活性污泥法工艺分类

合集下载

国家精品课程《水污染控制工程》3-活性污泥法

国家精品课程《水污染控制工程》3-活性污泥法
水污染控制工程(下)
第四章、污水的生物处理
教学要求
1、掌握活性污泥法的基本原理及其反应机理 2、理解活性污泥法的重要概念与指标参数:如活性 污泥、剩余污泥、MLSS、MLVSS、SV、SVI、Qc、 容积负荷、污泥产率等。 3、理解活性污泥反应动力学基础及其应用。 4、掌握活性污泥的工艺技术或运行方式; 5、掌握曝气理论。 6、熟练掌握活性污泥系统的计算与设计; 时间安排 20h(其中机动2h)
7
后生动物(主要指轮虫),捕食菌胶团和原生动物,是水质稳 定的标志。因而利用镜检生物相评价活性污泥质量与污水处 理的质量。
• 思考题:后生动物的出现反映了处理水质较好,因此能否说 明出水氨氮较低,氨氮在生物处理过程中被硝化?
③微生物增殖与活性污泥的增长:
a、微生物增值:在污水处理系统或曝气池内微生物的增殖规 律与纯菌种的增殖规律相同,即停滞期(适应期),对数期, 静止期(也减速增殖期)和衰亡期(内源呼吸期)。
③泥龄(Sludge age)Qc:生物固体平均停留时间或活性污泥在 曝气池的平均停留时间,即曝气池内活性污泥总量与每日排 放污泥量之比,用公式表示:θc=VX/⊿X=VX/QwXr 。式中: ⊿X为曝气池内每日增长的活性污泥量,即要排放的活性污泥 量。
Qw为排放的剩余污泥体积。 Xr为剩余污泥浓度。其与SVI的关系为(Xr) max=106 /SVI • Qc是活性污混处理系统设计、运行的重要参数,在理论上也 具重要意义。因为不同泥龄代表不同微生物的组成,泥龄越 长,微生物世代长,则微生物增殖慢,但其个体大;反之, 增长速度快,个体小,出水水质相对差。 Qc长短与工艺组合 密切相关,不同的工艺微生物的组合、比例、个体特征有所 不同。污水处理就是通过控制泥龄或排泥,优选或驯化微生 物的组合,实现污染物的降解和转化。

活性污泥法的主要类型及基本流程

活性污泥法的主要类型及基本流程

第一阶段:①进水,①反硝化作用, ②硝化作用,②出水
第二阶段:①进水,①硝化作用, ②出水
第三阶段:①进水,①硝化作用, ②反硝化作用,②出水
第四阶段:②进水,②反硝化作用, ①硝化作用,①出水
氧化塘的特点
①停留时间很长 ②负荷较低 ③微生物量较低 ④不需要曝气 ⑤下层有厌氧分解 ⑥生物以藻菌共生为主,并起主要的净化作用
长繁殖快的酸化细菌大量增加,提高了对有 机物降解的能力,具有较快的生物繁殖速率
• (5)通过缺氧-厌氧-好氧的过程,能降解难 降解的有机物;
7、深水曝气活性污泥法(包括深水中层曝气法和深井曝气法)
深水中层曝气法:池深不超过10m ,
池内没有导流隔墙或导流筒,曝气装置 位于水下4m
深井曝气法:池深达50~150m,池
活性污泥法的主要类型及基本流程.ppt
第六章 环境污染物的生物净化方法
1
废水的好氧生物处理
2
废水的厌氧生物处理
3 特定微生物处理及组合工艺
4
废水的微生物脱氮除磷
5
固体废弃物的微生物处理
6
大气污染物的微生物处理
第一节 废水的好氧生物处理
在有氧条件下,有机污染物 作为好氧微生物(主要是好氧微 生物,也有厌氧和兼性厌氧微生 物)的营养基质而被氧化分解, 使污染物的浓度下降。是废水生 物处理中应用最为广泛的一大类 方法。
成表面积较大的菌胶团,大量絮凝和吸附废水,污水中大
部分有机污染物是通过吸附去除的。
第二阶段是摄取、分解阶段:微生物将被吸附的污
染物摄入细胞内,进行代谢,一部分在氧的作用下,将其 转化为菌体本身的结构组分和新的细胞,另一部分则完全 被氧化为二氧化碳和水等物质。

