表面粗糙度标准最新版本
表面粗糙度选用标准
表面粗糙度选用-----------------------------------------------------------序号=1Ra值不大于\μm=100表面状况=明显可见的刀痕加工方法=粗车、镗、刨、钻应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用-----------------------------------------------------------序号=2Ra值不大于\μm=25、50表面状况=明显可见的刀痕加工方法=粗车、镗、刨、钻应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等-----------------------------------------------------------序号=3Ra值不大于\μm=12.5表面状况=可见刀痕加工方法=粗车、刨、铣、钻应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面-----------------------------------------------------------序号=4Ra值不大于\μm=6.3表面状况=可见加工痕迹加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。
紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等-----------------------------------------------------------序号=5Ra值不大于\μm=3.2表面状况=微见加工痕迹加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。
要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。
关于新旧粗糙度标准的使用说明
关于新旧表面粗糙度的使用说明机械制造中,光洁度、粗糙度是用来表示另件表面的平整(光滑)程度的。
光洁度的数值越大,表示另件表面越平整、光滑,这是旧标准使用的表示方法,现在已经不使用。
粗糙度的数值越小,表示零件表面越平整、光滑,这是目前国家标准和国际标准的表示方法。
二、关于上述表格使用的说明1.▽1-▽14是旧国家标准GB1031-68表面光洁度级别14个等级。
随着数值的增大,其表面光洁度越高。
2.我公司产品图样中对零件表面粗糙度高度参数一般应选用轮廓算数平均值偏差Ra值3.新产品设计时,图样中零件表面粗糙度高度参数一般应该选用轮廓算数平均值偏差Ra的上限值,对有特殊要求的表面,可以选择Ra的最大值或同时选用最大值和最小值。
4.表面粗糙度高度参数Ra的数值选用按照GB/T1031-1995的标准系列选用,对某些特殊表面,标准系列不能满足要求的,可采用GB/T1031-1995的补充系列5. 标准“GB1031-68表面光洁度级别”已经作废,其最新版本升级为“GB/1031-1995 表面粗糙度参数及其数值”。
6.老产品图中表面粗糙度高度参数Ra的标注是按照GB131-83的规定,即表示Ra的最大允许值,在贯彻新标准的过程中,一般不需要改图,只是将原标准中最大允许值理解为上限值即可。
对极少数性能要求高的表面,如果一定要保持最大允许值,应通过改图,在原数值后面加max7.我厂制定的《设计师设计标准化工作手册》制定的企业标准“DL00003-2000 表面粗糙度使用的有关规定”中引用标准GB/T131-93也已经作废,其最新升级版本为“GB/T131-2006/ISO1302: 2002 产品几何技术规范技术产品文件中表面结构的表示法”其衍化对比如下表所示:(表面光洁度---表面粗糙度—表面结构)表二表面结构要求的图形标注的演变经过咨询公司标准化室缑智勇主任,明确“GB/T131-2006/ISO1302: 2002 产品几何技术规范技术产品文件中表面结构的表示法”这个标准变化比较大,兄弟工厂贯彻的不多,咱们工厂暂时不贯彻。
表面粗糙度标准最新版
.
❖ 4.2.1 表面粗糙度的基本术语
❖ (1)取样长度lr:取样长度是用于判别被评定轮廓的不规则特征的X 轴 方向上的一段基准线长度,它在轮廓总的走向上量取,如图4-2所示。规
定和选择取样长度是为了限制和削弱表面波纹度(波距在1~10mm之间)
对表面粗糙度测量结果的影响。 lr过长,表面粗糙度的测量值中可能包 含有表面波纹度的成分;过短,则不能客观的反应表面粗糙度的实际情
❖ (7)影响产品的外观、表面涂层的质量和操作人员的使用舒适性(如机 床的操作手柄)等。
.
