《信息论与编码》课后答案
(完整版)信息论与编码-曹雪虹-课后习题答案
《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
《信息论与编码》傅祖芸_赵建中_课后答案
⋅ 第二章课后习题【2.1】设有 12 枚同值硬币,其中有一枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现用比较天平左右两边轻重的方法来测量。
为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为 P = 112 ; “假币的重量比真的轻,或重”该事件发生的概率为 P =1 2; 为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I = log12 + log 2 = log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为 P = 平每一次消除的不确定性为 I = log 3 比特因此,必须称的次数为13,因此天I 1 I 2log 24 log 3 H 2.9 次因此,至少需称 3 次。
【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。
【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为 2”有一种可能,即两骰子的点数各为 1,由于二者是独立的,因此该种情况发生的概率为 P = 1 1 6 6 136,该事件的信息量为:⋅ ⋅ 5 =⋅ ⋅ 2 =I = log 36 H 5.17 比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和 2,概率为 P = 1 1 6 6 536 ,因此该事件的信息量为:36 I = logH 2.85 比特 5“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为 P =1 1 6 6 118 , 因此该事件的信息量为:I = log18 H 4.17 比特【2.3】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P = 17,因此此时从答案中获得的信息量为I = log 7 = 2.807 比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为 1,此时获得的信息量为 0 比特。
信息论与编码陈运主编答案完整版
p x x( i1 i3 )log p x( i3 / xi1)
i1 i2 i3
i1 i3
∑∑∑ ∑∑∑ = −
p x x x( i1 i2i3 )log p x( i3 / x xi1 i2 ) +
p x x x( i1 i2i3 )log p x( i3 / xi1)
i1
i2 i3 i1 i2 i3 p x( i3 / xi1)
( 1)
⎧p e( 1 ) = p e( 2 ) = p e( 3 )
⎨
⎩p e( 1 ) + p e( 2 ) + p e( 3 ) =1 ⎧p e( 1 ) =1/3 ⎪ ⎨p e( 2 ) =1/3 ⎪⎩p e( 3 ) =1/3
⎧p x( 1 ) = p e( 1 ) (p x1 /e1 ) + p e( 2 ) (p x1 /e2 ) = p p e⋅( 1 ) + p p e⋅( 2 ) = (p + p)/3 =1/3 ⎪⎪ ⎨p x( 2 ) = p e( 2 ) (p x2 /e2 ) + p e( 3 ) (p x2 /e3 ) =p p e⋅( 2 ) + p p e⋅( 3 ) = (p + p)/3 =1/3
四进制脉冲的平均信息量 H X( 1) = logn = log4 = 2 bit symbol/ 八进制脉冲的平均信息量
H X( 2) = logn = log8 = 3 bit symbol/
二进制脉冲的平均信息量 H X( 0) = logn = log2 =1 bit symbol/
所以: 四进制、八进制脉冲所含信息量分别是二进制脉冲信息量的 2 倍和 3 倍。
2.9 设有一个信源,它产生 0,1 序列的信息。它在任意时间而且不论以前发生过什么符号, 均按 P(0) = 0.4,P(1) = 0.6 的概率发出符号。 (1) 试问这个信源是否是平稳的? (2) 试计算 H(X2), H(X3/X1X2)及 H∞; (3) 试计算 H(X4)并写出 X4 信源中可能有的所有符号。
信息论与编码课后答案
