解直角三角形(4)

合集下载

2019版中考数学 三角形分类训练四 解直角三角形 鲁教版

2019版中考数学 三角形分类训练四 解直角三角形 鲁教版

2019版中考数学三角形分类训练四解直角三角形鲁教版典例诠释:考点一勾股定理及其逆定理的应用例1 (xx·大兴一模)《九章算术》中记载:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图1-10-95,我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是尺.图1-10-95【答案】【名师点评】本题是以古代数学著作为背景,首先要读懂题目,哪些线段是已知,哪些线段是未知:OB=3,OA+AB=10,求OA的长,利用勾股定理即可得解.考点二求三角函数值例2 (xx·延庆一模)如图1-10-96,在4×4的正方形网格中,tan α的值等于( )图1-10-96A.2B.C.D.【答案】A【名师点评】求三角函数方法较多,解法灵活,在具体的解题中要根据已知条件采取灵活的计算方法.常用的方法有:①根据特殊的三角函数值求值;②直接应用三角函数定义;③借助变量之间的数量关系求值;④根据三角函数关系求值;⑤构造直角三角形求值.例3 (xx·怀柔二模)如图1-10-97,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为( )图1-10-97A.7sin α米B.7cos α米C.7tan α米D.(7+α)米【答案】C【名师点评】此题考查三角函数的定义和仰角的知识,已知∠A、AC,求BC,利用∠A 的正切值即可.考点三特殊三角函数值的计算例4 (xx·怀柔一模)2sin 45°-.【答案】 2【名师点评】此题考查了实数的运算,掌握零指数幂、负整数指数幂的运算法则是关键,另外要求我们熟练记忆一些特殊角的三角函数值.考点四解直角三角形例5 如图1-10-98,在△ABC中,∠A=30°,∠B=45°,AC=2,求AB的长.图1-10-98【答案】3+【名师点评】将斜三角形转化为直角三角形是解决三角形中有关计算的重要思想方法,解决的方法是作三角形的高.例6 (xx·东城二模)如图1-10-99,矩形ABCD中,M为BC上一点,F是AM的中点,EF ⊥AM,垂足为F,交AD于点E.(1)求证:∠BAM=∠AEF;(2)若AB=4,AD=6,cos∠BAM=,求DE的长.图1-10-99(1)【证明】∵四边形ABCD是矩形,∴∠B=∠BAD=90°.∵EF⊥AM,∴∠AFE=∠B=∠BAD=90°.∴∠BAM+∠EAF=∠AEF+∠EAF=90°.∴∠BAM=∠AEF.(2)【解】在Rt△ABM中,∠B=90°,AB=4,cos∠BAM=,∴AM=5.∵F为AM中点,∴AF=.∵∠BAM=∠AEF,∴cos∠BAM=cos∠AEF=.∴sin∠AEF=.在Rt△AEF中,∠AFE=90°,AF=,sin∠AEF=,∴AE=,∴DE=AD-AE=6-=.【名师点评】(1)通过“同角的余角相等”易证;(2)在△ABM中,知AB和∠BAM的余弦值可以得到AM的长,再利用相似或三角函数求AE的长,从而求出DE的长.考点五解直角三角形的应用例7 (xx·门头沟一模)如图1-10-100,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔,,分别为130米,400米,1 000米.由点A测得点B的仰角为30°,由点B测得点C的仰角为45°,那么AB和BC 的总长度是( )图1-10-100A.1 200+270B.800+270C.540+600D.800+600【答案】C基础精练:1.(xx·平谷一模)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个边长为1丈(1丈=10尺)的正方形水池,在水池正中央长有一根芦苇,芦苇露出水面1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”如图1-10-101,设这个水池的深度是x尺,根据题意,可列方程为.图1-10-101【答案】2.(xx·顺义一模)《算法统综》是中国古代数学名著,作者是我国明代数学家程大伟,在《算法统综》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”如图1-10-102,设秋千的绳索长为x尺,根据题意可列方程.【答案】图1-10-1023.如图1-10-103,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.图1-10-103【答案】104.(xx·通州一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理. 如图1-10-104是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理. 图1-10-105是由图1-10-104放入矩形内得到的,∠BAC=90°,AB=3,AC=4,D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.图1-10-104 图1-10-105【答案】1106.(xx·丰台二模)如图1-10-106所示,河堤横断面迎水坡AB的坡角是30°,堤高BC= 5 m,则坡面AB的长度是( )图1-10-106A.10 mB.10 mC.15 mD.5 m【答案】A7.(xx·平谷二模)如图1-10-107,为测量一棵与地面垂直的树BC的高度,在距离树的底端4米的A处,测得树顶B的仰角∠α=74°,则树BC的高度为( )图1-10-107A.米B.4sin 74°米C.4tan 74°米D.4cos 74°米【答案】C8.(xx·西城一模)某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图1-10-108,通过直升机的镜头C观测水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A,D,B在同一直线上,则雪道AB 的长度为( )图1-10-108A.300米B.1 502米C.900米D.(300+300)米【答案】D9.(xx·顺义二模)如图1-10-109,为了使电线杆稳固的垂直于地面,两侧常用拉紧的钢丝绳索固定,由于钢丝绳的交点E在电线杆的上三分之一处,所以知道BE的高度就可以知道电线杆AB的高度了.要想得到BE的高度,需要测量出一些数据,然后通过计算得出.请你设计出要测量的对象:;请你写出计算AB高度的思路:.图1-10-109【解】∠BCE和线段BC;思路:①在Rt△BCE中,由tan∠BCE=,求出BE=BC·tan∠BCE,②由AE=AB,可求得BE=AB,AB=BE=BC·tan∠BCE.10.(xx·延庆一模)如图1-10-110,甲船在港口P的南偏西60°方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速驶向港口P.乙船从港口P出发,沿南偏东45°方向匀速驶离港口P,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)图1-10-110【解】依题意,设乙船速度为每小时x海里,2小时后甲船在点B处,乙船在点C处,PC=2x,如图1-10-111,过P作PD⊥BC于D,∴BP=86-2×15=56.图1-10-111在Rt△PDB中,∠PDB=90°,∠BPD=60°,∴P D=PB·cos 60°=28.在Rt△PDC中,∠PDC=90°,∠DPC=45°,∴PD=PC·cos 45°=·2x=x,∴x=28,即x=14≈20.答:乙船的航行速度为每小时20海里.11.(xx·通州二模)如图1-10-112,在ABCD中,∠1=∠2,∠3=∠4,EF∥AD,请直接写出与AE相等的线段(两条即可),写出满足勾股定理的等式.(一组即可)图1-10-112【答案】AD,DF12.(xx·平谷二模)已知:如图1-10-113,∠ACB=90°,AC=BC , AD = BE, ∠CAD=∠CBE,(1)判断△DCE的形状,并说明你的理由;(2)当BD∶CD=1∶2,∠BDC=135°时,求sin∠BED的值.图1-10-113【解】(1)如图1-10-114.图1-10-114∵AC=BC,AD=BE,∠CAD=∠CBE,∴△ADC≌△BEC,∴DC=EC,∠1=∠2.∵∠1+∠BCD=90°,∴∠2+∠BCD=90°.∴△DCE是等腰直角三角形.(2)∵△DCE是等腰直角三角形,∴∠CDE=45°.∵∠BDC=135°,∴∠BDE=90°.∵BD∶CD=1∶2,设BD=x,则CD=2x,DE=2x,BE=3x.∴sin∠BED==.13.如图1-10-115所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于.图1-10-115【答案】14.(xx·丰台二模)将两个直角三角板按图1-10-116中方式叠放,BC=4,那么BD= .图1-10-116【答案】215.(xx·石景山一模)如图1-10-117,在四边形ABCD中,AB=2,∠A=∠C=60°,DB⊥AB于点B,∠DBC=45°,求BC的长.图1-10-117【解】如图1-10-118,过点D作DE⊥BC于点E.图1-10-118∵DB⊥AB,AB=2,∠A=60°,∴BD=AB·tan 60°=2.∵∠DBC=45°,DE⊥BC,∴BE=DE=BD·sin 45°=.∵∠C=∠A=60°,∠DEC=90°,∴CE==,∴BC=+.16.(xx·昌平一模)如图1-10-119,已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB=1,BC=3+,CD=2.(1)求tan∠ABD的值;(2)求AD的长.图1-10-119【解】(1)如图1-10-120,作DE⊥BC于点E.∵在Rt△CDE中,∠C=60°,CD=2,∴CE=,DE=3.∵BC=3+,∴BE=BC-CE=3+=3.∴DE=BE=3.∴在Rt△BDE中,∠EDB=∠EBD=45°.∵AB⊥BC,∠ABC=90°,∴∠ABD=∠ABC-∠EBD=45°.∴tan∠ABD=1.图1-10-120(2)如图1-10-120,作AF⊥BD于点F.在Rt△ABF中,∠ABF=45°,AB=1,∴BF=AF=.∵在Rt△BDE中,DE=BE=3,∴BD=3.∴DF=BD-BF=3=.∴在Rt△AFD中,AD==.17.(xx·西城一模)如图1-10-121,在ABCD中,过点A作AE⊥DC交DC的延长线于点E,过点D作DF∥EA交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.图1-10-121(1)【证明】∵四边形ABCD是平行四边形,∴AB∥DC,即AF∥ED.∵DF∥EA,∴四边形AEDF是平行四边形.∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形.(2)【解】如图1-10-122.精品-图1-10-122∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°.∵在Rt△AFD中,tan∠FAD==,∴AF=5.∵AB=2,∴BF=AB+AF=7.∴在Rt△BFD中,BD==.真题演练:1.(xx·北京)计算:+4sin 45°-+|1-|.【答案】2.(xx·北京)如图1-10-123,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.图1-10-123【解】如图1-10-124,过点D作DH⊥AC,图1-10-124∵∠CED=45°,DH⊥EC,DE=,∴EH=DH=1.又∵∠DCE=30°,∴HC=,DC=2.∵∠AEB=45°,∠BAC=90°,BE=2,∴AB=AE=2,∴AC=2+1+=3+,∴=×2×(3+)+×1×(3+)=.-精品。