上一页 下一页 返回
4.1 概述
❖ (8)影响设备的振动和噪声及动力消耗。当运动副的表面粗糙度参数值 过大时,运动件将会产生振动和噪声,这种现象在高速运转的发动机曲 轴和凸轮、齿轮以及滚动轴承中很明显。显然,配合表面粗糙时,随着 摩擦系数的增大,摩擦力增大,从而动力消耗增加。Βιβλιοθήκη .上一页 下一页 返回
4.1 概述
❖ (2)影响配合性质的稳定性。对于间隙配合,表面越粗糙,就越容易磨 损,使工作过程中的配合间隙逐渐增大;对于过盈配合,由于压合装配 时会将微观凸峰挤平,减小了实际有效过盈量,降低了过盈配合的连接 强度。上述微观凸峰被磨损或被挤平的现象,对于那些配合稳定性要求 较高、配合间隙量或配合过盈量较小的高速重载机械影响更显著,故适 当的选定表面粗糙度参数值尤为重要。
4.2 表面粗糙度国家标准
粗糙度新国标
新国标 GB/131- 2006《产品几何技术规范( GPS) 技术产品文件中表面结构的表示法》
• 充分考虑了对零件表面质量影响的多种因素 , 除表面粗糙度外还有在机械加工过程中, 由于机床、工件和刀具系统的振动, 在工件 表面所形成的间距比粗糙度大得多的表面不 平度、即波纹度的影响。所以, 表面粗糙度 、表面波纹度以及表面几何形状误差总是同 时生成并存在同一表面上综合影响零件的表 面轮廓。
长,L度宜可选包用括较一 长L 个的或评多定个长取度L 样。长度。L表面不均匀L的表面
• 评定长度一般按5个取样n长度来确定。
2020/3/3
(1) 取样长度和评定长度
• 取样长度——测量表面粗糙度轮廓时,测量限 制的一段足够短的长度,以限制或减弱波纹度 、排除形状误差对表面粗糙度轮廓测量的影响 。
面有效, Rz=6.3μm, “16%规则”( 默认), 默认评定长 度, 表面纹理没有要求, 磨削加工工艺。
2020/3/3
6 表面结构符号、代号的含义
2020/3/3
2020/3/3
7 表面结构要求的标注示例
2020/3/3
2020/3/3
2020/3/3
2020/3/3
2020/3/3
标准规定,在报告和合同的文本中可以用文字 “APA”、“MRR”、“NMR”分别表示允许用任 何工艺获得表面、允许用去除材料的方法获得表 面以及允许用不去除材料的方法获得表面。
• 例如:对允许用去除材料的方法获得表面、其评 定轮廓的算术平均偏差为0.8这一要求,在文本中 可以表示为“MRR Ra0.8”。
4 表面结构代号
• 表面结构符号中注写了具体参数代号及数值等要求后即称为表面结构 代号。
粗糙度标注标准
中华人民共和国国家标准UDC 744 43机械制图GB 131-83表面粗糙度代号及其注法代替GB 131-74Mechanical drawingsSurface reoughness symbols andmethods of indicating1 引言1.1 本标准规定了零件表面粗糙度代〔符〕号及其在图样上的注法。
图样上所标注的表面粗糙度代〔符〕号,是该表面完工后的要求。
有关表面粗糙度的各项规定应按功能要求给定。
若仅需要加工但对表面粗糙度的其它规定没有要求时,可以只注表面粗糙度符号。
1.2 本标准等效采用国际标准ISO 1302-1978《图样上表面特征的表示法》。
1.3 与本标准有关的国家标准:GB 3505-83《表面粗糙度术语表面及其参数》GB 1031-83《表面粗糙度参数及其数值》2 表面粗糙度代〔符〕号2.1 图样上表示零件表面粗糙度的符号见表1。
表12.2 表面粗糙度高度参数轮廓算术平均偏差Ra值的标注见表2,Ra在代号中用数值表示(单位为微米)。
