数列基本量运算

合集下载

等差数列与等比数列的基本量运算

等差数列与等比数列的基本量运算

等差数列与等比数列运算知识点:一.等差数列 1.等差数列基本概念⑴等差数列的概念:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,常用字母d 表示. 即等差数列有递推公式:1(1)n n a a d n +-=≥. ⑵等差数列的通项公式为:1(1)n a a n d =+-.⑶等差中项:如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项,即2x yA +=. ⑷等差数列的前n 项和公式:211()(1)22n n n a a n n S na d An Bn +-==+=+. 1.等差数列通项公式的推导:2132121n n n n a a d a a da a d a a d----=-=-=-=,将这1n -个式子的等号两边分别相加得:1(1)n a a n d -=-,即1(1)n a a n d =+-.由等差数列的通项公式易知:()n m a a n m d -=-. 2.等差数列前n 项和公式的推导:1111()(2)[(1)]n S a a d a d a n d =+++++++-,把项的顺序反过来,可将n S 写成:()(2)[(1)]n n n n n S a a d a d a n d =+-+-++--,将这两式相加得:11112()()()()n n n n n S a a a a a a n a a =++++++=+,从而得到等差数列的前n 项和公式1()2n n n a a S +=,又1(1)n a a n d =+-, 得11()(1)22n n n a a n n S na d +-==+. 二.等比数列1. 等比数列的概念:如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,常用字母(0)q q ≠表示.2. 等比数列的通项公式为:11n n a a q -=.3. 等比中项:如果三个数,,x G y 组成等比数列,那么G 叫做x 和y 的等比中项,即2G xy =.两个正数(或两个负数)的等比中项有两个,它们互为相反数;一个正数与一个负数没有等比中项.1.等比数列通项公式的推导: 由等比数列的定义知:312412321,,,,,n n n n a a aa aq q q q q a a a a a ---===== 将这1n -个式子的等号两边分别相乘得:11n na q a -=,即11n n a a q -=. 由等比数列的通项公式易知:n m nma q a -=.一、等差数列中基本量的运算:a 1,a n ,n ,d ,S n 知三求二 ①基本量运算{}28454565651.,6,6,....n a a a A S S B S S C S S D S S =-=<=<=(一星)是等差数列且则()解:1994500a a S S S +=⇒=⇒=.选B.{}18451845184518452.,0,....n a d A a a a a B a a a a C a a a a D a a a a ≠><+>+=(一星)如果是正项等差数列公差则()答案:B.3,4,3,2550,,.k .a a k S a k =(一星)等差数列前三项为前项和求的值答案:2,50a k ==7.(二星)(2015年全国1)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 答案:B7.(三星)(全国1理科)设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( )A.3B.4C.5D.6 解:有题意知==0,∴=-=-(-)=-2,=-=3,∴公差=-=1,∴3==-,∴=5,故选C.2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3)n ≥从左向右的第3个数为 .4.(二星)已知是等差数列,公差不为零,前项和是,若,,成等比数列,则( ) A.B.B.C. D.(3)(2016全国1卷理)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100(B )99(C )98 (D )97解:由等差数列性质可知:()1959599292722a a a S a +⨯====,故53a =, 而108a =,因此公差1051105a a d -==- ∴100109098a a d =+=.故选C .4.(2017全国1卷理)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为( ) A .1B .2C .4D .8解:45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②得()211524-=d624d = 4d =∴.选C3.(2018广州市调研理)在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d =( )BA .2B .3C .2-D .3-4.(2018广州一模文)等差数列{}n a 的各项均不为零,其前n 项和为n S ,若212n n n a a a ++=+,则21=n S +(A )A .42n +B .4nC .21n +D .2n4.(2018全国1理)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a B A .12- B .10- C .10 D .129. (2019全国1卷理)记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B.310n a n =-C. 228n S n n =-D. 2122n S n n =- 解:由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .18.(2019全国1卷文)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{}n a 的公差为d .由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-. (2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N .14.(2019全国高考3卷理)记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =________.414.(2019全国3卷文)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.15. (2018广东一模文)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,则5a = .146. (2018广东一模文)等差数列()()()333log 2,log 3,log 42,x x x +的第四项等于( A )A .3B .4 C. 3log 18 D .3log 24 ②创新题1.(2016全国2卷文)等差数列{}n a 中,且344a a +=,576a a +=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)记[]n n a b =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]26.2=.解:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=.(Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦,当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.17.(2016全国2卷理)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 解: ⑴设的公差为,,∴,∴,∴. ∴,,. ⑵记的前项和为,则. 当时,; 当时,; 当时,; 当时,.∴.(17)(2017届广州市调研文)等差数列}{n a 中,1243=+a a ,749S =. (Ⅰ)求数列}{n a 的通项公式;(Ⅰ)记][x 表示不超过x 的最大整数,如0]9.0[=,2]6.2[= . 令][lg n n a b =,求数列}{n b 的前2000项和.解:(Ⅰ)由1243=+a a ,749S =,得112512,72149.a d a d +=⎧⎨+=⎩{}n a d 74728S a ==44a =4113a a d -==1(1)n a a n d n =+-=[][]11lg lg10b a ===[][]1111lg lg111b a ===[][]101101101lg lg 2b a ==={}n b n n T 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+0lg 1n a <≤129n =⋅⋅⋅,,,1lg 2n a <≤101199n =⋅⋅⋅,,,2lg 3n a <≤100101999n =⋅⋅⋅,,,lg 3n a =1000n =1000091902900311893T =⨯+⨯+⨯+⨯=解得11=a ,2=d , 所以12-=n a n .(Ⅰ))]12[lg(][lg -==n a b n n , 当51≤≤n 时, 0)]12[lg(=-=n b n ;当506≤≤n 时, 1)]12[lg(=-=n b n ; 当50051≤≤n 时, 2)]12[lg(=-=n b n ; 当5012000n ≤≤时, 3)]12[lg(=-=n b n .所以数列}{n b 的前2000项和为544515003450245150=⨯+⨯+⨯+⨯.③与其他内容结合4546.(){},10,15,___.n n a n S S S a ≥≤四星设等差数列的前项和为若则的最大值为4141115110235:3(23)3(2) 4. 4.1523S a d a a d a d a d S a d ≥+≥⎧⎧⇒⇒=+=-+++≤⎨⎨≤+≤⎩⎩解答案为二、等比数列中基本量的运算 ①基本量运算1.1,,,,9,.3,9.3,9.3,9.3,9a b c Ab ac B b ac C b ac D b ac --===-===-=-=-(一星)若成等比数列则()答案:B3102.,3,384,______a a ==(一星)等比数列中则通项公式为答案:332n n a -=⋅364714.,36,18,,____2n a a a a a n +=+===(一星)等比数列中答案:9n =13、(一星)(2015全国1)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .答案:67.(一星)(2015全国2理)等比数列{a n }满足a 1=3,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .84 答案:B12.(一星)(2015全国2文)已知等比数列满足,,则( ) A. 2 B. 1 C. D. 答案:C5.(二星)(全国理)已知{}n a 为等比数列,47562,8a a a a +==-,则110a a +=A .7B .5C .-5D .-7 解:因为{}n a 是等比数列,所以56478a a a a ==-,所以47,a a 是方程2280x x --=的两根,解得4x =或2x =-。

