(材料力学)第一章轴向拉伸和压缩
材料力学 轴向拉伸
轴向拉伸和压缩
斜截面----是指任意方位的截面。 ①全应力:
F
F
p =
F cos = 0 cos A
②正应力:
p
F
N
= p cos = cos2
③切应力:
p
= p sin =
0
2
sin 2
(3)轴力只与外力有关,截面形状变化不会改变轴力大小。
例一 作图示杆件的轴力图,并指出| FN |max
I
50kN
150kN
II
100kN
I 50kN I II FN2 100kN II FN2= -100kN FN1 FN1=50kN
I
50kN FN
II
+
100kN
| FN |max=100kN
第三节横截面及斜截面上的应力
切应力τ
1MPa=106Pa
二、拉压杆横截面上的应力
1
F
1 1
轴向拉伸和压缩
F
2
2
2
1 F
假设: ① 平面假设
② 横截面上各 点处仅存在正应 力并沿截面均匀 分布。
2
FN
FN
F
F F = = N A A
FN:横截面上的轴力 拉应力为正, 压应力为负。 A :横截面面积
对于等直杆
1) α=00时, σmax=σ 2)α=450时, τmax=σ/2
轴向拉伸和压缩
第四节 拉(压)杆的变形 ·胡克定律
杆原长为l,直径为d。受一对轴向拉力F的作用,发生 变形。变形后杆长为l1,直径为d1。
材料力学1-第一章
3850mm2
3)计算最大应力 σmax= FN /Amin
=(-800)×1000/3850
=-208MPa
§1-4 轴向拉伸和压缩时的变形
一、纵向变形(沿轴线方向) 基本情况下(等直杆,两端受轴向力):
(1)杆的纵向总变形量
l l' -l (反映绝对变形量)
工程中常用材料制成的拉(压)杆,当应力不超过材料的某一特征值(“比
泊松比,可由试验测定:
泊松比
- -
E
弹性模量E和泊松比μ是材料的两个弹性常数, 可由实验测定。
表1-1 弹性模量和横向变形系数的约值
材料名称 碳钢
弹性模量E ( Gpa )
196~216
横向变形系数μ 0.24~0.28
合金钢
190~220
0.24~0.33
位置,为强度计算提供依据。 FN
+ x
试作此杆的轴力图。
40KN
55KN 25KN
A 600
B
C
300
500
DE 400
20KN
等直杆的受力示意图
解:
1 F1=40KN 2 F2=55KN F3=25KN
FR
A
B
C
3
4
D
F4=20KN
E
1
2
3
4
先需求出A点的约束力。 FR=10 kN
FR
A
1 FN1
0
两个塑性指标:
断后伸长率 l1-l0 10% 0 断面收缩率 A0-A110% 0
l0
A0
5%为塑性材料 5%为脆性材料
低碳钢的 2— 03% 060% 为塑性材料
第1章拉伸及压缩 材料力学
微元面积上的平均应力 点的应力
F sm A
A P
n
F dF s lim A 0 A dA
2018/10/24
应力s 的方向就是内力F 的方向
6
《 材 料 力 学 》—— 李章政
2. 应力的分量
• 应力沿截面法线方向的分量,称为法向应力 (normal stress)或正应力,用 表 示 • 应力平行于截面的分量,称为切向应力、切 应力(shear stress)或 剪应力,用 表 示
F4
F4
F5
F5
也可取右半段平衡
F
x
0:
N F3 F4 F5 0
相等?
