复杂网络重叠社区结构发现算法研究

合集下载

复杂网络中的社区发现与挖掘算法研究

复杂网络中的社区发现与挖掘算法研究

复杂网络中的社区发现与挖掘算法研究社区发现是在复杂网络中识别出密切相关的节点集合,这些节点之间存在着明显的紧密联系,而与其他节点相对疏远。

社区发现在许多领域具有广泛的应用,如社交网络分析、生物信息学、推荐系统等。

然而,由于复杂网络的规模庞大、结构复杂多样,社区发现成为一个具有挑战性的问题。

为了解决这一问题,学者们不断提出和改进各种社区发现与挖掘算法。

一种常见的社区发现算法是基于模块度(modularity)的方法。

这种方法通过计算网络中节点间的连接强度和预期连接强度的差值来评估社区结构的优劣程度。

其中,预期连接强度是通过随机图模型生成的网络来进行估计的。

通过最大化模块度函数,这种算法可以将网络划分为若干个社区。

然而,基于模块度的方法在处理大规模网络时,会面临计算时间复杂度高和结果稳定性差的问题。

为了克服这些问题,研究者们提出了一系列其他的社区发现算法。

例如,基于谱聚类的方法可以将网络转化为特征向量,然后通过聚类技术将节点划分为不同的社区。

这种方法能够有效克服基于模块度的方法的缺点,并且适用于大规模网络。

另外,还有基于聚类系数的方法、基于图表达的方法、基于双层重叠社区的方法等。

这些算法不仅提高了社区发现的效果,还拓宽了社区发现的研究领域。

除了社区发现算法,研究者们还提出了一些用于社区挖掘的工具和技术。

社区挖掘旨在从挖掘过程中发现新的模式和知识。

其中,一种常见的工具是关联规则挖掘。

关联规则挖掘通过挖掘出不同节点之间的关联关系,可以发现隐藏在复杂网络中的有意义的模式。

另外,社区挖掘还可以借助数据可视化技术,将复杂的网络结构以图形化的方式展示出来,增加了对社区结构的理解和挖掘。

随着社交媒体的普及和大数据技术的不断发展,社区发现与挖掘在社交网络分析中具有重要的应用。

通过社交网络分析,可以揭示出用户之间的相互关系、信息传播路径、社区结构等信息,为社交媒体平台的运营提供指导。

此外,社区发现与挖掘还可以应用于生物信息学领域,发现蛋白质相互作用网络中的功能模块,辅助研究者了解蛋白质的功能和相互关系。

复杂网络中的节点分类与社区发现研究

复杂网络中的节点分类与社区发现研究

复杂网络中的节点分类与社区发现研究一、引言网络结构的分析已经成为了最广泛研究的领域之一,特别是对于复杂网络的研究而言,“节点”和“社区”是研究的最基本问题之一。

本文将主要介绍复杂网络中节点分类和社区发现研究的相关概念、方法和应用。

二、复杂网络网络中包含大量的节点和边,我们将其中的节点表示为V={v1,v2,…,vn},边为E,当一条边连接了两个节点时,它们就存在一种关系,例如友情、物理接触、信息交流等等。

这些关系构成了网络的拓扑结构,而通常在现实生活中,网络的结构都是非常复杂的。

其中最显著的特点是具有高度的连通性、较高的聚类系数和多项式度分布性。

三、节点分类3.1 概念节点分类是通过解析网络中节点数量、类型、结构、属性等信息,将这些节点划分到不同的组中,从而为数据降维、特征提取、网络分析和可视化等应用提供了有力支持。

对于节点分类而言,最常用的方法就是贪心算法和模块性最优化算法。

(1) Node2Vec算法Node2Vec算法是一种基于深度学习的节点分类算法,其主要思想是利用节点的前后设置,学习节点嵌入的表征。

首先通过随机游走模型生成节点序列,然后通过负采样生成负样本,利用Skip-Gram模型训练生成词向量感知器,最终得到每个节点的表征向量。

(2)社区邻居划分算法社区邻居划分算法是一种基于社区最佳化搜索的节点分类方法,其主要思想是先划分所有节点成为不同的社区,然后通过计算每对社区块间的modularity值继续进行两两合并,直至达到最终的目标。