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练【题型归纳】等差数列、等比数列的基本运算题组一 等差数列基本量的计算例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2−S n =36,则n = A .5 B .6 C .7 D .8【答案】D【解析】解法一:由题知()21(1)21n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2−S n =36得,(n +2)2−n 2=4n +4=36,所以n =8.解法二:S n +2−S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2−S n =36,解析为a n +2,发生错误。

题组二 等比数列基本量的计算例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即4220q q --=,解得q 2=2,∴4624a a q ==.【易错点】忘了条件中的正数的等比数列. 【思维点拨】等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路:(1)设基本量a 1和公差d (公比q ).(2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.等差数列、等比数列的判定与证明题组一 等差数列的判定与证明例1设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项. (1)证明:数列{a n }为等差数列;(2)若b n =−n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值. 【答案】(1)见解析;(2) 当n =2或n =3时,{a n ·b n }的最大项的值为6. 【解析】(1)由已知可得2S n =a 2n +a n ,且a n >0, 当n =1时,2a 1=a 21+a 1,解得a 1=1; 当n ≥2时,有2S n −1=a 2n -1+a n −1,所以2a n =2S n −2S n −1=a 2n −a 2n -1+a n −a n −1,所以a 2n −a 2n -1=a n +a n −1,即(a n +a n −1)(a n −a n −1)=a n +a n −1,因为a n +a n −1>0, 所以a n −a n −1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列. (2)由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (−n +5)=−n 2+5n =−⎝⎛⎭⎫n -522+254, 因为n ∈N *,所以当n =2或n =3时,{a n ·b n }的最大项的值为6.【易错点】S n 是a 2n 和a n 的等差中项,无法构建一个等式去求解出a n 。

高考中一般数列基本量有哪些经典考法?

高考中一般数列基本量有哪些经典考法?

高考中一般数列基本量有哪些经典考法?
今天侯老师补发一篇关于一般数列基本量的文章,重温此问题的基本考法。

我们希望能做到:
(1)结合高考的考频来筛选经典题
(2)从解题套路角度,讲讲这些经典考法有什么讲究
今天侯老师带大家一起,从高考视角审视一下一般数列基本量问题都是如何考查的。

结合高考数据,侯老师使用刷题大师后台数据库对2012-2017年全国各省市高考题的统计分析,发现:
1、在高考6000+的题目中,对数列模块的考察有337道题,而其中涉及到一般数列基本量问题的有53题。

2、对所有考察一般数列基本量的题目聚类分析后,发现高考中出现的一般数列基本量问题只有8种考法:
我们以具体的题目为例,来说说上述这8种考法。

经典考法一:根据数列的特点求数列的项/项数
经典考法二:根据数列的通项公式求数列的项/项数
经典考法三:根据数列的递推公式求数列的项/项数
经典考法四:根据两个数列的通项公式求数列的公共项
经典考法五:判断/证明数列是否为等比数列
经典考法六:利用等比数列通项公式求项/项数
经典考法七:利用等比中项/首末项等距离性质求项/项数
经典考法八:利用等比数列通项公式求等差数列的公比。

