自动控制原理 实验二 系统的动态性能与稳态研究
自控原理实验报告答案
一、实验目的1. 理解自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其传递函数。
3. 熟悉控制系统时域性能指标的测量方法。
4. 通过实验验证理论知识,提高实际操作能力。
二、实验原理自动控制原理是研究如何利用自动控制装置对生产过程进行自动控制的一门学科。
本实验通过模拟典型环节的电路和数学模型,研究系统的动态特性和稳态特性。
三、实验内容1. 比例环节(P)的模拟实验。
2. 积分环节(I)的模拟实验。
3. 比例积分环节(PI)的模拟实验。
4. 比例微分环节(PD)的模拟实验。
5. 比例积分微分环节(PID)的模拟实验。
四、实验步骤1. 按照实验指导书的要求,搭建实验电路。
2. 调整实验参数,记录系统响应曲线。
3. 分析系统响应曲线,计算系统性能指标。
4. 根据实验结果,验证理论知识。
五、实验数据记录1. 比例环节(P)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差2. 积分环节(I)实验数据记录:- 系统阶跃响应曲线- 稳态误差3. 比例积分环节(PI)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差4. 比例微分环节(PD)实验数据记录:- 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差5. 比例积分微分环节(PID)实验数据记录: - 系统阶跃响应曲线- 调节时间- 超调量- 稳态误差六、实验结果与分析1. 比例环节(P)实验结果:- 系统响应速度快,但稳态误差较大。
- 调节时间短,超调量较小。
2. 积分环节(I)实验结果:- 系统稳态误差为零,但响应速度较慢。
3. 比例积分环节(PI)实验结果:- 系统稳态误差较小,调节时间适中,超调量适中。
4. 比例微分环节(PD)实验结果:- 系统响应速度快,稳态误差较小,超调量适中。
5. 比例积分微分环节(PID)实验结果:- 系统响应速度快,稳态误差较小,超调量适中。
七、实验结论1. 通过实验,验证了典型环节的数学模型及其传递函数。
自控原理实验报告
自动控制原理实验报告目录2.2典型环节模拟电路及其数学模型1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.1典型二阶系统模拟电路及其动态性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据纪录3.4三阶控制系统的稳定性分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.5基于Matlab告诫控制系统的时域响应动态性能分析1. 实验目的2. 实验内容3. 实验数据纪录4.1基于Matlab控制系统的根轨迹及其性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录5.4 基于MATLAB控制系统的博德图及其频域分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录2.2典型环节模拟电路及其数学模型1.实验目的1)掌握典型环节模拟电路的构成,学习运用模拟电子组件构造控制系统。
2)观察和安装个典型环节的单位节阶跃响应曲线,掌握它们各自特性。
3)掌握各典型环节的特性参数的测量方法,并根据阶跃响应曲线建立传递函数。
2.实验原理本实验通过实验测试法建立控制系统的实验模型。
实验测试法是人为地给系统施加某种测试信号,记录基本输出响应,并用适当的数学模型区逼近。
常用的实验测试法有三种:时域测试法,频域测试法和统计相关测试法。
通过控制系统的时域测试,可以测量系统的静态特性和动态特性指标。
静态特性是指系统稳态是的输入与输出的关系,用静态特性参数来表征,如增益和稳态误差。
动态性能指标是表征系统输入一定控制信号,输出量随时间变化的响应,常用的动态性能指标有超调量、调节时间、上升时间、峰值时间和振荡次数等。
静态特性可以采用逐点测量法,及给新一个输入量,新颖测量被控对象的一个稳态输出量,利用一组数据绘出静态特性曲线求出其斜率,就可以确定被测对象的增益。
动态特性可以采用阶跃响应或脉冲响应测试法,给定被测对象施加阶跃输入信号或脉冲信号,利用示波器或记录仪测量被测对象的输出响应,如为使测量尽可能的得到理想的数学模型,应注意以下几点:1)被测对象应处于实际经常使用的负荷情况,并且在较为稳定的状态下进行测试。
自动控制原理实验指导书
⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验实验指导书
自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
实验2二阶系统的阶跃响应及稳定性分析实验
实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。
2.研究二阶系统分别工作在等几种状态下的阶跃响应。
3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。
2.双踪低频慢扫示波器。
四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。
其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。
改变元件参数Rx大小,可研究不同参数特征下的时域响应。
当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。
五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。
此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。
(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。
自动控制原理实验——二阶系统的动态过程分析
实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。
自动控制原理实验二系统的动态性能与稳态研究
自动控制原理实验二系统的动态性能与稳态研究系统的动态性能与稳态是自动控制原理中的重要概念,对于系统的分析和设计具有重要意义。
本实验将通过实际的控制系统,研究动态性能与稳态的相关特性。
实验目的:1.理解系统的动态性能和稳态的概念。
2.通过实验研究不同参数对系统动态性能和稳态的影响。
3.掌握如何调节参数以改善系统的动态性能和稳态。
实验器材:1.控制系统实验装置。
2.控制器。
3.传感器。
4.计算机及相关软件。
实验步骤:1.将控制系统实验装置连接好,包括传感器和执行器。
2.设置基本的控制系统参数,如比例增益、积分时间和微分时间。
3.对系统进行稳态分析,记录输出信号的稳定值。
4.通过改变控制器的参数,观察系统的动态响应特性。
例如,改变比例增益,观察系统的超调量和调节时间的变化。
5.改变积分时间和微分时间,观察系统的超调量和调节时间的变化。
6.对不同参数组合进行实验,总结参数与系统性能之间的关系。
实验结果:通过实验可以得到一些重要的结论:1.比例增益的增大可以减小超调量,但同时也可能引起系统的震荡。
2.积分时间的增大可以减小偏差,但也可能导致系统的不稳定。
3.微分时间的增大可以提高系统的稳定性,但也可能引起系统的震荡。
实验结论:本实验通过实际的控制系统,研究了动态性能和稳态的相关特性。
通过改变控制器的参数,可以调节系统的动态性能和稳态。
在实际应用中,需要根据具体的控制要求,选择合适的参数组合,以达到系统的稳定性和性能要求。
实验结果对于掌握自动控制原理中的动态性能和稳态概念,以及参数调节方法具有重要意义。
自动控制原理实验-典型系统的时域响应和稳定性分析
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
自动控制原理实验报告--控制系统的稳定性和稳态误差
本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
自动控制原理实验 控制系统稳定性分析和时域响应分析
实验二 控制系统稳定性分析和时域响应分析一、实验目的与要求1、熟悉系统稳定性的Matlab 直接判定方法和图形化判定方法;2、掌握如何使用Matlab 进行控制系统的动态性能指标分析;3、掌握如何使用Matlab 进行控制系统的稳态性能指标分析。
二、实验类型设计三、实验原理及说明1. 稳定性分析 1)系统稳定的概念经典控制分析中,关于线性定常系统稳定性的概念是:若控制系统在初始条件和扰动共同作用下,其瞬态响应随时间的推移而逐渐衰减并趋于原点(原平衡工作点),则称该系统是稳定的,反之,如果控制系统受到扰动作用后,其瞬态响应随时间的推移而发散,输出呈持续震荡过程,或者输出无限偏离平衡状态,则称该系统是不稳定的。
2)系统特征多项式以线性连续系统为例,设其闭环传递函数为nn n n mm m m a s a s a s a b s b s b s b s D s M s ++++++++==----11101110......)()()(φ 式中,n n n n a s a s a s a s D ++++=--1110...)(称为系统特征多项式;0...)(1110=++++=--n n n n a s a s a s a s D 为系统特征方程。