该方法具有精度高、可扩展、可适应性等特点,在多种应用中得到广泛的应用。

四、社区发现4.1 概念社区发现是一种根据网络的拓扑结构探测其内部隐含的社区组织结构的方法,它的基本思想是,将网络中的节点划分为几个有紧密联系的节点集合,以识别出每个集合中的“社区”;而不同的社区之间往往不会有过多联系。

社区发现方法主要分为聚类法、划分法和混合法三大类。

(1)基于谱的Clustering算法基于谱的Clustering算法是一种利用谱理论的社区发现算法,其核心思路是,通过网络的特征矩阵,求得其Laplacian特征向量,并对其进行聚类分析。

基于复杂网络理论的社交网络分析算法研究

基于复杂网络理论的社交网络分析算法研究

基于复杂网络理论的社交网络分析算法研究社交网络已经成为人们日常生活中必不可少的一部分,而社交网络中形成的复杂网络也成为了人们关注的研究对象。

基于此,本文旨在探讨基于复杂网络理论的社交网络分析算法研究,从而更好地理解社交网络中的人际关系、信息传播等现象。

一、复杂网络理论复杂网络是一个由很多相互联系的节点组成的网络结构。

常见的复杂网络有小世界网络、无标度网络、随机网络等,在现实中广泛存在。

复杂网络理论主要研究网络的拓扑结构、节点间的关联规律、网络动力学行为等方面。

二、社交网络分析算法社交网络分析算法是通过对社交网络中的节点、边及其属性进行分析,从而发现社交网络中的人际关系、信息传播等现象,进而帮助人们更好地理解社交网络。

目前,社交网络分析算法主要有以下几种:1. 社区发现算法社区发现算法是将网络中的节点划分成若干个社区,每个社区内的节点在某方面具有一定的相似性。

社区发现算法可以帮助人们发现与节点内部联系最紧密的社区,从而更好地理解节点间的关系。

2. 信息传播算法信息传播算法研究如何在网络中最有效地传播信息,如何使得信息最终传达给目标节点。

3. 节点重要性评估算法节点重要性评估算法是评估网络中每个节点的重要性,进而帮助人们识别网络中最为重要的节点。

目前常用的节点重要性评估算法有度中心性算法、介数中心性算法和PageRank算法等。

三、社交网络分析算法的应用社交网络分析算法在现实生活中有着广泛的应用。

以社区发现算法为例,它可以帮助政府发现某个地区的街道犯罪倾向较高,从而采取相应措施;它也可以帮助企业发现销售渠道或客户群体的变化,从而优化营销策略。

信息传播算法可以用于研究社交网络中的谣言传播、疫情传播、舆情传播等问题。

节点重要性评估算法可以用于识别网络中的关键人物,如在社交网络中推荐最为重要的关注对象、寻找网络中的领袖等。

四、结语在复杂网络理论的基础上,社交网络分析算法能够帮助人们更好地了解社交网络中的人际关系、信息传播等现象。

复杂网络中的社区结构划分算法研究

复杂网络中的社区结构划分算法研究

复杂网络中的社区结构划分算法研究第一章简介复杂网络有着广泛的应用,例如社交网络、物流网络、生物网络等等。

在一个复杂网络中,不同的节点之间存在着不同的联系。

社区结构是指网络中一个节点集合,这些节点之间存在着紧密的联系,而这些联系又与网络外部的联系却相对松散。

在许多实际应用中,社区结构是非常有用的,例如社交网络中的好友圈、科研领域中的研究团队等等。

因此,社区结构划分算法的研究变得越来越重要。

本文将介绍一些常见的社区结构划分算法,包括Louvain算法、GN算法、Spectral Clustering算法等等,探讨它们的原理和优缺点。

第二章 Louvain 算法Louvain算法是一种基于模块度优化的社区结构划分算法。

其主要思想是通过不断合并最优的社区结构来达到最优的全局划分。

具体来说,Louvain算法分为两个阶段:第一阶段是在保持当前社区划分不变的前提下,每个节点都移动到与其相邻节点中度最大的社区中;第二阶段是对第一阶段的结果进行优化,合并可以提高模块度的社区划分,直到无法继续提高为止。