等差、等比数列及前n项和

等差、等比数列及前n项和

第01讲 等差数列及其前n 项和考纲考情本讲为高考命题热点,分值10-12分,题型多变,选择题,填空题,解答题都会出现选择填空题常考等差等比数列的性质,大题题型多变,但对于文科来讲常考察基本量的计算与数列求和,对于理科考点相对难度较大,比如新定义,奇偶列等,考察逻推理能力与运算求解能力。

考点梳理考点一 等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

数学语言表达式 : ()为常数d N n d a a n n ,1*+∈=-()为常数d N n d a a n n ,1*+∈=-。

(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且2ba A +=考点二 等差数列的通项公式与前n 项和公式(1)若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为()d n a a n 11-+=。

(2)前n 项和公式: ()()n d a n d a a n d n n na S n n ⎪⎭⎫⎝⎛-+=+=-+=222211211。

考点三 等差数列的性质(1)通项公式的推广:()()*∈-+=N m n d m n a a m n ,。

(2)若{}n a 为等差数列,且()*∈+=+N q p m n q p n m ,,,,则q p n m a a a a +=+。

(3)若{}n a 是等差数列,公差为d,则()*++∈N m k a a a m k m k k ,......,,2是公差为md 的等差数列。

(4)若n S 为等差数列{}n a 小的前n 项和,则数列,......,,232m m m m m S S S S S --也是等差数列。

(5)若n S 为等差数列{}n a 的前n 项和,则数列⎭⎬⎫⎩⎨⎧n S n 也为等差数列。

考点四 常用结论1.已知数列{}n a 的通项公式是()为常数其中q p q pn a n ,+=,则数列{}n a 一定是等差数列,且公差为p 。

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法

(完整版)数列中的数学思想和方法数列中的数学思想和方法数学思想方法是数学知识的精髓,是知识转化为能力桥梁.能否有意识地正确运用数学思想方法解答数学问题,是衡量数学素质和数学能力的重要标志.数列中蕴涵了许多重要的数学思想,下面我们一起来看一看吧!一、方程思想 方程思想就是通过设元建立方程,研究方程解决问题的方法。

在解数列问题时,利用等差、等比数列的通项公式、求和公式及性质构造方程(组),是解数列问题基本方法。

例1 已知等差数列{}n a 的公差d 是正数,且3712,a a =-464a a +=-,求其前n 项和n S .解:由等差数列{}n a 知:3746a a a a +=+,从而373712,4a a a a =-+=-,故37,a a 是方程24120x x +-=的两根,又0d >,解之,得:376,2a a =-=。

再解方程组:112662a d a d +=-⎧⎨+=⎩1102a d =-⎧⇒⎨=⎩, 所以10(1)n S n n n =-+-。

〈法一〉法二、基本量法,建立首项和公差的二元方程 知三求二点评:本题利用了3746a a a a +=+这一性质构造了二次方程巧妙的解出了376,2a a =-=,再利用方程求得了首项与公差的值,从而使问题得到解决,由此可知在数列解题时往往可借助方程的思想与n m p q a a a a +=+(或n m p q a a a a ⋅=⋅)找出解题的捷径。

关注未知数的个数,关注独立方程的个数。

点评基本量法:性质法 技巧备用:设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .解 (1)由已知得错误!解得a 2=2。

设数列{a n }的公比为q ,由a 2=2,可得a 1=错误!,a 3=2q ,又S 3=7,可知错误!+2+2q =7,即2q 2-5q +2=0。

数列的基本运算及性质

数列的基本运算及性质
a与b的等比中项,记为G ab .
n 1 * 3 通项公式: a a q ( n N ). n 1
4 前n项和公式:当q 1时,Sn na1;
a1 an q a1 1 q n 当q 1时,S n 或S n (n N* ). 1 q 1 q

【思维启迪】首项a1与公差d (或公比q)是支 撑等差数列(或等比数列)的两大支柱,因此, 将所求问题转化为这两个量的方程(组)是最 基本的方法,也是常规法,须熟练掌握.

变式题:设等比数列an 的前n项和为S n,若a1 1,S6 4S3,则a4 _____ .

解析:由a1 a3 a5 105,a2 a4 a6 99, a1 (a1 2d ) (a1 4d ) 105 得 , (a1 d ) (a1 3d ) (a1 5d ) 99 解得a1 39,d 2, 所以an a4 n 4 2 41 2n. an 41 2n 0 39 41 由 ,得 <n , 2 2 an1 41 2 n 1 0 所以n 20,故选B.