表22.3 其他表面粗糙度高度参数,轮廓微观不平度十点高度Rz、轮廓最大高度Ry值(单位为微米)的标注见表3,参数值前需标注出相应的符号。
表3续表32.4 取样长度应标注在符号长边的线下面,见图1。
若按GB 1031附录B中表B1、B2选用对应的取样长度时,在图样上可省略标注。
图32.7 在符号长边的横线上面也可以注写镀涂或其它表面处理的要求。
需要表示镀涂或其它表面处理后的表面粗糙度值时,标注方法见图4a。
需要表示镀涂前的表面粗糙度值时,应另加说明,见图4b。
若同时要求表示镀涂前及镀涂后的表面粗糙度值时,标注方法如图4c。
图42.8 需要控制表面加工纹理方向时,可在符号的右边加注加工纹理方向符号,见图5。
常见的加工纹理方向符号见表4。
图6 表4续表4注:若表中所列符号不能清楚地表明所要求的纹理方向,应在图样上用文字说明。
2.10 表面粗糙度符号的画法见图7。
表面粗糙度新国标
表面结构的图样表示法加工零件时,由于刀具在零件表面上留下刀痕和切削分裂时表面金属的塑性变形等影响,使零件表面存在着间距较小的轮廓峰谷。
这种表面上具有较小间距的峰谷所组成的微观几何形状特性,称为表面粗糙度。
机器设备对零件各个表面的要求不一样,如配合性质、耐磨性、抗腐蚀性、密封性、外观要求等,因此,对零件表面粗糙度的要求也各有不同。
一般说来,凡零件上有配合要求或有相对运动的表面,表面粗糙度参数值小。
因此,应在满足零件表面功能的前提下,合理选用表面粗糙度参数。
1.评定表面结构常用的轮廓参数①算术平均偏差Ra是指在一个取样长度内纵坐标值Z(x)绝对值的算术平均值② 轮廓的最大高度Rz是指在同一取样长度内,最大轮廓峰高和最大轮廓谷深之和的高度图9-27 评定表面结构常用的轮廓参数2.有关检验规范的基本术语检验评定表面结构参数值必须在特定条件下进行。
国家标准规定,图样中注写参数代号及其数值要求的同时,还应明确其检验规范。
有关检验规范方面的基本术语有取样长度、评定长度、滤波器和传输带以及极限值判断规则。
本有关检验规范仅介绍取样长度与评定长度和极限值判断规则。
(1)取样长度和评定长度以粗糙度高度参数的测量为例,由于表面轮廓的不规则性,测量结果与测量段的长度密切相关,当测量段过短,各处的测量结果会产生很大差异,但当测量段过长,则测得的高度值中将不可避免地包含了波纹度的幅值。
因此,在X轴上选取一段适当长度进行测量,这段长度称为取样长度。
但是,在每一取样长度内的测得值通常是不等的,为取得表面粗糙度最可靠的值,一般取几个连续的取样长度进行测量,并以各取样长度内测量值的平均值作为测得的参数值。
这段在X轴方向上用于评定轮廓的并包含着一个或几个取样长度的测量段称为评定长度。
当参数代号后未注明时,评定长度默认为5 个取样长度,否则应注明个数。
例如:Rz0.4、Ra30.8、Rz13.2分别表示评定长度为5个(默认)、3个、1个取样长度。
表面粗糙度国际标准加工方法(单位:μm)
SPI(B2)
Ra0.1
SPI(B3)
Ra0.2
Ra0.4
微辨加工痕 迹的方向
Ra0.8
可辨加工痕 迹的方向, 模板大平面 。
Ra1.6
.5 Ra25
Ra50
粗加工表面
8407 52HRC SPI(A2) Ra0.01 钻石膏抛光 DF-2 58HRC
XW-10 SPI(A3) Ra0.02 钻石膏抛光 S136
60HRC 300HB