优点:Louvain算法是一种高效、可扩展的算法,可以在大规模网络中使用。

并且在实验中,Louvain算法的划分结果表现出了很好的社区行为。

此外,Louvain算法的实现代码也比较简单,易于理解。

缺点:Louvain算法对于具有重叠社区的网络进行划分的效果并不好。

此外,该算法的运行时间较长,在大规模网络中可能需要1小时以上的时间。

第三章 GN 算法GN(Girvan-Newman)算法是一种基于边介数来度量网络中重要性的社区结构划分算法。

边介数是指在一个无向图中,如果一条边所连通的节点对越多,说明这条边的介数越高。

算法的核心思想是通过不断删除网络中介数最高的边来分离网络,从而获得社区结构。

优点:GN算法适用于对于一些轮廓明显的社区结构进行划分,同时该算法的实现也相对简单。

缺点:GN算法对于重叠社区的网络划分效果较差。

基于Node2Vec的重叠社区发现算法

基于Node2Vec的重叠社区发现算法

基于Node2Vec 的重叠社区发现算法①陈 卓, 姜 鹏, 袁玺明(青岛科技大学 信息科学技术学院, 青岛 266061)通讯作者: 姜 鹏摘 要: 针对目前基于种子节点选择的社区发现算法在准确性和复杂度等方面存在的不足, 提出了一种基于Node2Vec 的重叠社区发现算法. 首先, 使用Node2Vec 算法学习到网络中每个节点的向量表示, 用以计算节点间的相似度, 其次, 利用节点影响力函数计算节点影响力并找出种子节点, 然后基于每个种子节点进行社区的扩展优化,最终挖掘出高质量的重叠社区结构. 本文选取多个真实网络进行了对比实验, 结果表明, 本文所提出的算法能够在保证良好稳定性的前提下发现高质量的社区结构.关键词: Node2Vec; 重叠社区发现; 节点影响力; 种子节点; 社区扩展引用格式: 陈卓,姜鹏,袁玺明.基于Node2Vec 的重叠社区发现算法.计算机系统应用,2020,29(11):163–167. /1003-3254/7658.htmlOverlapping Community Discovery Algorithm Based on Node2VecCHEN Zhuo, JIANG Peng, YUAN Xi-Ming(College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China)Abstract : In view of the shortcomings in accuracy and complexity of community discovery algorithm based on seed node selection, a Node2Vec overlapping community discovery algorithm is proposed. First, the vector representation of each node in the network is learned by using Node2Vec algorithm to calculate the similarity between nodes. Second, the node influence function is used to calculate the node influence and find out the seed node. Then the community extension optimization is carried out based on each seed node. Finally the high quality overlapping community structure is excavated. In this study, several real networks are selected for comparative experiments, and the results show that the proposed algorithm can find high quality community structures under the premise of ensuring sound stability.Key words : Node2Vec; overlapping community discovery; node influence; seed node; community expansion现实世界中的很多系统都可以被抽象为复杂网络,如社交网络、技术网络、生物网络, 这些网络都具有一种普遍的特性——社区结构. 