一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =,(0|11)p =,(1|00)p =,(1|11)p =,(0|01)p =,(0|10)p =,(1|01)p =,(1|10)p =。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==u 1u 2u 31/21/21/32/32/31/3于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:000110110.80.20.50.50.50.50.20.8设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩设有一离散无记忆信源,其概率空间为123401233/81/41/41/8X x x x x P ====⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭(1)求每个符号的自信息量(2)信源发出一消息符号序列为{202 120 130 213 001 203 210 110 321 010 021 032 011 223 210},求该序列的自信息量和平均每个符号携带的信息量 解:122118()log log 1.415()3I x bit p x === 同理可以求得233()2,()2,()3I x bit I x bit I x bit ===因为信源无记忆,所以此消息序列的信息量就等于该序列中各个符号的信息量之和 就有:123414()13()12()6()87.81I I x I x I x I x bit =+++= 平均每个符号携带的信息量为87.811.9545=bit/符号有一个可以旋转的圆盘,盘面上被均匀的分成38份,用1,…,38的数字标示,其中有两份涂绿色,18份涂红色,18份涂黑色,圆盘停转后,盘面上的指针指向某一数字和颜色。
信息论与编码陈运主编答案完整版
2.10 一阶马尔可夫信源的状态图如下图所示。信源 X 的符号集为{0, 1, 2}。 (1) 求平稳后信源的概率分布; (2) 求信源的熵 H∞。
解: (1)
⎧p e( 1 ) = p e p e( 1 ) ( 1 /e1 ) + p e( 2 ) (p e1 /e2 ) ⎪ ⎨p e( 2 ) = p e( 2 ) (p e2 /e2 ) + p e( 3 ) (p e2 /e3 )
i
)
p x( )log p x( )
信源 = 1
⎡ X ⎤ ⎧ x 2.6 设 x2
x3 x4
⎢P X( )⎥⎦ ⎨⎩0.2 0.19 0.18 0.17 0.16
⎣
H(X) > log6 不满足信源熵的极值性。
解:
x5 0.17⎬⎭
x6 ⎫ ,求这个信源的熵,并解释为什么
HX
i
px px
=−(0.2log0.2 + 0.19log0.19 + 0.18log0.18+ 0.17log0.17 + 0.16log0.16 + 0.17log0.17) = 2.657 bit symbol/ H X( ) > log 62 = 2.585
p x x( i1 i3 )log p x( i3 / xi1)
i1 i2 i3
i1 i3
∑∑∑ ∑∑∑ = −
p x x x( i1 i2i3 )log p x( i3 / x xi1 i2 ) +
p x x x( i1 i2i3 )log p x( i3 / xi1)
i1
i2 i3 i1 i2 i3 p x( i3 / xi1)
信息论与编码陈运主编答案完整版
p x( i3 / xi1) 1 0 时等式等等当 − = p x( i3 / x xi1 2i )
⇒ p x( i3 / xi1) = p x( i3 / x xi1 2i ) ⇒ p x x( i1 2i ) (p xi3 / xi1) = p x( i3 / x xi1 2i ) (p x xi1 2i ) ⇒ p x( i1) (p xi2 / xi1) (p xi3 / xi1) = p x x x( i1 2 3i i ) ⇒ p x( i2 / xi1) (p xi3 / xi1) = p x x( i2 3i / xi1) ∴等式等等的等等是 X1, X2, X3 是马氏链_
0.25
0.75
设随机变量 Y 代表女孩子身高
Y
y1(身高>160cm)
P(Y)
0.5
ห้องสมุดไป่ตู้
y2(身高<160cm) 0.5
已知:在女大学生中有 75%是身高 160 厘米以上的
即: p y( 1 / x1) = 0.75 bit
求:身高 160 厘米以上的某女孩是大学生的信息量
p x p y( 1) ( 1 / x1 ) log 0.25×0.75 =1.415 bit 即:I
∑∑∑ =
i1 i2
i3 p x x x( i1 i2 i3 )log p x( i3 / x xi1 i2 )
∑∑∑ ≤
i1 i2
⎛ p x( i3 / xi1) 1⎞⎟⎟log2 e i3 p x x x( i1 i2 i3 )⎜⎜⎝ p x( i3 / x xi1 i2 ) − ⎠
∑∑∑ ∑∑∑ = ⎜⎛
⇒ H X( 2 ) ≥ H X( 2
/ X1 ) I X( 3;X X1 2 ) ≥ 0
《信息论与编码》课后习题答案
《信息论与编码》课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。
信息论与编码 课后习题答案
信息论与编码课后习题答案信息论与编码课后习题答案[信息论与编码]课后习题答案1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
