初中二次函数的解题方法
二次函数动点问题的解题技巧
二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。
比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。
比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。
看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。
难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。
比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。
不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。
初中数学二次函数题型答题技巧和方法
初中数学二次函数题型答题技巧和方法一、理论基础1. 二次函数的定义二次函数是指形如y=ax^2+bx+c(a≠0)的函数,其中a、b、c分别为二次项系数、一次项系数和常数项。
2. 二次函数的图像特征二次函数的图像是抛物线,开口朝上还是朝下取决于a的正负性;顶点的横坐标为-x=b/2a;若a>0,则二次函数的图像开口朝上,最小值为y轴的对称轴;若a<0,则二次函数的图像开口朝下,最大值为y 轴的对称轴。
3. 二次函数的零点和值域二次函数的零点即其图像与x轴的交点,可通过解二次方程求得;值域是二次函数在定义域内所有纵坐标的集合。
二、基本题型及解题技巧1. 求二次函数的图像特征首先计算顶点的坐标,并根据a的正负性判断开口方向;然后通过y=ax^2的形式,可知函数的对称轴为x=0,即y轴;进而可以根据a 的值判断最值是最大值还是最小值。
2. 求二次函数的零点通过解二次方程的方法,将二次函数与x轴相交的点作为函数的零点。
3. 求二次函数的值域首先求得函数的最值,然后根据a的正负性来确定值域的范围。
三、提高解题能力的方法1. 多练习经典题目通过练习一些经典的二次函数题目,可以加深对二次函数的理解,掌握基本的解题技巧。
2. 多思考图像特征在解题过程中,要多思考二次函数的图像特征,如顶点坐标、开口方向、对称轴等,这样可以帮助更快地理解题目并找到解题方法。
3. 注意解题方法和步骤解二次函数题目时,要注意分类讨论,分步解题,并注意逻辑推理的合理性。
四、常见错误与纠正1. 混淆二次函数的图像特征有些学生容易混淆二次函数图像的开口方向和对称轴位置,应该在理论学习和练习中多加注意,加深对二次函数图像特征的印象。
2. 解题步骤混乱有些学生在解题时,步骤混乱,缺乏逻辑性,应该在解题过程中多加练习,养成条理清晰的解题习惯。
五、案例分析及解决方案1. 案例:已知二次函数f(x)=2x^2-4x+3,求解以下问题:(1)求f(x)的顶点坐标;(2)求f(x)的零点;(3)求f(x)的值域范围。
二次函数解题思路十大技巧
二次函数解题思路十大技巧
1、先求出二次函数的顶点:
设二次函数为y=ax2+bx+c,那么顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。
2、确定函数的性质:
判断a的正负,可以确定函数的单调性,从而确定函数的大致形状。
3、利用函数的性质,确定函数的根:
若函数为单调递增,则函数的根在顶点左边;若函数为单调递减,则函数的根在顶点右边。
4、利用绝对值函数的性质,确定函数的根:
若函数为绝对值函数,则函数的根在顶点两边,且根的绝对值相等。
5、利用函数的性质,确定函数的最大值和最小值:
若函数为单调递增,则函数的最大值在顶点右边;若函数为单调递减,则函数的最小值在顶点左边。
6、利用函数的性质,确定函数的极值:
若函数为单调递增,则函数的极大值在顶点右边;若函数为单调递减,则函数的极小值在顶点左边。
7、利用函数的性质,确定函数的极值点:
若函数为单调递增,则函数的极大值点在顶点右边;若函数为单调递减,则函数的极小值点在顶点左边。
8、利用函数的性质,确定函数的增量和减量:
若函数为单调递增,则函数的增量在顶点右边;若函数为单调递减,则函数的减量在顶点左边。
二次函数解析式三种经典求法,你都掌握了吗?
二次函数解析式三种经典求法,你都掌握了吗?函数内容的学习一直是很多学生的重难点,甚至一些学生与理想的学校失之交臂,就是因为函数内容没学好,无法取得中考数学高分。
初中数学要学到函数一般有三种:一次函数(包含正比函数)、反比例函数、二次函数。
其中二次函数作为初中数学当中最重要内容之一,一直受到中考数学命题老师的青睐。
任何与函数有关的数学问题,都需要先求出函数解析式,再结合函数的图象与性质进行解决。
因此,一个人是否能熟练地求出二次函数的解析式是成功解决与二次函数相关问题的重要保障。
今天我们就一起来简单讲讲如何求二次函数的解析式,在初中数学教材里,二次函数的解析式一般有以下三种基本形式:1、一般式:y=ax2+bx+c(a≠0)。
2、顶点式:y=a(x-m)2+k(a≠0),其中顶点坐标为(m,k),对称轴为直线x=m。
3、交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的横坐标。
那么这三种形式有什么区别呢?在解决实际问题过程中,该如何选择呢?求二次函数的解析式的方法我们一般采用待定系数法,即将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
我们结合待定系数法和三种二次函数基本形式来确定函数关系式,一定要根据不同条件,设出恰当的解析式,具体如下:1、若给出抛物线上任意三点,通常可设一般式y=ax2+bx+c(a≠0)来求解。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式y=a(x-m)2+k(a≠0)来求解。
3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式y=a(x-x1)(x-x2)(a≠0)来求解。
值得注意的是,用交点式来求二次函数的解析式,前提条件是二次函数与x轴有交点坐标。
二次函数求取值范围的解题技巧
二次函数求取值范围的解题技巧一、什么是二次函数求取值范围二次函数是一种常见的函数形式,其数学表达式为:f(x) = ax^2 + bx + c,其中a、b、c是常数,a不等于0。
二次函数的图像通常是一个U形或倒U形的抛物线。
求取值范围是指给定定义域内的x值,求出对应的函数值f(x)的范围。
也就是在给定的定义域上,函数能够取到的所有值的集合。
本文将介绍二次函数求取值范围的解题技巧,以帮助读者更好地理解和掌握这一概念。
二、二次函数求取值范围的基本方法二次函数的求取值范围可以通过探究函数的图像形状和相关的数学性质来确定。