活性污泥法工艺解析

活性污泥法工艺解析
池内有滞留的处理水,对污水有稀释、 缓冲作用,有效抵抗水量和有机污物的冲击。
13
缺点
1).自动化控制要求高:如进水、排水、排泥的自控; 2).对排水设备要求高:由于排水时间短(间歇排水时), 并且排水时要求不搅动沉淀污泥层,因而需要专门的 排水设备(滗水器),且对滗水器的要求很高; 3).后处理设备要求大:如消毒设备很大,接触池容积 也很大,排水设施如排水管道也很大; 4).总扬程增加:滗水深度一般为1~2m,这部分水 头损失被白白浪费,增加了总扬程; 5).由于不设初沉淀,易产生浮渣,浮渣问题尚未妥善 解决;
和排水阶段污水的流入,会引起活性污泥上浮或与处理 水相混合,所以可能使处理水质变差。
16
4.传统的SBR的演变工艺
传统的SBR在应用中有一定的局限性,如在进水流 量较大时,对反应系统需调节,会增大投资。为了进 一步提高出水水质,出现了许多SBR演变工艺。
CASS 工艺 ICEAS工艺 IDEA工艺 DAT-IAT工艺 UNITANK工艺 MSBR工艺
进水
反应 沉淀 排水 SBR 运行工序图
闲置
3
进水期(fill)
进水期是反应器接受废水的过程,这个 过程不仅仅是废水的流入与反应器水位的 升高的过程,而且伴随一定的生化反应 (磷的释放)。
4
反应期(react)
当进水达到设定的液位后,开始曝气 和搅拌,以达到反应目的(去除BOD、硝化、 脱氮除磷)。
序批式活性污泥法(SBR)
SBR工艺即序批式活性污泥法(Sequencing Batch Reactor Activated Sludge Process,简写为SBR), 又称为间歇式活性污泥法,由于在运行中采用间接操作的形 式,每一个反应池是一批批地处理废水,因此而得名。

活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析

活性污泥法处理工艺12种方法分析1.均质好氧处理:将废水和污泥充分混合,提高废水中的氧气浓度。

这种方法适用于高浓度有机污染物的处理,但需要消耗大量的能源。

2.好氧/厌氧处理:将废水先在好氧条件下处理,然后在厌氧条件下处理。

好氧处理可降解大部分有机物,厌氧处理可进一步降解残余有机物。

这种方法适用于高浓度有机污染物和难降解有机污染物的处理。

3.好氧/好氧处理:将废水先在好氧条件下处理,然后在另一个好氧环境中进行处理。

这种方法适用于高浓度有机污染物和有机物质的处理,可以提高废水的处理效果。

4. 上流anaerobic/好氧处理:将废水先在厌氧条件下处理,然后在好氧条件下处理。

这种方法适用于高浓度有机污染物和难降解有机污染物的处理。

5.小区间好氧处理:将废水分成几个小区间进行好氧处理,可以减少废水中的应激反应,提高废水的处理效果。

6.好氧/厌氧/好氧处理:将废水依次在好氧、厌氧和好氧条件下处理,可以提高废水的处理效果,适用于高浓度有机污染物和难降解有机污染物的处理。

7.好氧/造粒处理:通过维持污泥中的菌群结构,形成颗粒状的污泥,提高废水中有机物的去除效率。

这种方法适用于高浓度有机污染物的处理。

8.外加剂处理:向废水中加入外加剂,如营养物质、微生物、酶等,以促进有机物的降解。

这种方法适用于难降解有机污染物的处理。

9.温度控制处理:控制废水处理过程中的温度,可以提高废水中有机物的去除效率。

这种方法适用于低温条件下的废水处理。

10.进水调节处理:对进水中的COD/N/P比例进行调节,可以改善废水处理的效果,提高污泥的活性。

11.吸附填料处理:在活性污泥法中加入吸附填料,如生物膜或生物滤料,可以提高废水中有机物的降解效率。

12.气浮技术处理:将废水中的浮性物质通过气浮的方式分离,可以提高废水的处理效果。

这种方法适用于废水中的悬浮物较多的情况。

综上所述,活性污泥法的12种处理方法各有优劣,可以根据不同废水的特性和处理需求选择适合的方法进行处理。

国内30种污水处理常用工艺 附:六大主流工艺特点介绍

国内30种污水处理常用工艺 附:六大主流工艺特点介绍

国内30种污水处理常用工艺附:六大主流工艺特点介绍【格林大讲堂】据不完全统计,全国范围内已建成运营的污水处理厂数量约4000座,这其中有统计数据的污水处理工艺大约30种左右。

各类技术工艺排名如下:(主流6种)主要工艺及特点介绍01氧化沟工艺覆盖全国简介氧化沟工艺作为一种成熟的活性污泥污水处理工艺已在全国范围内得到广泛应用,它是活性污泥法的一种变型,其曝气池呈封闭的沟渠型,所以它在水力流态上不同于传统的活性污泥法,而是一种首尾相连的循环流曝气沟渠,污水渗入其中得到净化。

工艺特点1、简化了预处理氧化沟水力停留时间和污泥龄比一般生物处理法厂,悬浮有机物可与溶解性有机物同时得到较彻底的去除,排出的剩余污泥已得到高度稳定,因此氧化沟可不设初沉池,污泥不需要进行厌氧消化。

