发电系统中,最大功率点跟踪(Maximum Power Point Tracking, MPPT)技术的应用对于提高系统的能量转换效率至关重要。

本文将介绍太阳能光伏发电系统中最大功率点跟踪技术的概念、原理及其在实际应用中的作用和意义。

最大功率点(Maximum Power Point,MPP)是指太阳能光伏电池输出功率达到最大值时的工作点。

由于太阳能光伏电池的工作特性曲线是非线性的,光照条件和环境温度的变化会导致太阳能电池输出功率不断变化,因此需要一种能追踪到最大功率点的技术来优化能量转换效率。

最大功率点跟踪技术的应用旨在通过控制太阳能光伏发电系统的输入电压和电流,使得系统输出功率保持在最大值。

最大功率点跟踪技术的核心是MPPT控制器,它通过不断调节光伏阵列的工作电压和电流,使得系统能够在不同的光照条件下工作在最大功率点。

MPPT控制器通常采用电流或电压模式控制策略,通过对光伏电压和电流进行监测和调节来实现最大功率点跟踪。

在太阳能光伏发电系统中,最大功率点跟踪技术的应用有以下几个方面的作用:首先,最大功率点跟踪技术能够提高系统的能量转换效率。

在没有最大功率点跟踪技术的情况下,太阳能光伏电池工作在固定电压和电流条件下,当光照条件发生变化时,电池的输出功率无法实现最大值。

而通过最大功率点跟踪技术,MPPT控制器可以根据当前的光照条件实时调整电压和电流,使得系统能够在最大功率点工作,从而提高能量转换效率。

其次,最大功率点跟踪技术能够提高太阳能光伏发电系统的稳定性和可靠性。

光照和温度的变化会影响太阳能光伏电池的输出性能,没有最大功率点跟踪技术的情况下,系统的输出功率会受到较大的波动,导致系统性能的不稳定。

而通过最大功率点跟踪技术,可以有效地抵消这些外界因素的影响,使得系统的输出功率在最大功率点附近波动较小,提高系统的稳定性和可靠性。

光伏发电控制技术及最大功率点跟踪技术

光伏发电控制技术及最大功率点跟踪技术

光伏发电控制技术及最大功率点跟踪技术一、光伏发电控制技术概述光伏发电是指利用太阳能将光能转化为电能的过程。

在光伏发电系统中,控制技术是非常重要的一环。

通过对系统进行控制,可以实现对光伏组件、逆变器和电池等设备的运行状态进行监测和调节,从而保证系统的稳定运行和高效发电。

二、光伏发电控制技术分类1. 充放电控制技术:主要包括对储能设备的充放电控制,以及对逆变器输出功率的调节。

2. 逆变器控制技术:逆变器是将直流转换为交流的关键设备。

通过逆变器控制技术,可以实现对逆变器输出波形、频率和幅值等参数进行精确调节。

3. MPPT跟踪技术:MPPT(Maximum Power Point Tracking)跟踪技术是指在不同日照条件下寻找并锁定太阳能板最大功率点的过程。

通过MPPT跟踪技术,可以提高光伏发电系统的效率。

三、最大功率点跟踪技术原理1. 光伏组件特性曲线在光伏组件的I-V特性曲线中,最大功率点(MPP)是指输出功率最大的状态。

当太阳辐射强度和温度变化时,MPP会发生变化。

2. MPPT跟踪算法常见的MPPT跟踪算法有Perturb and Observe(P&O)算法、Incremental Conductance(INC)算法和Hill Climbing(HC)算法等。

其中,P&O算法是最为常用的一种。

P&O算法通过不断改变电压或电流来寻找MPP。

具体实现过程为:对于当前状态下的电压和电流,如果输出功率比上一时刻增加,则继续增加电压或电流;如果输出功率比上一时刻减少,则反向改变电压或电流方向。

3. MPPT控制器MPPT控制器是实现MPPT跟踪技术的关键设备。

它通过采集光伏组件的I-V特性曲线数据,并根据MPPT跟踪算法计算出当前MPP所对应的电压或电流值,并将其传递给逆变器控制器进行调节。

四、光伏发电控制系统设计1. 控制系统框图光伏发电控制系统由光伏组件、MPPT控制器、逆变器控制器和电池组成。

太阳能光伏发电最大功率点跟踪技术(教学课件PPT)