4.等差数列与等比数列的性质
1 若m n p q(m,n,p,q N* ),则 ①当an 为等差数列时am an a p aq; ②当an 为等比数列时am an a p aq .此性质可称为
“下标和相等性质”.
2 若Sn为数列an 的前n项和,则①在等差数列an

备选例题:已知an 为等差数列,a1 a3 a5 105,a2 a4 a6 99,S n 表示 an 的前n项和, 则使得Sn达到最大值的n是( ) A. 21 C. 19 B. 20 D. 18

用基本量灵活解高考数列题

用基本量灵活解高考数列题

上上d 。_
4 4 = 一 凡 。 +
n=

凡一
2


时 取 到 最 大 值 ’


/2, =
2
S


4 .
感 悟 等 差 ( 比 ) 数 列 是 数 歹lj 中 最 基 本 最 主 要 的 数 列 ,
解决这类题
的关键是 抓 住基 本量


过建立
方程
(组
)
求 ,
出首项和公差 ( 比 ),而 后求出通 项公 式进行具 体解题 . 这
一 项 得 到 的数 列 (按原来 的顺 序 )是 等 比 数 列 :
(I )① 当 n =
4
时 求 /7, I

._
的 数 值 ;(多求 n
的所 有 可 能 值 ;
n
( Ⅱ ) 求 证 :对 于 一 个 给 定 的 正 整 数 n ( n
个各项


差都

为零
的等差数 列
bb … 。, :,


(

= 6;
(0 l +
若 删 去 则 哟 ,
0 l as = o ,2 a 4 ,
@ ) ( ) ) 即 0 l
4 a 4"
-
I
=
al+ d
(口l + 3 d .
化 简 得 能 删 ,
3d2 :
0 d ‘ ’ ,.

0 √. 也不
去 0 ,3 ;
若 删 则 有 去 0 4. ,
0 l as = 04 Ⅱ3 ,
(Ⅱl + 3d ) , 故得

基本量法

基本量法

+ 一 2 n 2 + 2 n + 2 —2




a . =l -( -4 ) ' , 所
b n = ・ :
+ 4 。 + … + 4 z m s + 1 一 尘 } + 1 一



S +1 , 所以 n 一 一 1 1 0 .( 1 )当 一1 时, a l =3 又 ̄ n + l -a n 一( 3 + +1 ) 一( 3 S +1 ) =3 口 + 得
专 题 突 破
回 0 }
做 题前 , 请 参 考 本期 文 章 《 解 答教 列题 的 当家 法宝
— —
吕 》
基 本量 法》
基 本 量 法
1 .等 差 数 列 共 有 2 + 1项 , 所 有 奇数 项 的 和 为 1 3 2 , 偶数项的和为 1 2 0 , 则 一

专题 突破
1 ・ 1 0 ・ 2 . 了 1 .( 4 ~ 1 ) . 3


基本 量法

+1 ) _ 4 . 4 或 5 . 5 . ( 1 )a 一3 一 I ( 2 )S . -
专题 突破
等差、 等 比数 列 的判定
1 . 3 ( 1 - 3 -  ̄  ̄ ) .2 .
口 ) 一2 l g ( 1 +丑 ) , 即
一 一


所 以 数 列 { a } 是 首 项 、 公 比 均 为 ~ 的 等 比 数 列 , 所 以 一 ( 一 号 ) “ .
( 2 )不存在正整数 k , 使得 R >2 k成立. 证明如下 :
由 ( 1 ) 知 一 2 +
, 则 6 z 一 + 一 4 + 南