在初学阶段,我们可以借助以下三个基本方法来求解二次函数的取值范围:1. 完成平方通过对二次函数进行平方完成,并转换成顶点形式,可以更方便地分析函数的取值范围。
完成平方的基本步骤如下:1.将二次函数写成完全平方的形式。
例如:f(x) = ax^2 + bx + c2.将二次函数进行平移,使平方项与一次项的和等于顶点横坐标的相反数。
例如:将f(x) = ax^2 + bx + c形式的二次函数通过平移变换得到顶点形式f(x) = a(x-h)^2 + k,其中(h, k)为顶点坐标。
3.根据顶点的纵坐标可以确定函数的取值范围。
–当a > 0时,函数的图像开口向上,顶点为函数的最小值,取值范围为[y, +∞)。
–当a < 0时,函数的图像开口向下,顶点为函数的最大值,取值范围为(-∞, y]。
2. 运用导数二次函数求取值范围还可以通过运用导数的性质来分析。
导数可以告诉我们函数的增减性和极值的位置。
步骤如下:1.求出二次函数f(x)的导函数f’(x)。
例如:f(x) = ax^2 + bx + c,求导得f’(x) = 2ax + b。
2.根据导数的符号确定函数的增减性。
–当导数f’(x) > 0时,函数在该区间上是增函数;–当导数f’(x) < 0时,函数在该区间上是减函数。
初中二次函数的解题方法
班沈阳 14号初中二次函数的解题方法首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b²/4a) ;顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。
交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a∴y=ax²+bx+c=a(x²+b/ax+c/a)=a[﹙x²;-(x1+x2)x+x1x2]=a(x-x1)(x-x2)重要概念:。
1.二次函数图像是轴对称图形。
对称轴为直线x = h或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当h=0时,P在y轴上;当k=0时,P在x轴上。
h=-b/2ak=(4ac-b2)/4a3.二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。
常见问题1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。
二次函数典型题解题技巧
二次函数典型题解题技巧一有关角1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点点A 在点B 的左边,与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点.(1) 求此抛物线的解析式;2连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由.思路点拨:对于第1问,需要注意的是CD 和x 轴平行过点C 作x 轴的平行线与抛物线交于点D对于第2问,比较角的大小a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条解:1∵CD ∥x 轴且点C0,3,∴设点D 的坐标为x,3 .∵直线y= x+5经过D 点,∴3= x+5.∴x=-2.即点D -2,3 .根据抛物线的对称性,设顶点的坐标为M -1,y,又∵直线y= x+5经过M 点,∴y =-1+5,y =4.即M -1,4.∴设抛物线的解析式为2(1)4y a x =++. ∵点C0,3在抛物线上,∴a=-1.即抛物线的解析式为223y x x =--+.…………3分 2作BP ⊥AC 于点P,MN ⊥AB 于点N .由1中抛物线223y x x =--+可得 点A -3,0,B1,0,∴AB=4,AO=CO=3,AC=32. ∴∠PAB =45°.∵∠ABP=45°,∴PA=PB=22.∴PC=AC -PA=2.在Rt △BPC 中,tan ∠BCP=PBPC =2.在Rt △ANM 中,∵M-1,4,∴MN=4.∴AN=2.tan ∠NAM=MN AN =2.∴∠BCP =∠NAM .即∠ACB =∠MAB .后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角圆分开再说,所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系的基本思路2、如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且OA OC OB 3==.I 求抛物线的解析式;II 探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形若存在,求出P 点坐标,若不存在,请说明理由;III 直线131+-=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值.思路点拨:II 问题的关键是直角,已知的是AC 边,那么AC 边可能为直角边,可能为斜边,当AC 为斜边的时,可知P 点是已AC 为直径的圆与坐标轴的交点,且不能与A 、C 重合,明显只有O 点;当AC 为直角边时,又有两种情况,即A 、C 分别为直角顶点,这时候我们要知道无论是A 或者C 为直角顶点,总有一个锐角等于∠OCA 或Rt △PAC 和Rt △OAC 相似,利用这点就可以求出OP 的长度了III 从题目的已知条件看,除了∠ABC=45°外没有知道其他角的度数,那么这两个角要么全是特殊角30°,45°,60°,90°,在这种情况下,他们的差才有可能不是特殊的角,很明显,这两个角不是特殊角,那只有一种可能在没有学反三角函数的前提下,就是他们的差是特殊角,再联系到∠ABC=45°,可知,这两个角的差就是45°,那么我们需要证明的就是∠ABD=∠CBE,再想想上一题所说的,就明白是利用相似三角形来证明了,即证明△BCE 是一个直角三角形且与△BAD 相似解:I ()3,032--+=点轴交与抛物线C y bx ax y ,且OA OC OB 3==.())0,3(,0,1B A -∴.代入32-+=bx ax y ,得 {{12030339=-==--=-+∴a b b a b a322--=∴x x yII ①当190,PAC ∠=︒时可证AO P 1∆∽ACO ∆ 31tan tan 11=∠=∠∆∴ACO AO P AO P Rt 中,.)31,0(1P ∴②同理: 如图当)0,9(9022P CA P 时,︒=∠③当)0,0(9033P A CP 时,︒=∠综上,坐标轴上存在三个点P ,使得以点C A P ,,为顶点的三角形为直角三角形,分别是)31,0(1P )0,9(2P ,)0,0(3P . III ()1,0,131D x y 得由+-=.()4,1322---=E x x y ,得顶点由. ∴52,2,23===BE CE BC .