在不同类型的网络中,社区有着不同的含义, 但是所有社区内部节点间的联系总是比不同社区节点间的联系密切, 准确地发现社区结构是在中观层面上理解复杂网络进而研究复杂系统的有效途径.社区发现的研究历史可以追溯到1927年, Rice 等基于投票模式的相似性发现小的政治团体中的社区[1]. 早期的研究工作大部分都围绕非重叠社区发现展开, 此类算法将复杂网络划分成若干个互不相连的社区结构且一个节点只能隶属于一个社区[2]. 然而, 现实中网络社区之间往往是相互重叠的, 硬划分的社区发现算法无法满足需求, 例如, 在社交网络中, 如果每个社区代表拥有共同兴趣爱好的用户所组成的群体, 则一个用户可以拥有诸多兴趣爱好而隶属于多个社区,计算机系统应用 ISSN 1003-3254, CODEN CSAOBNE-mail: Computer Systems & Applications,2020,29(11):163−167 [doi: 10.15888/ki.csa.007658] ©中国科学院软件研究所版权所有.Tel: +86-10-62661041① 基金项目: 国家自然科学基金(F030810); 山东省重点研发计划(2018GGX101052)Foundation item: National Natural Science Foundation of China (F030810); Key Research and Development Program of Shandong Province (2018GGX101052)收稿时间: 2020-03-12; 修改时间: 2020-04-12, 2020-04-29; 采用时间: 2020-05-10; csa 在线出版时间: 2020-10-29163显然, 重叠的社区结构更能体现出复杂网络的特性, 进而帮助我们从中观层面对复杂系统进行分析.对复杂网络中重叠社区的发现与研究也因此成为近年来新的研究热点, 而社区发现作为社区分析相关工作的前提, 对于其他领域的研究有着重要影响. 目前,重叠社区的发现结果可以被应用于情感分析、个性化推荐、实体消歧和链接预测等领域的研究.1 相关工作近年来, 学者们相继提出大量能够识别重叠社区的算法. Palla等提出一种基于最大团的派系过滤算法CPM来分析重叠的社区结构[3], 该算法易受k值影响,且以最大团为种子的方式计算复杂度较高. COPRA算法[4]对基于标签传播的非重叠社区发现算法进行改进,在标签后面附上节点对该标签的归属系数, 以便衡量该节点包含多个社区的信息比重, 在迭代更新节点标签的过程中允许一个节点同时拥有多个标签, 以发现网络中的重叠社区, 该算法每次迭代的时间复杂度接近线性但稳定度较差. 基于链路的重叠社区发现算法首先对网络的边进行聚类, 然后通过收集链路社区内的所有连接的节点进行社区划分, 代表算法为LINK 算法[5]. 在此基础上, Li等[6]提出一种基因表示模型,通过将链路社区映射成节点社区的方式, 实现对重叠节点的发现. 基于局部社区优化和扩展的方法则从局部社区出发, 基于优化函数进行扩张, 社区间的交叉部分则为重叠节点, 代表算法为LFM算法[7], 除此之外, Su等[8]提出利用随机游走策略扩展优化的方法. 文献[9]在此基础上提出基于种子节点选择的重叠社区发现算法, 首先通过定义的影响力函数选取种子节点, 然后通过吸引力函数以种子节点为核心进行扩展, 发现种子所在的局部社区结构. 其中, 基于种子节点选择和扩展的算法由于稳定性好、效率高而成为主流的社区发现算法. Wang等[10]提出一种基于结构中心性的种子选择算法, 实现了一个高覆盖率的朴实算法, 提高了社区发现质量, 但算法不能很好地适用于大规模数据集. 於志勇等提出的i-SEOCD算法能够高效地从种子节点出发进行局部扩展, 最终发现稳定的重叠社区[11], 但是该算法在计算节点相似度时只考虑了局部网络, 提高算法执行效率的同时也牺牲了算法准确性.现有基于种子节点扩展的重叠社区发现算法虽然在稳定性方面表现较好, 但在衡量两节点间关系时, 往往将两节点间是否有连边作为唯一判别标准, 而只考虑狭小作用域范围内的局部信息的做法, 虽然提升了社区发现的效率, 但忽略了网络中更大范围内节点和边因素对社区发现过程的影响, 使得算法在提升效率的同时往往以牺牲部分准确性为代价. 