五年级下册课本配套奥数教材
五年级奥数教材
第1讲数阵
一、精讲精练
【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
练习1:
1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2.把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
练习2:
1.把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2.把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
3.将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。
【例题3】将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、
且最大。
练习3:
1.将1——6六个数分别填入下图的圆圈内,使每边上的三个数的和相等。
2.将1——9九个数分别填入下图圆圈内,使每边上四个数的和都是17。
3.将1——8八个数分别填入下图的圆圈内,使每条安上三个数的和相等。
【例题4】将1——7分别填入下图的7个圆圈内,使每条线段上三个数的和相等。
练习4:
1.将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。
2.将1——11这十一个数分别填进下图的○里,使每条线上3个○内的数的和相等。
3.将1——8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。
五年级下册奥数培训教材
倍数问题(一)
典型例题1
两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米?
模拟练习
1、两根一样长的绳子,第一根用去6。5米,第二根用去0。9米,剩下部分第二根是第一根的3倍.两根绳子原来各长多少?
2、一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍,原来两筐水果一共有多少个?
3、两个数的和是682,其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。这两个加数各是多少?
典型例题2
甲组的图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍,甲组原来有图书多少本?
模拟练习
1、甲库的存粮是乙库的4倍,如果从乙库取出6吨放入甲库,则甲库的粮食正好是乙库的6倍。原来两库各有多少吨粮食?
2、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?
3、小明原来的画片是小红的3倍,后来两人各买了5张,小明的画片就是小红的2倍。两人原来各有多少张画片?
倍数问题(二)
典型例题1
幼儿园买来苹果的个数是梨的2倍。如果每组领3个梨和4个苹果,梨正好分完,苹果还剩16个。两种水果原来各有多少个?
模拟练习
1、同学们带着水果去看敬老院的老人,带的苹果是橘子的3倍.如果每位老人拿2个橘子和4个苹果,那么,橘子正好分完,苹果还多14个。同学们把苹果分给了几位老人?
2、甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出30吨。若干天后,乙粮库的粮食全部运完,而甲粮库还有80吨。甲、乙两粮库原来各有粮食多少吨? 典型例题2
五年级下册数学奥数课件--.11较复杂的容斥原理 人教版 (共21张PPT)
A:10×10=100﹙cm2﹚ B:8×8=64﹙cm2﹚ C:4×4=16﹙cm2﹚ AB:5×5=25﹙cm2﹚ AC:4×2=8﹙cm2﹚ BC:4×2=8﹙cm2﹚ ABC:2×2=4﹙cm2﹚
100+64+16-25-8-8+4=143﹙cm2﹚
答:它们盖住的面积是143平方厘米。
在一个边长为90厘米的正方形桌面上,放上两张边长分别为 20厘米和45厘米的正方形纸,如图。桌面上没被纸片盖住的面积 是多少?
容斥原理(一)
如果被计数的事物有A、B两类,那么: A类或B类元素个数= A类元素个数+ B类元素个数— 既是A类又是B类的元素个数。
简单记做:
A或B总和= A+B-A又B。
学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有 24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人, 这个文艺组一共多少人?
问题情境
第11讲
较复杂的容斥原理
例1:一次期末考试,某班有15人数学得满分,有12人语文 得满分,并且有4人语、数都是满分,那么这个班至少有一门得 满分的同学有多少人?
数学得满分 111人54人人 41人2人8人 语文得满分
语、数都是满分
方法一:
15-4=11(人) 12-4=8(人) 11+8+4=23 (人)
A或B或C=A+B+C-AB-AC-BC+ABC
五年级奥数教材
五年级奥数教材101学酷
目录
第一讲简单推理
第二讲应用题
第三讲变化规律(一)
第四讲变化规律(二)
第五讲
第六讲
第七讲
第八讲
第九讲
第十讲
第十一讲
第十二讲
第十三讲
第十四讲
第十五讲
第十六讲
错中求解
图形问题
求平均数问题
还原问题
简单列举
和倍问题
植树问题
差倍问题
应用题(二)
和差问题
年龄问题
周期问题
101学酷1
101学酷
第一讲简单推理
例1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重量等于一包巧克力的重量,一袋饼干等于几袋牛肉干的
重量?1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨的重量等于几根香蕉的重量?