为直角三角形BCE BE ∆∴=+,CE BC 222.31tan ==∴CB CE β. 又31tan ==∠∆∴OB OD DBO DOB Rt 中.β∠=∠∴DBO . ︒=∠=∠-∠=∠-∠45OBC DBO αβα.二线段最值问题引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,无论是两点之间选段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,如果我们公共端点,我们要想办法把它们构造成有公共端点来解决;有关线段最大值的问题,学过的有三角形三边之间的关系,两边之差小于第三边,我们可以利用这个来求第三边的最大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值3、抛物线()20y ax bx c a =++≠交x 轴于A 、B 两点,交y 轴于点C,已知抛物线的对称轴为直线x = -1,B1,0,C0,-3.⑴ 求二次函数()20y ax bx c a =++≠的解析式;⑵ 在抛物线对称轴上是否存在一点P,使点P 到A 、C 两点距离之差最大 若存在,求出点P 坐标;若不存在,请说明理由.思路点拨:点P 到A 、C 两点距离之差最大,即求|PA -PC|的最大值,因P 点在对称轴上,有PA=PB,也就是求|PB -PC|,到了这儿,易知当P 点是BC 所在直线与对称轴的交点,易知最大值就是线段BC 的长;具体解题过程略4、研究发现,二次函数2ax y =0≠a 图象上任何一点到定点0,a 41和到定直线ay 41-=的距离相等.我们把定点0,a 41叫做抛物线2ax y =的焦点,定直线ay 41-=叫做抛物线2ax y =的准线.1写出函数241x y =图象的焦点坐标和准线方程; 2等边三角形OAB 的三个顶点都在二次函数241x y =图象上,O 为坐标原点, 求等边三角形的边长;3M 为抛物线241x y =上的一个动点,F 为抛物线241x y =的焦点,P1,3 为定点,求MP+MF 的最小值.思路点拨:2因△OAB 是等边三角形,易知AB 平行于X 轴,且∠AOB=60°,知OA 、OB 于y 轴的夹角等于30°,利用这点容易求出三角形的边长3由题目可知MF 的长度等于M 点到直线y=-1的距离,那么MP+MF 就是P 点到达抛物线上某一点再到y=-1上某一点的距离和,易知最小值就是过P 点做y=-1的垂线段的长 解:1焦点坐标为0,1, 准线方程是1-=y ;2设等边ΔOAB 的边长为x,则AD=x 21,OD=x 23. 故A 点的坐标为x 21,x 23. 把A 点坐标代入函数241x y =,得 2)21(4123x x ⋅=, 解得0=x 舍去,或38=x .∴ 等边三角形的边长为38.3如图,过M 作准线1-=y 的垂线,垂足为N,则MN=MF.过P 作准线1-=y 的垂线PQ,垂足为Q,当M 运动到PQ 与抛物线交点位置时,MP+MF 最小,最小值为PQ=4. 5、思路点拨:2要求AE 和AM 的长,对于求线段的长度我们学过的是勾股定理,相似三角形和简单三角函数,从题目可知OA 和OE 的长以及E 点到x 轴的距离,我们作EG ⊥x 轴,垂足为G,那么容易求出OG 的长,从而求出AE 的长;要求AM 的长,先做OK ⊥AE,垂足为K,要求AM 的长,首先我们利用已知的OA 的长和∠EAO 的函数值来求出AK 和OK 的长,利用OK 的长和三角形OMN 是等边三角形求出MK 和NK 的长,AM 的长也就知道了3这个是著名的费马点的问题,第2问给了我们提示,我们可以猜想当P 点在什么位置时,PA+PB+PO 才能取最小值,P 点应该在线段AE 上,至于具体的位置我们还不知道,我们就在线段AE 上任取一点P,把PA 、PB 、PO 连起来,要取最小值,那么这三条线段应该首尾相接,我们应该能想到它们首尾相接后的位置就是AE 所在直线,这时P 点应该和在△OAB 内的M 点重合,PA 的长就是AM 的长,m 的最小值就是AE 的长答案详见前段时间发过的从近近几年北京中考模拟及中考压轴题谈起额外讲解一个与二次函数无关的有关线段最值的问题6、2009年中考第25题如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A -6,0,B 6,0,C 0,43,延长AC 到点D ,使AC CD 21=,过D 点作DE ∥AB 交BC 的延长线于点E . 1求D 点的坐标;2作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y =kx +b 将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3设G 为y 轴上一点,点P 从直线y =kx +b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点.若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短. 要求:简述确定G 点位置的方法,但不要求证明思路点拨:3首先要把速度转化成路程,也就是线段的长度,直线与y 轴的交点假设为M,则OM=63,设P 点在y 轴上的速度为2v,那么在GA 上的速度为v,P 点到达A 点所用的时间为,要使时间最短,也就是求AG+GM/2的最小值,那么我们要把它转化成我们熟悉的两条线段的和,因为∠BMO=30°,GM/2也就是G 点到BM 的距离,我们作GK ⊥BM,垂足为K,问题转化成求GA+GM 的最小值,易知,A 、G 、M 必须共线且垂直BM,所以G 点就是过A 点作BM 的垂线与y 轴的交点解:1∵A -6,0,C 0,43,∴OA =6,OC =43.设DE 与y 轴交于点M .由DE ∥AB 可得△DMC ∽△AOC .又AC CD 21=,21===∴CA CD CO CM OA MD . ∴CM =23,MD =3.同理可得EM =3.∴OM =63.∴D 点的坐标为3,63.2由1可得点M 的坐标为0,63.由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线.∴点C关于直线DE的对称点F在y轴上.∴ED与CF互相垂直平分.∴CD=DF=FE=EC.∴四边形CDFE为菱形,且点M为其对称中心.作直线BM.设BM与CD、EF分别交于点S、点T.可证△FTM≌△CSM.∴FT=CS.∵FE=CD,∴TE=SD.∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS.∴直线BM将四边形CDFE分成周长相等的两个四边形.由点B6,0,点M0,63在直线y=kx+b上,可得直线BM的解析式为y=-3x+63.第25题答图3确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°.