3、按照信息的性质,可以把信息分为语法信息、语义信息和语用信息。
4、按照信息的地位,可以把信息分成客观信息和主观信息。
5、人们研究信息论的目的就是为了高效率、可信、安全地互换和利用各种各样的信息。
6、信息的是建立信息论的基础。
8、就是香农信息论最基本最重要的概念。
9、事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号线性信源通常用随机变量叙述,而多符号线性信源通常用随机矢量叙述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位通常存有比特、奈特和哈特。
13、必然事件的自信息是。
14、不可能将事件的自信息量就是15、两个相互独立的随机变量的联合自信息量等于两个自信息量之和。
16、数据处理定理:当消息经过多级处置后,随着处理器数目的激增,输出消息与输入消息之间的平均值互信息量趋向变大。
17、离散平稳无记忆信源x的n次扩展信源的熵等于离散信源x的熵的。
limh(xn/x1x2xn1)h n18、线性稳定存有记忆信源的音速熵,。
19、对于n元m阶马尔可夫信源,其状态空间共有m个不同的状态。
20、一维已连续随即变量x在[a,b]。
1log22ep21、平均功率为p的高斯分布的已连续信源,其信源熵,hc(x)=2。
22、对于限峰值功率的n维连续信源,当概率密度均匀分布时连续信源熵具有最大值。
23、对于减半平均功率的一维已连续信源,当概率密度24、对于均值为0,平均功率受限的连续信源,信源的冗余度决定于平均功率的限定值p和信源的熵功率p25、若一线性并无记忆信源的信源熵h(x)等同于2.5,对信源展开相切的并无杂讯二进制编码,则编码长度至少为。
信息论与编码-曹雪虹-课后习题答案
《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。
(完整版)信息论与编码-曹雪虹-课后习题答案
(完整版)信息论与编码-曹雪虹-课后习题答案《信息论与编码》-曹雪虹-课后习题答案第⼆章2.1⼀个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。
解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ?? ?= ?设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =??++=?得1231132231231112331223231W W W W W W W W W W W W ?++=+==++=?计算可得1231025925625W W W ?==?=2.2 由符号集{0,1}组成的⼆阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。
画出状态图,并计算各状态的稳态概率。
解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10) (01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ?? ?=设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ===??∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=??+=??+=??+=?+++=?? 计算得到12345141717514W W W W ?=??===2.3 同时掷出两个正常的骰⼦,也就是各⾯呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的⾃信息; (2) “两个1同时出现”这事件的⾃信息; (3) 两个点数的各种组合(⽆序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的⼦集)的熵;(5) 两个点数中⾄少有⼀个是1的⾃信息量。
信息论与编码习题参考答案(全)
111
(1)在W4=011中,接到第一个码字“0”后获得关于a4的信息量I(a4;0);
(2)在收到“0”的前提下,从第二个码字符号“1”中获取关于a4的信息量I(a4;1/0);
(3)在收到“01”的前提下,从第三个码字符号“1”中获取关于a4的信息量I(a4;1/01);
(4)从码字W4=011中获取关于a4的信息量I(a4;011)。
其中N=2FT,б2X是信号的方差(均值为零),б2N是噪声的方差(均值为零).
再证:单位时间的最大信息传输速率
信息单位/秒
(证明详见p293-p297)
5.12设加性高斯白噪声信道中,信道带宽3kHz,又设{(信号功率+噪声功率)/噪声功率}=10dB.试计算改信道的最大信息传输速率Ct.
解:
5.13在图片传输中,每帧约有2.25×106个像素,为了能很好的重现图像,需分16个量度电平,并假设量度电平等概率分布,试计算每分钟传输一帧图片所需信道的带宽(信噪功率比为30dB).