718SUPRE 300HB ME SPI(B1) Ra0.05 1200#1500#砂纸 省光 1200#1500#砂纸 省光 精加工:精 车,精刨, 精铣,磨, 铰,刮后用 800#-1000# 砂纸省光 精加工:精 车,精刨, 精铣,磨, 铰,刮后用 800#-1000# 砂纸省光 精加工:精 车,精刨, 精铣,磨, 铰,刮,线 割,电火花 。 精加工:精 车,精刨, 精铣,磨, 铰,刮,线 割,电火花 。 中加工表面 一般加工 中加工表面 一般加工 粗加工表面 粗加工表面
表面粗糙度国际标准加工方法(单位:µm) 标准等级代 号 SPI(A1) 表面粗糙度 Ra0.005 加工工具(方 加工材料及硬度要求 法) 54HRC 钻石膏抛光 S136 光度描述 光洁度非常 高,镜面效果 。塑胶透明 镜片模,前 后模表面。 光洁度较低, 没有砂纸纹 。一般透明 塑胶模前后 模表面。 光洁度较低, 没有砂纸纹 。一般透明 塑胶模前后 模表面。 没有光亮度, 有轻微砂纸 纹 没有光亮度, 有轻微砂纸 纹 没有光亮度, 有轻微砂纸 纹不辨加工 痕迹的方向
粗糙度新国标
表面加工纹理方向:指表面微观结构的主要方向,由所采用的加工方法或其它因素形成,必要时才规定。
加工纹理方向符号标注示例
4 表面结构代号
表面结构符号中注写了具体参数代号及数值等要求后即称为表面结构代号。
当应用16%规则 默认传输带 时参数的标注
当应用最大规则 默认传输带 时参数的注法
4 表面结构代号
表面结构符号中注写了具体参数代号及数值等要求后即称为表面结构代号。 在图样中一般采用图形法标注表面结构要求。 新标准允许用文字的方式表达表面结构要求。新标准规定,在报告和合同的文本中可以用文字“APA”、“MRR”、“NMR”分别表示允许用任何工艺获得表面、允许用去除材料的方法获得表面以及允许用不去除材料的方法获得表面。 例如:对允许用去除材料的方法获得表面、其评定轮廓的算术平均偏差为0.8这一要求,在文本中可以表示为“MRR Ra0.8”。
完整图形符号
3 表面结构符号及表面结构要求
a- 注写表面结构的单一要求; a 和b 同时存在 a 注写第一表面结构要求, b 注写第二表面结构要求; c- 注写加工方法“,车”“、铣”“、镀”等; d- 注写表面纹理方向, 如“=”“、×”、“M”等; e- 注写加工余量。
在完整符号中,对表面结构的单一要求和补充要求应注写在图中所示的指定位置。 表面结构补充要求包括: —表面结构参数代号 —数值; —传输带/取样长度。
最大规则: 运用本规则时, 被检的整个表面上测得的参数值一个也不应超过给定的极限值。 16%规则是所有表面结构要求标注的默认规则。即当参数代号后未标注写“max”字样时, 均默认为应用 16%规则 例如 Ra0.8 。反之, 则应用最大规则 例如 Ramac 不去除材料
标注在特征尺寸的尺寸线上
表面粗糙度 国家标准
表面粗糙度国家标准表面粗糙度是指物体表面的不平整程度,是一个物体表面的微观特征之一。
表面粗糙度对于许多工程和制造行业来说都是一个非常重要的参数,它直接影响着材料的摩擦、磨损、润滑等性能,因此对表面粗糙度的控制和评定也是非常重要的。
国家标准对于表面粗糙度进行了详细的规定和评定方法,下面将对国家标准中的相关内容进行介绍。
国家标准将表面粗糙度分为三个等级,一般粗糙度、中等粗糙度和精细粗糙度。
对于不同等级的表面粗糙度,国家标准规定了不同的评定方法和技术要求。
一般粗糙度是指表面上有较明显的凹凸不平,适用于对表面粗糙度要求不高的场合。
中等粗糙度是指表面上有较为显著的凹凸不平,适用于对表面粗糙度要求一般的场合。
精细粗糙度是指表面上的凹凸不平非常微小,适用于对表面粗糙度要求较高的场合。
国家标准对于表面粗糙度的评定方法主要包括两种,比较法和测量法。
比较法是指通过目测或者使用比较样板等方式,将被测表面与标准表面进行比较,以确定其粗糙度等级。