解直角三角形应用4湘教版

解直角三角形应用4湘教版

2、一些解直角三角形的问题往往与其他知识联系, 所以在复习时要形成知识结构,要把解直角三角形作为 一种工具,能在解决各种数学问题时合理运用.
下: 1.沿着水平地面向前300m到达D点,在D点测得山 顶A的仰角为60 °,求山高AB. 2.沿着坡角为30 °的斜坡前进300m到达D点,在D 点测得山顶A的仰角为60 ° ,求山高AB. A
D 30° C
x E x
F B
三、小结
1、解直角三角形的关键是找到与已知和未知相关 联的直角三角形,当图形中没有直角三角形时,要通过作 辅助线构筑直角三角形(作某边上的高是常用的辅助线); 当问题以一个实际问题的形式给出时,要善于读懂题意, 把实际问题化归为直角三角形中的边角关系.
( 返 回 )

d

D
h
铅 垂 线
) 仰角 ) 俯角
水平线

k D d 2 tg
i
h
tg
( 为斜角 )
( 为坡角 )
一、基础题
1、在Rt △ABC中, ∠ C=90°,∠A的正切等 于2,BC=6,则这个三角形的面积等于____________, 斜边AB=_______________ . 2、某人沿着坡角为45 °的斜坡走了310 则此人的垂直高度增加了____________m .
解直角三角形应用
回顾知识要点
1、解直角三角形定义
2、直角三角形中的边角关系 3、在解直角三角形中,经常接触的名称
1、在一个直角三角形中,已知一条边和一 个锐角或者已知两条边,可以求出其他的边 和角,这就是解直角三角形.
2、在 ABC 中 , C 为直角 , 有下列的边角关系
三边的关系

25.3解直角三角形4- 坡度问题

25.3解直角三角形4- 坡度问题

图25.3.5图25.3.6 25.3解直角三角形4-- 坡度问题课时学习目标1.掌握坡角与坡度概念, 能利用解直角三角形解决有关实际问题。

2.由实际问题转化为几何问题时,学会自己画图,建立模型.学习重点难点重点: 灵活应用解直角三角形知识解决实际问题。

难点:由实际问题转化为几何问题(建模)。

课前预习导学 ( 自学课本完成下列问题)1.坡面的铅垂高度(h )和水平长度(l )的比叫做坡面的坡度(或坡比),记作i ,即=i .(坡度通常写成1∶m 的形式,如i =1∶6.)2.坡面与水平面的夹角叫做坡角,记作α,有tan α= .3.坡度越大,坡角α就越 ,坡面就越 .4.计算: ︒︒+︒+︒60cot 60tan 30cos 30sin 22225.如图,两建筑物的水平距离BC 为24米,从点A 测得点D 的俯角α=30°,测得点C 的俯角β=60°,求AB 和CD 两座建筑物的高.(结果保留根号)课堂学习研讨例1如图25.3.6,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米)例2、 一水库大坝的横断面为梯形ABCD ,坝顶宽6米,坝高20米,斜坡 AB 的坡度1i =1∶3,斜坡CD 的坡度2i =1∶2.5.求:(1) 斜坡AB 与坝底AD 的长度;(精确到0.1米)(2) 斜坡CD 的坡角α.(精确到1°)A B CA AB B CC 30° 第3题 课达标堂检测1. 如果a ∠是等腰直角三角形的一个锐角,则tan α的值是 。

2.如图,坡角为30 的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m3. 如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌。

4 解直角三角形

4  解直角三角形

∵ tan B b , b 30,
a

a
b tan
B
30 tan 25。
64.
新课讲解
例 4. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形 的其他元素.(长度精确到0.01) 解:已知∠A,可根据∠B=90°-∠A得到∠B的大小.而 已知斜边,必然要用到正弦或余弦函数. ∵∠A=26°44′,∠C=90°, ∴∠B=90°-26°44′=63°16′.
新课讲解
典例分析
分析:紧扣解直角三角形中“知二求三”的特征进行解答 .
解: ①能够求解;②不能求解;③能够求解; ④能够求解;⑤能够求解 .
答案:C
新课讲解
典例分析
例 2. 已知在Rt△ABC中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c,且c=5,b=4,求这个三角 形的其他元素.(角度精确到1′)
∴∠ B=90° - ∠ A=60° .
∵ tan A= a ,
b