3)系统稳定的判定对于线性连续系统,其稳定的充分必要条件是:描述该系统的微分方程的特征方程具有负实部,即全部根在左半复平面内,或者说系统的闭环传递函数的极点均位于左半s 平面内。
对于线性离散系统,其稳定的充分必要条件是:如果闭环系统的特征方程根或者闭环传递函数的极点为n λλλ,...,21,则当所有特征根的模都小于1时,即),...2,1(1n i i =<λ,该线性离散系统是稳定的,如果模的值大于1时,则该线性离散系统是不稳定的。
4)常用判定语句2.动态性能指标分析系统的单位阶跃响应不仅完整反映了系统的动态特性,而且反映了系统在单位阶跃信号输入下的稳定状态。
自动控制原理实验
2014-2015学年第二学期自动控制原理实验报告姓名:王丽学号:20122527班级:交控3班指导教师:周慧实验一:典型系统的瞬态响应和稳定性1. 比例环节的阶跃响应曲线图(1:1)比例环节的阶跃响应曲线图(1:2)2. 积分环节的阶跃响应曲线图(c=1uf)3. 比例积分环节的阶跃响应曲线图(c=1uf)比例积分环节的阶跃响应曲线图(c=2uf)4. 惯性环节的阶跃响应曲线图(c=1uf)惯性环节的阶跃响应曲线图(c=2uf)5. 比例微分环节的阶跃响应曲线图(r=100k)比例微分环节的阶跃响应曲线图(r=200k)6. 比例积分微分环节的阶跃响应曲线图(r=100k)比例积分微分环节的阶跃响应曲线图(r=200k)实验结论1. 积分环节的阶跃响应曲线图可以看出,积分环节有两个明显的特征:(1)输出信号是斜坡信号(2)积分常数越大,达到顶峰需要的时间就越长2. 比例积分环节就是把比例环节与积分环节并联,分别取得结果之后再叠加起来,所以从图像上看,施加了阶跃信号以后,输出信号先有一个乘了系数K的阶跃,之后则逐渐按斜坡形式增加,形式同比例和积分的加和是相同的,因而验证了这一假设。
3. 微分环节对于阶跃信号的响应,在理论上,由于阶跃信号在施加的一瞬间有跳变,造成其微分结果为无穷大,之后阶跃信号不再变化,微分为0,表现为输出信号开始衰减。
4. PID环节同时具备了比例、积分、微分三个环节的特性,输出图像其实也就是三个环节输出特性的叠加。
三个环节在整个系统中的工作实际上是相互独立的,这也与它们是并联关系的事实相符合。
5.惯性环节的传递函数输出函数:可以看到,当t→∞时,r(t)≈Ku(t),这与图中的曲线是匹配的。
实验心得通过本实验我对试验箱更加熟悉,会连接电路;更直观的看到电路的数学模型和电路的响应曲线图三者之间的关系,这让我能够将在此之前所学的知识联系到一起。
不管是什么电路,如果要研究它首先就是得到它的数学模型,然后再通过对数学模型的研究间接的来研究该电路。
《自动控制原理》实验指导书2
G(S)H(S)= (2-15)
式中R的单位为KΩ,比较式(2-14)和(2-15)得
T0=1,T1=0.1
T2=0.51,K=510/R(2-16)
系统的特征方程为1+G(S)H(S)=0,由式(2-14)可得到
S(T1S+1)(T2S+1)+K=0
展开得到
T1T2 +(T1+T2) +S+K=0(2-17)
2.CAE98;
3.万用表。
=
其中: =
无阻尼自然频率和阻尼比:
,
1.选定R,C,Rf值,使 ,ξ=0.2;
2.用CAE98的正弦波作为系统的输入信号,即x(t)=XSin t,稳态时其响应为y(t)=Ysin( t+φ);
3.改变输入信号的频率,使角频率 分别等于(或接近等于)0.2,0.4,0.6,0.8,0.9,1.0,1.2,1.4,1.6,2.0,3.0rad/s,稳态时,记录屏幕显示的正弦输入x(t)=XSint和正弦输出响应y(t)=Ysin( t+φ)。记录曲线序号依次记作 ;
2、零极点对控制系统性能的影响
已知传递函数为 ,1) 分别求加入附加零点分别为-2,-1,-0.4时,系统的单位阶跃响应;2) 分别求加入附加极点分别为-1.5,-0.6,-0.4时,系统的单位阶跃响应.
3、稳态误差
已知3个系统的开环传递函数分别为 , , ,请分别计算这3个系统对单位阶跃和单位斜坡信号的响应并计算稳态误差.
二、实验要求:
1、观测不同参数下二阶系统的阶跃响应并测出性能指标:超调量MP,峰值时间tp,调节时间ts。
2、观测增益对典型三阶系统稳定性的影响。
自动控制原理实验典型系统地时域响应和稳定性分析报告
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
实验二 二阶系统的动态特性与稳定性分析.