2、占地面积少因为在流程中省略了初沉池、污泥消化池,有时还省略了二沉池和污泥回流装置,使污水厂总占地面积不仅没有增大,相反还可缩小。

3、具有推流式流态的特征氧化沟具有推流特性,使得溶解氧浓度在沿池长方向形成浓度梯度,形成好氧、缺氧和厌氧条件。

通过对系统合理的设计与控制,可以取得较好的脱氮除磷效果。

4、简化工艺将氧化沟和二沉池合建为一体式氧化沟,以及近年来发展的交替工作的氧化沟,可不用二沉池,从而使处理流程更为简化。

02A2/O工艺重在脱磷除氮简介A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

这种工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。

但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

工艺特点优点:1、污染物去除效率高,运行稳定,有较好的耐冲击负荷。

2、污泥沉降性能好。

序批式活性污泥法(SBR)工艺介绍

序批式活性污泥法(SBR)工艺介绍

序批式活性污泥法(SBR)工艺介绍1、SBR工艺介绍序批式活性污泥法,又称间歇式活性污泥法。

污水在反应池中按序列、间歇进入每个反应工序,即流入、反应、沉淀、排放和闲置五个工序。

2、SBR的工作过程SBR工作过程是:在较短的时间内把污水加入到反应器中,并在反应器充满水后开始曝气,污水里的有机物通过生物降解达到排故要求后停止曝气,沉淀一定时间将上清液排出。

上述过程可概括为:短时间进水-曝气反应-沉淀-短时间排水-进入下个工作周期,也可称为进水阶段-加入底物、反应阶段-底物降解、沉淀阶段-固液分离、排水阶段-排上清液和待机阶段-活性恢复五个阶段。

(1)进水阶段进水阶段指从向反应器开始进水至到达反应器最大容积时的一段时间。

进水阶段所用时间需根据实际排水情况和设备条件确定。

在进水阶段,曝气池在一定程度上起到均衡污水水质、水量的作用,因而,阳R对水质、水量的波动有一定的适应性。

在此期间可分为三种情况:曝气(好氧反应)、搅拌(厌氧反应)及静置。

在曝气的情况下有机物在进水过程中已经开始被大量氧化,在搅拌的情况下则抑制好氧反应。

对应这三种方式就是非限制曝气、半限制曝气和限制曝气。

运行时可根据不同微生物的生长特点、废水的特性和要达到的处理目标,采用非限制曝气、半限制曝气和限制曝气方式进水。

通过控制进水阶段的环境,就实现了在反应器不变的情况下完成多种处理功能。

而连续流中由于各构筑物和水泵的大小规格已定,改变反应时间和反应条件是困难的。

(2)反应阶段是SBR主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。

根据污水处理的要求的不同,如仅去陈有机碳或同时脱氯陈磷等,可调整相应的技术参数,并可根据原水水质及排放标准具体情况确定反应阶段的时间及是否采用连续曝气的方式。

(3)沉淀阶段沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。

停止曝气和搅拌,使混合液处于静止状态,完成泥水分离,静态沉淀的效果良好。

经过沉淀后分离出的上清液即可排放,沉淀的目的是固液分离,污泥絮体和上清液分离。

一口气看完 污水处理技术之活性污泥法全总结

一口气看完 污水处理技术之活性污泥法全总结

一口气看完污水处理技术之活性污泥法全总结!活性污泥法基本上是人工强化天然水的自净化。

它可以去除污水和悬浮固体以及其他可被活性污泥吸附的物质中溶解和胶体的可生物降解有机物,并具有对水质和水量的适应性。

由于其广泛的性质,灵活的操作方式和良好的可控性,已成为生物处理方法的主体。

1 基本原理活性污泥是由细菌、真菌、原生动物、后生动物等微生物群与污水中的悬浮物和胶体物质混合而成的絮状污泥颗粒。

具有较强的吸附分解有机物的能力和良好的沉淀性能。

由于其生化活性,被称为活性污泥。

泥浆。

活性污泥的性状:从表面上看,活性污泥就像明矾花絮颗粒,又称生物絮体。

絮体直径为0.0 2-0.2mm,站立时可立即凝结成较大的天鹅绒颗粒并下沉。

活性污泥的颜色因污水的水质而异,一般为黄或茶棕色,供氧不足或无氧状态时为黑色,供氧量过大时为灰白色,含少量酸性、微土壤气味和带有霉变气味。

活性污泥含水率很高,一般在99%以上。

活性污泥的比重随含水率的不同而变化。

曝气池混合物的相对密度为1.002-1.003,回流污泥的相对密度为1.004-1.006。

活性污泥的比表面积一般为20~100 cm2/mL。

活性污泥的组成:活性污泥中的固体物质小于1%,由有机物质和无机物质两部分组成,其组成比根据未加工污水的性质而变化。

有机成分主要是居住在活性污泥中的微生物种群,还包括一些惰性“难降解有机物”,其被进水污水中的细菌摄取和利用,以及微生物自氧化的残留物。

活性污泥微生物群落是以好氧菌为主的混合类群。

其他微生物包括酵母菌、放线菌、真菌、原生动物和后生动物。

正常活性污泥的细菌含量一般为107-108/ml,原生动物的细菌含量约为100/ml。

在活性污泥微生物中,原生动物以细菌为食,后生动物以原生动物和细菌为食。

它们形成食物链,形成生态平衡的生物种群。

活性污泥菌多以细菌胶束的形式存在,游离较少,使细菌具有抵抗外界不利因素的能力。

游离细菌不易沉淀,但可以通过原生动物进行捕食,因此沉淀池的出水更清晰。

活性污泥法工艺

活性污泥法工艺

12

5)、有效防止污泥膨胀; 由于SBR具有理想推流式特点,有机物浓 度存在较大的浓度梯度,有利于菌胶团细菌 的繁殖,抑制丝状菌的生长,另外,反应器 内缺氧好氧的变化以及较短的污泥龄也是抑 制丝状菌的生长的因素,从而有效地防止污 泥膨胀。