(2)求信源的极限熵H∞;
(3)求当p=0,p=1时的信息熵,并作出解释。
解:
3.10设某马尔柯夫信源的状态集合S:{S1S2S3},符号集X:{α1α2α3}。在某状态Si(i=1,2,3)下发发符号αk(k=1,2,3)的概率p(αk/Si) (i=1,2,3; k=1,2,3)标在相应的线段旁,如下图所示.
证明:
3.5试证明:对于有限齐次马氏链,如果存在一个正整数n0≥1,对于一切i,j=1,2,…,r,都有pij(n0)>0,则对每个j=1,2,…,r都存在状态极限概率:
(证明详见:p171~175)
3.6设某齐次马氏链的第一步转移概率矩阵为:
信息论与编码课后习题答案
1/2 W1+1/3W2 +1/3W3 = W1 1/2 W1+2/3W3 = W2 2/3W2 =W3
W1 +W2 +W3=1
32 2011/12/30
得:
W1=2/5;W2 =9/25;W3=6/25
33 2011/12/30
2-27
解: 0.8W1+0.5W3=W1 0.2W1+0.5W3=W2 0.5W2+0.2W4=W3 0.5W2+0.8W4=W4 W1+W2+W3+W4=1
2-20
解: (1)已知 所以
1 P x ( x) 6
1 H 0 ( X ) 6 log 6dx log 6 2.58 3
26 2011/12/30
3
(2 )
已知
1 Px ( x) 10
所以
1 H 0 ( X ) 10 log 10dx 3.322 5
27 2011/12/30
i i i
得:随意取出一球时,所需要的信息量为 (1 ) P(红)= P(白)=1/2
H(X)= log 2 log 2
1 2 1 2 1 2 1 2
= 1比特
3 2011/12/30
(2)P(白)= 1/100 P(红)= 99/100 所以 1 H(X)= log 2
100
1 99 99 log 2 100 100 100
41 2011/12/30
10 2011/12/30
2-7
解: I(2)=log2=1 I(4)=log4=2 I(8)=log8=3
11 2011/12/30
2-8
信息论与编码习题参考答案(全)
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码课后习题答案
1. 有一个马尔可夫信源,已知p(x 1|x 1)=2/3,p(x 2|x 1)=1/3,p(x 1|x 2)=1,p(x 2|x 2)=0,试画出该信源的香农线图,并求出信源熵。
解:该信源的香农线图为:1/3○ ○2/3 (x 1) 1 (x 2)在计算信源熵之前,先用转移概率求稳定状态下二个状态x 1和 x 2 的概率)(1x p 和)(2x p 立方程:)()()(1111x p x x p x p =+)()(221x p x x p=)()(2132x p x p +)()()(1122x p x x p x p =+)()(222x p x x p}=)(0)(2131x p x p +)()(21x p x p +=1 得431)(=x p 412)(=x p马尔可夫信源熵H = ∑∑-IJi j i jix x p x xp x p )(log )()( 得 H=符号2.设有一个无记忆信源发出符号A 和B ,已知4341)(.)(==B p A p 。
求:①计算该信源熵;②设该信源改为发出二重符号序列消息的信源,采用费诺编码方法,求其平均信息传输速率; ③又设该信源改为发三重序列消息的信源,采用霍夫曼编码方法,求其平均信息传输速率。