∴∠BAH=30°.在Rt△OAG中,OG=AO·tan∠BAH=23.∴G点的坐标为0,23.或G点的位置为线段OC的中点三平移对称旋转问题引子:平移问题以前讲过了,现在重点将对称旋转问题我们知道a,b关于x轴对称的点的坐标为a,-b,关于y轴对称的点的坐标为-a,b,关于原点对称的点的坐标为-a,-b,关于直线x=m的对称点为2m-a,b,关于直线y=n的对称点为a,2n-b,关于点m,n的对称点为2m-a,2n-b任意两点x1,y1和x2,y2的中点为对于抛物线关于x轴、y轴、x=a、y=b的对称抛物线,应该都会了吧,现在重点讲解抛物线关于某点m,n的对称抛物线解析式其他平移、关于直线对称都可以用这个方法解决,为了方便,选取抛物线的顶点式来证明例:对于一个抛物线y=ax-h2+ka≠0来说,坐标为x,y的所有点都在他的图像上,关于m,n的对称点为2m-x,2n-y,那么坐标为2m-x,2n-y都在抛物线关于m,n对称的抛物线上,我们把2m-x,2n-y代入y=ax-h2+ka≠0就可以得到它关于m,n对称的抛物线的解析式为2n-y=a2m-x-h2+k,变形为y=-ax-2m+h2+2n-k现在利用待定系数法来验证这个方法是否正确首先y=ax-h2+ka≠0和它关于点m,n的对称的抛物线的开口大小是一样的,所以二次项系数的绝对值是相同的,由于关于点对称,开口方向是相反的,故二次项系数互为相反数;其次原抛物线与对称抛物线的顶点是关于m,n对称的,原抛物线的顶点为h,k,它关于m,n的对称点的坐标为2m-h,2n-k,那么对称抛物线的解析式可以写成y=-ax-2m+h2+2n-k,和利用上述方法所得结果一致7、已知抛物线C1:y=ax2-2amx+am2+2m+1a>0,m>1的顶点为A,抛物线C2的对称轴是y轴,顶点为B,且抛物线C1和C2关于P1,3成中心对称(1)用含m的代数式表示抛物线C1的顶点坐标(2)求m的值和抛物线C2的解析式(3)设抛物线C2与x正半轴的交点是C,当△ABC为等腰三角形时,求a的值思路点拨:1很多人一看到求抛物线的顶点,习惯使用顶点的坐标公式来求,如果你熟悉因式分解和抛物线的顶点公式是如何得到的,那么这个题明显利用配方更容易得到顶点坐标,y=ax -m2+2m+1,故顶点坐标为m,2m+1(2)C1和C2关于点对称,利用上述方法容易求出C2的解析式和顶点坐标,易知m=2详解过程略。
数学二次函数解题技巧
数学二次函数解题技巧作为一种经典的数学模型,在中学阶段二次函数是数学学科的重要组成部分。
二次函数是求解各种数学问题的基础,在学习二次函数的过程中,考学生们需要学习它的定义、性质、问题解决技巧等,从而更深入地理解二次函数的本质和应用背景。
本文将介绍数学二次函数解题技巧,为学生们提供实用的指导。
一、二次函数的定义二次函数是指方程y=a(x-h)^2+k(a≠0) 的解析式,也就是y=ax^2+bx+c(a≠0)。
其中,a、b、c都是实数,称为二次函数的系数,h、k分别为二次函数的横坐标和纵坐标的坐标轴截距。
二次函数定义需要掌握的关键点如下:1. 二次函数的形式可以根据a的正负性质分为两种形式:开口上的二次函数和开口下的二次函数;2. 当a=0时,二次函数变为一元一次函数,其形状为一条水平直线;3. 当a>0时,二次函数的最小值为k;4. 当a<0时,二次函数的最大值为k。
二、二次函数的图像学习二次函数时,了解图像是非常重要的,因为它有助于直观地理解形状和性质。
二次函数的图像并不难绘制,只需要知道函数的系数a、h、k即可。
当a>0时,二次函数的开口向上,最小值为k,在(h,k)处有一个最小值点。
当a<0时,二次函数的开口向下,最大值为k,同样也在(h,k)点有最大值点。
当a=0时,它是一条水平直线,它的坐标轴截距为k。
三、二次函数的解题技巧1. 常规方法.求最值最常见的二次函数问题是求解最值(最大值和最小值),最好的方法是计算其导数,当导数等于0时计算极值点,然后再确定最大值和最小值。
当然,为了简化计算,我们也可以尝试化简方程或者直接考虑图像形式。
2. 定位顶点对于二次函数,最简单的方法是确定其顶点,因为顶点描述了函数的变化趋势。
我们可以用数学方法找到顶点,也可以通过观察二次函数的图像提取关键信息找到顶点,并使用顶点来帮助解决一些问题。
3. 转换成顶点形式在某些情况下,将二次函数转换为顶点形式是很有用的。
二次函数解题方法总结
二次函数解题方法总结二次函数是初中重要的数学知识点,本文就来分享一篇二次函数解题方法总结,希望对大家能有所帮助!1.求证“两线段相等”的问题:2.“平行于y轴的动线段长度的最大值”的问题:由于平行于y轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t的代数式表示出来,再由两个端点的高低情况,运用平行于y轴的线段长度计算公式,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标。
3.求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式(或称K点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可。
4.“抛物线上是否存在一点,使之到定直线的距离最大”的问题:(方法1)先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字母y消掉,得到一个关于x的的一元二次方程,由题有△=-4ac=0(因为该直线与抛物线相切,只有一个交点,所以-4ac=0)从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x、y的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离。
(方法2)该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离。
(方法3)先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出。
5.常数问题:(1)点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了。
初中二次函数题型及解题方法
初中二次函数题型及解题方法【主题】:初中二次函数题型及解题方法1. 介绍在初中数学中,二次函数是一个非常重要的知识点,涉及到了函数的图像、性质、方程与不等式等内容。
通过学习初中二次函数的题型及解题方法,可以帮助学生更深入地理解函数的性质和应用,从而提高数学解题能力。
本文将针对初中二次函数的常见题型及解题方法进行全面分析和讨论。
2. 二次函数的基本形式二次函数的基本形式为:y=ax^2+bx+c,其中a、b、c为常数且a≠0。
二次函数的图像是一个抛物线,开口方向由a的正负决定。