6)、耐冲击负荷 ; 池内有滞留的处理水,对污水有稀释、 缓冲作用,有效抵抗水量和有机污物的冲击。
(2) 奥贝尔 (Orbal) 氧化沟 为多反应器系统,通常由三个 同心的椭圆形沟道组成。废水由外沟道(或内沟道)进入, 从内沟道(或外沟道)流出。采用曝气转碟作为充氧、混合 与推动的设备。 (3) 卡鲁塞尔 (Carrousel) 氧化沟 是 20 世纪 60 年代后期由 荷兰DHV公司开发的,因其曝气器型式而得名。除沟型特点外, 其曝气设备通常采用立轴式表曝机。
CASS反应器由3个区域组成:生物选择区、兼 氧区和主反应器,每个区的容积比为1:5:30。污水 首先进入选择区,与来自主反应器的混合液(20 %~30%)混合,经过厌氧反应后进入主反应区, 如下图所示 。
1 生物选择区 2 厌氧区 3 主反应区
CASS反应器构造图
19
CASS工艺操作过程
CASS工艺以推流方式运行,而各反应区则以完全 混合的方式运行以实现同步碳化、硝化和反硝化功能。
氧化沟兼有完全混合式和推流式的特点,在控 制适宜的条件下,沟内同时具有好氧区和缺氧区, 可以进行硝化和反硝化反应,取得脱氮效果,同时 使得活性污泥具有良好的沉降性能。
序批式活性污泥法(SBR)
SBR工艺即序批式活性污泥法(Sequencing
Batch Reactor Activated Sludge Process,简写为SBR),
又称为间歇式活性污泥法,由于在运行中采用间接操作的形 式,每一个反应池是一批批地处理废水,因此而得名。 70年代末期美国教授R.L.Irvine等人为解决连续污水处理 法存在的一些问题首次提出,并于1979年发表了第一篇关于

活性污泥法的工艺流程和运行方式

活性污泥法的工艺流程和运行方式

活性污泥法的工艺流程和运行方式在近几十年来,活性污泥法处理工艺得到了较快的发展,出现了多种活性污泥法工艺流程和运行方式,如普通曝气法、阶段曝气法、生物吸附-降解法、序批式活性污泥法等。

1、传统活性污泥法⑴工艺流程传统活性污泥法的工艺流程是:经过初次沉淀池去除粗大悬浮物的废水,在曝气池与污泥混合,呈推流方式从池首向池尾流动,活性污泥微生物在此过程中连续完成吸附和代谢过程。

曝气池混合液在二沉池去除活性污泥混合固体后,澄清液作为净化液出流。

沉淀的污泥一部分以回流的形式返回曝气池,再起到净化作用,一部分作为剩余污泥排出。

⑵曝气池及曝气设备曝气池为推流式,有单廊道和多廊道形式,当廊道为单数时,污水进出口分别位于曝气池的两端;当廊道数为双数时,则位于同侧。

曝气池的进水和进泥口均采用淹没式,由进水闸板控制,以免形成短流。

出水可采用溢流堰或出水孔,通过出水孔的流速要小些,以免破坏污泥絮状体。

廊道长一般在50〜70m,最长可达100m,有效水深多为4〜6m,宽深比1〜2,长宽比一般为5〜10。

鼓风曝气池中的曝气设备,通常安置在曝气池廊道的一侧。

⑶活性污泥法系统运行时的控制参数主要控制参数包括:曝气池内的溶解氧、回流污泥量和剩余污泥排放量。

①溶解氧的浓度;②回流污泥量;③剩余污泥排放量的确定⑷传统活性污泥法的特点:①优点:工艺相对成熟、积累运行经验多、运行稳定;有机物去除效率高,B0D5的去除率通常为90%〜95% ;曝气池耐冲击负荷能力较低;适用于处理进水水质比较稳定而处理程度要求高的大型城市污水处理厂;②缺点:需氧与供氧矛大,池首端供氧不足,池末端供氧大于需氧,造成浪费;传统活性污泥法曝气池停留时间较长,曝气池容积大、占地面积大、基建费用高,电耗大;脱氧除磷效率低,通常只有10%〜30%。

阶段曝气法(多类进水法)针对普通活性污泥法的BOD负荷在池首过高的缺点,将废水沿曝气池长分数处注入,即形成阶段曝气法,它与渐减曝气法类似,只是将进水按流程分若干点进入曝气池,使有机物分配较为均匀,解决曝气池进口端供氧不足的现象,使池内需氧与供氧较为平衡。