解:①∑-=Xiix p x p X H )(log )()( = bit/符号②发出二重符号序列消息的信源,发出四种消息的概率分别为 |1614141)(=⨯=AA p 1634341)(=⨯=AB p1634143)(=⨯=BA p 1694343)(=⨯=BB p用费诺编码方法 代码组 b i BB 0 1 BA 10 2 AB 110 3 AA 111 3无记忆信源 624.1)(2)(2==X H X H bit/双符号 平均代码组长度 2B = bit/双符号BX H R )(22== bit/码元时间—③三重符号序列消息有8个,它们的概率分别为641)(=AAA p 643)(=AAB p 643)(=BAA p 643)(=ABA p 649)(=BBA p 649)(=BAB p 649)(=ABB p 6427)(=BBB p用霍夫曼编码方法 代码组 b iBBB 64270 0 1 BBA 649 0 )(6419 1 110 3BAB 649 1 )(6418 )(644 1 101 3ABB 649 0 0 100 3AAB 6431 )(6461 11111 5 BAA643 0 1 11110 5,ABA643 1 )(6440 11101 5 AAA641 0 11100 5)(3)(3X H X H == bit/三重符号序列 3B =码元/三重符号序列3R =BX H )(3= bit/码元时间3.已知符号集合{ 321,,x x x }为无限离散消息集合,它们的出现概率分别为 211)(=x p ,412)(=x p 813)(=x p ···ii x p 21)(=···求: ① 用香农编码方法写出各个符号消息的码字(代码组); ② 计算码字的平均信息传输速率; ③ 计算信源编码效率。
信息论与编码-曹雪虹-课后习题答案
(5) 两个点数中至少有一个是1的自信息量。
解:
(1)
(2)
(3)
两个点数的排列如下:
11
12
13
14
15
16
21
22
23
24
25
26
31
32
33
34
35
36
41
42
43
44
45
46
51
52
53
54
55
56
61
62
63
64
65
66
共有21种组合:
(2)求此信源的熵
(3)近似认为此信源为无记忆时,符号的概率分布为平稳分布。求近似信源的熵H(X)并与 进行比较
解:根据香农线图,列出转移概率距阵
令状态0,1,2平稳后的概率分布分别为W1,W2,W3
得到 计算得到
由齐次遍历可得
符号 由最大熵定理可知 存在极大值
或者也可以通过下面的方法得出存在极大值:
同理可得
=1.5-0.5=1bit/符号
表示在已做Y1的情况下,再做Y2而多得到的关于X的信息量
欢迎下载!
第三章
3.1 设二元对称信道的传递矩阵为
(1) 若P(0)= 3/4,P(1)= 1/4,求H(X), H(X/Y), H(Y/X)和I(X;Y);
(2) 求该信道的信道容量及其达到信道容量时的输入概率分布;
又 所以 当p=2/3时
0<p<2/3时
2/3<p<1时
所以当p=2/3时 存在极大值,且 符号
所以
信息论与编码习题参考答案(全)
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码-曹雪虹-课后习题答案
设随机变量X代表女孩子学历
X
x1(是大学生)
x2(不是大学生)
P(X)
0.25
0.75
设随机变量Y代表女孩子身高
Y
y1(身高>160cm)
y2(身高<160cm)
P(Y)
0.5
0.5
已知:在女大学生中有75%是身高160厘米以上的
即:
求:身高160厘米以上的某女孩是大学生的信息量
即:
2.6 掷两颗骰子,当其向上的面的小圆点之和是3时,该消息包含的信息量是多少?当小圆点之和是7时,该消息所包含的信息量又是多少?
那么
=1.209bit/符号
X2X3的联合概率分布为
1
2
3
1
7/24
7/48
7/48
2
5/36
0
5/12
3
5/36
5/12
0
那么
=1.26bit/符号
/符号
所以平均符号熵 /符号
(2)设a1,a2,a3稳定后的概率分布分别为W1,W2,W3,转移概率距阵为
由 得到 计算得到
又满足不可约性和非周期性
/符号
(3) bit/符号
2.12 两个实验X和Y,X={x1x2x3},Y={y1y2y3},l联合概率 为
(1)如果有人告诉你X和Y的实验结果,你得到的平均信息量是多少?
(2)如果有人告诉你Y的实验结果,你得到的平均信息量是多少?
(3)在已知Y实验结果的情况下,告诉你X的实验结果,你得到的平均信息量是多少?