等比数列

等比数列

等比数列一、等比数列中基本量的运算1.已知{a n}是等比数列,a2=2,a5=,则公比q等于()A.-B.-2C.2D.2.已知等比数列{a n}中,a1=32,公比q=-,则a6等于()A.1B.-1C.2D.3.已知等比数列{a n}中,=2,a4=8,则a6=()A.31B.32C.63D.644.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2等于()A.-4B.-6C.-8D.-105.已知等比数列{a n}的公比q=-,则等于()A.-3B.-C.3D.二、等比中项及应用6.2+和2-的等比中项是.7.已知等比数列{a n}的各项均为正数,它的前三项依次为1,a+1,2a+5,则数列{a n}的通项公式a n=.三、等比数列的判定8.给出下列数列:①2,2,4,8,16,32,…;②在数列{a n}中,=2,=2;③常数列c,c,c,c,….其中等比数列的个数为.9.设{a n}是公比为q的等比数列,设q≠1,证明数列{a n+1}不是等比数列.习题1.已知在等比数列{a n}中,a1+a3=10,a4+a6=,则该等比数列的公比为()A. B. C.2 D.82.若等比数列的首项为,末项为,公比为,则这个数列的项数为()A.3B.4C.5D.63.已知等比数列{a n}中,a1=3,8=a n+1·a n+2,则a3=()A.48B.12C.6D.24.如果-1,a,b,c,-9成等比数列,那么()A.b=3,ac=9B.b=-3,ac=9C.b=3,ac=-9D.b=-3,ac=-95.已知1既是a2与b2的等比中项,又是的等差中项,则的值是()A.1或B.1或-C.1或D.1或-6.设a1=2,数列{1+2a n}是公比为2的等比数列,则a6等于.7.已知等差数列{a n}的公差d≠0,它的第1,5,17项顺次成等比数列,则这个等比数列的公比是.8.某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的倍.9.等比数列的前三项和为168,a2-a5=42,求a5,a7的等比中项.10.已知数列{a n}满足a1=,且a n+1=a n+,n∈N*.(1)求证:是等比数列;(2)求数列{a n}的通项公式.等比数列的性质一、等比数列性质的应用1.若{a n}是等比数列,那么()A.数列是等比数列B.数列{}是等比数列C.数列{}是等比数列D.数列{na n}是等比数列2.在等比数列{a n}中,a2 013=8a2 010,则公比q的值为()A.2B.3C.4D.83.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.5B.7C.6D.4二、等差、等比数列的综合问题6.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.D.7.数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.8.已知1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值为.9.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000.求此四个数.习题1.在等比数列{a n}中,a3a4a5=3,a6a7a8=24,则a9a10a11的值为()A.48B.72C.144D.1922.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.83.已知等比数列{a n}满足a1=3,且4a1,2a2,a3成等差数列,则a3+a4+a5等于()A.33B.84C.72D.1894.等比数列{a n}中,已知a9=-2,则此数列的前17项之积为()A.216B.-216C.217D.-2176.已知数列{a n}是等比数列,公比q>1,且a1+a6=8,a3a4=12,则=.7.在等比数列{a n}中,若a n>0,a1·a100=100,则lg a1+lg a2+lg a3+…+lg a100=.8.公差不为零的等差数列{a n}中,2a3-+2a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=.等比数列的前n项和一、等比数列前n项和公式的应用1.已知等比数列的公比为2,且前5项和为1,那么前10项的和等于()A.31B.33C.35D.372.设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n3.设S n为等比数列{a n}的前n项和,若27a2-a5=0,则等于()A.-27B.10C.27D.804.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和.若S n=126,则n=.5.设数列{a n}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=.二、等比数列前n项和性质的应用6.一个等比数列的前7项和为48,前14项和为60,则前21项和为()A.180B.108C.75D.637.已知数列{a n},a n=2n,则+…+=.8.在等比数列{a n}中,a1+a n=66,a2·a n-1=128,S n=126,求n和q.三、等差、等比数列的综合应用9.已知数列{a n}是以1为首项,2为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,设c n=,T n=c1+c2+…+c n,当T n>2 013时,求n的最小值。

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。

等比数列典型题

等比数列典型题

等比数列典型题题型一 等比数列的基本量的计算例1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .探究提高 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值.题型二 等比数列的性质及应用例2等比数列{a n }中(1)若已知a 2=4,a 5=-12,求a n ;(2)若a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.探究提高 在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2(2)已知S n 为等比数列{a n }的前n 项和,且S 3=8,S 6=7,则a 4+a 5+…+a 9=________.题型三 等比数列的判定例3 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{b n }的通项公式.探究提高 注意判断一个数列是等比数列的方法,另外第(2)问中要注意验证n =1时是否符合n ≥2时的通项公式,能合并的必须合并.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式.题型四 等差与等比数列综合性问题的求解例:(12分)(湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.等比数列典型题题型一 等比数列的基本量的计算例1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .思维启迪:(1)由S 1,S 3,S 2成等差数列,列方程求出q .(2)由a 1-a 3=3求出a 1,再由通项和公式求出S n .解 (1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由已知可得a 1-a 1⎝⎛⎭⎫-122=3.故a 1=4.从而S n =4[1-⎝⎛⎭⎫-12n ]1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 探究提高 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值.解 (1)∵a 3·a 4=a 1·a 6=329,又a 1+a 6=11,故a 1,a 6可看作方程x 2-11x +329=0的两根,又q ∈(0,1),∴a 1=323,a 6=13,∴q 5=a 6a 1=132,∴q =12,∴a n =323·⎝⎛⎭⎫12n -1=13·⎝⎛⎭⎫12n -6.(2)由(1)知S n =643⎝⎛⎭⎫1-12n =21,解得n =6. 题型二 等比数列的性质及应用例2等比数列{a n }中(1)若已知a 2=4,a 5=-12,求a n ;(2)若a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.思维启迪:注意巧用性质,减少计算.如:对于等比数列{a n },若m +n =p +q (m 、n 、p 、q ∈N *),则a m ·a n =a p ·a q ;若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . 解 (1)设公比为q ,则a 5a 2=q 3,即q 3=-18,∴q =-12,∴a n =a 5·q n -5=⎝⎛⎭⎫-12n -4. (2)∵a 3a 4a 5=8,又a 3a 5=a 24,∴a 34=8,a 4=2.∴a 2a 3a 4a 5a 6=a 54=25=32.探究提高 在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2(2)已知S n 为等比数列{a n }的前n 项和,且S 3=8,S 6=7,则a 4+a 5+…+a 9=________. 答案 (1)A (2)-78解析 (1)把a 1a 2a 3,a 4a 5a 6,a 7a 8a 9看成一个整体,则由题意,知它们分别是一个等比数列的第1项,第4项和第7项,这里的第4项刚好是第1项与第7项的等比中项.因为数列{a n }的各项均为正数,所以a 4a 5a 6=(a 1a 2a 3)·(a 7a 8a 9)=5×10=5 2.(2)根据等比数列的性质,知S 3,S 6-S 3,S 9-S 6成等比数列,即8,7-8,S 9-7成等比数列,所以(-1)2=8(S 9-7).解得S 9=718.所以a 4+a 5+…+a 9=S 9-S 3=718-8=-78.题型三 等比数列的判定例3 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n=n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{b n }的通项公式.思维启迪:(1)由a n +S n =n 及a n +1+S n +1=n +1转化成a n 与a n +1的递推关系,再构造数列{a n -1}.(2)由c n 求a n 再求b n .(1)证明 ∵a n +S n =n ,①∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12,公比q =12.又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n ,∴a n =c n +1=1-⎝⎛⎭⎫12n . ∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n=⎝⎛⎭⎫12n . 探究提高 注意判断一个数列是等比数列的方法,另外第(2)问中要注意验证n =1时是否符合n ≥2时的通项公式,能合并的必须合并.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式.证明 ∵S n =2a n +1,∴S n +1=2a n +1+1∴a n +1=S n +1-S n =(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n ,又∵S 1=2a 1+1=a 1,∴a 1=-1≠0.又由a n +1=2a n 知a n ≠0,∴a n +1a n=2.∴{a n }是以-1为首项,2为公比的等比数列.∴a n =-1×2n -1=-2n -1 题型四 等差与等比数列综合性问题的求解例:(12分)(湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.解(1) 设成等差数列的三个正数分别为a -d ,a ,a +d , 依题意,得a -d +a +a +d =15,解得a =5.[2分] 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d .依题意,有(7-d )(18+d )=100,解得d =2或d =-13(舍去).[4分] 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.[6分](2)证明 数列{b n }的前n 项和S n =54(1-2n )1-2=5·2n -2-54,即S n +54=5·2n -2.[8分]所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,2为公比的等比数列.。