常用污水处理工艺

常用污水处理工艺

说到污水处理工艺,其实有很多,但是目前主要流行的也就那么几种,也就是我们经常可以见到的。

下面,我们就一起来看看到底都有哪些吧。

一、氧化沟工艺(污水二级处理,适应全范围)氧化沟工艺作为一种成熟的活性污泥污水处理工艺已在全国范围内得到广泛应用,它是活性污泥法的一种变型,其曝气池呈封闭的沟渠型,所以它在水力流态上不同于传统的活性污泥法,而是一种首尾相连的循环流曝气沟渠,污水渗入其中得到净化。

二、A2/O工艺(污水二级处理,重在脱氮除磷)A2/O工艺是是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

这种工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。

但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

三、活性污泥法工艺(污水二级处理,用在大型污水处理厂)活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成。

四、SBR工艺(污水二级处理,适用于间歇排放)处理过程主要由初期的去除与吸附作用、微生物的代谢作用、絮凝体的形成与絮凝沉淀性能几个净化过程完成。

SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。

尤其适用于间歇排放和流量变化较大的场合。

五、A/O工艺(污水二级处理,广泛用于中小型城市)A/O工艺具有降解有机物及脱氮作用,且运行管理方便,得到了广泛的应用。

由于污水处理工艺是根据污水的水量、水质、出水要求和当地的实际情况等多方面的因素确定的,所以中小型的城市生活污水处理站一般选用A/O等工艺。

六、MBBR工艺(污水二级处理,常用于污水厂提标改造)MBBR工艺是运用生物膜法的基本原理,该工艺通过向反应器中投加一定数量的悬浮载体,形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。

各种活性污泥法工艺大全

各种活性污泥法工艺大全
深水曝气活性污泥法 1)主要特点:a.曝气池水深在7~8m以上,b.由于水压较大,洋的转移率可以提高,相应也能加 快有机物的降解速率;c.占地面积较小。 2)一般有两种形式:a.深水中层曝气法:b.深水深层曝气法: 10、深井曝气活性污泥法——又称超深水曝气法
深井曝气活性污泥法 1)工艺流程:一般平面呈圆形,直径约介于1~6m,深度一般为50~150m。 2)主要特点: A.氧转移率高,约为常规法的10倍以上; B.动力效率高,占地少,易于维护运行; C.耐冲击负荷,产泥量少; D.一般可以不建初次沉淀池;e.但受地质条件的限制。 附表:各种活性污泥法工艺参数表
阶段曝气活性污泥法 1)工艺流程: 2)主要特点: A.废水沿池长分段注入曝气池,有机物负荷分布较均衡,改善了供养速率与需氧速率间的矛 盾,有利于降低能耗; B.废水分段注入,提高了曝气池对冲击负荷的适应能力; 4、吸附再生活性污泥法——又称生物吸附法或接触稳定法。
吸附再生活性污泥法 主要特点是将活性污泥法对有机污染物降解的两个过程——吸附、代谢稳定,分别在各自的反 应器内进行。 1)工艺流程: 2)主要优点: A.废水与活性污泥在吸附池的接触时间较短,吸附池容积较小,再生池接纳的仅是浓度较高的 回流污泥,因此,再生池的容积也较小。吸附池与再生池容积之和低于传统法曝气池的容积, 基建费用较低; B.具有一定的承受冲击负荷的能力,当吸附池的活性污泥遭到破坏时,可由再生池的污泥予以 补充。 3)主要缺点:处理效果低于传统法,特别是对于溶解性有机物含量较高的废水,处理效果更差。 5、延时曝气活性污泥法——完全氧化活性污泥法
废水与活性污泥在吸附池的接触时间较短吸附池容积较小再生池接纳的仅是浓度较高的回流污泥因此再生池的容积也较小
各种活性污泥法工艺大全