2、3包巧克力的重量等于2袋糖的重量,12袋牛肉干的重量等于3包巧克力的重量,1袋糖的重量等于几袋牛肉干的重量?
3、1只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,1只小猪的重量等于几只鸭的重量?
例2:1头象的重量等于4头牛的重量,1头牛的重量等于3匹小马的重量,1匹小马的重量等于3头小猪的重量,1头象的重量等于几头小猪的重量?
1、1只西瓜的重量等于2个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于2个橘子的重量,1只西瓜的重量等于几个橘子的重量?
2101学酷
101学酷
2、1头牛1天吃草的重量和1只兔子9天吃草的重量相等,也和6只羊1天吃草的重量相等。已知1头牛每天吃青草18千克,1只兔子和1只羊1天一共吃青草多少千克?
3、1只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量,问2只小猪的重量等于几条鱼的重量?
五年级下册奥数培训教材
目录第一章数与计算…………………………………………
第一讲估值问题……………………………………
第二章趣题与智巧…………………………………………
第一讲算式谜…………………………………………
第三章实践与应用(一)………………………………
第一讲行程问题(一)………………………………
第二讲行程问题(二)………………………………
第三讲行程问题(三)………………………………
第四讲行程问题(四)………………………………
第四章数论与整除…………………………………………
第一讲数字趣题…………………………………………
第二讲分解质因数(一)………………………………
第三讲分解质因数(二)………………………………
第四讲最大公因数………………………………
第五讲最小公倍数(一)………………………………
第六讲最小公倍数(二)………………………………
第五章实践与应用(二)………………………………
第一讲盈亏问题……………………………………
第二讲假设法解题……………………………………
第三讲作图法解题……………………………………
第四讲火车行程问题………………………………
第五讲杂题…………………………………………
第六章组合与推理……………………………………
第一讲包含与排除………………………………
第二讲置换问题……………………………………
第三讲简单列举……………………………………
第四讲最大最小问题………………………………
第五讲推理问题……………………………………
第一章数与计算
第一讲估值问题
【专题导引】
在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数。很难也没有必要精确到几元几角几分。
五年级奥数教材
五年级奥数教材
五年级奥数教材有很多,以下是一些推荐:
《小学数学举一反三五年级AB版上下册全套》:这本书从课本到奥数思维训练都有涉及,包括同步练习题、专项应用题和竞赛奥数题等。
《2023版五年级土豆奥数同步课程精编全一册》:本真图书,小学奥数教材。
《小学五年级奥数教材》:这本书包括简单推理、应用题、变化规律、图形问题、求平均数问题、还原问题、简单列举、和倍问题、植树问题、差倍问题和应用题等主题。
此外,《101学酷》也是一本适合五年级学生使用的奥数教材。
这些教材都是比较系统的学习材料,有助于学生逐步提高数学思维能力。建议在选择教材时,结合孩子的实际学习情况和学习需求进行挑选。
五年级教材奥数经典教材
五年级教材奥数经典教材
简介
这篇文档旨在介绍五年级学生使用的奥数经典教材。奥数是数
学竞赛的一种形式,旨在培养学生的逻辑推理和问题解决能力。五
年级是学生进行奥数研究的重要阶段,因此选择适合的经典教材对
学生取得良好成绩至关重要。
教材特点
经典教材是让学生系统研究奥数知识的重要工具。下面列出了
五年级教材奥数经典教材的一些特点:
1. 全面性:教材全面涵盖五年级学生需要掌握的奥数知识点,
包括整数、分数、几何等。全面性:教材全面涵盖五年级学生需要
掌握的奥数知识点,包括整数、分数、几何等。
2. 深入浅出:教材从基础概念出发,通过详细解释和例题讲解,帮助学生理解奥数的核心思想和解题技巧。深入浅出:教材从基础
概念出发,通过详细解释和例题讲解,帮助学生理解奥数的核心思
想和解题技巧。
3. 丰富的练:教材提供大量练题和题集,帮助学生巩固知识,