专题三 第1讲 等差数列、等比数列

专题三 第1讲 等差数列、等比数列
等差数列、等比数列的基本运算
核心提炼
等差数列、等比数列的基本公式(n∈N*) (1)等差数列的通项公式:an=a1+(n-1)d. (2)等比数列的通项公式:an=a1qn-1. (3)等差数列的求和公式: Sn=na1+ 2 an=na1+nn- 2 1d.
(4)等比数列的求和公式: Sn=a111--qqn=a11--aqnq,q≠1,
1 2 3 4 5 6 7 8 9 10 11 12 13 14
2.(2022·济宁模拟)在等比数列{an}中,a1+a3=1,a6+a8=-32,则aa105+ +aa172
等于
A.-8
B.16
C.32
√D.-32
设等比数列{an}的公比为q, 则a6+a8=(a1+a3)q5=1×q5=-32,所以q5=-32, 故aa105+ +aa172=aa5+5+aa77q5=q5=-32.
∴S14=14a12+a14=14a42+a11>0, S15=15a12+a15=15×2 2a8<0,
∴当Sn>0时,n的最大值为14,D正确.
考点三
等差数列、等比数列的判断
核心提炼
定义法 通项法 中项法
等差数列 an+1-an=d an=a1+(n-1)d 2an=an-1+an+1(n≥2)
是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的
石板数依次为a1,a2,a3,…,a9,设数列{an}为等差数列,它的前n项
1=6
√B.{an}的公差为9
C.a6=3a3
√D.S9=405
设{an}的公差为d.由a4+a6=90, 得a5=45,又a2=18, 联立方程组aa11++d4=d=184,5, 解得ad1==99,, 故 A 错误,B 正确;

数列1

数列1

(1)证明 {an } 是等比数列,并求其通项公式;(2)若
S5
31 32
,求 .
8.【2015 高考新课标 1,理 17】 Sn 为数列an 的前 n 项和,已知 an 0 , an2 2an 4Sn 3 .
(1)求an 的通项公式;(2)设 bn
1 an an 1
,求数列bn 的前
n
项和.
17
12 分
2013 7,12
14
15 分
2012 5
16
10 分
2011
17
17
10 分
(1) (2)
合计 30 分
16 分 21 分 12 分 79 分
三、考点分析
第一方面:数列的基本运算
1.【2015 高考新课标 2 理科】等比数列{an}满足 a1=3, a1 a3 a5 =21,则 a3 a5 a7 ( )