在解题时,可以通过分析二次函数的图像特点来进行求解。
3. 初中二次函数题型及解题方法3.1 求解二次函数的最值问题当二次函数表示的是某个实际问题中的规律时,往往需要求解函数的最值。
通过对二次函数图像的分析,可以利用顶点公式求解函数的最值,并结合实际问题进行解答。
3.2 求解二次函数与直线的交点通过构建二次函数和直线的联立方程,可以求解二次函数与直线的交点,从而解决相关的几何问题或应用题。
3.3 解决二次函数不等式二次函数的不等式问题是初中数学中的重点之一,通过对二次函数图像的分析,可以将不等式转化为对应的区间表示,进而求解不等式的解集合。
3.4 求解二次函数的零点通过因式分解、配方法、求根公式等方法,可以求解二次函数的零点,即方程y=ax^2+bx+c=0的解。
4. 个人观点和理解初中二次函数是数学中一个非常重要的内容,对学生的数学思维能力和解题能力都有很大的提升作用。
在学习过程中,要重视对二次函数图像的理解和分析,掌握几何意义、代数意义和应用意义,并善于运用各种方法进行解题。
还要注重培养数学建模能力,将二次函数运用到实际问题中去解决实际问题。
5. 总结通过本文的介绍和讨论,我们对初中二次函数的题型及解题方法有了更深入的理解。
在学习过程中,要注重对图像的分析、函数性质的运用以及解题方法的灵活运用,从而提高数学解题能力。
在这篇文章中,我全面阐述了初中二次函数的题型及解题方法,希望能帮助你更深入地理解这一数学知识点。
初中数学二次函数技巧、知识点速记口诀、几何知识点146条
初中数学二次函数解题技巧、知识点速记口诀、几何知识点146条I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x²的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线 x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
初中二次函数经典题型
初中二次函数经典题型
初中二次函数的经典题型包括求解二次方程、求顶点、判断开口方向等。
以下是其中几个题型及解析:
1. 求解二次方程:
题目:解方程2x^2 - 5x + 3 = 0。
解析:可以使用因式分解、配方法或求根公式等方法来解这个方程。
其中,求根公式是一种常用的方法。
根据求根公式,对于一般形式的二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。
将方程2x^2 - 5x + 3 = 0带入公式,可以求得x的解。
2. 求顶点:
题目:求二次函数y = 3x^2 + 4x - 2的顶点坐标。
解析:二次函数的顶点坐标可以通过公式x = -b / (2a)和将x带入函数中得到y来求解。
将函数y = 3x^2 + 4x - 2带入公式,可以求得x的值,然后将x带入函数中计算得到y的值,从而得到顶点坐标。
3. 判断开口方向:
题目:判断二次函数y = -2x^2 + 3x - 1的开口方向。
解析:二次函数的开口方向可以通过二次项的系数a来判断。
如果a > 0,则开口向上;如果a < 0,则开口向下。
对于函数y = -2x^2 + 3x - 1,由于二次项的系数a = -2小于0,所以开口方向是向下的。
这些是初中二次函数的一些经典题型及解析。
通过理解和掌握这些题型的解法,可以提高对二次函数的理解和应用能力。
同时,还可以通过做更多的练习题来巩固和提高解题技巧。
初中数学二次函数解题技巧必看
初中数学二次函数解题技巧必看每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。
下面是小编给大家整理的一些初中数学二次函数解题技巧的学习资料,希望对大家有所帮助。
二次函数解题方法1、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标(若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标),任选一个已知点作为对角线的起点,列出所有可能的对角线(显然最多有3条),此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可。
进一步有:①若是否存在这样的动点构成矩形呢?先让动点构成平行四边形,再验证两条对角线相等否?若相等,则所求动点能构成矩形,否则这样的动点不存在。
②若是否存在这样的动点构成棱形呢?先让动点构成平行四边形,再验证任意一组邻边相等否?若相等,则所求动点能构成棱形,否则这样的动点不存在。
③若是否存在这样的动点构成正方形呢?先让动点构成平行四边形,再验证任意一组邻边是否相等?和两条对角线是否相等?若都相等,则所求动点能构成正方形,否则这样的动点不存在。
2.“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:(此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形。
)先用动点坐标“一母示”的方法设出直接动点坐标,分别表示(如果图形是动图形就只能表示出其面积)或计算(如果图形是定图形就计算出它的具体面积),然后由题意建立两个图形面积关系的一个方程,解之即可。
(注意去掉不合题意的点),如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可。
3.“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标(一母示),视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线(没有与y轴平行的直线)垂直的斜率结论(两直线的斜率相乘等于-1),得到一个方程,解之即可。
初中二次函数最值问题解题技巧
初中二次函数最值问题解题技巧
1. 嘿,你知道吗?配方法可是二次函数最值问题的一大绝招啊!就像给函数穿上合适的衣服,一下子就变得精神了。
比如说对于函数y=x²+2x-3,咱就可以配方成y=(x+1)²-4,这样最值不就一目了然啦!
2. 哇塞,还有公式法呢!这可是超级厉害的工具哟!就如同有了一把万能钥匙。
像求二次函数y=2x²-4x+1 的最值,直接代入公式,不就轻松搞定啦!
3. 嘿呀,判别式法也不能小瞧呀!它就像是一个侦探,能帮我们找出很多线索呢。
比如已知一个二次函数与某个条件的关系,用判别式说不定就能找到最值啦!
4. 哎呀呀,图像法可是直观得很呐!简直就是把二次函数展现在你眼前。
像看二次函数 y=-x²+2x+3 的图像,最高点不就是最大值嘛,多清楚呀!
5. 哇哦,构造法也很奇妙哟!就好似搭建一个独特的模型。
比如根据已知条件构造一个新的二次函数来求最值,是不是很有意思呀?
6. 嘿,别忘了还有变量替换法呢!这就像给函数变个小魔术,巧妙得很呐。
假设一个变量来替换某个式子,然后求最值,噫,真神奇!