同时, 现有算法在基于种子节点进行社区扩展的过程中, 往往需要不断地迭代计算现有社区与未划分节点间的相似性关系,计算量大, 不适合进行大规模网络的社区发现.为了更好地解决以上问题, 本文利用Node2Vec[12]算法对网络结构进行学习, 通过控制在游走产生节点序列过程中对深度优先和广度优先的趋向, 将更大范围内的拓扑结构信息体现到节点因素中, 提出了基于Node2Vec的重叠社区发现算法, 该算法能够解决现有算法存在的以牺牲准确性来提高效率和不适合大规模数据集的问题.2 基于Node2Vec的重叠社区发现算法针对以Jaccard相似度为指标衡量节点间距离的方法所存在的局限性, 本文采用网络表示学习算法学习到网络中每个节点的向量表示, 针对传统种子节点选择方法稳定性和鲁棒性差的缺点, 提出了新的种子节点选择算法, 并以此为基础进行社区扩张和优化. 2.1 Node2Vec算法Perozzi等[13]提出了将Word2Vec的思想用于图节点表示学习的Deepwalk算法, Node2Vec在此的基础上改变了随机游走的序列生成方式, 通过半监督的方式学习p, q两个超参数的值, 控制游走对深度和广度的趋向, 其中p控制跳向前节点邻居的概率, q控制跳向前节点非邻居的概率, 如图1所示.x1x3x2tVα=1α=1/qα=1/qα=1/q图1 随机游走过程图q>1x1p>1x2x3图1中, 时, 趋向于遍历临近t节点的节点,即趋向于BFS; 时, 趋向于遍历临近t节点的或节点, 即趋向于DFS. 在确定要遍历的邻居节点之后,采用skip-gram模型进行训练进而获得节点的向量表示.u v在进行种子节点发现前, 首先利用Node2Vec算法对网络结构进行学习, 在学习到网络中每个节点的向量表示后, 对于任意节点和, 可利用算法内置的相似计算机系统应用2020 年 第 29 卷 第 11 期164sim (u ,v )A n ×n A uv u v 1−sim (u ,v )度计算工具计算其在高维空间中的相似度, 其取值范围为0~1, 通过该方式进一步计算网络中任意节点之间的相似度, 并用相似度矩阵表示整个网络中节点间的相似度信息, 其中表示节点和之间的相似度, 进而可以用来表示节点间的相异度.2.2 种子节点选择算法G =(V ,E )通常, 一个网络可以用无向图表示, 其中V 表示图中n 个节点的集合, E 表示图中m 条边的集合.在网络中, 节点u 的邻居集合N(u)定义如下:N (u )={u :v ∈V ,(u ,v )∈E }(1)节点u 对节点v 的影响力用F(u,v)表示如下:F (u ,v )=D (u )D (v )(1−sim (u ,v ))2(2)sim (u ,v )1−sim (u ,v )其中, D (u )和D (v )分别表示节点u 和v 的度, 表示u , v 节点的相似度, 可通过Node2Vec 生成的节点向量计算得到, 表示为两节点间的距离, 距离越远, u 对v 的影响力越小.节点u 的影响力值通过以下公式计算得到:F (u )=∑v ∈N (u )D (u )D (v )(1−sim (u ,v ))2(3)节点影响力的大小与其邻居节点的数量、度数以及相异度有关, 影响力越大, 节点越有机会成为种子节点.在种子节点选择算法中, 首先根据节点的向量计算所有节点的影响力值, 如果某节点的影响力值比其所有邻居节点的影响力值都大, 则将该节点加入到种子节点的集合中. 算法1中列出了种子节点选择算法的伪代码, 其中2–4行利用定义的节点影响力计算公式计算出每个几点的影响力值, 5–9行将每个节点的影响力值与其所有邻居的影响力值进行比较, 若邻居节点中没有比当前节点影响力值大的节点, 则将该节点加入到种子节点集合中.算法1. 种子节点选择算法G =(V ,E )A n ×n 输入: 无向图; 相似度矩阵.输出: 种子节点集合S.S ←∅1. u ∈V2. for do3. 利用式(3)计算F(u)4. end for ∈5. for u V do∀v ∈N (u )F (u )≥F (v )6. if and S ←S ∪u 7. 8. end if 9. end for 10. return S2.3 社区扩展算法ε针对现有算法在社区扩张过程中重复计算量大的问题, 本文在得到分布均匀、影响力大的种子节点之后, 充分利用前一阶段计算所得的节点相似度矩阵, 从每个种子节点出发进行社区扩展, 首先, 以集合中的每个种子节点为核心构建社区, 若节点与种子节点的相似度大于阈值, 则将该节点划入该种子节点所属的社区, 然后, 对于尚未被划分的节点, 比较其与各个种子节点的相似度, 选取与之最相似的种子节点, 加入其所在社区, 最终完成社区的划分.