(1)如果仅对颜色感兴趣,则计算平均不确定度
(2)如果仅对颜色和数字感兴趣,则计算平均不确定度
(3)如果颜色已知时,则计算条件熵
(完整版)信息论与编码习题参考答案
1.6为了使电视图象获得良好的清晰度和规定的对比度,需要用5×105个像素和10个不同的亮度电平,并设每秒要传送30帧图象,所有的像素是独立的,且所有亮度电平等概出现。
求传输此图象所需要的信息率(bit/s )。
解:bit/s 104.98310661.130)/)(()/(R bit/frame10661.1322.3105)(H 105)(H bit/pels322.310log )(log )()(H 7665051010⨯=⨯⨯=⨯=∴⨯=⨯⨯=⨯⨯====∑=frame bit X H s frame r x X a p a p x i i i 所需信息速率为:每帧图像的熵是:每个像素的熵是:,由熵的极值性:由于亮度电平等概出现1.7设某彩电系统,除了满足对于黑白电视系统的上述要求外,还必须有30个不同的色彩度。
试证明传输这种彩电系统的信息率要比黑白系统的信息率大2.5倍左右。
证:.5.2,,5.25.2477.210log 300log )(H )(H pels/bit 300log )(log )()(H bit 3001030,10,,300130011倍左右比黑白电视系统高彩色电视系统信息率要图形所以传输相同的倍作用大信息量比黑白电视系统彩色电视系统每个像素每个像素的熵是:量化所以每个像素需要用个亮度每个色彩度需要求下在满足黑白电视系统要个不同色彩度增加∴≈====∴=⨯∑=x x b p b p x i i i1.8每帧电视图像可以认为是由3×105个像素组成,所以像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概出现。
问每帧图像含有多少信息量?若现在有一个广播员,在约10000个汉字中选1000个字来口述这一电视图像,试问若要恰当地描述此图像,广播员在口述中至少需要多少汉字? 解:个汉字最少需要数描述一帧图像需要汉字每个汉字所包含信息量每个汉字所出现概率每帧图象所含信息量55665510322.6/10322.61.0log 101.2)()()()(,log H(c):1.0100001000symble /bit 101.2128log 103)(103)(:⨯∴⨯=-⨯=≥≤-=∴==⨯=⨯⨯=⨯⨯=frame c H X H n c nH X H n p p x H X H1.9给定一个概率分布),...,,(21n p p p 和一个整数m ,nm ≤≤0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章课后习题【2.1】设有12 枚同值硬币,其中有一枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现用比较天平左右两边轻重的方法来测量。
为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P =112;“假币的重量比真的轻,或重”该事件发生的概率为P = 12;为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I = log12 + log 2 = log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P = 平每一次消除的不确定性为I = log 3 比特因此,必须称的次数为13,因此天I 1 I 2 log 24log 3H 2.9 次因此,至少需称3 次。
【延伸】如何测量?分 3 堆,每堆4 枚,经过 3 次测量能否测出哪一枚为假币。
【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“两骰子面朝上点数是 3 和4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为2”有一种可能,即两骰子的点数各为1,由于二者是独立的,因此该种情况发生的概率为P = 1 16 6136,该事件的信息量为:⋅⋅ ⋅ 5 =⋅ ⋅ 2 =I = log 36 H 5.17 比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和 2,概率为 P = 1 1 6 6 536 ,因此该事件的信息量为:36 I = logH 2.85 比特 5“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为 P =1 1 6 6 118 , 因此该事件的信息量为:I = log18 H 4.17 比特【2.3】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P = 17,因此此时从答案中获得的信息量为I = log 7 = 2.807 比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为 1,此时获得的信息量为 0 比特。