自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。
二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。
2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。
3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。
三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω)()()()(2C C C C s C C 22262154232154232154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制原理实验指导书
了解和掌握相平面法,学会用相平面法分析非线性三阶系统
二.实验设备及仪器
自动控制原理教学模拟机一台
双踪示波器或虚拟示波器一台
计算机和数字万用表各一台
三.实验内容
典型非线性环节的特性实验(包括继电型、饱和型、死区、间隙)
继电型非线性系统实验(包括不带速度和带速度负反馈)
i=cs+1;
n=0;
while n==0
i=i-1;
if i==1
n=1;
elseif y(i)>1.05*yss%选择5%的误差带
n=1;
end
end;
t1=t(i);
cs=length(t);
j=cs+1;
n=0;
while n==0
j=j-1;
if j==1
n=1;
elseif y(j)<0.95*yss%选择5%的误差带
对实验结果加以讨论:
3,在开环放大倍数K等于原系统的临界Km情况下,采取哪种校正方案使得系统的动态性能最好?
4,在δ%=25%的情况下,采取哪种校正方案可使系统在斜坡信号作用时,稳态误差最小?
实验五.采样系统分析
一.实验目的
了解采样开关,零阶保持器的原理及过程。
学会环采样系统特性分析。
掌握学习用MATLAB仿真软件实现采样系统分析方法。
3.请将记录的波形绘出,测试数据以表格形式列出;
4.比较两种仿真的结果进行误差分析。
附1:MATLAB仿真
已知一个二阶系统的传递函数为:
试绘制该系统的单位阶跃响应曲线,并计算系统的性能指标
MATLAB程序如下所示:
自动控制实践实验报告
一、实验目的1. 理解自动控制系统的基本概念和原理;2. 掌握自动控制系统的基本分析方法;3. 培养动手操作能力和实验技能;4. 提高对自动控制系统的设计、调试和优化能力。
二、实验原理自动控制系统是一种利用反馈控制原理,使被控对象的输出量能够跟踪给定输入量的系统。
本实验主要研究线性定常系统的稳定性、动态性能和稳态性能。
三、实验设备1. 自动控制实验台;2. 实验仪器:信号发生器、示波器、信号调理器、数据采集卡等;3. 实验软件:MATLAB/Simulink。
四、实验内容1. 系统搭建与调试(1)搭建实验台,连接实验仪器;(2)设置信号发生器,产生不同频率、幅值的信号;(3)调整信号调理器,对信号进行放大、滤波等处理;(4)将处理后的信号输入实验台,观察系统的响应。
2. 稳定性分析(1)根据实验数据,绘制系统的伯德图;(2)根据伯德图,判断系统的稳定性;(3)通过改变系统参数,观察对系统稳定性的影响。
3. 动态性能分析(1)根据实验数据,绘制系统的阶跃响应曲线;(2)根据阶跃响应曲线,分析系统的上升时间、超调量、调节时间等动态性能指标;(3)通过改变系统参数,观察对系统动态性能的影响。
4. 稳态性能分析(1)根据实验数据,绘制系统的稳态误差曲线;(2)根据稳态误差曲线,分析系统的稳态性能;(3)通过改变系统参数,观察对系统稳态性能的影响。
五、实验结果与分析1. 系统搭建与调试通过搭建实验台,连接实验仪器,观察系统的响应,验证了实验系统的可行性。
2. 稳定性分析根据伯德图,判断系统在原参数下的稳定性。
通过改变系统参数,观察对系统稳定性的影响,得出以下结论:(1)系统在原参数下稳定;(2)减小系统参数,系统稳定性提高;(3)增大系统参数,系统稳定性降低。
3. 动态性能分析根据阶跃响应曲线,分析系统的动态性能指标:(1)上升时间:系统在给定输入信号作用下,输出量达到稳态值的80%所需时间;(2)超调量:系统在达到稳态值时,输出量相对于稳态值的最大偏差;(3)调节时间:系统在给定输入信号作用下,输出量达到稳态值的95%所需时间。
自动控制原理实验
二、实验方法
器仪表或软件对系统输入端加入不同的 激励信号(由信号发生器、计算机本 身产生,如时域特性——阶跃信号,频 率特性——正弦波信号),在系统的某 一环节或输出端利用相应的测试仪器 (如示波器、记录仪、打印机等),观 测和记录系统输出响应曲线,用以分析