并培养解题速度和准确性。丰富的练习:教材提供大量练习题和习
题集,帮助学生巩固知识,并培养解题速度和准确性。
4. 巩固与拓展:教材结合实际例题,让学生在解决问题中巩固
已研究的知识,并激发他们的创造力和思维能力。巩固与拓展:教
材结合实际例题,让学生在解决问题中巩固已学习的知识,并激发
他们的创造力和思维能力。
5. 适应性:教材根据学生的研究进度和难度需求进行编排,确
保学生能够逐步提高并应对更复杂的奥数问题。适应性:教材根据
学生的学习进度和难度需求进行编排,确保学生能够逐步提高并应
对更复杂的奥数问题。
教材推荐
下面是我推荐的五年级教材奥数经典教材:
总结
五年级教材奥数经典教材是帮助学生系统学习和提高奥数能力
五年级奥数教程目录
1.五年级奥数上册:第一讲数的整除问题……………………(1-7)
2.五年级奥数上册:第二讲质数、合数和分解质因数………(8-12)
3.五年级奥数上册:第三讲最大公约数和最小公倍数……(13-19)
4.五年级奥数上册:第四讲带余数的除法…………………(20-23)
5.五年级奥数上册:第五讲奇数与偶数及奇偶性的应用…(24-30)
6.五年级奥数上册:第六讲能被30以下质数整除的数的特征………………………………………………………………(31-36)
7.五年级奥数上册:第七讲行程问题………………………(37-42)
8.五年级奥数上册:第八讲流水行船问题…………………(43-46)
9.五年级奥数上册:第九讲“牛吃草”问题………………(47-51)
10.五年级奥数上册:第十讲列方程解应用题………………(52-57)
11.五年级奥数上册:第十一讲简单的抽屉原理……………(58-61)
12.五年级奥数上册:第十二讲抽屉原理的一般表达………(62-67)
13.五年级奥数上册:第十三讲染色中的抽屉原理…………(68-71)
14.五年级奥数上册:第十四讲面积计算……………………(72-79)
15.五年级奥数上册:第十五讲综合题选讲………………(80-86)
1.五年级奥数下册:第一讲不规则图形面积的计算(一)…(87-92)
2.五年级奥数下册:第二讲不规则图形面积的计算(二)…(93-100)
3.五年级奥数下册:第三讲巧求表面积…………………(101-105)
4.五年级奥数下册:第四讲最大公约数和最小公陪数…(106-111)
华罗庚学校五年级下册奥数课本
目录
第一讲不规则图形面积的计算(一) (2)
第二讲不规则图形面积的计算(二) (13)
第三讲巧求表面积 (27)
第四讲最大公约数和最小公倍数 (36)
第五讲同余的概念和性质 (43)
第六讲不定方程解应用题 (52)
第七讲从不定方程1/n = 1/x + 1/y的整数解谈起 (58)
第八讲时钟问题 (74)
第九讲数学游戏 (86)
第十讲从算术到代数(二) (94)
第十一讲逻辑推理(二) (105)
第十二讲容斥原埋 (114)
第十三讲简单的统筹规划问题 (124)
第十四讲递推方法 (132)
第十五讲综合题选讲 (144)
第一讲不规则图形面积的计算(一)
我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
又因为S甲+S乙=12×12+10×10=244,
所以阴影部分面积=244-(50+132+12)=50(平方厘米)。
人教版小学数学五年级下册奥数培训教材
人教版小学数学五年级下册奥数培训教材
第一讲分解质因数
(2课时)
【学习导航】
一个自然数的因数中,为质数的因数叫做这个数的质因数。
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数。例如:24=2×2×2×3,75=3×5×5。
分解质因数,是为数学课本上介绍的求最大公约数和最小公倍数服务的。其实,把一个自然数分解成几个质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而有助于我们顺利解题。
一个质数的因数只有两个:1和它本身。1既不是质数,也不是合数。2是最小的质数,同时也是一个偶数。注意:在所有的质数中,只有一个偶数,那就是2,正因为如此,两个质数之和不一定是偶数,两个质数之积不一定是奇数,这个特性经常成为解题的突破口。
例1
有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。共有多少种分法?