测量法是指通过使用粗糙度测量仪器,对被测表面进行实际的测量,得出其粗糙度数值,再根据国家标准进行评定。
对于不同的材料和工艺,国家标准也对表面粗糙度进行了相应的技术要求。
例如,对于金属材料,国家标准规定了不同的加工方法对应的表面粗糙度要求,以及相应的测量方法和评定标准。
对于塑料、陶瓷、玻璃等非金属材料,国家标准也有相应的规定和要求。
总的来说,国家标准对于表面粗糙度的规定和评定方法是非常严格和细致的。
它为各行各业提供了统一的标准和方法,使得表面粗糙度的控制和评定更加科学、准确和可靠。
在实际生产中,我们应当严格按照国家标准的要求进行操作,确保产品的质量和性能符合标准要求。
总之,表面粗糙度国家标准的制定和执行,对于提高产品质量、保障工程安全、提高生产效率都具有重要意义。
我们应当充分认识到表面粗糙度对于产品性能的重要影响,严格按照国家标准的要求进行操作,确保产品质量和性能达到标准要求。
希望各行各业能够加强对表面粗糙度国家标准的学习和执行,共同推动我国制造业的发展和提升。
最新国家标注:表面粗糙度
电子工业
在电子工业中,表面粗糙度对于电子器件的性能和稳定性具有重要影响。例如, 在集成电路的制造过程中,表面粗糙度会直接影响电路的性能和可靠性。
电子工业中的表面粗糙度控制对于提高电子器件的稳定性、降低噪声和提高信号 传输质量等方面具有重要作用。
其他领域
• 除了上述领域外,表面粗糙度还在建筑、能源、化工、医疗器械等领域得到广泛应用。在这 些领域中,表面粗糙度的控制对于提高产品质量、保证安全性和延长使用寿命等方面都具有 重要意义。
针描法是一种接触式的表面粗糙度测量方法,它通过在表面上移动细针来测量 表面的微观结构。这种方法具有较高的精度和分辨率,但需要特殊的针具和测 量设备,且对针的形状和硬度要求较高。
激光反射法
总结词
利用激光反射原理来测量表面粗糙度的方法。
详细描述
激光反射法是一种非接触式的表面粗糙度测量方法,它利用激光反射原理来测量 表面的微观结构。这种方法具有高精度、高速度和高分辨率的特点,但需要特定 的实验环境和条件,且对激光器和检测器的要求较高。
• · 除了上述领域外,表面粗糙度还在建筑、能源、化工、医疗器械等领域得到广泛应用。在这 些领域中,表面粗糙度的控制对于提高产品质量、保证安全性和延长使用寿命等方面都具有 重要意义。
05
表面粗糙度的最新国家标准
国家标准的制定与修订
制定过程
01
国家标准的制定通常需要经过广泛的调研、实验验证和专家评
审,以确保标准的科学性和实用性。
修订原因
02
随着科技的发展和生产工艺的改进,表面粗糙度的要求也在不
断变化,因此需要定期修订国家标准以适应这些变化。
修订周期
03
国家标准通常会有一定的修订周期,以确保标准能够及时反映
表面粗糙度最新国家标注
轮廓参数( 由 GB/T3505-2000 定义)
图形参数( 由 GB/T18618- 2002 定义)
支承率 曲 线 参 数 ( 由 GB/T18778.2- 2003
和 GB/T18778.32006 定义) 。 其中轮廓参数是我国机械图样中目前最常用的, 轮廓算术平均偏差 Ra、轮廓最大高度 Rz 中的两 个高度为最多。粗糙度轮廓也称 R 轮廓。
1/20/2019
R轮廓(粗糙度参数)
(1)轮廓算术平均偏差Ra(幅度参数)
在取样长度内,被测实际轮廓上各点至轮 廓中线距离绝对值的平均值,即:
1 lr Ra z ( x) dx lr 0
1/20/2019
1 n Ra z ( xi ) n i 1
1/20/2019
1/20/2019
基准线