太阳能光伏发电最大功率点跟踪技术(教学课件PPT)

主要内容
MPPT技术的发展
了解
MPPT技术的基本原理和性能检测方法 掌握
各种MPPT控制方法的分类 了解
基于采样数据的直接MPPT控制法 掌握
MPPT在光伏并网控制系统中的应用 掌握
一、MPPT技术的发展
§1. MPPT技术的发展轨迹
➢ 最早出现的光伏功率输出控制方法是恒压(CVT)控制,即
当光照强度或温度发生变化时,始终控制光伏电池输出电压
一、MPPT技术的发展
(3)实验验证困难 MPPT很难进行实验验证,主要原因有二:一是难以保证
实验条件的均一性;二是很难确定实际的最大功率点。目前的 实验方法主要有以下几种:
① 短时实测。直接用阳光照射下的光伏电池作为电源,在 较短的时间段内进行实验。优点:能体现光伏电池的真实特性 ;缺点:难以保证实验条件的均一性,无从知道实际的最大功 率点,不便于设定各种实验条件以适应不同的测试需求,灵活 性差。
二、MPPT技术的基本原理和性能检测方法
I(mA)
曲线1 曲线2
负载1
A1
A2 B1
负载2 B2
O
U(mV)
➢ 最大功率点A1→最大功率点B1 (条件:将系统负载特性由负载1改为负载2)
➢ 最大功率点B1→最大功率点A1
(条件:将系统负载特性由负载2改回至负载1)
二、MPPT技术的基本原理和性能检测方法
一、MPPT技术的发展
(3)寄生电容法 寄生电容法是在电导增量法的基础上,根据光伏电池单元
存在的结电容所提出的算法。该方法在电导增量法的基础上, 引入结电容变量,根据开关纹波干扰阵列,测量光伏电池输出 功率和输出电压的平均谐波波动,计算得出等值寄生导纳,再 进行自寻优,从而实现最大功率点跟踪。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大功率点跟踪(MPPT)maximum power point tracking
图1 输出功率曲线与负载 在光伏发电系统中,当光照强
在一定的光照强度和环境温度下, 电阻不同时,光伏电池可以有不 同的输出电压。但是只有在某一输 出电压值时,光伏阵列的输出功率才能达
到最大值,这时光伏阵列的工作点就达到了
在光伏控制技术上,MPPT控制方法有很多种, 目前市场上常用的是使用CVT(恒定电压跟踪) 控制技术的控制器,因为CVT法较为简单,制 造相对也容易。
缺点:但是此种控制技术带来了较为严重的功 率损失,相对于光伏电池价格的高昂以及电力 电子技术的日益发展,显得很不经济实用。
5.1.1.恒电压控制的原理与实现
系统将会产生振荡。
对于那些一年四季或者每天 晨午温差比较大的地区,温 度对整个光伏阵列的输出将 会产生比较大的影响,如果 仍然采用CVT控制策略就只 能通过降低系统的效率来保 证其稳定性。
无交点
5.1.3.改进的CVT法
为了克服使用场合季节、早晚时间以及天气情况和环 境温度变化对系统的影响,可以通过以下几种方法消 弱恒电压控制的不足;
度、环境温度发生变化时, 通过改变
光伏阵列所带的等效负载,
调节光伏阵列的工作点,使 之始终工作在最大功率点附 近,这个过程称为最大功率
输出功率-电压 曲线的最高点,称之为最大 点跟踪(maximum power
功率点(MMP).
point tracking, MPPT )
MPPT算法简介
常用的MPPT算法有恒压法、扰动观察法、电导增量法等。它们
图4-A中五条曲线的MPP趋势与图3-A中的MPP趋势相反;这是由于图 4-A的实测条件下,随着光照增强同时温度也在增加,使得PV组件的 开路电压UOC随温度升高而降低所致。
恒电压控制的原理详述
当忽略温度效应时,硅 型光伏阵列的输出特性
光伏阵列在不同光照强度 下的最大功率输出点 a‘,b’,c‘,d’和e‘总 是近似在某一个恒定的电 压值附近。
CVT方法的应用前景
采用CVT代替MPPT控制,由于其良好的 可靠性和稳定性,目前在光伏系统中仍被较 多使用。随着光伏发电系统中数字信号处理 技术的应用,CVT方法逐渐被新方法取代。