【2.4】居住某地区的女孩中有 25%是大学生,在女大学生中有 75%是身高 1.6 米以上的,而女孩中身高 1.6 米以上的占总数一半。
假如我们得知“身高 1.6 米以上的某女孩是大学生”的消息,问获得多少信息量?解:设 A 表示女孩是大学生, P ( A ) = 0.25 ;B 表示女孩身高 1.6 米以上, P ( B | A ) = 0.75 , P ( B ) = 0.5“身高 1.6 米以上的某女孩是大学生”的发生概率为⎥ = ⎪ 3 / 8 1/ 8 ⎥⎦【 2.5 】 设 离 散 无 记 忆 信 源 ⎪ P ( x )⎦ P ( A | B ) =P ( AB )P ( B )=P ( A ) P (B | A )P ( B )0. 25 ⋅ 0. 750.5= 0.375已知该事件所能获得的信息量为I = log10.375H 1.415 比特⎩ X ⎤ ⎩a 1 = 0 a 2 = 1 a 3 = 2 a 4 = 3⎤1/ 4 1 / 4,其发出的消息为(202120130213001203210110321010021032011223210),求(1) 此消息的自信息是多少?(2) 在此消息中平均每个符号携带的信息量是多少?解:信源是无记忆的,因此,发出的各消息之间是互相独立的,此时发出的消息的自信息即为各消息的自信息之和。
根据已知条件,发出各消息所包含的信息量分别为:I (a 0 = 0) = log 83= 1.415 比特 I (a 1 = 1) = log 4 = 2 比特I (a 2 = 2) = log 4 = 2 比特I (a 3 = 3) = log 8 = 3 比特在发出的消息中,共有 14 个“0”符号,13 个“1”符号,12 个“2”符号,6 个“3”符号,则得到消息的自信息为:I = 14 ⋅1.415 + 13 ⋅ 2 + 12 ⋅ 2 + 6 ⋅ 3 H 87.81 比特45 个符号共携带 87.81 比特的信息量,平均每个符号携带的信息量为I = 87.81 45= 1.95 比特/符号注意:消息中平均每个符号携带的信息量有别于离散平均无记忆信源平均每个符号携带的信息量,后者是信息熵,可计算得H ( X ) = P ( x ) log P ( x ) = 1.91比特/符号⎩ a 1 ⎪ P ⎥ = ⎪ 1 48 48 ⎦H ( B | A ) = P (a i )P (b j | a i ) log P (b j | a i ) = log 47 = 5.55 比特/符号【2.6】如有 6 行 8 列的棋型方格,若有二个质点 A 和 B ,分别以等概率落入任一方格内,且它们的坐标分别为(X A ,Y A )和(X B ,Y B ),但 A 和 B 不能落入同一方格内。
(1) 若仅有质点 A ,求 A 落入任一个格的平均自信息量是多少?(2) 若已知 A 已落入,求 B 落入的平均自信息量。
(3) 若 A 、B 是可分辨的,求 A 、B 同都落入的平均自信息量。
解:(1)求质点 A 落入任一格的平均自信息量,即求信息熵,首先得出质点 A 落入任一格的概率空间为:⎩ X ⎤⎦ ⎪a 2 1 48a 3 1 48 a 48 ⎤ 1 ⎥ ⎥平均自信息量为H ( A ) = log 48 = 5.58 比特/符号(2)已知质点 A 已落入,求 B 落入的平均自信息量,即求 H ( B | A ) 。
A 已落入,B 落入的格可能有 47 个,条件概率 P (b j | a i ) 均为 147 。