1/20/2019
评定表面粗糙度的基准线
评定表面粗糙度的基准线,有以下两种:
轮廓的最小二乘中线m
在取样长度内,使轮廓上各点至一条该线的距离平方 和为最小。
即:
2 y i min i 1
n
1/20/2019
评定表面粗糙度的基准线
轮廓算术平均中线m :在取样长度内,将实际轮 廓划分上下两部分,且使上下面积相等的直线 。
(3)形状误差 :零件表面中峰谷的波长和波高之比
大于1000的不平程度属于形状误差。
评定 表面粗糙度时要避免表面波纹度和平形状误差的影响 1/20/2019
表面粗糙度对零件性能的影响
影响零件的耐磨性。 影响配合性质的稳定性。 影响零件的疲劳强度。 影响零件的抗腐蚀性。 影响零件的密封性。 对零件的外观、测量精度、表面光学性 能、导电导热性能和胶合强度等也有着 不同程度的影响。
粗糙度对照表
没变化
Rp
Rp
没变化
Rv
Rm
符号改,参数定义没改
Rt
Rt
没变化
R3z
显示在日本标准JIS中,参数没变化
Rmax
显示在德国标准DIN、美国标准ANSI中
RSk
Sk
符号改,定义没改
RS
S
符号改,定义没改
RSm
Sm
符号改,定义没改
Rmr
tp
符号改,定义没改
2、国标中光洁度和粗糙度对照表:
表面光洁度
▽1
粗糙度对照表
机械加工行业都对表面粗糙度对照表比较关注,整理出几种常见的粗糙度对照表以供大家参考:
1、新旧ISO粗糙度标准的粗糙度对照表:
ISO新标准粗糙度
ISO旧标准粗糙度
说明
Ra
Ra
各标准通用参数
Rz
显示在日本标准JIS中
Rz
Ry
参数定义已修改。原Ry仍显示在日本标准JIS、德国标准DIN中。
Rq
60HRC
SPI(A3)
Ra0.02
S136
300HB
光洁度更低一级,但没有砂纸纹
718SUPREME
300HB
SPI(B1)
Ra0.05
没有光亮度,有轻微3000#砂纸纹
SPI(B2)
Ra0.1
没有光亮度,有轻微2000#砂纸纹
SPI(B3)
Ra0.2
没有光亮度,有轻微1000#砂纸纹
不辨加工痕迹的方向
▽2
▽3
▽4
▽5
▽6
▽7
表面
粗糙度
Ra
50
25
12.5
6.3
表面粗糙度检测标准
表面粗糙度检测标准表面粗糙度是指物体表面不规则程度的度量,通常用来描述表面的光滑程度或粗糙程度。
在工程领域中,表面粗糙度对于材料的质量和性能具有重要影响,因此需要对其进行准确的检测和评估。
本文将介绍表面粗糙度检测的标准和方法,以帮助读者更好地了解和应用表面粗糙度检测技术。
一、表面粗糙度的重要性。
表面粗糙度直接影响着材料的摩擦、磨损、润滑和密封等性能,对于机械零件的装配和运行稳定性具有重要影响。
粗糙表面会增加摩擦阻力,降低机械效率,同时也容易引起磨损和损伤。
因此,对于一些对表面粗糙度要求较高的工程领域,如航空航天、汽车制造、精密仪器等,对表面粗糙度的检测和控制显得尤为重要。
二、表面粗糙度的检测标准。
1. ISO 4287-1997 表面粗糙度参数术语和定义。
ISO 4287-1997是国际标准化组织发布的关于表面粗糙度参数术语和定义的标准。
该标准规定了表面粗糙度参数的术语和定义,包括主要的表面粗糙度参数如Ra、Rz、Rmax等,以及它们的测量方法和计算公式。
这些参数可以有效地描述和评估表面的粗糙程度,为表面粗糙度的检测提供了重要的依据。
2. GB/T 1031-2009 表面粗糙度参数和检测仪器术语和定义。
GB/T 1031-2009是中国国家标准化管理委员会发布的关于表面粗糙度参数和检测仪器术语和定义的标准。
该标准对ISO 4287-1997进行了补充和修订,增加了一些适用于中国国情的表面粗糙度参数和检测仪器术语和定义。