【思路导航】先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,
从这5个质因数中任选1个,不符合要求;
从这5个质因数中任选2个:每份有2×7=14颗,3×7=21颗;
从这5个质因数中任选3个,每份有2×2×3=12颗,2×2×7=28颗,2×3×7=42颗;
从这5个质因数中任选4个,每份有2×2×2×3=24颗;
从这5个质因数中任选5个,不符合要求;
故共有6种分法。
试一试
把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。
例2
将下面八个数平均分成两组,使这两组数的乘积相等。
【教材同步】五年级奥数教程下册【详细解答】
前言
在琳琅满目的教辅类图书前——
孩子的心声:奥数真难,大人们为什么总要我们学习奥数呢?
家长的心声:太难的奥数,让孩子越来越没自信学习数学了。
教师的心声:现行的奥数比课本难多了,若有一套配合课本进度,并能提高学生抽象思维能力的奥数书,将能真正作为课堂教学的延伸。
针对以上种种心声,将此作为课题来研究,在多所名校和社会信誉度较高的办学单位试行的基础生,推出了这套《同步奥数培优》,内容力求体现:配套现行教材以新课标北师大版内容为知识体系,做到在已有知识基础上的拓展,重视知识的螺旋上升,在和教材同步的同时,培养学生的抽象思维能力。【适当加入一些同学们感兴趣的内容】。
注重素质提高学好数学的前提是要有兴趣,这是编写此套丛书的出发点。为了更全面综合地提高学生的数学素质,此书适合大多数学生的学习与使用。
强化思维训练数学的学习是思维的学习。此套丛书在章节安排上,重视对学生系统思维的训练,能结合学生学习的特点,相对形成知识编排上的系统性。即能以知识为章,以知识点为节,由浅入深,层层深入,使学生的认知相对完整。
本书将本着自学能会,教师能辅导、家长能参考的宗旨,全心全意为莘莘学子、为酷爱奥数的同学们而编,望你们用心学习,对以后的学习有所帮助,由于编写时间仓促,书中难免有些不妥之处,敬请广大同学们在使用过程中批评指正,以使本书更加完善。《五年级奥数》编写组
目录
第一讲分数乘法(乘法中的简算) (2)
练习卷 (5)
第二讲长方体和正方体(巧算表面积) (6)
练习卷 (10)
第三讲分数除法应用题 (11)
练习卷 (15)
五年级奥数下册电子教案
五年级奥数下册:第一讲不规则图形面积的计算(一)
第二讲不规则图形面积的计算(二)
第三讲巧求表面积
第四讲最大公约数和最小公陪数
第五讲同余数的概念和性质
第六讲不定方程解应用题
第七讲从不定方程1/n = 1/x + 1/y的整数解谈起
第八讲时钟问题
五年级下册奥数培训教材
倍数问题(一)
典型例题1
两根同样长的铁丝,第一根剪去18厘米,第二根剪去26厘米,余下的铁丝第一根是第二根的3倍。原来两根铁丝各长多少厘米
模拟练习
1、两根一样长的绳子,第一根用去米,第二根用去米,剩下部分第二根是第一根的3倍。两根绳子原来各长多少
2、一筐苹果和一筐梨的个数相同,卖掉40个苹果和15个梨后,剩下的梨是苹果的6倍,原来两筐水果一共有多少个
3、两个数的和是682,其中一个加数的个位是0,如果把这个0去掉,就得到另一个加数。这两个加数各是多少
典型例题2
甲组的图书是乙组的3倍,若乙组给甲组6本,则甲组的图书是乙组的5倍,甲组原来有图书多少本
模拟练习
1、甲库的存粮是乙库的4倍,如果从乙库取出6吨放入甲库,则甲库的粮食正好是乙库的6倍。原来两库各有多少吨粮食
2、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书