3= a , 3 12
∴ a= 4 3.
c 2a 8 3.
新课讲解
( 2)在 Rt △ ABC 中,∠ C=90°,∠ A=60°,
∴∠ B=90° - ∠ A=30° .
∵ sin A= a , ∴ 3 = a ,
c
26
∴ a 3 3.
, cos
B
B的邻边 斜边
正切:tan
A
A的对边 A的邻边
,tan
B
B的对边 B的邻边
当堂小练
在Rt△ABC中, ∠C=90° , ∠A,∠B,∠C所对的边分别为a, b, c,根据下列条 件求出直角三角形的其他元素(角度精确 到1° ): (1) 已知 a = 4, b =8;

2019-2019学年九年级数学下册第1章直角三角形的边角关系4解直角三角形课件北师大版

2019-2019学年九年级数学下册第1章直角三角形的边角关系4解直角三角形课件北师大版
九年级数学·下 新课标[北师]
第一章 直角三角形的边角关系
4 解直角三角形
学习新知
检测反馈
在日常生活中,我们常常遇到与 直角三角形有关的问题,知道直 角三角形的边可以求出角,知道
角也可以求出相应的边.如图所
示,在Rt△ABC中共有几个元素? 我们如何利用已知元素求出其他 的元素呢?
学习新知
已知两条边解直角三角形
只知道角度是无法求出直角三角形的边长的.
问题2 只给出一条边长这一个条件,可以解直角三角形吗?
只给出一条边长,不能解直角三角形.
解直角三角形需要满足的条件: 在直角三角形的6个元素中,直角是已知元素,如果再知道一 条边和第三个元素,那么这个三角形的所有元素就都可以确定
下来.
1.如图所示的是教学用直角三角板,边
方法1:已知两条边的长度,可以先利用勾股定理 求出第三边,然后利用锐角三角函数求出其中一个 锐角,再根据直角三角形两锐角互余求出另外一个
锐角.
方法2:已知两条边的长度,可以先利用锐角三角函 数求出其中一个锐角,然后根据直角三角形中两锐 角互余求出另外一个锐角,再利用锐角三角函数求
出第三条边.
已知一条边和一个角解直角三角形
解析:根据图形得出点B到AO的距离是指BO的长,根据 锐角三角函数定义得出BO=ABsin 36°,即可判断A,B错误; 过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐 角三角函数定义得出AD=AOsin 36°,AO=AB·sin 54°,所以 AD=sin 36°·sin 54°,即可判断C正确,D错误.故选C.
例2 在Rt△ABC中,∠C=90°,∠A,∠B,∠C所 对的边分别为a,b,c,且b=30,∠B=25°.求这个三 角形的其他元素(边长精确到1).

28.2解直角三角形(4)

28.2解直角三角形(4)


2、如何将这个三角形转化为两个直角三角形?
3、在 Rt△BCP 中,能直接求出 PB 吗?还缺什么元素?你认为求出哪条边最方便计算?
4、在 Rt△APC 中,求 PC 是,若用正弦函数求解应选用哪个关系式?若用余弦函数呢?
5、请你选择一种方法写出解题过程
三、学生展示——面对困难别退缩,相信自己一定行!! ! 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在 北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测 得灯塔 M 在北偏西 45°,问该货轮继续向北航行时,与灯塔 M 之间的最短 距离是多少?(精确到 0.1 海里, 3 1.732 )
沉默是金难买课堂一分,跃跃欲试不如亲身尝试!
学法指导 合作交流、讨论、
一、自主先学————相信自己,你最棒! 1、利用解直角三角形的知识解决实际问题的一般过程是怎样的?
北 B
2、方位角:指北或指南方向线与目标方向线所成的小于 90 的水平角叫做方位角,如图所示目标方向线 OA、OB、 OD 的方向角分别是北偏东 60 、________20 、南偏西 45 、 _______60 ,比如我们习惯上所说的 “东南方”是指 目标线为南偏东 45 等等。
0 0 0 0 0
0ቤተ መጻሕፍቲ ባይዱ
20 O 450
0
A
0
60
东 60
0
D C
二、展示时刻——集体的智慧是无穷的,携手解决下面的问题吧!
O
例 5 如图,一艘海轮位于灯塔 P 的北偏东 65 方向,距离灯塔 80 海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东 34 方向上 的 B 处.这时,海轮所在的 B 处距离灯塔 P 有多远?(精确到 0.01) 1、点 A、B、P 三点构成△ABP,你能写出这个三角形中已知那些元素,要 求的又是那一个元素?

7.解直角三角形(4)坡度

7.解直角三角形(4)坡度

解:(1)在Rt△AFB中,∠AFB=90° 在 △ 中 ° AF i=1:1.5 tan α = = i = 1: 1.5 BF α
A 6m F
D i=1:3 β E C
α ≈ 33.7
o
B
在Rt△CDE中,∠CED=90° △ 中 ° DE tan β = = i = 1: 3 CE
β ≈ 18.4o
A B
a

a b

b
2、以后,我们可以得到解直角三角形的几种基本图形: 、以后,我们可以得到解直角三角形的几种基本图形: 几种基本图形 A
B D C A
P
A D i=1:3 B α F E β C
C
B
C
D
B
作业: 作业
1.复习整章知识点 背诵默写 复习整章知识点(背诵默写 表格); 复习整章知识点 背诵默写P79表格 表格 2.完成课本 完成课本P92第2~6题,8题. 完成课本 第 题 题
在每小段上,我们都构造出直角三角形, 在每小段上,我们都构造出直角三角形,利用上面的方法分别算 出各段山坡的高度h 然后我们再“ 出各段山坡的高度 1,h2,…,hn,然后我们再“积零为整”,把 然后我们再 积零为整” h1,h2,…,hn相加,于是得到山高 相加,于是得到山高h. 以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲” 以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲” ”“化曲为直 的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位, 的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在 今后的学习中,你会更多地了解这方面的内容. 今后的学习中,你会更多地了解这方面的内容.
利用解直角三角形的知识解决实际问题的一般 过程是: 过程是: 抽象为数学问题 (1)将实际问题抽象为数学问题(画出平面图 ) 实际问题抽象为数学问题( 转化为解直角三角形的问题); 解直角三角形的问题 形,转化为解直角三角形的问题); (2)根据条件的特点,适当选用锐角三角形函 )根据条件的特点,适当选用锐角三角形函 数等去解直角三角形; 数等去解直角三角形; (3)得到数学问题的答案; )得到数学问题的答案; (4)得到实际问题的答案. )得到实际问题的答案.