8Байду номын сангаас
二、实验方法
系统的动态特性和稳态特性,验证和体 会理论教学的内容。 为了分析和研究系统的内部运动过程, 先建立系统的模型,然后在模型上进行 试验分析,这一过程称为仿真。 在自动控制原理实验中,仿真就是用物 理模型或数学模型代替实际控制系统进 行分析研究的过程。
20
自动控制原理实验室
21
模拟仿真实验所用实验仪器:控制理论实验平台; 慢扫描示波器;数字万用表。
22
4
二、实验方法
数学模型一般用微分方程来表示,由于微分方 程求解比较复杂,因此常用拉氏变换将微分方 程变为传递函数,然后进行分析和求解。 传递函数不仅可以表征系统性能,而且可以用 来研究系统的结构参数对系统性能的影响 。 从一定意义上来说,做实验就是用实验方法来 求解系统的传递函数,对系统进行分析和综合。
自动控制原理实验 (一)
1
一、实验目的
自动控制原理是研究自动控制系统共同
规律的一门学科,是分析、设计和研究自 动控制系统的理论基础。因此,自动控制 原理是一门理论性强,其中许多内容实践 性又较强,具有一定的实际工程背景的课 程,也比较难“教”与难“学”。
2
一、实验目的
自动控制原理实验是自动控制原理课程 教学的一个组成部分。
•
例如:
G(s) K Ts 1
不可以模拟;
G(s) 10 s 1
实验二-二阶系统的动态特性与稳定性分析
实验⼆-⼆阶系统的动态特性与稳定性分析实验⼆-⼆阶系统的动态特性与稳定性分析⾃动控制原理实验报告实验名称:⼆阶系统的动态特性与稳定性分析班级:姓名:学号:实验⼆⼆阶系统的动态特性与稳定性分析⼀、实验⽬的1、掌握⼆阶系统的电路模拟⽅法及其动态性能指标的测试技术过阻尼、临界阻尼、⽋阻尼状态)对系统动态2、分析⼆阶系统特征参量(ξω,n性能的影响;3、分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性⾄于其结构和参数有关,与外作⽤⽆关”的性质;4、了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、学习⼆阶控制系统及其阶跃响应的Matlab 仿真和simulink实现⽅法。
⼆、实验内容1、构成各⼆阶控制系统模拟电路,计算传递函数,明确各参数物理意义。
2、⽤Matlab和simulink仿真,分析其阶跃响应动态性能,得出性能指标。
3、搭建典型⼆阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型⼆阶系统动态性能和稳定性的影响; 4、搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响; 5、将软件仿真结果与模拟电路观测的结果做⽐较。
三、实验步骤1、⼆阶系统的模拟电路实现原理将⼆阶系统:ωωξω22)(22nn s G s s n++=可分解为⼀个⽐例环节,⼀个惯性环节和⼀个积分环节ωωξω221)()()()(2C C C C s C C 22221542322154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、研究特征参量ξ对⼆阶系统性能的影响将⼆阶系统固有频率5.12n=ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,⼆阶系统阻尼系数ξ=0.8 当R6=100K 时,⼆阶系统阻尼系数ξ=0.4 当R6=200K 时,⼆阶系统阻尼系数ξ=0.2(1)⽤Matlab 软件仿真实现⼆阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。
自控原理二阶系统阶跃响应及性能分析实验报告
开课学院及实验室:工程北531 2014年 11 月 30日v1.0 可编辑可修改图2-1三、使用仪器、材料计算机、MATLAB 软件四、实验过程原始记录(程序、数据、图表、计算等)1、运行Matlab 软件;2、在其命令窗口中输入有关函数命令或程序。
涉及的主要命令有:step()实验1:为便于比较,可用hold on 指令将多条曲线放在一个图中。
进一步,为清楚起见,用legend 指令在图中加注释。
部分结果如图2-2所示。
图2-2实验2:首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。
实验3:首先与二阶系统闭环传递函数的标准形式比较,求出阻尼系数、自然频率,再求出瞬态性能指标。
1、观察并记录、总结。