7. 哈哈,对称性质法也是很有用的呀!相当于找到了函数的一个秘密通道。
知道二次函数的对称轴,那最值还远吗?
8. 哟呵,参数法也可以试试呀!就好像加入了一个特别的元素。
通过参数来求解最值,那感觉超棒的!
9. 总之呢,这么多的解题技巧,可得好好掌握呀!它们都是我们解决二次函数最值问题的有力武器,可别小瞧它们哦!用对了技巧,这些难题都不叫事儿!。
二次函数创新试题解题方法
二次函数创新试题解题方法一、与几何图形结合类。
题1。
已知二次函数y = x^2+bx + c的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,-3),对称轴是直线x = 1。
求二次函数的表达式;若点P是抛物线上位于对称轴右侧的一点,过点P作x轴的平行线交对称轴于点M,交y轴于点N,当四边形OPMN为平行四边形时,求点P的坐标。
解析。
对于二次函数y=ax^2+bx + c,对称轴公式为x =-(b)/(2a)。
已知对称轴x = 1,a = 1,则-(b)/(2×1)=1,解得b=- 2。
又因为函数图象过点C(0,-3),把x = 0,y=-3代入y=x^2-2x + c得c=-3。
所以二次函数表达式为y=x^2-2x - 3。
设点P的横坐标为m(m>1),则P(m,m^2-2m - 3)。
因为PN∥ x轴,对称轴为x = 1,所以M(1,m^2-2m - 3),N(0,m^2-2m - 3)。
因为四边形OPMN为平行四边形,所以PN=OM。
PN=m,OM = 1,所以m = 1(舍去)或m=3。
当m = 3时,y=3^2-2×3-3=0,所以P(3,0)。
题2。
二次函数y=-x^2+bx + c的图象与x轴交于A(-1,0),B(3,0)两点。
求二次函数的表达式;设点P是抛物线上在第一象限内的一个动点,求使ABP面积最大时的点P的坐标。
解析。
因为二次函数y=-x^2+bx + c的图象与x轴交于A(-1,0),B(3,0)两点。
将A、B两点代入函数可得-1 - b + c=0 -9 + 3b + c=0两式相减得:-9+3b + c-(-1 - b + c)=0-9 + 3b + c + 1 + b - c=04b-8 = 0,解得b = 2把b = 2代入-1 - b + c=0得-1-2 + c=0,解得c = 3所以二次函数表达式为y=-x^2+2x + 3。
初中二次函数的解题方法
.11.1 班沈阳14号初中二次函数的解题方法第一回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a ≠ 0,a、b、c 为常数 ),极点坐标为 (-b/2a,4ac-b2 /4a) ;极点式: y=a(x-h)2 +k(a ≠0,a、 h、k 为常数 ),极点坐标为 (h,k), 对称轴为 x=h ,极点的地址特色和图像的张口方向与函数 y=ax2的图像同样,有时题目会指出让你用配方法把一般式化成极点式。
交点式:y=a(x-x1)(x- x2) (a ≠0)仅[限于与 x 轴即 y=0有交点 A(x1 ,0) 和 B(x2 ,0) 的抛物线 ,即 b^2- 4ac≥0] :由一般式变成交点式的步骤:∵ X1+x2=-b/a x1·x2=c/a ∴y=ax2+bx+c=a(x2 +b/ax+c/a)=a[ ﹙ x2;-(x1+x2)x+x1x2]=a(x-x1)(x-x2)重要看法:。
1.二次函数图像是轴对称图形。
对称轴为直线x = h也许 x=-b/2a对称轴与二次函数图像独一的交点为二次函数图像的极点 P。
特别地,当 h=0 时,二次函数图像的对称轴是 y 轴(即直线 x=0);a,b 同号,对称轴在 y 轴左 b=0, 对称轴是 y 轴;a,b 异号,对称轴在 y 轴右边2.二次函数图像有一个极点 P,坐标为 P ( h,k ) 当h=0 时, P 在 y 轴上 ;当 k=0 时, P 在 x 轴上。
h=-b/2ak=(4ac-b2)/4a3.二次项系数 a 决定二次函数图像的张口方向和大小。
当 a>0 时,二次函数图像向上张口 ;当 a<0 时,抛物线向下张口。
|a| 越大,则二次函数图像的张口越小。
有时也可以考虑图像的整体性质、特别点的地址及二次方程的联系,结合韦达定理和鉴识式定理确立a,b,c,△及系数的代数符号。
常有问题1、抛物线中特别点构成的三角形问题:抛物线线中的特别三角形主要有两类:(1)、抛物线与 x 轴的两个交点和与 y 轴的交点所构成的三角形;(2)、抛物线与x轴的两个交点和极点所构成的三角形。
初中二次函数压轴题题型归纳及方法
初中二次函数压轴题题型归纳及方法一、题型归纳初中二次函数压轴题主要包括以下几种类型:1. 求解二次方程,确定函数的零点2. 求解顶点坐标、对称轴及最值3. 判断函数的单调性和定义域、值域4. 与其他函数进行比较,确定大小关系5. 给定函数图像或部分信息,确定函数的表达式二、方法详解1. 求解二次方程,确定函数的零点求解二次方程可以使用因式分解法、配方法和公式法。
其中,因式分解法适用于形如x^2+bx+c=0的方程;配方法适用于形如ax^2+bx+c=0且a≠0的方程;公式法适用于所有形如ax^2+bx+c=0的方程。
求得二次方程的根后,即可得到函数的零点。
若根为实数,则该实数即为零点;若根为复数,则该函数无实零点。
2. 求解顶点坐标、对称轴及最值对于一般形如y=ax^2+bx+c(a≠0)的二次函数,其顶点坐标为(-b/2a,f(-b/2a)),其中f(x)=ax^2+bx+c。
对称轴为x=-b/2a,最值为f(-b/2a)。
若函数为y=a(x-h)^2+k的形式,则顶点坐标为(h,k),对称轴为x=h,最值为k。
3. 判断函数的单调性和定义域、值域对于一般形如y=ax^2+bx+c(a≠0)的二次函数,当a>0时,函数在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,函数在顶点左侧单调递增,在顶点右侧单调递减。
定义域为实数集R,值域取决于a的符号。
4. 与其他函数进行比较,确定大小关系与线性函数比较:当x趋近正无穷时,二次函数增长速度大于线性函数;当x趋近负无穷时,二次函数增长速度小于线性函数。