这些参数和术语的统一规范,有利于提高表面粗糙度检测的准确性和可靠性。
三、表面粗糙度的检测方法。
1. 传统测量方法。
传统的表面粗糙度测量方法主要包括划痕法、比色法和触针法等。
这些方法简单易行,但存在着测量精度低、易受人为因素影响等缺点,逐渐被现代化的数字化测量方法所替代。
2. 数字化测量方法。
数字化测量方法利用光学、机械或电子设备对表面进行扫描或触探,获取表面粗糙度数据,并通过计算机处理和分析得出粗糙度参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页 下一页 返回
4.1 概述
❖ 4.1.2 表面粗糙度对零件使用性能的影响
❖ 零件表面粗糙度的大小,对零件的使用性能有很大影响,主要表现在如 下几方面:
❖ (1)影响零件表面的耐磨性。表面粗糙度越大,零件工作表面的摩擦磨 损和能量消耗越严重。如果表面越粗糙,配合面之间的有效接触面积减 小,压强增大,磨损就越快;表面越粗糙,摩擦系数加大,由摩擦而消 耗的能量就越大。相反,如果要求表面粗糙度过小,则一方面将增加制 造成本,另一方面加大了金属分子间的吸附力,不利于润滑油的储存, 容易使相互配合的工作表面之间形成干摩擦,使金属接触面产生胶合磨 损而损坏。
❖ 此外,表面粗糙度对零件的镀涂层、导热性和接触电阻、反射能力和辐 射性能、液体和气体的流动阻力、导体表面电流的流通等都会产生不同 程度的影响。综上所述,表面粗糙度在零件的几何精度设计中是必不可 少的项目,是一种十分重要的零件质量评定指标。为了保证零件的使用 性能和寿命,应对其加以合理限制。
.
上一页 返回
❖ (7)影响产品的外观、表面涂层的质量和操作人员的使用舒适性(如机 床的操作手柄)等。
.
上一页 下一页 返回
4.1 概述
❖ (8)影响设备的振动和噪声及动力消耗。当运动副的表面粗糙度参数值 过大时,运动件将会产生振动和噪声,这种现象在高速运转的发动机曲 轴和凸轮、齿轮以及滚动轴承中很明显。显然,配合表面粗糙时,随着 摩擦系数的增大,摩擦力增大,从而动力消耗增加。
4.2 表面粗糙度国家标准
❖ 我国参照国际标准(ISO),对原表面粗糙度国家标准GB 1031-1983、 GB 131-1983作了修订和增订,新国标有GB/T 3505-2000《 表面结构的 术语、定义及参数 》、GB/T 1031-1995《表面粗糙度 参数及其数值》和 GB/T 131-1993《机械制图 表面粗糙度符号、代号及其注法》。
❖ 4.2.1 表面粗糙度的基本术语
❖ (1)取样长度lr:取样长度是用于判别被评定轮廓的不规则特征的X 轴 方向上的一段基准线长度,它在轮廓总的走向上量取,如图4-2所示。规
定和选择取样长度是为了限制和削弱表面波纹度(波距在1~10mm之间)
对表面粗糙度测量结果的影响。 lr过长,表面粗糙度的测量值中可能包 含有表面波纹度的成分;过短,则不能客观的反应表面粗糙度的实际情
第4章 表面粗糙度标准
❖ 4.1 概述 ❖ 4.2 表面粗糙度国家标准 ❖ 4.3 表面粗糙度的选择及其标注 ❖ 4.4 表面粗糙度的测量
.
4.1 概述
❖ 表面粗糙度主要是指切削加工过程中由刀具和工件表面之间的强烈摩擦、 切屑分离过程中的物料破损残留以及工艺系统的高频振动等原因在工件 表面上引起的具有较小间距和微小峰谷不平度的微观误差现象。这种表 面微观几何形状误差,对机械零件的配合性质、工作精度、耐磨损性、 抗腐蚀性等有着十分密切的关系,它直接影响到机器或仪器的可靠性和 使用寿命。本章所涉及的国家标准为:
.