五、实验结果及分析实验1.典型二阶系统闭环传递函数(1) =;b=[36];c=[1 12*a 36]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=;b=[36];c=[1 12*a 36]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=;b=[36];c=[1 12*a 36]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=;b=[36];c=[1 12*a 36]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=1;b=[36];c=[1 12*a 36]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridv1.0 可编辑可修改hold ona=;b=[36];c=[1 12*a 36];sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridxlabel('s')ylabel('y(s)')title('单位阶跃响应')legend('a=','a=','a=','a=1','a=')(2) ζ=, ωn分别为2,4,6,8,10a=;b=[4];c=[1 4*a 4];sys=tf(b,c);p=roots(c);s=0::15; step(sys,s);gridhold ona=;b=[16];c=[1 8*a 16]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=;b=[36];c=[1 12*a 36]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=;b=[64];c=[1 16*a 64]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridhold ona=;b=[100];c=[1 20*a 100]; sys=tf(b,c);p=roots(c);s=0::15;step(sys,s);gridxlabel('s')ylabel('y(s)')title('v1.0 可编辑可修改单位阶跃响应')legend('b=2','b=4','b=6','b=8','b=10'实验2 首先与二阶系统闭环传递函数的标准形式比较,求出参数K1、a与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能指标要求,求出参数K1、a,再用step()画出即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自控原理实验报告》
实验名称:实验二系统的动态性能与稳态研究实验数据记录与分析:
所有输出信号均接入一反相器再输入至示波器CH2通道。
实验1:分析二阶系统的ζ和ωn对系统动态性能的影响
经计算,实验一中二阶系统的闭环传递函数为G(s)=1
1+R
1000k
S+0.001S2实验一中调整时间选取的误差带为稳态值正负5%以内。
1.α=0
此时将内反馈回路断开。
系统的闭环传递环数G(s)=
1000
S2+1000
,响应函数曲线如图所示。
结论:此时,系统的自然无阻尼震荡频率ωn =31.62,阻尼比ζ=0,系统为一无阻尼的二阶系统,输出曲线为一等幅震荡的图像,系统等幅震荡周期理论值为198.692ms,实验中测量值为199.167ms。
2.α=0.13
此时,R=13K。
系统的闭环传递环数G(s)=
1000
S2+13S+1000
,响应函数曲线如图所示。
结论:此时,系统的自然无阻尼震荡频率ωn =31.62,阻尼比ζ=0.205,系统为一欠阻尼的二阶系统,输出曲线为一震荡后趋于平稳的图像。
理论上系统的输出曲线的超调量σ=51.79%,峰值时间为101.510ms,调节时间为462.812ms。
实验时系统的输出曲线的超调量σ=53.30%,峰值时间为101.667ms,调节时间为433.333ms。
3.α=0.33
此时,R=33K。
系统的闭环传递环数G(s)=
1000
S2+33S+1000
,响应函数曲线如图所示。
结论:此时,系统的自然无阻尼震荡频率ωn =31.62,阻尼比ζ=0.521,系统为一欠阻尼的二阶系统,输出曲线为一震荡后趋于平稳的图像。
理论上系统的输出曲线的超调量σ=14.69%,峰值时间为116.400ms,调节时间为182.105ms。
实验时系统的输出曲线的超调量σ=15.74%,峰值时间为115.000ms,调节时间为170.833ms。
4.α=0.44
此时,R=44K。