4.【2015 高考新课标 2,理 16】设 Sn 是数列 an 的前 n 项和,且 a1 1 , an1 SnSn1 ,则 Sn
________.
5.设公差为-2 的等差数列{an},如果 a1+a4+a7+…+a97=50,那么 a3+a6+a9+…+a99 等于( )
A.-182
6.答案:Sm=92m+1+1-9m.(考查等差数列的基本量运算,等比数列求和)
80
8
7.解析
:(1)由题意得 a1 S1 1 a1 ,故
1

a1
1
1
, a1 0 .
由 Sn 1 an , Sn1 1 an1 ,得 an1 an1 an ,即 an1 1 an .
由 a1
A.9

等差数列中基本量的计算

等差数列中基本量的计算
等差数列中基本量的计算
例1:已知数列{an}为等差数列 (1)若a1=1,an=-512,sn=-1022,求公差d (2)若a1+a5=19,s5=40,求a10 (3)若s =84,s =460,求a
• 例2:已知数列的前n项和为 2 sn=n +n/2,求这个数列的通项公 式,这个数列是等差数列吗? 如果是,它的首项和公差分别 是什么?
等差数列前n项和公式的应用
• 累加法求an • 例1:已知数列{an},a1=-3, • an+1-an=2n+1,求an
• 例2:已知数列{an}中,a1=0, • an=an-1+3n-1(n>=2),则an=
等差数列前n项和的最值问题
• 例1:等差数列{an}中,设sn为其前 n项和,且a1>0,s3=s5,则当n为多少 时,sn最大?

• 例2:设等差数列{an}中, a3=5,a10=-9,则数列的通项公式 为an=( ),当n=() 时,sn取 得最大值
• 例3:已知等差数列 5,4+2/7 ,3+4/7,· · · 的前n项和为sn,求 使得sn最大的序号n的值

等比数列基本量计算

等比数列基本量计算
2
1
2
除,得
即 2q -5q+2=0,解得 q=2 或 q= .所以
或 q=1.
2= ,
q=2
1+q 5
2
2
q
故 a3=4 或 a3=-4.
10. 已知 {
} 为等比数列, 4
解析 设数列 {
所以 ቐ
+
7
} 的公比为 ,由 ቊ
1
= −8,
3
=−
1
2
或ቊ
1
3
= 1,
所以 ቊ
= −2,
= 2,
2
4.实数数列 1,a,4,b2 为等比数列,则 a=( B ).
A.-2
B.2
C.±2
D.±2 2
2
2
解析由题意得 a =1×4=4,即 a=±2,又 a 与 b 同号,所以 a=2.
5. 在等比数列 {
解析
}中,
4
= −4,
4 与 8 的等比中项 6
=−
8
= −16,则
4

8
4与
−8
的等比中项为_______.
23 (2018 年全国Ⅲ卷)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记 Sn 为{an}的前 n 项和,若 Sm=63,求 m.
解析(1)设{an}的公比为 q,由题设得 an=qn-1.由已知得
q4=4q2,解得 q=0(舍去),q=-2 或 q=2.故 an=(-2)n-1 或 an=2n-1.
A. 12
B. 24
C. 30
解析 由题意 { } 是等比数列,且
3 ) ,即 = 2 , ∴ 6 + 7 + 8 =

等差数列基本量计算

等差数列基本量计算

等差数列基本量计算1.等差数列{n a }中,已知1a =31, 254a a +=, 33n a =,则n 为 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值为___________.3.已知等差数列}{n a ,199a a 与是一元二次方程021102=+-x x 的两个实根.则397a a +的值为 .4.若}{n a 与{}n b 都是等差数列,10,15,252211=+==b a b a ,则数列{n n a b +}的前12项的和是 .5.已知等差数列}{n a 的首项为 125,从第10项开始比1大,则公差d 的取值范围是 6.在等差数列}{n a 中,已知32n a n =-,则该数列前20项之和是7.在等差数列}{n a 中,2,31-==d a (d 为公差),则=+++++9997531a a a a a ________.8.在等差数列}{n a 中,35710133()2()24a a a a a ++++=,则此数列前13项的和为9. 数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则n =______________10.已知等差数列{n a }中, 2a +8a =8,则该数列前9项和9S 等于11.已知数列{n a }的前n 项和32+=n s n ,则=n a _____________________12.设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则____________________; 13.等差数列{a n }的前m 项和30,前2m 项和为100,则数列的前3m 项和为_____________ ;14.若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有_________项;。

数列基本量的计算PPT

数列基本量的计算PPT

an=
S1 n=1 Sn-Sn-1n≥2
.
1.等差数列 (1)一般地,如果一个数列从第2项起,每一项与 它的前一项的差等于同一个常数,那么这个数
列就叫等差数列,这个常数叫做等差数列的 ___公__差____,公差通常用字母d表示,公差的表 达式为_a_n_-__a_n_-_1_=__d_(_n_∈__N_*_,__n_≥__2_)_.__
有穷数列:项数有限 按项分类无穷数列:项数无限
按an的增 减性分类
递增数列:对于任何n∈N*,均有an+1>an 递减数列:对于任何n∈N*,均有an+1<an 摆动数列:例如:-1,1,-1,1,…
常数数列:例如:8,8,8,8,…
5.an 与 Sn 的关系
Sn=a1+a2+a3+…+an,
若项数为奇数,还等于中间项的平方,即 a1·an=a2·an-1=a3·an-2=…=a2中. .
思考感悟 G= ab是 a、G、b 成等比数列的什么条件?
提示:G= ab ⇒/ a、G、b 成等比数列, 如 G=0,a=0 或 b=0;a、G、b 成等比数 列⇒/ G= ab,有可能 G=- ab. ∴G= ab是 a、G、b 成等比数列的既不充 分也不必要条件.
前 n 项和公 式 Sn=
__n_a_1___ (q 1)
a1(1 q n )
a1 anq
__1 _ _q__=_____1 _ _q___
(q 1)
相关 名词 等比数列{an}的相关概念及公式
等比 设a、b为任意两个同号的实数,则 中项 a、b的等比中项G=___±__a_b____
2.等比数列的性质 (1)对任意的正整数m、n、p、q,若m+n=p + q 则 _a_m__·a_n_=__a_p_·a_q___. 特 别 地 m + n = 2p 则 ___a_=__a_m_·_a_n._____ (2)有穷等比数列中,与首末两项距离相等的 两项积相等,都等于首末两项的积,特别地,