3、小明原来的画片是小红的3倍,后来两人各买了5张,小明的画片就是小红的2倍。两人原来各有多少张画片
倍数问题(二)
典型例题1
幼儿园买来苹果的个数是梨的2倍。如果每组领3个梨和4个苹果,梨正好分完,苹果还剩16个。两种水果原来各有多少个
模拟练习
1、同学们带着水果去看敬老院的老人,带的苹果是橘子的3倍。如果每位老人拿2个橘子和4个苹果,那么,橘子正好分完,苹果还多14个。同学们把苹果分给了几位老人
2、甲粮库的存粮是乙粮库的2倍,甲粮库每天运出粮食40吨,乙粮库每天运出30吨。若干天后,乙粮库的粮食全部运完,而甲粮库还有80吨。甲、乙两粮库原来各有粮食多少吨
小学五年级奥数教材
目录
◆第一讲消去问题(一) (2)
◆第二讲消去问题(二) (7)
◆第三讲一般应用题 (12)
◆第四讲盈亏问题(一) (16)
◆第五讲盈亏问题(二) (17)
◆第六讲流水问题 (19)
◆第七讲等差数列 (23)
◆第八讲找规律 (26)
◆能力测试(一) (26)
◆第九讲加法原理 (28)
◆第十讲乘法法原理 (31)
◆第十一讲周期问题(一) (35)
◆第十二讲周期问题(二) (37)
◆第十三讲巧算(一) (39)
◆第十四讲巧算(二) (40)
◆第十五讲数阵问题(一) (45)
◆第十五讲数阵问题(二) (45)
◆能力测试(二) (63)
◆第16讲平面图形的计算(一)……………
◆第17讲平面图形的计算(二)……………
◆第18讲列方程解应用题(一)………………
◆第19讲列方程解应用题(二)………………
◆第20讲行程问题(一)…………………………
◆第21讲行程问题(二)…………………………
◆第22讲行程问题(三)…………………
◆第23讲行程问题(四)……………………
◆阶段测试(一)……………………
◆第24讲平均数问题(一)………………………
◆第25讲平均数问题(二)………………
◆第26讲长方体和正方体(一)………………
◆第27讲长方体和正方体(二)……………………
◆第28讲数的整除特征……………………………
◆第29讲奇偶性问题……………………
◆第30讲最大公约数和最小公倍数…………………
◆第30讲分解质因数(一)……………………
◆第31讲分解质因数(二)……………………
◆第32讲牛顿问题……………………
五年级下册数学素材-奥数培训教材 全国通用
第三讲 实践与应用(一)
第一讲 行程问题(一)
【专题导引】
行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。行程问题的主要数量关系是:路程=速度×时间。知道三个量中的两个量,就能求出第三个量。
【﹡例3】从装有写着1、2、3、4、5、6、7、8、9的9张卡片中,一次取出6张,计算它们的和,最多有多少种不同的和?
【﹡试一试】
1、李明有1角的人民币4张,2角的人民币2张,5角的1张,1元的人民币2张。如果从中取1至9张,那么他取出的总钱数可以有多少种不同的金额?
2、有1克、2克、3克、4克和5克的砝码各一个,从中拿3个砝码放在天平的一边称物体,能称出多少种不同的重量?
【例2】下面竖式中每个小方格都代表一个数字,请把这个算式写完整。
【试一试】
1、把下面的算式写完整。 2、在算式的“□”里填上合适的数字。
【例3】右图的五个方格中已经填写入84和72两个两位数,请你在其余的三格中也分别填入一个两位数,使得横行的三个数与竖行的三个数之和相等,并且这五个两位数正好由0~9十个数字组成。
2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?