系统的闭环传递环数G(s)=
1000
S2+44S+1000
,响应函数曲线如图所示。
结论:此时,系统的自然无阻尼震荡频率ωn =31.62,阻尼比ζ=0.695,系统为一欠阻尼的二阶系统,输出曲线为一震荡后趋于平稳的图像。
理论上系统的输出曲线的超调量σ=4.79%,峰值时间为138.183ms,调节时间为136.513ms。
实验时系统的输出曲线的超调量σ=5.58%,峰值时间为133.333ms,调节时间为160.833ms。
5.α=0.63
此时,R=63K。
系统的闭环传递环数G(s)=
1000
S2+63S+1000
,响应函数曲线如图所示。
结论:此时,系统的自然无阻尼震荡频率ωn =31.62,阻尼比ζ=0.996,系统为一近似于临界阻尼的二阶系统,输出曲线为一快速上升后速度变缓,最终趋于平稳的图像。
理论上系统的输出曲线的超调量σ=0%,峰值时间为1111.931ms,调节时间为95.258ms。
实验时系统的输出曲线的超调量σ=0%,峰值时间为362.500ms,调节时间为362.500ms。
6.实验1结论分析:
在实验中α由0变化到0.63的过程中,我们选取的二阶系统经历了由欠阻尼到过阻尼的状态变化。
整个实验中,通过对传递函数的分析我们发现,系统的无阻尼自然振荡频率ωn全程保持为31.62Hz不变,而系统的阻尼比ζ由0变化到0.996,可见系统的状态逐渐由无阻尼过渡到欠阻尼再到接近于临界阻尼。
在这一过程中,通过图像我们可以看到,响应的图像由一等幅振荡的曲线逐渐变化为一为一快速上升后速度变缓,最终趋于平稳的曲线。
同时峰值时间tp逐渐变长,调整时间ts逐渐减小。
这一现象符合理论分析结果。
实验2:分析系统的结构与参数对系统的稳态误差的影响
1.0型系统
经计算,该系统的开环传递函数为G(s)=
R
(0.1S+1)(0.05s+1)100K
1.1.输入阶跃信号(幅值为2V)
理论上e ss0=
1
1+K P
×2V,K P=R
100K
1.1.1.R=100K
此时的稳态误差e ss0理论值为1V,实际测量值为1.02V
1.1.
2.R=300K
此时的稳态误差e ss0理论值为0.5V,实际测量值为0.53V
1.1.3.R=500K
此时的稳态误差e ss0理论值为0.33V,实际测量值为0.37V
1.1.4.R=700K
此时的稳态误差e ss0理论值为0.25V,实际测量值为0.28V
1.2.输入单位斜坡信号
理论上e ss0=
1
K V
×1V,K V=0
1.2.1.R=100K
此时的稳态误差e ss0理论值为无穷大,实际测量值为无穷大
1.2.2.R=300K
此时的稳态误差e ss0理论值为无穷大,实际测量值为无穷大
1.3.结论:0型系统在输入阶跃信号时,系统最终处于稳态,其稳态误差随这R
的增大而减小。
当输入单位斜坡信号的时候,其稳态误差为无穷大。
在实验中测量值与理论值基本一致。
2.1型系统
经计算,该系统的开环传递函数为G(s)=
R
S(0.05s+1)10K
2.1.输入阶跃信号(幅值为2V)
理论上e ss1=
1
1+K P
×2V,K P=∞
2.1.1.R=100K
此时的稳态误差e ss1理论值为0V,实际测量值为0V
2.1.2.R=300K
此时的稳态误差e ss1理论值为0V,实际测量值为0V
2.1.
3.R=500K
此时的稳态误差e ss1理论值为0V,实际测量值为0V
2.1.4.R=700K
此时的稳态误差e ss1理论值为0V,实际测量值为0V
2.2.输入单位斜坡信号
理论上e ss0=
1
K V
×1V,K V=R
10K
2.2.1.R=100K
此时的稳态误差e ss1理论值为0.1V,实际测量值为0.12V
2.2.2.R=300K
此时的稳态误差e ss1理论值为0.03V,实际测量值为0.03V
2.3.结论:1型系统在输入阶跃信号时,系统最终处于稳态,其稳态误差始终为
0。
当输入单位斜坡信号的时候,其稳态误差随R的增大而减小。
在实验中测量值与理论值基本一致。
3.实验2结论分析:
本实验中0型系统与1型系统经计算均为稳定系统,主要区别在于前者中的惯性环节,在后者被替换为积分环节。
在输入阶跃信号时,0型系统的稳态误差为一与电阻相关的常数,1型系统的稳态误差为无穷大。
在单位斜坡信号,0型系统的稳态误差为0,1型系统的稳态误差为一与电阻相关的常数。
实验心得体会:
通过此次实验,我充分理解了二阶欠阻尼系统的动态性能指标的相关含义与计算方法,并对这个知识点有了更深入的认识和体会。
我也深刻领悟到了0型,1型系统输入单位阶跃信号和单位斜坡信号的响应图像背后的数学含义和实际含义。
同时对于稳态误差的实际含义和相关的计算方法也有了更好的掌握与心得。
。