把握数列概念本质__巧用数列通项特征——2023年高考数列试题赏析

把握数列概念本质__巧用数列通项特征——2023年高考数列试题赏析

球 的 球 心,由 V 三 棱 锥O-PBC =

解 析:由 ∠HDC = ∠FAB =9
0
°,且 点

PAD ⊥ 平面 ABCD 。取 AD 的中点为 M ,
过 O 作 底 面 ABCD 的 垂 线
为四 棱 锥 PABCD 的 外 接
平面 PBC 的距离为
可知 AB ⊥ 平面 PAD ,
平面
H、
F、
E、
G 重合,
正方形 ABCD 的中心为 O ,
则 l1 与 l2 的 交 点 O ,即
l2 ,
则四 棱 锥 P9
0
°,
ABCD 的 外 接 球 的 球 心 到
图1
可得球心 O 到平面 PBC 的 距 离 为
V 三 棱 锥P-OBC ,
5

5
M 作平 面 PAD 的 垂 线l1 ,取 正 方 形 ABCD
以约分成一次函数的特征。因此,
设 an =t
n,
求 d。
T99 =9
9,
(
解析:
1)由 3
a2 =3
a1 +a3,
S3 +T3 =2
1,
可 得
3(
a1+d)
=3
a1+a1+2
d,
3
a1+3
d+
a1=d,
,
2
6
1
2
=2
1
+
+
a1 a1+d a1+2
d
2
所以 2
解得
d -7
d+3=0,
9
6
d+ =2

基本量法解决数列问题

基本量法解决数列问题

基本量法解决数列问题
基本量法是一种解决数列问题的方法,它可以帮助我们快速找到数列中的某个特定数字。

它的基本原理是:通过观察数列中的每一个数字,找出其中的一个基本量,然后根据这个基本量来计算出数列中的其他数字。

基本量法的优点是,它可以帮助我们快速找到数列中的某个特定数字,而不需要花费大量的时间和精力去计算每一个数字。

它的缺点是,它只能用于简单的数列,如等差数列或等比数列,对于复杂的数列,它就无能为力了。

基本量法的应用非常广泛,它可以用于解决各种数列问题,比如求解等差数列的第n项,求解等比数列的第n项,求解数列的和等等。

总之,基本量法是一种非常有用的解决数列问题的方法,它可以帮助我们快速找到数列中的某个特定数字,而不需要花费大量的时间和精力去计算每一个数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差、等比数列基本量的运算法宝
典例解析:
题型一 等差、等比数列的基本运算
例1 已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;
(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .
题型二 等差、等比数列的性质及应用
例2 (1)已知正数组成的等差数列{a n },前20项和为100,则a 7·a 14的最大值是( ) A .25 B .50 C .100 D .不存在
(2)在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 10
10=2,则S 2 013的值为( )
A .-2 011
B .-2 012
C .-2 010
D .-2 013 题型三 等差、等比数列的综合应用
例3 已知数列{a n }的前n 项和S n 满足条件2S n =3(a n -1),其中n ∈N *. (1)证明:数列{a n }为等比数列;
(2)设数列{b n }满足b n =log 3a n ,若c n =a n b n ,求数列{c n }的前n 项和.
跟踪训练
1.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( ) A .-110 B .-90C .90 D .110
2.(2014·课标全国Ⅱ)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于( )
A .n (n +1)
B .n (n -1) C.n (n +1)2 D.n (n -1)2
3.等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为( ) A .-2或1 B .-1或2 C .-2 D .1
4.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3
5.(2014·大纲全国)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64
6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n
b n 为整数
的正整数n 的个数是( ) A .2 B .3 C .4 D .5
7.(2013·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +1
3,则{a n }的通项公式是a n =________.
8.(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.
9.(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.
10.在数列{a n }中,如果对任意n ∈N *都有a n +2-a n +1
a n +1-a n
=k (k 为常数),则称数列{a n }为等差比
数列,k 称为公差比.现给出下列问题: ①等差比数列的公差比一定不为零; ②等差数列一定是等差比数列;
③若a n =-3n +2,则数列{a n }是等差比数列; ④若等比数列是等差比数列,则其公比等于公差比. 其中正确命题的序号为________.
11.(2014·课标全国Ⅰ)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列{a n
2
n }的前n 项和.
12.(2014·北京)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.
(1)求数列{a n}和{b n}的通项公式;
(2)求数列{b n}的前n项和.。

相关文档
最新文档