因此,在x 轴正半轴上,二次函数与线性函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。
与指数函数比较:当x趋近正无穷时,指数函数增长速度大于二次函数;当x趋近负无穷时,指数函数增长速度小于二次函数。
因此,在x 轴正半轴上,指数函数与二次函数相交一次,并在该点处取得最小值(或最大值);在x轴负半轴上,则无交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中二次函数的解题方法-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN11.1班沈阳 14号初中二次函数的解题方法首先回顾一下初中二次函数的重要性质和基本表达式:一般式:y=a x2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,4ac-b²/4a) ;顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。
交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] :由一般式变为交点式的步骤:∵X1+x2=-b/a x1·x2=c/a ∴y=ax²+bx+c=a(x²+b/ax+c/a)=a[﹙x²;-(x1+x2)x+x1x2]=a(x-x1)(x-x2)重要概念:。
1.二次函数图像是轴对称图形。
对称轴为直线x = h或者x=-b/2a 对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
特别地,当h=0时,二次函数图像的对称轴是y轴(即直线x=0);a,b同号,对称轴在y轴左b=0,对称轴是y轴;a,b异号,对称轴在y轴右侧2.二次函数图像有一个顶点P,坐标为P ( h,k ) 当h=0时,P在y轴上;当k=0时,P在x轴上。
h=-b/2ak=(4ac-b2)/4a3.二次项系数a决定二次函数图像的开口方向和大小。
当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
|a|越大,则二次函数图像的开口越小。
有时也可以考虑图像的整体性质、特殊点的位置及二次方程的联系,结合韦达定理和判别式定理确定a,b,c, △及系数的代数符号。
常见问题1、抛物线中特殊点组成的三角形问题:抛物线线中的特殊三角形主要有两类:(1)、抛物线与x轴的两个交点和与y轴的交点所组成的三角形;(2)、抛物线与x轴的两个交点和顶点所组成的三角形。
解决策略是:应用平面几何的有关定理,如等腰三角形的三线合一、直角三角形的勾股定理、射影定理、斜边中线定理等结合两点间的距离公式及二次方程的求根公式、判别式定理、韦达定理等知识求解。
用到的数学思想方法有数形结合、分类讨论、转化等。
2、二次函数的定点和动点问题:求动点运动所形成的直线或曲线一般采用消去参数法,即消去参数以后的方程即为动点需满足的函数解析式。
解决定点问题有两个解决办法:(1)特殊值法,即令参数取两个符合条件的特殊值,通过解方程组求解,解即为顶点坐标。
(2)转化为参数为主元的方程问题,即方程有无穷多解,得到系数为零的条件再讨论解决。
3、求抛物线的顶点、两坐标轴的交点以及抛物线与其它图象的交点等点所构成的面积,关键是用含系数a、b、c的代数式表示出点的坐标或线段长,使面积问题与系数a、b、c 建立联系.4、二次函数与整数问题二次函数与整数问题的联姻主要表现在系数a、b、c为整数、整点以及某范围内的参数的整数值等.解题时往往要用到一些整数的分析方法.5、二次函数的最值问题定义域是闭区间时,二次函数存在两个最值(最大值和最小值).如果顶点横坐标在区间内,则在顶点处与距顶点较远的端点处各取一个最值;如果顶点横坐标不在区间内,则在区间两端点处各取一个最值.定义域是开区间时,二次函数只有其顶点横坐标在区间内的才在顶点处取得一个最值,否则不存在最值.在初中数学竞赛中,二次函数是解决一些实际问题的有效工具,二次函数本身也蕴含着丰富的内涵,因此,在近几年的全国数学竞赛中,有关二次函数试题频频出现,并有不断拓展和加深的趋势。
例1 抛物线y=ax 2+bx+c 的顶点为(4,-11),且与x 轴的两个交点的横坐标为一正一负.则a 、b 、c 中为正数的( )A 、只有aB 、只有bC 、只有cD 、有a 和b解:由顶点为(4,-11),抛物线交x 轴于两点,知a >0.设抛物线与x 轴的两个交点的横坐标分别为x 1,x 2,即x 1、x 2为方程ax 2+bx +c =0的两个根,由题设x 1x 2<0知a c <0,所以c <0,又对称轴为x =4知-ab 2>0,故b <0.故选(A). 例2 已知二次函数f (x )=ax 2+bx+c 的系数a 、b 、c 都是整数,并且f (19)=f (99)=1999,|c |<1000,则c = .解:由已知f (x )=ax 2+bx+c ,且f (19)=f (99)=1999,因此可设f (x )=a (x -19)(x -99)+1999,所以ax 2+bx+c =a (x -19)(x -99)+1999=ax 2-(19+99)x +19×99a +1999,故c =1999+1881a . 因为|c |<1000,a 是整数,a ≠0,经检验,只有a =-1满足,此时c =1999-1881=118.例3 已知a ,b ,c 是正整数,且抛物线y=ax 2+bx+c 与x 轴有两个不同的交点A ,B ,若A 、B 到原点的距离都小于1,求a+b+c 的最小值.解:设A 、B 的坐标分别为A(x 1,0),B(x 2,0),且x 1<x 2,则x 1,x 2是方程ax 2+bx+c =0的两个根. ∴⎪⎪⎩⎪⎪⎨⎧>=<-=+,0,02121a cx x a bx x ∴x 1<0,x 2<0又由题设可知△=b 2-4ac >0,∴b >2ac ① ∵|OA|=|x 1|<1,|OB|=|x 2|<1,即-1<x 1,x 2<0, ∴a c=x 1x 2<1,∴c <a ②∵抛物线y =ax 2+bx+c 开口向上,且当x =-1时y >0, ∴a (-1)2+b (-1)+c >0,即a+c>b .