相等
F1 F2 F3 F4 F5 0 F1 F2 F3 F5 F4
解得 说明
N F3 F5 F4
轴力 = 截面以右外力之和(右指为正) 轴力 = 截面以左外力之和(左指为正)
例1.4 图示结构,计算各杆应力。
已知:杆1直径20mm,杆2边长100 mm。
解:
先求内力(节点A平衡) Fx 0 : N1 N2 cos45 0yB1来自45A2
25 kN
N1 N2
A
45
F
0 : N2 sin 45 25 0 N1 25kN, N 2 35.36kN
13
《 材 料 力 学 》—— 李章政
例1.3 作边长1.2 m的正方形受压柱的轴 力图(容重 =25 kN/m3) 解:(1)先写内力函数
N(x) = - 40 - 251.2 1.2 x = -40 - 36x (2)作图
40 kN
40kN
材料力学——第一章 轴向拉伸和压缩
形象表示轴力随截面的变化情况,发现危险面;
材料力学
例题1-1 已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。 1 B 2 C 3 D A 解:1、计算各段的轴力。
F1 F1 F1
FN kN
1 F2
2
F3 3
F4
AB段 BC段
FN1 FN2
F
F
F
F
d变) 拉伸ε'<0、 压缩ε’>0 ;
'
d
d
材料力学
2、泊松比 实验证明:
称为泊松比;
注意
(1)由于ε、ε‘总是同时发生,永远反号, 且均由
(2)
s 产生,
故有
=-
‘
0 FN 1 F1 10kN
x x
F
0 FN 2 F2 F1
FN 2 F1 F2
F2
FN3
10
CD段
F4
25
10 20 10kN Fx 0
FN 3 F4 25kN
2、绘制轴力图。
10
x
材料力学
画轴力图步骤
1、分析外力的个数及其作用点; 2、利用外力的作用点将杆件分段; 3、截面法求任意两个力的作用点之间的轴力; 4、做轴力图; 5、轴力为正的画在水平轴的上方,表示该段杆件发生 拉伸变形
材料力学
例题1-3 起吊钢索如图所示,截面积分别为 A2 4 cm2, A1 3 cm2,
l1 l 2 50 m, P 12 kN, 0.028 N/cm3,
试绘制轴力图,并求
2019工程力学北京科技大学版材料力学部分(一)
§1-5 材料在拉压时的力学性能
Mechanical properties of materials in tension and compression
材料的力学性能只能通过实验求得. 通常是在常温 isothermal、准静 载荷 quasi-static loading 的条件下测定的.
两类典型材料: 塑性材料 plastic materials ,以低碳钢为代表. 脆性材料 brittle materials ,以铸铁为代表.
2)变形谐调条件 condition of compatibility A
= 常数.
3)物理关系 constitutive relation : Hooke's law
= E = 常数.
联解得
(4)实验证明
N dA A, A
N.
A
(1-1)
圣维难原理 St. Venant's Principle :在远离(一个特性常数)加力处的应 力分布, 只与加力的合力有关, 而与加力方式无关.
工程力学 材料力学部分(一)
10
3、材料压缩时的力学性能
Mechanical properties of materials in compression
试件:
金属:圆柱体 l / d = 1.5 ~ 3.
混凝土及石料:大致相
同. 试件被压成圆饼.
工程力学 材料力学部分(一)
2
§1-2 轴向拉压时的内力 Internal force
1. 内力: 由于外力的作用引起的构件各部分之间的附加内力.
2. 截面法 Method of Sections:
以特殊的例题说明求内力的一般方法.
(1)切 假想切开(一刀两断);
轴向拉伸与压缩的名词解释
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
高职材料力学1—轴向拉伸与压缩
1.1 轴向拉伸与压缩的概念与实例
力学模型如图
F
F
轴向拉伸, 对应的力称为拉力。
F
F
轴向压缩, 对应的力称为压力。
1.2 轴向拉伸或压缩时的内力
1.2.1 内力及轴力 内力指由外力作用所引起的、物体内相邻部分之间 分布内力系的合成(附加内力)。
要求截面上的内力,一般采用截面法,其基本步骤 如下:
的正应力为:
d2
s1
FN1 A1
4 2.0104
0.0202
6.37 107 Pa
63.7
MPa
同理,得 BC 段内任一横截面 2-2 上的正应力为:
s2
FN2 A2
4 (3.0104 )
0.0302
4.24107 Pa
42.4 MPa
是压应力
1.4 轴向拉伸或压缩时的变形
直杆在轴向拉力作用下,将引起轴向尺寸的增大和 横向尺寸的缩小。反之,在轴向压力作用下,将引 起轴向的缩短和横向的增大。
1.3 横截面上的应力 结论
F
F
(1)各纤维的伸长相同, 所以它们所受的力也相同。
(2)平面假设:变形前为平面的横截面,变形后仍保 持为平面且仍垂直于轴线。
1.3 横截面上的应力
推导公式 由结论可知, 在横截面上作用着均匀分布的正应力。
F
}s
FN
s FN
(2.1)
A
式中, FN为轴力, A 为杆的横截面面积。s的符号与轴
横向增大,所以'和的符号是相反的。'和的关
系可以写成
说明P18:表1-1.