专题训练(八)解直角三角形常见的七种方法

专题训练(八)解直角三角形常见的七种方法

专题训练(八) 解直角三角形常见的七种方法►方法一已知两边解直角三角形1.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下面的条件解直角三角形.(1)b=6,c=2 2;(2)a=4,b=4 3.2.如图8-ZT-1,已知AD为△BAC的角平分线,且AD=2,AC=3,∠C=90°,求BC的长及AB的长.图8-ZT-1►方法二已知一边和一个锐角解直角三角形3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,根据下列条件解直角三角形.(1)∠A=60°,a=6;(2)∠A=30°,b=10 3.4.已知:如图8-ZT -2,在Rt △ABC 中,∠C =90°,AC =3,D 为BC 边上一点,且BD =2AD ,∠ADC =60°,求△ABC 的周长.(结果保留根号)图8-ZT -2► 方法三 已知一边和一锐角的三角函数值解直角三角形5.2018·自贡改编如图8-ZT -3,在△ABC 中,CH ⊥AB 于点H ,BC =12,tan A =34,∠B =30°;求AC 和AB 的长.图8-ZT -36.如图8-ZT -4,在△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 的中点,过点B 作直线CD 的垂线,垂足为E .(1)求线段CD 的长; (2)求cos ∠DBE 的值.图8-ZT -4►方法四“化斜为直法”解三角形7.如图8-ZT-5,在△ABC中,∠A=30°,∠B=45°,AC=2 3.求AB的长.图8-ZT-58.如图8-ZT-6,在△ABC中,CD是边AB上的中线,∠B是锐角,且sin B=22,tan A=12,AC=3 5.(1)求∠B的度数及AB的长;(2)求tan∠CDB的值.图8-ZT -6► 方法五 “参数法”解直角三角形9.2018·马鞍山一模如图8-ZT -7,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,E 是AB的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.图8-ZT -7► 方法六 “等角代换法”解直角三角形10.2018·当涂县六校联考如图8-ZT -8,在四边形ABCD 中,AC ,BD 是它的对角线,相交于点O ,∠ABC =∠ADC =90°,∠BCD 是锐角,BD =BC .求证:sin ∠BCD =BD AC.图8-ZT -8► 方法七 “等比代换法”解直角三角形11.如图8-ZT -9所示,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点B ,A ,与反比例函数的图象交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO =12,OB =4,OE =2.(1)求该反比例函数的表达式;(2)求直线AB对应的函数表达式.图8-ZT-9教师详解详析1.解:(1)在Rt △ABC 中,由勾股定理,得a =c 2-b 2=8-6= 2. ∵tan B =b a =62=3,∴∠B =60°,∴∠A =90°-∠B =30°.(2)∵在△ABC 中,∠C =90°,a =4,b =4 3, ∴c =a 2+b 2=8.∵sin A =a c =48=12,∴∠A =30°,∴∠B =90°-∠A =60°.2.解:∵AD =2,AC =3,∠C =90°, ∴cos ∠CAD =AC AD =32,∴∠CAD =30°.∵AD 为△BAC 的角平分线, ∴∠BAC =2∠CAD =60°,∴BC =AC ·tan ∠BAC =3×tan60°=3×3=3. ∵△ABC 是直角三角形,∴AB =BC 2+AC 2=9+3=2 3.3.解:(1)∠B =90°-∠A =90°-60°=30°. ∵sin A =a c ,∴c =6sin60°=632=4 3.∵sin B =bc,∴b =4 3×sin30°=4 3×12=2 3.(2)∠B =90°-∠A =90°-30°=60°. ∵tan A =ab,∴a =10 3×tan30°=10 3×33=10. ∵sin A =a c ,∴c =10sin30°=1012=20.4.解:在Rt △ADC 中,∵sin ∠ADC =ACAD ,∴AD =AC sin ∠ADC =3sin60°=2,∴BD =2AD =4. ∵tan ∠ADC =ACDC ,∴DC =AC tan ∠ADC =3tan60°=1,∴BC =BD +DC =5.在Rt △ABC 中,AB =AC 2+BC 2=2 7,∴△ABC 的周长=AB +BC +AC =2 7+5+ 3. 5.解:在Rt △BCH 中,∵BC =12,∠B =30°, ∴CH =12BC =6,BH =BC 2-CH 2=6 3.在Rt △ACH 中,tan A =34=CHAH ,∴AH =8,∴AC =AH 2+CH 2=10,6.解:(1)在△ABC 中,∵∠ACB =90°, ∴sin A =BC AB =45.又∵BC =8,∴AB =10.∵D 是AB 的中点,∴CD =12AB =5.(2)在Rt △ABC 中,∵AB =10,BC =8, ∴AC =AB 2-BC 2=6.∵D 是AB 的中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6×82×5=245.在Rt △BDE 中,cos ∠DBE =BE BD =2455=2425.7.解:过点C 作CD ⊥AB 于点D ,∴∠ADC =∠BDC =90°. ∵∠B =45°, ∴∠BCD =∠B =45°, ∴CD =BD .∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3,答:AB 的长是3+ 3.8.解:(1)如图,过点C 作CE ⊥AB 于点E .设CE =x .在Rt △ACE 中,∵tan A =CE AE =12,∴AE =2x ,∴AC =x 2+(2x )2=5x , ∴5x =3 5,解得x =3,∴CE =3,AE =6.在Rt △BCE 中,∵sin B =22,∴∠B =45°, ∴△BCE 为等腰直角三角形, ∴BE =CE =3,∴AB =AE +BE =9. (2)∵CD 是边AB 上的中线, ∴BD =12AB =4.5,∴DE =BD -BE =4.5-3=1.5, ∴tan ∠CDE =CE DE =31.5=2,即tan ∠CDB 的值为2. 9.解:∵AC ⊥BD , ∴∠ACB =∠ACD =90°. ∵E 是AB 的中点,CE =1, ∴BE =CE =1,AB =2CE =2,∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x . 在Rt △ACD 中,tan D =2, ∴ACCD=2, ∴AC =4x .在Rt △ACB 中,由勾股定理,得AB =AC 2+BC 2=5x , ∴sin ∠ECB =sin B =AC AB =45.由AB =2,得x =25,∴AD =AC 2+CD 2=(4x )2+(2x )2=2 5x =2 5×25=4 55.10.证明:如图,过点B 作AD 的垂线BE 交DA 的延长线于点E ,延长CB 与DA 交于点F .∵∠ABC =∠ADC =90°,∴∠ADC +∠ABC =180°,∠FBA =∠FDC , ∴∠BCD +∠BAD =180°, ∠EAB =∠BCD .∵∠F =∠F ,∠FBA =∠FDC , ∴△FBA ∽△FDC ,∴FB FD =F AFC ,∴FB F A =FD FC. ∵∠F =∠F ,∴△FBD ∽△F AC ,∴∠FDB =∠BCA . ∵∠BED =∠ABC =90°, ∴△BED ∽△ABC ,∴BD AC =BEAB=sin ∠EAB =sin ∠BCD , 即sin ∠BCD =BDAC.11.解:(1)∵OB =4,OE =2, ∴EB =OB +OE =6. ∵tan ∠ABO =AO OB =12=CEEB ,∴CE =3,AO =2,∴A (0,2),B (4,0),C (-2,3). 设反比例函数的表达式为y =kx .∵点C 在反比例函数的图象上, ∴将点C (-2,3)代入,得k =-6, 即反比例函数的表达式为y =-6x.(2)设直线AB 对应的函数表达式为y =k 1x +b .将A (0,2),B (4,0)代入y =k 1x +b ,可得b =2,k 1=-12,∴直线AB 对应的函数表达式为y =-12x +2.。

28.2.4解直角三角形(4)

28.2.4解直角三角形(4)