AAO工艺简介

AAO工艺简介

七、生物除磷的影响因素
七、生物除磷的影响因素
七、生物除磷的影响因素
AAO运行影响因素及其分析
(1)污水中可生物降解有机物的影响 聚磷菌本身是好氧菌,在厌氧池中其运动能力很弱,增殖缓慢,只能利用 低分子的有机物,是竞争能力很差的软弱细菌。但当它处于不利的厌氧环境 下,能将贮藏的磷通过水解而释放出来,并利用其产生的能量吸收低分子有 机物,在利用有机物的竞争中比其它好氧菌占优势,聚磷菌成为厌氧段的优 势菌群。因此,污水中可生物降解有机物对聚磷菌厌氧释磷起着关键性的作 用。 在缺氧段,异养型兼性反硝化菌成为优势菌群,将回流混合液中的 硝态氮还原成N2而释放,从而达到脱氮的目的。污水中的可降解有机物浓度 高,则C/N比高,反硝化速率大,缺氧段的水力停留时间HRT短,一般为0.51.0h即可。反之,反硝化速率小,HRT需2-3h。可见污水中的 C/N比值较低时, 则脱氮率不高。 在好氧段,当有机物浓度高时污泥负荷也较大,降解 有机物的异养型好氧菌超过自养型好氧硝化菌,使氨氮硝化不完全 ,出水中 NH4+-N浓度急剧上升,使氮的去除效率大大降低。所以要严格控制进入好氧池 污水中的有机物浓度,在满足好氧池对有机物需要的情况下,使进入好氧池 的有机物浓度较低,以保证硝化细菌在好氧池中占优势生长,使硝化作用完 全。 由此可见,在厌氧池,要有较高的有机物浓度;在缺氧池,应有充足 的有机物,而在好氧池的有机物浓度应较小。
无机氮
是指氨氮、亚硝酸盐氮和硝酸盐氮等,它们一部分是由有机氮经微生物分解转化 作用而产生的,一部分直接来自于施用化肥的农田退水和工业排水。
凯氏氮
是有机氮与氨氮之和,凯氏氮指标可以用来判断污水在进行生物法处理时氮营养 是否充足。
氨氮
在污水中存在的形式有游离氨(NH3)与离子状态铵盐(NH4)两种

活性污泥法

活性污泥法

活性污泥法工艺作为有较长历史的活性污泥法生物处理系统,在长期的工程实践过程中,根据水质的变化、微生物代谢活性的特点和运行管理、技术经济及排放要求等方面的情况,又发展成为多种运行方式和池型。

其中按运行方式,可以分为普通曝气法、渐减曝气法、阶段曝气法、吸附再生法(即生物接触稳定法)、高速率曝气法等。

―、推流式活性污泥法推流式活性污泥法,又称为传统活性污泥法。

推流式曝气池表面呈长方形,在曝气和水力条件的推动下,曝气池中的水流均匀地推进流动,废水从池首端进入,从池尾端流出,前段液流与后段液流不发生混合。

其工艺流程图见图2-5-18所示。

在曝气过程中,从池首至池尾,随着环境的变化,生物反应速度是变化的,F/M值也是不断变化的,微生物群的量和质不断地变动,活性污泥的吸附、絮凝、稳定作用不断地变化,其沉降-浓缩性能也不断地变化。

推流式曝气的特点是:①废水浓度自池首至池尾是逐渐下降的,由于在曝气池内存在这种浓度梯度,废水降解反应的推动力较大,效率较高;②推流式曝气池可采用多种运行方式;③对废水的处理方式较灵活。

但推流式曝气也有一定的缺点,由于沿池长均匀供氧,会出现池首曝气不足,池尾供气过量的现象,增加动力费用。

推流式曝气池一般建成廊道型,根据所需长度,可建成单廊道、二鹿道或多廊道(见图2-5-18)。

廊道的长宽比一般不小于5:1,以避免短路。

用于处理工业废水,推流式曝气池的各项设计参数的参考值大体如下:BOD负荷(Ns)0.2~0.4kgBOD5/(kgMLSS.d)容积负荷(Nv)0.3~0.6kgBOD5/(m3.d)污泥龄(生物固体平均停留时间)(θr、ts)5~15d;混合液悬浮固体浓度(MLSS)1500~3500mg/L;混合液挥发性悬浮固体浓度(MLVSS)1200~2500mg/L;污泥回流比(R)25%~50%;曝气时间(t)4~8h;BOD5去除率85%~95%。

二、完全混合活性污泥法完全混合式曝气池,是废水进入曝气池后与池中原有的混合液充分混合,因此池内混合液的组成、F/M值、微生物群的量和质是完全均匀一致的。

污水处理各工艺原理及特点

污水处理各工艺原理及特点
达到污水脱氮的目的,好氧池中硝化混合液通过内循环回流到缺氧池,利用源
污水中的有机碳作为电子供体进行反硝化将—N还原成N。缺氧池设在好样池
2
之前,当水中碱度不足时,由于反硝化可以增加碱度,因此可以补偿硝化过程中对碱度的消耗。
污水缺氧池好氧池沉淀池出水
回流污泥剩余污泥
图1A/O脱氮生物处理工艺图
1
1.1基本原理
(4)BOD去除率≥90%;除磷率为(70~80)%;当TP/BOD5比值高,剩余污泥产量少,使除磷率难以提高。
(5)当沉淀池内污泥停留时间较长时,聚磷菌会在厌氧状态下释放出磷,从而降低除磷率。
3、A2/O(A/A/O)厌氧——缺氧——好氧
3.1基本原理
A2/O工艺由厌氧池、缺氧池、好氧池串联而成,是A/O和A/O流程的组合。
21
该工艺在厌氧——好氧除磷工艺中加入了缺氧池,将好氧池流出的一部份混合液流到缺氧池的前端,以达到反硝化脱氮的目的。
在首段厌氧池主要是进行磷的释放,使污水中的磷的浓度升高,溶解性的
有机物被细胞吸收而使污水中的一部份BOD浓度下降;此外部份的NH—N因细
3
胞合的成而去除,使水中的NH—N浓度下降。
3
在缺氧池中,反硝化细菌利用污水中的有机物作碳源,将回流混合液中带入的大量N和还原为N2释放到空气中,因BOD浓度继续下降,的大量-N和-N
污水在好氧条件下是含氮有机物被细菌分解为氨,然后在好氧自养型亚硝化细菌的作用下进一步转化为亚硝酸盐,再经好氧自养型硝化细菌作用转化为硝酸盐,至此完成硝化反应;
在缺氧条件下,兼性异养细菌利用或者部份利用污水中的有机碳源为电子供体,以硝酸盐替代份子氧作电子受体,进行无氧呼吸,分解有机质,同时,将硝酸盐中氮还原成气态氮,至此完成为了反硝化反应。A1/O工艺非但能取得比较满意的脱氮效果,而且通过上述缺氧——好氧循环操作,同样可取的高的COD和BOD的去除率。