例 图所示杆系由两根钢杆1和2组成。已知杆端铰接,两杆与
铅垂线均成=30º的角度,长度均为l=2 m,直径均为d=25
工程力学(材料力学)1_3轴向拉伸与压缩
BC
D
PB PC N3 C
PC N4
5P +
–
PD D
PD D
PD
P
x
P8-9 例题
A 3F
1
2
B
C
F
2F
1
2
1
2
3F
F
1
2
3.应力
应力的表示:
(1)平均应力
(A上平均内力集度)
p平均
ΔP ΔA
P
M
A
(2)实际应力 (M点内力集度)
lim p
ΔP dP
ΔA0 ΔA dA
应力分解
垂直于截面的应力称为“正应力” (Normal Stress);
平杆BC为2杆)用截面法取节点B为研究对象
Fx 0 Fy 0
N1 cos 45 N2 0 N1sin 45 P 0
N1 28.3kN (拉力) N2 20kN (压力)
45° B C
p
N1
y
N2 45° B x
P
(2)计算各杆件的应力
1
N1 A1
28.3103 202 106
轴力的正负规定: N 与外法线同向,为正轴力(拉力); N
N与外法线反向,为负轴力(压力)。 N
轴力图—— N (x) 的图象表示。
N N>0 N
N<0
意 (1)轴力与截面位置的变化关系,较直观;
义
(2)最大轴力的数值及其所在面的位置,即危险截面位
置,为强度计算提供依据。 N
P
+
x
例1 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 1P 的力,方向如图,试画出杆的轴力图。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=,N2=注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==σ2=2228504P kN S d π= =∴σmax =1-3:试计算图a 所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。
解:下端螺孔截面:σ1=19020.065*0.045P S ==上端单螺孔截面:σ2=2PS =上端双螺孔截面:σ3= 3PS=∴σmax=1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=σBC=22FS= MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS1=h*t=40*=180mm2S2=(H-d)*t=(65-30)*=∴σmax=2FS=1-6:一长为30cm的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1)AC. CD DB 各段的应力和变形.(2)AB杆的总变形.解: (1)σAC=-20MPa,σCD=0,σDB=-20MPa;△l AC=NLEA=ACLEAσ=△l CD=CDL EAσ=0△L DB=DBL EA σ=(2) ∴AB l∆=1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127AC AC CB CB P MPa S P MPa S σσ====AC AC AC L NL EA EA σε===*104,CB CB CB L NL EA EA σε===*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:Nll EAl l ε∆=∆= ∴NEA ε=62.54*10N EA N ε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
第1章(轴向拉伸与压缩)重要知识点总结(材料力学)
【陆工总结材料力学考试重点】之(第1章)轴向拉伸与压缩1、轴向拉伸与压缩的特点?答:受力特点:杆件两端受沿轴线方向的拉力或压力作用。
变形特点:杆件各横截面沿轴线方向均匀伸长或缩短。
2、轴力的求取方法——截面法?答:如图,用假想截面将杆件截开,根据左边部分杆件的平衡,可得:F N=F p。
3、轴力的正负号规定?答:使杆件产生拉伸变形为正“+”,使杆件产生压缩变形为负“-”。
4、轴力图及其特点?答:表示轴力沿杆轴线方向变化关系的图形称为轴力图。
结论(轴力图的特征):在受集中力作用的截面处,其轴力图发生突变,突变值等于该截面上受到的集中力。
5、轴向拉压杆件横截面上的正应力公式?答:σ=F NA正应力的正负号规定:拉应力为正,压应力为负。
6、轴向拉压杆件的强度条件?答:对于杆件来说,当材料一定时,其许用正应力[σ](即杆件能够正常工作时横截面上任何一点所允许的最大正应力)为一常数,故为保证轴向拉压杆件的强度安全,就必须使杆件横截面上的最大正应力σmax满足:σmax≤[σ]7、应力集中现象及应用?答:如图A处,因有切口、开槽、螺纹等,使横截面面积A剧烈变小,而轴力F N=F不变,而σ=F NA,故发生应力局部增大现象,称为应力集中。