五年级下册同步奥数全国通用
目录
第一讲生活中的负数 (1)
第二讲图形的周长 (3)
第三讲多边形面积计算(长方形与正方形的面积) (7)
第四讲多边形面积计算(三角形与多边形的面积) (10)
第五讲平面图形的操作 (14)
第六讲小数加减法的简便计算 (17)
第七讲找规律(周期问题) (19)
第八讲解决问题的策略(用枚举法解决问题) (21)
第九讲小数乘法和除法的简便计算 (24)
第十讲四则运算速算 (27)
第十一讲数学专题(数列计算) (30)
第十二讲数学专题(列车过桥问题) (32)
第十三讲数学专题(稍复杂的相遇问题) (34)
第十四讲数学专题(稍复杂的追及问题) (36)
第十五讲数学专题(简单的消去问题) (38)
第十六讲数学专题(还原问题) (40)
综合能力测试(一) (43)
综合能力测试(二) (47)
坚其志,苦其心,劳其力,事无大小,必有所成。
-----------------(清)曾国藩
第一讲生活中的负数
例题精讲
例1. 刘翔在第十届世界田径锦标赛半决赛中,110米栏的成绩是13.42秒,当时赛场的风速为每秒-0.4米,你知道这个风速所表示的意思吗?
例2. 中国最大的咸水湖——青海湖高于海平面3193米,世界最低最咸的湖——死海低于海平面400米。想一想青海湖与死海的海拔相差多少米呢?
例3. 哈尔滨:零下12℃,漠河:零下30℃(漠河是我国最北边的一个城市)。海口:零上30℃,你知道海口比哈尔滨和漠河各高多少度吗?哈尔滨和漠河相差的温度呢?
同步练习
1、今天,在学校跑道上正举行着100米短跑比赛,当时赛场风速为每秒-0.5米,预测一下,选手们在正常
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倍数与因数(一)
【例1】(★★★)
四位数“3AA1”是9的倍数,那么A=_____。
【例2】(★★)
1至100以内所有不能被3整除的数的和是_____。
【例3】(★★★)
在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。
【例4】(★★)
已知一个五位数□691□能被55整除,所有符合题意的五位数是_____。
【例5】(★★★)
5. 现有梨36个,桔108个,分给若干个小朋友,要求每人所得的梨数,桔数相等,最多可分给_____个小朋友,每个小朋友得梨_____个,桔_____个。
倍数与因数(二)
【例1】(★★★)
有一个五位数2□69□,它的千位和个位看不清楚了,小明知道这个数既是2的倍数,又是3的倍数,还是5的倍数。小朋友你知道这个数可能是多少吗?
【例2】(★★)
回答下列问题:
⑴把16拆成两个质数的和共有多少种拆法?它们分别是什么?
⑵两个质数的和是39,这两个数的差是多少?
⑶三个质数的乘积是70,其中两个数的和正好等于第三个数,其中最大的那个数是多少?
【例3】(★★★)
用1、2、3、4、5、6、7、8、9这9个数字组成若干个质数,每个数字恰好使用一次,请问:最多能组成多少个质数?请找出一种满足要求的组法。
【例4】(★★)
一天,小明的房间里亮着灯,突然停电了,小明以为灯泡坏了,所以就拨了几下开关,他清楚的记得自己一共拨动了7下开关,那么当来电时,他房间的灯是亮的还是暗的?如果在关灯的状态下拨动100次开关,那么灯会亮着还是不亮?
【例5】(★★★)
有一列数,它们是1、1、2、3、5、8、13、21 …,从第三个数起,往后每个数都是相邻的前两个数的和。有人说这个数列中的第105个数是奇数,你认为对吗?你能判断这个数列里的第1000个数是奇数还是偶数吗?请说明理由。
质数与合数【奥数拓展】
【例1】(★★★)
三个连续自然数的乘积等于39270. 这三个连续自然数的和等于多少?