3.如图是某公路路基的设计简图,等腰梯形ABCD表示它的 横断面,原计划设计的坡角为A=22°37′,坡长AD=6. 5米,现 考虑到在短期内车流量会增加,需增加路面宽度,故改变设 计方案,将图中1,2两部分分别补到3,4的位置,使横断面 EFGH为等腰梯形,重新设计后路基的坡角为32°,全部工 程的用土量不变,问:路面宽将增加多少? 12 5 (选用数据:sin22°37′≈ ,cos22°37′ ≈ , 13 13 5 tan 22°37′ ≈ 12 , D C G H 3 4 5 tan 32° ≈ )
8
A
1 E
M
N
F
2
B
2 如图, △在ABC中, ∠ A为锐角,sina= ,AB+AC=6cm, 3 设AC=xcm, △ABC的面积为ycm2.
(1)求y关于x的函数关系式和自变量x的取值范围;
(2)何时△ABC的面积最大,最大面积为多少?
C
1 S= ab sina 2
A
B
5、如图,某人在山坡坡脚A处测得电视塔尖点 C的仰角为60o,沿山坡向上走到P处再测得点C 的仰角为45o,已知OA=100米,山坡坡度i=1:2, 且O,A,B在同一条直线上.求电视塔OC的高度 以及此人所在位置P点的铅直高度.(测倾器高 度忽略不计,结果保留根号形式)
达险坦 到勇的 光 于大在 辉 攀道科 的 登,学 顶 的只上 点 人有从 马 ,不没 克 才畏有 思 能艰平
(1)测量工具 (2)示意图如右图 (3)CD=a ,BD=b √ (4)AB = a + 3 3 b 实际应用能力提升 C D
M
30°
N
E B
测量对象:一铁塔的高度,测量工具皮尺一根教学 三角板一副高度为1.5米的测角仪(能测仰角和俯角的仪器) 一架。 请选择测量工具,并设计方案,写出必需的测量数据 (用字母表示),并画出测量图形,并用测量数据(用字母表 示)写出计算铁塔高度的算式。 A 方案2

解直角三角形4(方位角)

解直角三角形4(方位角)
⑵找到的直角三角形是否可解,若不可直接求解,利用题中
的数量关系,设x求解.
练习
1.小明骑自行车以15千米/小时的速度在公路上向 正北方向匀速行进,如图1,出发时,在B点他 观察到仓库A在他的北偏东30°处,骑行20分钟 后到达C点,发现此时这座仓库正好在他的东南
方向,则这座仓库到公路的距离为__1_.8__千
(A)北偏东20°方向上 (B)北偏东30°方向上 (C)北偏东40°方向上 (D)北偏西30°方向上
2.(2010·深圳中考)如图,一艘海轮 位于灯塔P的东北方向,距离灯塔
海里4 的0 A2处,它沿正南方向航行一
段时间后,到达位于灯塔P的南偏 东30°方向上的B处,则海轮行驶
的路程AB为___ _4_040海里3 (结
米.(参考数据: 3 ≈1.732,结果 保留两位有效数字)
练习2:如图所示,气象台测得台风中心在某港 口A的正东方向400公里处,向西北方向BD移动, 距台风中心300公里的范围内将受其影响,问港 口A是否会受到这次台风的影响?D北C NhomakorabeaA
45 °

B
练习3:正午10点整,一渔轮在小岛O的北偏东30 方向,距离等于10海里的A处,正以每小时10海里 的速度向南偏东60方向航行,那么渔轮到达小岛O 的正东方向是什么时间(精确到1分)?
大 一 寒 假 生 活 学习总 结 阳 光 明 媚 的周 末来听 活泼可 爱的倪 老师讲 课,寒 冷 的 冬 天 也 让人感 到生机 勃勃. 今 天 课 非 常 实用, 但是要 真正的 运用不 仅要天 赋 , 也 更 需 要时间 与实践 .我越来 越觉得 理科生 与文科 生在思 维,表 达,还 有对事 物 的 理 解 上 真的有 非常大 的区别 ,我要 做的是 更加了 解他们 的思维 方式, 用他们 能 迅 速 理 解 的方式 陈述问 题,不 然他们 会误解 或者根 本不理 解我到 底说的 什么。 然 后 呢 , 我 最大的 一个收 获是在 论证一 个问题 时在没 有充分 的了解 与认知 时不要 用 绝 对 的 话 语陈诉 问题, 这样会 适得其 反.最后 呢,我 学到了 一些销 售技巧 ,在销 售 时 要 关 注 顾客的 反应与 需求, 有时用 一些俏 皮的语 调介绍 产品会 有更好 的销售 效 果 , , 在 介绍产 品时要 先介绍 优点, 再提出 产品缺 点这样 顾客更 能接受 ,在销 售 时 一 定 要 常保持 微笑, 这样就 算遇到 特麻烦 的顾客 也不会 陷入僵 局,..在生活中 要 学 会 用 艺 术陶冶 自己, 一个有 内涵的 人更能 受到尊 重,生 活也更 有色彩 ......在上 课 期 间 , 我 特佩服 那个来 自川大 的东北 女孩, 一种不 考虑后 果的胆 大与自 信让人 欣 赏 . 每 次 的 课 程 都会 有不同 的感受 和心得 体会, 每次都 会有所 成长。 思维,

解直角三角形单元测试题4

解直角三角形单元测试题4

第十九章《解直角三角形》测试卷班级: 姓名: 学号: 成绩:一、选择题(每题3分,共21分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B.34 C.53 D.352. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A.21 B.33 C. 1 D.33.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形 4. 在△ABC 中,∠C =90°,53sin =A ,则=B tan ( ).A.53 B.54 C.43 D.345.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A .513 B.1213C .1013D .5126.如图6,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为 A .10米 B .15米 C .25米 D .30米7. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2∶3, 顶宽是3米,路基高是4米,则路基的下底宽是( ) A. 7米 B. 9米 C. 12米 D. 15米二、填空题(每题4分,共32分)8. 如图:P 是∠α的边OA 上一点,且P 点的坐标为(3,4), 则sin (900 - α)=_____________.9.已知直角三角形的两直角边的比为3:7,则最小角 的正弦值为_______.10. Rt △ABC 的两条边分别为5cm 和6cm ,它的周长是 cm.11. 已知△ABC 中,∠C =90°,tanA ∙tan50°=1,那么∠A 的度数是_______.12. 在Rt △ABC 中,∠C =90°,tan A =3,AC 等于10,则S △ABC 等于 . 13.在一艘船上看海岸上高42米的灯塔顶部的仰角为30度,船离海岸线 米.14. 在△ABC 中,∠ACB =900,CD ⊥AB 于D ,若AC =4,BD =7,则sinA = , tanB = .15.如图:有一个直角梯形零件ABCD 、AD ∥BC ,斜腰DC 的长为10cm , ∠D =120°,则该零件另一腰AB 的长是__________cm.三、计算题:(每题6分,共18分) 16. ︒+︒⋅︒30tan 45cos 45sin 17.︒⨯︒45cos 2260sin 2118. .tan30°cot60°+cos 230°-sin 245°tan45°30°图6四.解答题:(29分)19.已知△ABC中.∠C=Rt∠,AC=m,∠ BAC=α.(如图)求△ABC的面积.(用α的三角函数及m表示)(9分)20.雄伟壮观的“千年塔”屹立在海口市西海岸带状公园的“热带海洋世界”.在一次数学实践活动中,为了测量这座“千年塔”的高度,雯雯在离塔底139米的C处(C与塔底B在同一水平线上),用高1.4米的测角仪CD 测得塔项A的仰角α=43°(如图),求这座“千年塔”的高度AB(结果精确到0.1米).(参考数据:tan43°≈0.9325, cot43°≈1.0724)21.如图,河对岸有铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进14米到达D,在D处测得A的仰角为45°,求铁塔AB的高.(10分)附加题:22.如图,为了测量河流某一段的宽度,在河北岸选了一点A, 在河南岸选相距200米的B、C两点,分别测得∠ABC=60O,∠ACB=45O,求这段河的宽度.请你再设计一种测量河宽的可行方案.(10分)αBCAmB CABCDα。