8、拉压变形与胡克定律?答:如图,设杆件原长为l,横截面尺寸为b×h,在轴向载荷F的作用下产生拉伸变形。
绝对变形量:∆l=±F N lEA(拉伸取“+”,压缩取“-”)相对变形量(正应变,也称线应变):=∆ll又:σ=F NA ,则:=∆ll=F N lEAl=F NEA=E即:σ=(胡克定律)由图可知,当杆件伸长(或缩短时),横截面尺寸相应就会变细(或变粗)。
=∆ll称为轴向线应变,而==称为横向正应变,且=。
式中:为泊松比,其值一般小于0.5。
9、材料拉伸、压缩时的力学性能?答:(1)低碳钢拉伸时的力学性能低碳钢拉伸时的σ关系曲线低碳钢拉伸过程可分为四个阶段:1)弹性阶段(OB段)B点对应的应力σ称为弹性极限。
材料力学习题
第一章轴向拉伸与压缩一、填空题1-1杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。
1-2轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面________。
1-3当杆件受到轴向拉力时,其横截面轴力的方向总是________截面指向的。
1-4杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。
1-5在轴向拉伸或压缩杆件的横截面上的正应力相等过是由平面假设认为杆件各纵向纤维的变形大小都________而推断的。
1-6一铸铁直杆受轴向压缩时,其斜截面上的应力是________分布的。
1-7在轴向拉,压斜截面上,有正应力也有剪应力,在正应力为最大的截面上剪应力为________。
1-8杆件轴向拉伸或压缩时,其斜截面上剪应力随截面方位不同而不同,而剪应力的最大值发生在与轴线间的夹角为________的斜截面上。
1-9杆件轴向拉伸或压缩时,在平行于杆件轴线的纵向截面上,其应力值为________。
1-10胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________极限。
1-11杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越________。
1-12在国际单位制中,弹性模量E的单位为________。
1-13在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越小。
1-14金属材料圆截面试样上中间等直部分试验段的长度L称为________,按它与直径d的关系l=5d者称短度样,而l=________d者称长试样。
1-15低碳钢试样据拉伸时,在初始阶段应力和应变成________关系,变形是弹性的,而这种弹性变形在卸载后能完全消失的特征一直要维持到应力为________极限的时候。
1-16在低碳钢的应力—应变图上,开始的一段直线与横坐标夹角为α,由此可知其正切tgα在数值上相当于低碳钢________的值。
材料力学(1)
1-1 工程实际中的轴向拉伸和 压缩问题
F F
工程实际中,有很多发生轴向 拉伸和压缩变形的构件。 如联接钢板的螺栓(图 a ), 在钢板反力作用下,沿其轴 向发生伸长(图c),称为轴 向拉伸; 托架的撑杆CD(图a),在 外力的作用下,沿其轴向发 生缩短(图b),称为轴向压 缩。 产生轴向拉伸(或压缩)变 形的杆件, 简称为拉(压) 杆。
I
50kN 150kN
II
100kN
I 50kN I II FN2 100kN II FN2= −100kN FN1 FN1=50kN
I 50kN FN
II
+ −
100kN
| FN |max=100kN
1-3 轴向拉伸和压缩时的应力
应力的概念
确定了杆的内力后,还不能解决杆件的强度问题。 经验告诉我们,材料相同,直径不等的两根直杆, 在相 同的拉力F作用下, 内力相等。当力F增大时,直径小的杆 必先断,这是由于内力仅代表内力系的总和,而不能表明截 面上各点受力的强弱程度, 直径小的杆因截面积小,截面上 各点受力大,因此先断。 所以, 需引入表示截面上某点受力强弱程度的量——应 表示截面上某点受力强弱程度的量—— 表示截面上某点受力强弱程度的量——应 力,作为判断杆件强度是否足够的量。 (内力集度) 内力集度)
2 截面法
轴力
截面法: 用假想的截面将杆件截为两部分,任取杆 截面法 :
件的一部分为研究对象,利用静力平衡方程求内力 的方法称为截面法。
m F1 F2 m (a) F1 F2
m m m
F3
FN
∑Fx=0 FN-F1+F2=0
F3