【例2】(★★★★)(2004年希望杯全国邀请赛)
a、b、c都是质数,如果(a+b)×(b+c) =342,那么b=______。
【例3】(★★★★)
2011除以一个数的余数是19,符合条件的除数共有多少个?
图形的面积(一)
【例1】(★)
平行四边形ABCD的底和高尺寸如图所示,它的面积是多少平方厘米?如果把这个图形的底延长为现在底的2倍,高不变,那么它的面积会增大多少?(单位:厘米)
【例2】(★★)
美美公主有一面漂亮的镜子,有一天她不小心把镜子打破了,破损部位如图中的橙色阴影所示,如果她要修补这面镜子,那么她需要买多少平方厘米的镜面?(单位:厘米)
【例3】(★★)
如图:三个大小不同的正方形从左到右依次紧挨着摆放,边长分别为2厘米,5厘米,7厘米,那么图中阴影部分的面积之和是多少?
【例4】(★★★)
如图,图中绿色部分是一片梯形的森林,在森林中间开辟了一条底为2米,高为25米的平行四边形小路,根据图中尺寸求森林的面积。
【例5】(★★★★)
如图:小正方形ABCD放在大正方形EFGH的上面。已知小正方形的边长为4厘米,且梯形AEHD的面积是28平方厘米,那么梯形AFGD的面积是多少平方厘米?
【例6】(★★)
请求出下面三个平行四边形的面积,总结规律,并用面积公式证明你的结论。
【例7】(★★★)
三角形ABC的面积是6平方厘米,其中,D是BC边上的中点,E是AC边上的三等分点,那么三角形ABD和三角形ADE的面积分别是多少平方厘米?
图形的面积(二)
【例1】(★★)
右图是小明设计的小火箭的平面图,尺寸如图所示,⑴说说这个图中都有哪些平面图形;⑵根据尺寸计算这个图形的面积。(单位:厘米)
【例2】(★★★)
下图是一个商场的平面图,尺寸如图所示(单位:米),请至少用三种方法求它的面积。
【例3】(★★★★★)
在一个大正方形花园的正中挖一个小正方形水池,如图所示,已知大正方形的面积比小正方形的面积大96平方米,而且花园的周长比水池的周长长16米,请求出水池的面积。
【例4】(★★★)
下图中每个小正方形都内接在外层大正方形的四边中点上,如果最小的正方形面积为2平方厘米,那么最大的正方形的面积是多少平方厘米?
巧求面积【奥数拓展】
【1】(1994全国小学数学奥林匹克)
已知一个四边形的两条边的长度(三个角的度数)如图所示:那么这个四边形的面积是_____。
【2】(★★★)(1995全国小学数学奥林匹克)
如图:最外面是正方形,边长为4厘米,图中阴影部分的面积为5平方厘米,那么最里面的正方形的边长为_____厘米。
【3】(★★)
如图:长方形ABCD被分成了7个不同的小长方形,其中某些小长方形的面积已经标在了图中,那么这个长方形的总面积是多少平方厘米?
【4】(★★★★)(1997全国小学数学奥林匹克)
如图:四边形ABCD的周长是60厘米,点M到各边的距离都是4.5厘米,这个四边形的面积是_____平方厘米。
【例1】(★★)
学习分数的互换法则,回答下列问题:
【例2】(★★★)
把下列三组数按照从小到大的顺序排列: (1)••
15
1.24 1
2.5 43
(2)9170.8 0.89 1020
(3)29
3.42 3 3 3.39520
【例3】(★★)
根据分数的基本性质填空: (1)()(
)()
1122
5⨯=
=
⨯ (2)
()()()()
88216÷==÷ (3)
()()
282426== (4)
()()()()()
17
41236====
【例4】(★★★) 请回答下列问题:
⑴一个分数的分母缩小2倍,分子扩大4倍,那么现在的分数值是原来的多少倍? ⑵一个与3
7
相等的分数,它的分母比分子大16,这个分数是多少?
分数(一)