1.4 解直角三角形(教案)-北师大版数九年级下册

1.4 解直角三角形(教案)-北师大版数九年级下册

第4节解直角三角形1.了解解直角三角形的概念,使学生理解直角三角形中五个元素的关系.2.经历解直角三角形的过程,掌握运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形的方法.1.在研究问题的过程中思考如何把实际问题转化为数学问题,进而把数学问题具体化.2.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和解决问题能力.1.在解决问题的过程中引导学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.2.通过获取成功的体验和克服困难的经历,增进学生学习数学的信心,养成学生良好的学习习惯.【重点】理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形中的未知元素.【难点】从已知条件出发,正确选用适当的边角关系或三角函数解题.【教师准备】多媒体课件.【学生准备】复习三角函数和勾股定理的相关知识.导入一:课件出示:在日常生活中,我们常常遇到与直角三角形有关的问题,知道直角三角形的边可以求出角,知道角也可以求出相应的边.如图所示,在Rt△ABC中共有几个元素?我们如何利用已知元素求出其他的元素呢?【师生活动】复习直角三角形的性质(两锐角互余和勾股定理)和三角函数的概念.【学生活动】通过独立思考和与同伴交流,分析出Rt△ABC中的6个元素,并尝试利用已知元素求未知元素.[设计意图]在学生分析直角三角形6个元素的过程中,学生自然而然地会想到直角三角形的相关性质,在复习旧知的同时,又为学习新知奠定了良好的基础.导入二:课件出示:如图所示,AC是电线杆AB的一根拉线,测得拉线AC=12m,AB=6m,你能求出拉线底端到电线杆底端的长度BC吗?能求出拉线AC与地面BC所成角的度数和拉线AC与电线杆AB所成角的度数吗?学生分析:可以利用勾股定理求拉线AC的长度,易知拉线与地面所成角为∠BCA,拉线与电线杆所成角为∠BAC,利用三角函数知识和计算器即可求出∠BCA和∠BAC的度数.【引入】这节课我们就综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数的知识探究直角三角形中的边和角的求解方法.[设计意图]通过生活中实际情境的引入,使学生对本节课的学习任务一目了然,学生在探究的过程中就可以抓住重点和难点.[过渡语]我们已经了解了直角三角形中6个元素分别是三条边和三个角,那么至少要知道几个元素,才可以求出其他元素呢?下面我们进行分类探究.【做一做】在Rt△ABC中,如果已知其中两边的长,你能求出这个三角形的其他元素吗?课件出示:(教材例1)在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,且a=,b=,求这个三角形的其他元素.思路一教师引导学生分析:1.直角三角形中已知两边可以利用定理求出第三条边.2.直角三角形中,已知两边可以利用求∠A(或∠B)的度数.3.再利用求∠B(或∠A)的度数.【师生活动】教师引导学生分析,得出解直角三角形的方法,理清解题思路.【学生活动】得出结论:1.勾股定理2.三角函数2.两锐角互余解:在Rt△ABC中,a2+b2=c2,a=,b=,∴c===2.在Rt△ABC中,sin B===,∴∠B=30°,∴∠A=60°.思路二分组探究,思考下面的问题:1.由两个已知条件a=,b=能不能求出其中的一个锐角?2.如何再求出另外一个锐角的度数?3.如何再求出第三条边的长【师生活动】学生先独立思考,然后小组讨论.教师巡视,及时发现问题,予以纠正.完成后各小组展示解题的方法和步骤,师生共同验证.解:在Rt△ABC中,a=,b=,∴tan A===,∴∠A=60°,∴∠B=30°.在Rt△ABC中,sin B=sin30°=,即=,∴c=2.【教师小结】解直角三角形的概念:由直角三角形中已知的元素,求出所有的未知元素的过程,叫做解直角三角形.[设计意图]通过对直角三角形6个元素的分析及对猜测的探究活动,自然而然地引出解直角三角形的概念,并让学生及时总结解题方法,加深对概念的理解.[知识拓展]已知直角三角形两条边求其他元素的方法:方法1:已知两条边的长度,可以先利用勾股定理求出第三边,然后利用锐角三角函数求出其中一个锐角,再根据直角三角形两锐角互余求出另外一个锐角.方法2:已知两条边的长度,可以先利用锐角三角函数求出其中一个锐角,然后根据直角三角形中两锐角互余求出另外一个锐角,再利用锐角三角函数求出第三条边.解:在Rt△ABC中,AC=12,AB=6,由勾股定理得BC=6.在Rt△ABC中,tan∠BCA===,∴∠BCA=60°,∴∠BAC=30°.∴拉线底端到电线杆底端的长度BC是6m,∠BCA和∠BAC的度数分别是60°和30°.[设计意图]通过对导入题的解答,加深学生对解直角三角形概念的理解,提高解题的综合能力.三角形的其他元素(边长精确到1).〔解析〕在直角三角形中可以利用两锐角互余求另外一个锐角的度数,然后利用与锐角∠B 和边b有关的三角函数先求出其中一条边a或c,再利用三角函数或勾股定理求出第三条边c或a.解:在Rt△ABC中,∠C=90°,∠B=25°,∴∠A=65°.∵sin B=,b=30,∴c==≈71.∵tan B=,b=30,∴a==≈64.【教师设疑】此题还有其他解法吗?【学生活动】学生相互交流他们的解法.[设计意图]通过对学习活动的探究,学生逐步掌握了解直角三角形所要具备的条件,并在探究的过程中及时总结归纳出解直角三角形的思路和方法,为后面的练习和应用打下了良好的基础.[知识拓展]已知直角三角形一条边和一个锐角求其他元素的方法:已知一个锐角的度数,先根据直角三角形两锐角互余求出另外一个锐角的度数;又知道一条边的长度,根据三角函数的定义可以求出另外两条边的长度;也可以先利用三角函数的定义求出其中一条边的长度,再利用三角函数或勾股定理求出第三条边的长度.在Rt△ABC中,如果已知两个锐角,可以解直角三角形吗?【学生活动】学生先独立判断,再分组讨论.学生小结:只知道角度是无法求出直角三角形的边长的.问题2只给出一条边长这一个条件,可以解直角三角形吗?学生小结:只给出一条边长,不能解直角三角形.【教师点评】解直角三角形必须满足的一个条件是已知“一条边”.【师生总结】解直角三角形需要满足的条件:在直角三角形的6个元素中,直角是已知元素,如果再知道一条边和第三个元素,那么这个三角形的所有元素就都可以确定下来.【教师提示】第三个元素既可以是角也可以是边.[知识拓展]解直角三角形的思路和方法:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,则有:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.(4)面积的不同表示法:S△ABC=ab=ch(h为斜边上的高).1.解直角三角形的概念:由直角三角形中已知的元素,求出所有未知元素的过程,叫做解直角三角形.2.解直角三角形的类型:(1)已知直角三角形两条边求其他元素.(2)已知直角三角形一条边和一个锐角求其他元素.3.解直角三角形需要满足的条件:除直角外,再知道一条边和第三个元素,就可以解直角三角形.1.如图所示的是教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=,则边BC的长为()A.5cmB.10cmC.20cmD.30cm解析:在直角三角形ABC中,根据三角函数定义可知tan∠BAC=,∵AC=30cm,tan∠BAC=,∴BC=AC·tan∠BAC=30×=10(cm).故选B.2.如图所示,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°·sin54°D.点A到OC的距离为cos36°·sin54°解析:根据图形得出点B到AO的距离是指BO的长,根据锐角三角函数定义得出BO=AB sin36°,即可判断A,B错误;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角函数定义得出AD=AO sin36°,AO=AB·sin54°,所以AD=sin36°·sin54°,即可判断C正确,D错误.故选C.3.如图所示,已知在Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC=.解析:∵在Rt△ABC中,cos B==,∴sin B==,tan B==.∵在Rt△ABD中,AD=4,∴AB===.∵tan B==,∴AC=AB tan B=×=5.故填5.4.如图所示,在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.解析:如图所示,过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=2BD=6.