平均自信息量为 48 47i =1 j =1(3)质点 A 和 B 同时落入的平均自信息量为H ( AB ) = H ( A ) + H (B | A ) = 11.13 比特/符号【2.7】从大量统计资料知道,男性中红绿色盲的发病率为 7%,女性发病率为 0.5%,如果你问一位男同志:“你是否是红绿色盲?”,他的回答可能是“是”,也可能是“否”,问这两个回答中各含有多少信息量?平均每个回答中含有多少信息量?如果你问一位女同志,则答案中含有的平均自信息量是多少?解:⎪ P ⎥ = ⎪0.07 0.93⎥ = ⎪ 0.005 0.995⎦ ⎦ ⎥ = ⎪0.2 0.19 0.18 0.17 0.16 0.17⎥ ,求此信源的熵,并解释为什 【2.8】设信源 ⎪ 男同志红绿色盲的概率空间为:⎩ X ⎤ ⎩ a 1 a 2 ⎤ ⎦ ⎦问男同志回答“是”所获昨的信息量为:I = log 10.07 H 3.836 比特/符号问男同志回答“否”所获得的信息量为:I = log 10.93 H 0.105 比特/符号男同志平均每个回答中含有的信息量为H ( X ) = P ( x ) log P ( x ) = 0.366 比特/符号同样,女同志红绿色盲的概率空间为⎩Y ⎤ ⎪ P ⎥⎩ b 1 b 2 ⎤⎥ 问女同志回答“是”所获昨的信息量为:I = log 10.005 H 7.64 比特/符号问女同志回答“否”所获昨的信息量为:I = log10.995 H 7.23 ⋅ 10 3 比特/符号 女同志平均每个回答中含有的信息量为H (Y ) = P ( x ) log P ( x ) = 0.045 比特/符号⎩ X ⎤ ⎩ a 1 a 2 a 3 a 4 a 5 a 6 ⎤P ( x )⎦ ⎦么 H ( X ) > log 6 ,不满足信源熵的极值性。
解:H ( X ) = P ( x ) log P ( x ) = 2.65 > log 6原因是给定的信源空间不满足概率空间的完备集这一特性,因此不满足极值条件。
令 f ( x ) = ( p 1 x ) log( p 1 x ) + ( p 2 + x ) log( p 2 + x ) , x ⎧⎧ 0, 1 ⎥ ,则【 2.9 】 设 离 散 无 记 忆 信 源 S 其 符 号 集 A = {a 1 , a 2 ,..., a q } , 知 其 相 应 的 概 率 分 别 为(P 1 , P 2 ,..., P q ) 。
设 另 一 离 散 无 记 忆 信 源 S 2 , 其 符 号 集 为 S 信 源 符 号 集 的 两 倍 ,A 2 = {a i , i = 1,2,...,2q },并且各符号的概率分布满足P i 2 = (1 ∑ ) P i P i 2 = ∑P ii = 1,2,..., qi = q + 1, q + 2, (2)试写出信源 S 2 的信息熵与信源 S 的信息熵的关系。
解:H (S 2) = P ( x ) log P ( x )= (1 ∑ ) P i log(1 ∑ )P i ∑P i log ∑P i= (1 ∑ ) P i log(1 ∑ ) (1 ∑ ) P i log P i ∑ P i log ∑ ∑ P i log P i= (1 ∑ ) log(1 ∑ ) ∑ log ∑ + H (S ) = H (S ) + H (∑ ,1 ∑ )【2.10】设有一概率空间,其概率分布为 { p 1 , p 2 ,..., p q } ,并有 p 1 > p 2 。
若取 p 12 = p 1 ∑ ,p 22 = p 2 + ∑ ,其中 0 < 2∑ δ p 1 p 2 ,而其他概率值不变。
试证明由此所得新的概率空间的熵是增加的,并用熵的物理意义加以解释。
解:设新的信源为 X 2 ,新信源的熵为:H ( X 2) = p i log p i = ( p 1 ∑ ) log( p 1 ∑ ) ( p 2 + ∑ ) log( p 2 + ∑ ) p q log p q原信源的熵H ( X ) = p i log p i = p 1 log p 1 p 2 log p 2 p q log p q因此有,H ( X ) H ( X 2) = ( p 1 ∑ ) log( p 1 ∑ ) + ( p 2 + ∑ ) log( p 2 + ∑ ) p 1 log p 1 p 2 log p 2⎣ p p 2 ⎤⎨ 2 ⎦f 2( x ) = logp 2 + xp 1 xδ 0【2.11】试证明:若 p i = 1, q j = p L ,则q 1 q2 q 2 log 2 q m log mlog 1 2 log 2 m log m )q 1 q 2 即函数 f ( x ) 为减函数,因此有 f (0) ε f (∑ ) ,即( p 1 ∑ ) log( p 1 ∑ ) + ( p 2 + ∑ ) log( p 2 + ∑ ) δ p 1 log p 1 + p 2 log p 2因此 H ( X ) δ H ( X 2) 成立。