活性污泥法的常用工艺

活性污泥法的常用工艺

活性污泥法的常用工艺
活性污泥法是一种生物处理技术,常用工艺有以下几种:
1. A/O(Anoxic/Oxic)反硝化-好氧法: 在反硝化区域,除去氧化还原态氮,使其释放出氮气;而在好氧区域,则利用活性污泥群落对机械、生物、化学污染物进行氧化作用,转化为能被微生物吞噬的生物质;
2. SBR(Sequencing Batch Reactor)序批反应器法:是用于分类处理废水的一种工艺,它将处理系统分离成一系列间隔的单元,使废水在不同的处理阶段接受不同的处理操作,例如曝气、沉淀、排出、消化、沉淀等;
3. MBR(Membrane Bio-Reactor)膜生物反应器法:是活性污泥法和膜技术的结合,将废水在活性污泥反应和膜过滤两个过程中同时完成,从而提高出水质量,使水变得更加清澈透明,同时达到更好的污水处理效果,减少一定的反应时间;
4. MBF(Membrane Bio-Filtration)膜生物过滤法:纤维素滤料为载体,同时通过位于滤料中的微生物附着于滤媒表面,接触废水分子,使污染物和微生物进行氧化还原反应,从而达到净化废水的目的。

活性污泥法工艺分类

活性污泥法工艺分类
缺点:
1、除磷需另设厌氧池
2、分建式,且池深较小,占地面积较大
3、污泥稳定性不如厌氧消化好
4、机械曝气,设备数量多
中小型污水处
优点:
1、去除有机物的同时可生物除氮,效率高
2、污泥经厌氧消化达到稳定
3、用于大型污水厂费用较低
4、根据不同的脱氮要求可灵活调节运行工况
5、沼气可回收利用
缺点:
1、生物脱氮效果差
2、反应池和二沉池容积较普通活性污泥法大幅增加
3、污泥内回流量大,能耗较高
4、用于中小型污水处理厂费用偏高
5、沼气回收利用经济效益差
要求脱氮但不要求除磷的大型和较大型污水处理厂
A2/O脱氮除磷工艺
优点:
1、去除有机物的同时可生物脱氮除磷
2、出水水质很好,有利于回用
3、污泥经厌氧消化达到稳定
4、用于大型污水厂费用较低
5、沼气可回收利用
缺点:
1、污泥内回流量大,能耗较高
2、反应池容积比A/O脱氮工艺还要大
3、污泥渗出液需化学除磷
4、用于中小型污水处理厂费用偏高
工艺名称
主要优缺点
最佳适用条件
普通活性污泥法及 硝化工艺
优点:
1、去除有机物效果好
2、硝化工艺可去除氨氮
3、技术成熟,十分安全可靠
4、污泥经厌氧消化达到稳定
5、用于大型污水厂费用较低
6、沼气可回收利用
缺点:
1、生物脱氮除磷效果差
2、用于中小型污水厂费用偏高
3、沼气回收利用经济效益差
不要求脱氮除磷的大型和较大型污水处理厂
活性污泥法主要工艺分类
类型
具体工艺
普通活性污泥法及其变型
普通活性污泥法

污水处理工艺

污水处理工艺

污水处理工艺1、SBR法:SBR(sequncing batch reactor)法是一种序批式生物反应器间歇运行的活性污泥水处理工艺。

一个典型的SBR工艺的运行过程包括进水、反应、沉淀、排水及必要的闲置等5个阶段。

SBR工艺特点是流程简单,可省去沉淀池,耐水量和水质负荷冲击,运行方式灵活多变并可组成多种工艺路线。

增加生物选择池、创造厌氧/缺氧环境,具有储存性反硝化,同时性反硝化等除氮脱磷功能,强化生物吸附作用,净化效率高,处理能力强,效果稳定。

工艺流程示意图:SBR法工艺流程示意图2、OCO污水处理工艺:OCO得名于生物处理装置的几何形状——OCOC池呈圆形,里圈、外圈隔墙为圆形,中圈为半圆形。

OCO工艺是一种A2/O活性污泥工艺。

OCO污水净化工艺流程由OCO曝气池及二沉池组成。

曝气池由3个相互连接的圆形结构及带有半圆形隔板的结构组成,它分为厌氧区(第1区)、缺氧区(第2区)、好氧区(3),每个区中有一个放在水中的搅拌器,使水产生水平流动。