∵b ,a +c 都是整数,∴a+c ≥b +1 ③ 由①,③得a+c >2ac +1,∴(c a -)2>1,又由②知, c a ->1,c a >+1,即a >(c +1)2≥(1+1)2=4∴a ≥5,又b >2ac ≥215⨯>4,∴b ≥5取a =5,b =5,c =1时,抛物线y =5x 2+5x +1满足题意.故a+b+c 的最小值为5+5+1=11.例4 如果y =x 2-(k -1)x -k -1与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是( )A 、1B 、2C 、3D 、4解:由于△=(k -1)2+4(k +1)=(k +1)2+4>0,所以对于任意实数k ,抛物线与x 轴总有两个交点,设两交点的横坐标分别为x 1,x 2,则: |AB|=524)()(221221221++=-+=-k k x x x x x x又抛物线的顶点c坐标是(452,212++--k k k ), 因此S △ABC =52212++k k ·322)52(81452++=++-k k k k 因为k 2+2k +5=(k +1)2+4≥4,当k =-1时等于成立,所以,S △ABC ≥14813=,故选A .例5已知二次函数y=x 2-x -2及实数(1)函数在-2<x ≤a 的最小值;(2)函数在a ≤x ≤a +2的最小值.解:函数y=x 2-x -2的图象如图1(1)若-2<a <21,当x =a 时,y 最小值=a 2-a -2若a ≥21,当x =21时,y 最小值=-49. (2)若-2<a 且a +2<21,即-2<a <-23,当x =a +2时,y 最小值=(a +2)2-(a +2)-2=a 2+3a ,若a <21≤a +2,即-23≤a <21,当x =21时,y 最小值=-49. 若a ≥21,当x =a 时,y 最小值=a 2-a -2.42图1例6当|x+1|≤6时,函数y=x|x|-2x+1的最大值是.解:由|x+1|≤6,得-7≤x≤5,当0≤x≤5时,y=x2-2x+1=(x-1)2,此时y最大值=(5-1)2=16.当-7≤x<0,y=-x2-2x+1=2-(x+1)2,此时y最大值=2.因此,当-7≤x≤5时,y的最大值是-16.说明:对于含有绝对值的二次函数,通常是先分区间讨论,去掉绝对值符号,求出各区间的最值,然后通过比较得出整个区间函数的最值.例7、已知二次函数y=x^2+(k+2)x+k+5与x轴的两个不同交点的横坐标都是正的,那么,k的值应为( )A.k>4或k<-5B.-5<k<-4C.k≥-4或k≤-5D.-5≤k≤-4因为与X轴有2个交点所以b^2-4ac=(k+2)^2-4(k+5)>0 —— (1)设与x轴交点分别为x1,x2则x1+x2=-(k+2)>0 ——(2)x1*x2=k+5>0 ——(3)解得-5<k<-4选B例8.已知二次函数y=x²+bx+c的图像经过点(-1,0),(1,-2),当y随x的增大而增大时,x的取值范围是__[3/4,+∝)__.解析:把点(-1,0),(1,-2)代入二次函数数,可解得b=-3/2 函数的对称轴为 x=-(-3/2)/2=3/4a=1>0,函数开口向上,单调递增区间是[3/4,+∝).例9.二次函数y=ax^2+bx+c,当x取整数时,y值也是整数,这样的二次函数叫作整点二次函数,请问是否存在a的绝对值小于0.5的整点二次函数,若存在请写出一个,若不存在请说明理由。
解答:(方法1)(反证法)假设存在二次项系数a的绝对值小于0.5的整点二次函数,(a≠ 0)则当x=0时,y=c,即c为整数,同理,当x=1时,y=a+b+c=m,x=-1时,y=a-b+c=n,其中m、n 都应为整数,两式相加,2a+2c=m+n,推知2a也应为整数,而|a|<0.5,即|2a|<1,矛盾。
所以不存在a的绝对值小于0.5的整点二次函数。
(方法2)x=0时,y=c是整数x=1时,y=a+b+c是整数x=-1时,y=a-b+c是整数∴(a+b+c)+(a-b+c)=2a+2c是整数而2c是整数例10.已知y=x²-│x┃-12的图象与x轴交于相异两点A,B另一抛物线y=ax²+bx+c过A,B,顶点为P,且△APB是等腰直角三角形,求a,b,c解答:显然A,B坐标为(-4,0),(4,0).y=ax²+bx+c过A,B,所以b=0,c/a=-16,P点坐标为:(0,-16a) 由于APB是等腰直角三角形,所以AB^2=AP^2+BP^2,求出a=±1/4.所以a=1/4,b=0,c=-4或者a=-1/4,b=0,c=4.例11.已知y=x ²-│x┃-12的图象与x 轴交于相异两点A ,B 另一抛物线y=ax ²+bx+c 过A,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c解答:显然A,B 坐标为(-4,0),(4,0).y=ax ²+bx+c 过A,B,所以b=0,c/a=-16,P 点坐标为:(0,-16a)由于APB 是等腰直角三角形,所以AB^2=AP^2+BP^2, 求出a=±1/4.所以a=1/4,b=0,c=-4或者a=-1/4,b=0,c=4.例12 已知a <0,b ≤0,c >0,且ac b 42 =b -2ac ,求b 2-4ac 的最小值.解:令y =ax 2+bx+c ,由于a <0,b ≤0,c >0,则△=b 2-4ac >0, 所以,此二次函数的图像是如图2所示的一条开口向下的抛物图2线,且与x 轴有两个不同的交点A(x 1,0),B(x 2,0).因为x 1x 2=ac<0,不妨设x 1<x 2,则x 1<0<x 2,对称轴x =-a b2≤0,于是|x 1|=c a acb b a ac b b =--=-+-242422, 故a b ac 442-≥c =a ac b b 242--≥-a acb 242-∴b 2-4ac ≥4,当a =-1,b =0,c =1时,等号成立. 因此,b 2-4ac 的最小值为4.图3。