故填6.5.如图所示,在Rt△ABC中,∠C=90°,AB=10,cos A=,求BC的长和tan B的值.解:在Rt△ABC中,∠C=90°,AB=10,cos A===,∴AC=4,根据勾股定理,得BC==6,∴tan B===.4解直角三角形解直角三角形:一、教材作业【必做题】教材第17页习题1.5第1,2题.【选做题】教材第18页习题1.5第3,4题.二、课后作业【基础巩固】1.在直角三角形ABC中,已知∠C=90°,∠A=50°,BC=5,则AC等于()A.3sin50°B.3sin40°C.3tan50°D.3tan40°2.如图所示,已知在Rt△ABC中,∠C=90°,AC=4,tan A=,则AB的长是()A.2B.8C.2D.43.(2015·桂林中考)如图所示,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.4.要用8m长的梯子爬到4m高的墙上,则梯子与地面的夹角为度.【能力提升】5.如图所示的是一张简易活动餐桌,测得OA=OB=30cm,OC=OD=50cm,B点和O点是固定的.为了调节餐桌高矮,A点有3处固定点,分别使∠OAB为30°,45°,60°,则这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)()A.40cmB.40cmC.30cmD.30cm6.如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是.7.(2015·湖北中考)如图所示,AD是△ABC的中线,tan B=,cos C=,AC=,求:(1)BC的长;(2)sin∠ADC的值.8.张大爷家有一块三角形土地如图所示,测得∠A=30°,∠B=45°,BC=20m.请你帮助张大爷计算这块土地有多少平方米.9.如图所示,沿AC方向开山修一条公路,为了加快施工速度,要在小山的另一边寻找点E同时施工.从AC上的一点B取∠ABD=127°,沿BD的方向前进,取∠BDE=37°,测得BD=520m,并且AC,BD和DE在同一平面内.(1)施工点E离D多远正好能使A,C,E成一条直线(结果保留整数)?(2)在(1)的条件下,若BC=80m,求公路段CE的长(结果保留整数).(参考数据:sin37°≈0.60,cos 37°≈0.80,tan37°≈0.75)【拓展探究】10.(2014·宁波中考)如图所示,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A,B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?(参考数据:sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案与解析】1.D(解析:∵在直角三角形ABC中,∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.∵tanB=,∴AC=BC·tan B=3tan40°.故选D.)2.C(解析:在Rt△ABC中,∵∠C=90°,∴tan A=.∵AC=4,tan A=,∴BC=AC·tan A=2,∴AB===2.故选C.)3.(解析:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°,∴∠A=∠BCD,∴tan∠BCD=tanA===.故填.)4.60(解析:要用8m长的梯子爬到4m高的墙上,梯子、地面和墙正好构成直角三角形,∴梯子与地面的夹角的正弦值为=.∵sin60°=,∴梯子与地面的夹角为60°.故填60.)5.B(解析:过点D作DE⊥AB于点E,易知∠OAB=30°时,桌面离地面最低,∴DE的长即为最低长度.∵OA=OB=30cm,OC=OD=50cm,∴AD=OA+OD=80cm.在Rt△ADE中,∵∠OAB=30°,AD=80cm,∴DE=AD=40cm.故选B.)6.(解析:过点A作AD⊥BC,∵在△ABC中,cos B=,sin C=,AC=5,∴cos B==,∴∠B=45°.∵sinC===,∴AD=3,∴在Rt△ADC中,CD==4,∴在等腰直角三角形ADB中,BD=AD=3,则△ABC的面积是×BC×AD=×(3+4)×3=.故填.)7.解:过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°.在Rt△ACE中,CE=AC·cos C=1,∴AE=CE=1.在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4.(2)由(1)知BC=4,∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD-CE=1.∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.8.解:如图所示,过点C作CD⊥AB于D.易知CD=BD=BC·sin=AB·CD=×10(+)×10≈273.2(m2).答:这块土地约45°=20×=10,∴AD===10,∴AB=AD+BD=10(+),∴S△ABC有273.2m2.9.解:(1)若使A,C,E成一条直线,则需∠ABD是△BDE的外角,∴∠BED=∠ABD-∠D=127°-37°=90°,∴DE=BD·cos37°≈520×0.80=416(m),∴施工点E离D距离约为416m时,正好能使A,C,E成一条直线.(2)由(1)得在Rt△BED中,∠BED=90°,∵∠D=37°,∴BE=BD·sin37°≈520×0.60=312(m).∵BC=80m,∴CE=BE-BC≈312-80=232(m),∴公路段CE的长约为232m.10.解:(1)如图所示,过点C作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈10×0.42=4.2(km),AH=AC·cos∠CAB=AC·cos25°≈10×0.91=9.1(km),在Rt△BCH中,BH=CH÷tan ∠CBA≈4.2÷tan37°≈4.2÷0.75=5.6(km),∴AB=AH+BH≈9.1+5.6=14.7(km).故改直的公路AB的长约为14.7km.(2)在Rt△BCH中,BC=CH÷sin∠CBA≈4.2÷sin37°≈4.2÷0.60=7(km),则AC+BC-AB≈10+7-14.7=2.3(km).答:公路改直后比原来缩短了约2.3km.为使学生迅速掌握本节课的知识,上课开始就对解直角三角形所用到的知识点:直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系等知识点进行了复习回顾,因为合理选用这些关系是正确、迅速解直角三角形的关键.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,在处理例题时,首先,应让学生独立完成,培养学生分析问题、解决问题的能力,同时渗透数形结合思想.本节课力求给学生更多自主探索的时间,让其在宽松和谐的氛围中学习,使他们学得更主动、更轻松,力求在探索知识的过程中培养学生探索能力、创新精神、合作精神,激发学生学习数学的积极性、主动性.同时,在学生选择解直角三角形的诸多方法的过程中,鼓励学生通过多种解法去解答.在选用合适的三角函数解决问题时,要引导学生总结出分析问题的方法,巧妙联系已知和未知之间的函数关系,选取合适的三角函数求解.再教时,增加解实际问题中直角三角形的例题的练习,因为学生对把实际问题转化成数学问题的能力还不太强.随堂练习(教材第17页)(1)c=4,∠A≈27°,∠B≈63°.(2)a=,c=,∠A=30°.(3)a=10,b=10,∠B=30°.习题1.5(教材第17页)1.(1)b=19,∠A=45°,∠B=45°.(2)c=12,∠A=30°,∠B=60°.2.(1)a=10,b=10,∠B=45°.(2)b=12,c=24,∠A=60°.3.解:tan∠ACD==,∴∠ACD≈27.5°,∠ACB=2∠ACD≈2×27.5°=55°.4.解:(1)墙高=6sin75°≈6×0.966≈5.8(m).(2)cosα=,解得α≈66°.∵50°<66°<75°,∴此时人能够安全使用这个梯子.本节课学生学习的重点是解直角三角形的方法,所以理解解直角三角形的概念是掌握解直角三角形方法的前提,而熟练运用勾股定理、两锐角互余以及锐角三角函数的定义则是解直角三角形的关键,学生要做好复习和预习工作,把握好各个元素之间的关系.此外,在没有直角三角形的图形中,通过作垂线或其他辅助线构造直角三角形也是学生要重点掌握的能力和技巧.解非直角三角形时,构造直角三角形的方法:(1)利用作高构造直角三角形,如下图所示.(2)利用勾股定理或逆定理构造直角三角形,如下图所示.(3)利用已知角构造直角三角形,如下图所示.。