FN = F1 − F2
工程力学材料力学第四版习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
上海交大材料力学轴向拉伸与压缩精品文档
即纵截面上的应力为零,因此在纵截面不会破坏。
4、当 13 4 5,c 5o s2 ,s2 in 1 ,
2
2,
2 135 45
4
5
材料力学
拉伸与压缩/斜截面上的应力
5、剪应力互等定理
135
2
135
拉伸与压缩/斜截面上的应力
O 1B
C
3
4F
3F
1
3
m
ax 3
2F A
D 2F
4、分段求 max
1
FN1 2A
3F, 2A
3
FN3 A
2F A
5、求 max
(在CD段)
max12maxFA (在CD段与杆轴 成45°的斜面上)
材料力学
三、 拉(压)时的强度计算
F
F
2F
F
2F
F
e
轴向拉伸和弯曲变形
材料力学
拉伸与压缩时横截面上的应力
应力—分布内力在截面内一点的密集程度
1
F
F
1
F
FdFAdA
应力的合力=该截面上的内力
确定应力的分布是静不定问题
材料力学
拉伸与压缩/横截面上的内力和应力 研究方法:
实验观察
作出假设
理论分析
实验验证
1、实验观察
F
a a b b
3、横向变形 泊松比
b1
横向的绝对变形
bb1b
横向的相对变形(横向线变形)
b
材料力学
b
b
拉伸与压缩/轴向拉(压)时的变形
实验证明:
材料力学课件_轴向拉伸和压缩
用 截 面 法 求 出 各 段 轴 力
4
N4
P4
③根据轴力图的作法即可画出轴力图
N
单位:KN
x
0
选一个坐标系,用其横坐标 表示横截面的位置,纵坐标 表示相应截面上的轴力。 拉力绘在x轴的上侧, 压力绘在x轴的下侧。
思考题
在画轴力图之前,能否使用理论力学中学过 的力的平移原理将力平移后再作轴力图?
max
应力正负号规定
N max A
规定拉应力为正,压应力为负(同轴力相同) 。
2、公式(2-1)的应用范围:
①外力的合力作用必须与杆件轴线重合
②不适用于集中力作用点附近的区域
③当杆件的横截面沿轴线方向变化缓
慢,而且外力作用线与杆件轴线重 合时,也可近似地应用该公式。
如左图
N x x A x
1 2 3
4
0 R 10KN
② 用截面法求AB段轴力,保留1-1截面左部
X 0
N1 R 0
N1 10NK
同理可求出BC、CD、DE段内的轴力分别为:
N 2 R P1 50KN 拉力 N 4 20KN 拉力
N 3 P3 P4 5KN 压力
x轴
X 0 N F 0 N F
结论
因F力的作用线与杆件的轴线重合,故,由 杆件处于平衡状态可知,内力合力的作用线也必 然与杆件的轴线相重合。
(2)定义:上述内力的合力N就称为轴力 (其作用线因与杆件的轴线重合而得名)。
2.轴力正负号规定:
①规定引起杆件拉伸时的轴力为正,即拉力为正;
F
}F
F/2 F/2
F/2 F/2
} F
F
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
根据Saint-Venant原理:
25
7. 应力集中(Stress Concentration):
由于截面尺寸急剧变化而引起的局部应力增大的现象。
·应力集中因数
K max m
26
不同性质的材料对应力集中的敏感程度不同
1.脆性材料
σmax 达到强度极限,此位置开裂,所 以脆性材料构件对应力集中很敏感。
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
11
[例2] 图示杆长为L,受轴线方向均布力 q 作用,方向如图,试画
出杆的轴力图。 q
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
N – qL
N(x)maxqL
2.塑性材料
应力集中对塑性材料在静载作用下的强度影响不 大,因为σmax 达到屈服极限,应力不再增加,未达 到屈服极限区域可继续承担加大的载荷,应力分布 趋于平均。
在静载荷情况下,不需考虑应力集中的影响;但 在交变应力情况下,必须考虑应力集中对塑性材料 的影响。
况、安全重要性、计算模型等等
16
依强度准则可进行三种强度计算:
①校核强度:
m ax
②设计截面尺寸:
Amin
Nmax
[ ]
③许可载荷:
N ma xA ;
Pf(Ni)
17
[例4] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布 集度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用
OA
BC
D
PA
PB
PC
PD
N1ABCD源自xPAPB
PC
PD
解: 求OA段内力N1:设置截面如图
X 0 N 1 P A P B P C P D 0