在无隔板区,可以做到控制水流混合的程度。

工艺原理:如图所示,原污水经与处理系统(格栅、沉砂除油)等物理处理后首先进入OCO生物反应池的厌氧区与回流污泥混合,由于1区是厌氧区,回流的污泥在此吸附污水中的有机物并进行磷的释放。

随后混合液进入2区,2区是缺氧区,其主要功能是进行反硝化并进行部分好氧氧化。

2区不是一个闭合区域,其形状像一个开口的C,口内为缺氧区,口外为好氧区,开口处即形成一个混合区。

在混合区来自耗氧区3的污水和来自缺氧区2的污水进行混合后重新分配,一部分进入好氧区3进行好氧氧化、硝化和磷的吸收后进入后续的沉淀池,另一部分则在回流至缺氧区进行反硝化。

混合液在缺氧区2和好氧区3之间循环一定的时间,流入到沉淀区,澄清液排入处理厂出口,污泥一部分回流OCO,另一部分作为剩余污泥予以处理。

OCO工艺流程示意图3、ICEAS污水处理工艺:ICEAS是间歇循环延时曝气活性污泥的简称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工艺名称
主要优缺点
最佳适用条件
普通活性污泥法及 硝化工艺
优点:
1、去除有机物效果好
2、硝化工艺可去除氨氮
3、技术成熟,十分安全可靠
4、污泥经厌氧消化达到稳定
5、用于大型污水厂费用较低
6、沼气可回收利用
缺点:
1、生物脱氮除磷效果差
2、用于中小型污水厂费用偏高
3、沼气回收利用经济效益差
不要求脱氮除磷的大型和较大型污水处理厂
5、沼气回收利用经济效益差
要求脱氮除磷或硝化除磷的大型和较大型污水处理厂
AB法
优点:
1、污水有机物浓度高时刻显著节省基建投资和运行费用
2、污泥经厌氧消化达到稳定
3、有利于分期修建
4、沼气可回收利用
缺点:
1、A级碳源去除量大,不利于脱氮除磷
2、对中小型污水厂和原污水有机物浓度低的污水厂不经济
3、沼气回收利用经济效益差
活性污泥法主要工艺分类
类型
具体工艺
普通活性污泥法及其变型
普通活性污泥法
硝化工艺
A/O脱氮工艺
A/O脱磷工艺
A2/O脱氮除磷工艺
AB法
氧化沟
卡鲁赛尔氧化沟
双沟式氧化沟
三沟式氧化沟
奥贝尔氧化沟
一体化氧化沟
SBR工艺
传统SBR工艺
ICEAS
CAST
DAT-JAT
UNITANK
各种工艺的主要优缺点和最佳适用条件
优点:
1、去除有机物的同时可生物除氮,效率高
2、污泥经厌氧消化达到稳定
3、用于大型污水厂费用较低
4、根据不同的脱氮要求可灵活调节运行工况
5、沼气可回收较普通活性污泥法大幅增加
3、污泥内回流量大,能耗较高
4、用于中小型污水处理厂费用偏高
5、沼气回收利用经济效益差
要求脱氮但不要求除磷的大型和较大型污水处理厂
A2/O脱氮除磷工艺
优点:
1、去除有机物的同时可生物脱氮除磷
2、出水水质很好,有利于回用
3、污泥经厌氧消化达到稳定
4、用于大型污水厂费用较低
5、沼气可回收利用
缺点:
1、污泥内回流量大,能耗较高
2、反应池容积比A/O脱氮工艺还要大
3、污泥渗出液需化学除磷
4、用于中小型污水处理厂费用偏高
A/O除磷工艺
优点:
1、去除有机物的同时可生物除磷
2、污泥沉降性能好
3、污泥经厌氧消化达到稳定
4、用于大型污水厂费用较低
5、沼气可回收利用
缺点:
1、生物脱氮效果差
2、用于中小型污水厂费用偏高
3、沼气回收利用经济效益差
4、污泥渗出液需化学除磷
要求除磷但不要求硝化脱氮的大型和较大型污水处理厂
A/O脱氮工艺
缺点:
1、除磷需另设厌氧池
2、分建式,且池深较小,占地面积较大
3、污泥稳定性不如厌氧消化好
4、机械曝气,设备数量多
中小型污水处
4、污泥量大,加重污泥处理负担
原水有机物浓度高并且不要求脱氮除磷的大型和较大型污水处理厂
逐步提高处理标准的分期修建的代谢那个和较大型污水处理厂
卡鲁赛尔氧化沟
优点:
1、流程简单,管理十分方便
2、可生物脱氮,出水水质较好
3、污泥同步稳定,不需要厌氧消化
4、对中小型污水处理厂投资较省,成本较低
5、改进型卡鲁赛尔氧化沟脱氮效果好
相关文档
最新文档