中考数学解直角三角形

中考数学解直角三角形

中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。

二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。

2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。

3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。

4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。

解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。

下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。

一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。

一般题型为:已知一个锐角,求其它锐角的三角函数值。

例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。

解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。

二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。

一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。

例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。

解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。

解直角三角形的应用4

解直角三角形的应用4
解直角三角形的应用
学习目标 1、了解“横断面”“坡度”“坡角” 等概念, h 掌握关系式i= =tanα
l
2.熟练运用解直角三角形的方法来 解决生活实践中的问题

考题再现
1、 (2007旅顺)一个钢球沿坡角31 °
的斜坡向上滚动了5米,此时钢球距地面的
高度是(单位:米)(
B

5米 310
A. 5cos31 °
坡度
AB的坡度i AB
∠α叫坡角
方向角
h l
OA:北偏东30° OB:西南方向 OC:正东方向 OD:北偏西70°

坡度是坡角的正切
仰角A水平线AD h α l BB
西
30° 70°
俯角
O
45° 南
C 东
C. 5tan31 °
B. 5sin31 °
D. 5cot31 °
2、一名运动员从坡度为1:5的上坡上滑下, 滑行的距离是150米,那么他下降的高度是多少?
小华的房间在二楼,从客厅到他 房间的斜护栏长8 m, (1)若倾斜角为30 °,则二楼的高 度(相对于客厅)是__________m; 4
(2)若坡角为 ,则二楼的高度 (相对于客厅)是__________m; 8sin
(3)若坡度为 1 : 3 ,则二楼的高 度(相对于客厅)是________m. 4
h l 30 °

3、如图,拦水坝的横截面为梯形ABCD。坝高BE=6m, CD= 6 2 m,AE= 6 3 m. 求坡角∠A和∠D。
F
还有其他解法吗?
仰角和俯角
从下向上看,视线与水平线的 夹角叫做仰角; 从上往下看,视线与水平线的 夹角叫做俯角. 铅 垂 线

人教新课标版初中九下28.2解直角三角形(4)ppt课件

人教新课标版初中九下28.2解直角三角形(4)ppt课件

3 10 ,那 么 其 正 切 值 为( )。 10 1 10 3 10 A、 B、 C、 D、 3 3 10 10 4、某 人 从 地 面 沿 着 坡 度 i= 1: 3 的 山 坡 走 了 100 米 ,这 时 他 离
3、如 果 坡 角 的 余 弦 值 为 地面的高度是 米。 5、 某 铁 路 路 基 的 横 断 面 是 等 腰 梯 形 , 其 上 底 为 10m, 下 底 为 13.6m, 高 1.2m, 则 腰 面 坡 角 的 正 切 值 为 。
28.2 解直角三角形(4)

电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习

学习方式说明 按顺序学习,可利用鼠标控制进程。 从右侧或上方导航栏中选择内容,进 行学习。 电子教案可查看配套教案,课后练习 可查看配套练习(含答案)。
目标呈现
把坡面与水平面的夹角α叫做坡角.
(2)利用解直角三角形的知识解决实际问题的 时常用的“化整为零,积零为整” 的方法“化 曲为直,以直代曲”。
复习引入 探索新知 反馈练习 拓展提高 小结作业
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
作业
课本第96页习题28.2
F
A

B
l α h
复习引入 探索新知 反馈练习 拓展提高 小结作业
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
课本第95页练习第2题
补充练习: 1、 一 段 坡 面 的 坡 角 为 60° 坡 度 i=_______,坡 角 ______度 . ,则 2、 如 图 , •燕 尾 槽 的 外 口 宽 AD=•90mm, •深 为 70mm, •燕 尾 角 为 60•°, •则 里 口 宽 为 ________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一套茶具胜古董,摆在桌上,能闻茶味,可听草木之声。相聚若说“见面吹风会”,那多枯燥没趣味,所以,都冠以“茶话会”,有茶才有话题。早年“援蒙”的老黄叔说,奶无茶不好喝,必得奶 茶才下饭。老宋口味刁,每年从南国邮寄茶油,说小菜几碟,无茶油就无味道。油茶也拉到“茶列”,真是有趣。口味之偏,也是特色。食之趣,在这几年被提上普通百姓的议事日程,日子好了才有资 格谈茶说草。一日,老林拿来一块茶砖,大家并不陌生,可大家都说错了,这给了老林卖弄的机会。 申慱手机版登陆
他在半空学着绣工的手型,做飞针走线状,写出一个“绣”字,告诉我们这是“绣茶”。
说起绣花,大家知道,古代大家闺秀一定要会针线活。绣茶,说白了,就是在茶砖上绣花,这是由品到赏的转变。据说,绣茶由宋代专门掌握这项技术的宫女用金箔剪成龙凤和花草图案贴在北苑贡 茶上,然后供大家观赏的一种玩茶艺术。绣茶和斗茶一样,也是宋代茶俗,只不过绣茶是宋代皇亲贵族内部流行的玩法,几乎不对外流传,所以自然没法像斗茶那样流行。
说到绣茶,就要提及一个人——蔡襄,蔡襄当时在福建建安为官,当地盛产研膏茶,他根据陆羽的《茶经》,改进研膏茶的制茶技术,大大提升了研膏茶的品质,并取名为“小龙凤团茶”。茶饼圆 润,绣花其上,精致无比。

相关文档
最新文档