5.2.最大功率点跟踪控制
No Image
5.4 现代最大功率点跟踪方法
与上页论述差不多,可作 为参考
(a) 温度变化时
(b)日照强度变化时
不同条件下光伏电池的功率—电压特性
从图中可以看出:日照强度强度对最大功率点电压影响不大, 但是温度变化会使最大功率点对应电压差别比较大。
(1)温度变化会使最大功 率点对应电压差别比较大。
(2)甚至有可能随着温度 的升高,系统预先设计的工
作电压和伏安曲线没有交点,
的工作原理及优缺点如下表所示。
方式 工作 原理
优点 缺点
改进的恒压法
断开PV阵列的负载并 测量开路电压,然后把 工作电压设为开路电 压的76%
实现简单,复杂度低
跟踪精度低,不能适 应环境的改变;功率 浪费严重
扰动观察法 电导增量法
扰动PV阵列工 扰动Pห้องสมุดไป่ตู้阵列工作点 作点的电压,并 的电压,并监控工作 监控功率的增量 点电导和电导变化率 来定位MPP 之间的关系来定位
忽略温度效应时,光伏电 池在不同光照强度下的最 大功率输出点电压Um基本 恒定,这样只要在光伏阵列 和负载之间通过一定的阻 抗变换,控制系统的工作 点电压稳定在Um附近,就 基本能保证电池工作在最 大功率点,从而实现最大 功率点跟踪。 恒电压控制是一种近似的最大功率跟踪(MPPT)控制。
5.1.2 恒压控制的不足
1. 手工调节:手动调节电位器,在不同季节给出对应的Umax。 2.根据温度查表调节:事先将特定光伏阵列在不同温度下测得
最大功率点电压Umax值储存在控制器中。实际运行时,控制 器根据检测光伏阵列的温度,选择合适的Umax值。 3.参考电池方法:在光伏发电系统中增加一块与光伏阵列相同特 性的较小光伏电池模块,检测其开路电压,按固定系数计算得 到当前最大功率点电压Umax。(把工作电压设为开路电压的76%)
在接入光伏发电系统之后,由 汇编语言的控制,对电路实行 最大功率跟踪控制。设定一定 得占空比,测量目前功率p0, 并加入扰动产生电流电压变化, 利用电压电流传感器测得此时 的u1,i1,并计算出p1=u1*i1。 对p0,p1,进行比较,若p1大 于p0,则说明扰动是让系统向 其最大功率输出方向变动,则 继续这种扰动,反之,则改变 扰动方式,通过MPPT控制, 送出这时的控制信号,再对比 这次扰动前后的功率值,循环 进行下去,直至系统功率值在 某一点左右变化为止。
第五章 光伏阵列最大功率点跟踪
1.自动追光系统可 以使电池板始终正 对太阳
2.最大功率点跟踪 是通过改变负载电 阻大小来影响输出 功率. 自动追光系统与最大功率点跟踪不同:
不同照度下和不同温度下光伏阵列的伏安特性曲线
太阳能电池板伏安特性曲线
光伏阵列输出特性具有非线性特征,并且其输出受 环境(主要包括日照强度,温度)和负载情况影响。
MPP
硬件成本低,实 误判率低,跟踪精度 现其算法容易 高
不能判定何时达 硬度要求高,算法实 到MMP,因此会 现复杂 存在震荡
5.1.恒电压控制(CVT)
constant voltage tracking
5.1.1恒电压控制的原理与实现 5.1.2 恒电压控制的不足 5.1.3 改进的CVT法
恒电压控制简介
本章结束
占空比(Duty Ratio
在一串理想的脉冲序列中(如方波),正脉冲的持续时间与 脉冲总周期的比值。
Qq邮箱: 太阳能应用技术 2818783371@
太阳能电池阵的特性
当光伏阵列输出电压比较小 时,随着电压的变化,输出 电流变化很小,光伏阵列类 似为一个恒流源;当电压超 过一定的临界值继续上升时, 电流急剧下降,此时的光伏 阵列类似为一个恒压源。光 伏阵列的输出功率则随着输 出电压的升高有一个输出功 率最大点。最大功率跟踪器 的作用是在温度和辐射强度 都变化的环境里,通过改变 光伏阵列所带的等效负载, 调节光伏阵列的工作点,使 光伏阵列工作在输出功率最 大点。
相关文档
最新文档