N 1 5 P 8 P 4 P P 0 N1 2P 10
同理,求得AB、
N2
BC、CD段内力分
别为:
N2= –3P
N3= 5P
N4= P
15
4. 强度设计准则(Strength Design): 保证构件不发生强度破坏并有一定安全余量的条件准则。
maxmaN A x(((xx)))
其中:[]—构件的许用应力, max--危险点的最大工作应力。
关于许用应力-- []
jx
n
极限应力:jxs,0.2,b材料特性,由试验确定;
安全系数:n>1 综合因素,考虑:材料、受力、工
N 与外法线同向,为正轴力(拉力)
N N>0
N与外法线反向,为负轴力(压力)
N
N N<0
三、 轴力图—— N (x) 的图象表示。
意 ①反映出轴力与横截面位置变化关系,较直观;
义 ②确定出最大轴力的数值 N
及其所在横截面的位置,
P
即确定危险截面位置,为
+
x
强度计算提供依据。 9
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。
131MP a
④强度校核与结论: m a 1 xM 3 1 P 1 aM 70Pa
此杆满足强度要求,是安全的。
20
[例5] 某冷锻机的曲柄滑块机构如图所示。锻压工作时,连杆接 近水平位置,锻压力P=3780kN。连杆横截面为矩形,高与宽之 比=1.4,材料的许用应力[σ]=90MPa (此处的[σ]已考虑到稳 定效应影响),试设计截面尺寸h和b。
2
§1–1 轴向拉压的概念及实例
一、概念 轴向拉压的外力特点: 外力的合力作用线与杆的 轴线重合。
轴向拉压的变形特点: 杆的变形主要是轴向伸缩,伴随横向缩扩。
轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
3
力学模型如图
P
P
轴向拉伸,对应的力称为拉力。
P
P
轴向压缩,对应的力称为压力。
A≥ N
[ ]
=
3.78 10 6 90 10 6
=0.042m2
21
[例6]图为一钢木结构。AB为木杆,其截面积AAB=10×103 mm2 ,许用压应力[σ]AB=7MPa;BC为钢杆,其截面积 ABC=600mm2 ,许用应力[σ]=BC=160MPa。试求B处可吊的最 大许可载荷P。
A≥
q N(x)
x
x
N(x)0qdxqx
12
§1–3 截面上的应力及强度条件
一、拉(压)杆横截面上的应力
1. 变形规律试验及平面假设:
变形前
ab cd
受载后 P
a´
b´
c´
d´
P
平面假设:原为平面的横截面在变形后仍为平面。
纵向纤维变形相同。
13
均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
应力[]=170M Pa。 试校核钢拉杆的强度。
q
q
C
A
钢拉杆
8.5m
B
18
解:① 整体平衡求支反力
HAA
RA
q
q
C
钢拉杆
8.5m
X0 HA0 mB0 RA19.5kN
RB
19
q
HAA
RA
② 局部平衡求 轴力:
m C0 N2.3 6kN
HC
C
③应力:
RC
max
N A
4P
d2
N
4 26.3103 3.140.0162
22
5. 公式的应用条件: 直杆、杆的截面无突变、
截面到载荷作用点有一定 的 距离。
6. Saint-Venant原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。
23
Saint-Venant原理与应力集中示意图
变形示意图: P
a
b
c
P
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。) 应力分布示意图:
N(x) N ( x)
A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。
危险点:应力最大的点。
max maxN A(((xx)))
14
例3:已知:AD段的直径30 mm,DB段的直径20 mm。作杆 的内力图,求杆的最大应力。
(材料力学)第一章轴向拉伸和压缩
第一章 轴向拉伸和压缩
§1–1 轴向拉压的概念及实例 §1–2 内力、截面法、轴力及轴力图 §1–3 截面上的应力及强度条件 §1-4 拉压杆的变形 弹性定律 §1-5 材料在拉伸和压缩时的力学性能 §1-6 拉压杆的弹性应变能 §1-7 拉压超静定问题及其处理方法
4
二、
工 程 实 例
5
6
§1–2 轴力及轴力图
一、轴力 拉压杆外力作用所引起的内力系的合力是沿轴线方向
的一个力,故称为轴力,用N表示。
P
P
7
截面法求N。
P
A
P
截开:
P
A P
简图
代替:
P
N
x
A
平衡: X 0 NP0 PN
2. 轴力——轴向拉压杆的内力,用N 表示。
8
3. 轴力的正负规定: N