上一页 下一页 返回
4.1 概述
❖ (5)影响零件表面的密封性。静力密封时,粗糙的零件表面之间无法严 密地贴合,容易使气体或液体通过接触面间的微小缝隙发生渗漏。同理, 对于动力密封,其配合面的表面粗糙度参数值也不能过低,否则受压后 会破坏油膜,从而失去润滑作用。
❖ (6)影响机器或仪器的工作精度。表面粗糙度越大,配合表面之间的实 际接触面积就越小,致使单位面积受力增大,造成峰顶处的局部塑性变 形加剧,接触刚度下降,影响机器工作精度和精度稳定性。
❖ GB/T 3505-2000《 表面结构的术语、定义及参数 》 ❖ GB/T 1031-1995《表面粗糙度 参数及其数值》 ❖ GB/T 131-1993《机械制图 表面粗糙度符号、代号及其注法》
.
Hale Waihona Puke 下一页 返回4.1 概述
❖ 4.1.1 基本概念
❖ 零件表面不论是用机械加工方法还是用其他方法获得,都不可能是绝对 光洁平滑的,总会存在着由微小间距和微观峰谷组成的微小高低不平的 痕迹。这是一种微观几何形状误差,称为微观不平度。这种微观几何形 状误差可用表面粗糙度来表达,表面粗糙度越小,表面越光滑。因此, 表面粗糙度是评定零件表面质量的一项重要指标。
况,使测得结果有很大随机性。可见,取样长度与表面粗糙度的评定参
数有关,在取样长度范围内,一般应包含五个以上的轮廓峰和轮廓谷。
常用的取样长度的推荐值见表4-1。
.
下一页 返回
4.2 表面粗糙度国家标准
❖ 在一般情况下,测量Ra和Rz时,推荐按表4-1选用对应的取样长度及评定 长度值,此时在图样上可省略标注取样长度值。当有特殊要求不能选用 表4-1中数值时,应在图样上注出取样长度值。
❖ (2)评定长度ln :评定长度是用于判别被评定轮廓的表面粗糙度特性所 需的X轴方向上的长度,由于零件表面存在不均匀性,规定在评定时它 包括一个或几个取样长度,称为评定长度ln。在评定长度内,根据取样 长度进行测量,此时可得到一个或几个测量值;取其平均值作为表面粗 糙度数值的可靠值。一般情况下,取ln=5lr ,如表4-1所示。当表面比较 均匀时,可取ln<5lr;当表面均匀性较差时,可取ln>5lr 。
.
上一页 下一页 返回
4.1 概述
❖ (2)影响配合性质的稳定性。对于间隙配合,表面越粗糙,就越容易磨 损,使工作过程中的配合间隙逐渐增大;对于过盈配合,由于压合装配 时会将微观凸峰挤平,减小了实际有效过盈量,降低了过盈配合的连接 强度。上述微观凸峰被磨损或被挤平的现象,对于那些配合稳定性要求 较高、配合间隙量或配合过盈量较小的高速重载机械影响更显著,故适 当的选定表面粗糙度参数值尤为重要。
❖ (3)影响零件的疲劳强度。粗糙的零件表面存在较大的微观峰谷,它们 的尖锐缺口和裂纹对应力集中十分敏感,从而使零件的疲劳强度大大降 低。
❖ (4)影响零件表面的抗腐蚀性,比较粗糙的表面,易使腐蚀性气体或液 体通过微观峰谷渗入金属内层造成表面锈蚀。同时,微观凹谷处容易藏 污纳垢,容易产生化学腐蚀和电化学腐蚀。
❖ 如图4-1所示,零件同一表面存在着叠加在一起的三种误差,即:形状误 差(宏观几何形状误差)、表面波度误差和表面粗糙度误差。三者之间, 通常可按相邻波峰和波谷之间的距离(波距)加以区分:波距在10mm 以上属形状误差范围,波距在1~10mm之间属表面波度范围,波距在 1mm以下属表面粗糙度范围。
.