εε算法2中列出了社区扩展算法的伪代码, 2–4行首先将所有节点标记为false, 5–13行分别以每个种子节点为核心进行社区扩展, 并将被划分的节点标记为true,此过程中以各节点为核心的社区独立进行扩展, 能够很好地根据阈值的大小控制重叠节点的规模, 阈值越小, 发现重叠节点的几率越大, 14–19行将一轮划分结束后没有归属的节点分离出来, 20–25行则对标记为false 的节点进行处理, 选择与之相似度最高的种子节点所在的社区作为其社区归属, 最终经过两个阶段的处理, 得到最终的社区.算法2. 社区扩展算法G =(V ,E )A n ×n 输入: 无向图; 相似度矩阵; 种子集合S.输出: 社区结构C.C ←∅1. u ∈V2. for doLabel (u )=false 3. 4. end for5. for seed in S doCS ←∅,CS ←CS ∪{seed }6. u ∈V u S 7. for and A [seed ][u ]≥ε8. if CS ←CS ∪{U }Label (u )=true 9. ,10. end if 11. end for C ←C ∪CS 12. 13. end for R ←∅14. 15. for node in VLabel (node )=false16. if R ←R ∪{node }17. 18. end if 19. end for R20. for v in 21. for seed in SA [seed ][v ]22. CS_num = argmax 23. end forCS ←CS ∪{v }Label (v )=true 24. , 2.5 end for 26. return C2020 年 第 29 卷 第 11 期计算机系统应用165εεk ×n 2×k ×n k n k <<n O (n )O (n log n )通常情况下, 选择合适的阈值能够使得大部分节点经过第一阶段的处理能够划入相应的社区, 阈值越小, 需要进行第二阶段处理的节点越少, 但也会导致社区之间重叠度很高. 本文在基于种子节点进行社区扩展的过程中, 充分利用前阶段的计算结果, 将迭代更新的过程简化成了寻址过程, 完美状态下, 只需进行次计算即可完成社区检测, 最坏情况下, 则需进行次计算, 其中表示种子节点个数, 表示网络中节点的个数, 且二者间满足, 总体复杂度为,优于现有的时间复杂度为的社区扩展算法.综上, 基于Node2Vec 的重叠社区发现算法整体流程大致分为以下3个步骤:n ×n 首先, 利用NodeVec 算法对网络结构进行学习, 得到包含丰富拓扑结构信息的节点的向量表示, 基于节点向量值计算每对节点间的相似度, 用一个阶矩阵来表示网络结构中所有n 个节点间的相似度值.然后, 利用前一阶段计算得到的节点相似度, 根据定义的节点影响力公式筛选出能够独立领导社区的种子节点集合.最后, 以种子节点为核心, 分阶段进行社区扩展,首先通过比较每个种子节点与所有非种子节点间相似度与给定阈值的大小关系初步扩展社区, 然后对于未被划分的节点, 选择与之相似度最大的种子节点, 划入其所属社区, 直至所有节点都有至少一个社区归属, 重叠社区检测完毕.3 实验为验证算法的相关性能, 在多个不同规模的真实数据集上与其他经典重叠社区发现算法进行对比实验, 待比较的算法分别是CPM 、LINK 、COPRA 和LFM 算法.3.1 实验数据集分别选取不同类型不同数量级的5个真实网络数据集, 具体包括美国空手道俱乐部网络Karate [14]、海豚关系网Dolphins [15]、大学生足球联赛网络Football [16]、欧洲研究机构电子邮件网络Email-EU [17]和高能物理范畴论文引用关系网Ca-HepPh [18], 各网络规模如表1.3.2 评价指标由于社区划分没有标准的结果, 对于真实数据集,Newman 提出的模块度函数[19]被广泛认可, 但该评价标准并不能很好地适用于重叠社区, Shen 等在此基础上提出了能衡量重叠社区划分结果的重叠模块度函数[20],定义如下:EQ =12m ∑i ∑u ∈c i,v ∈c i1Q u Q v [A uv −k u k v2m](4)m A k u u Q u u 其中, 表示网络中的总边数, 为网络的邻接矩阵,为节点的度数, 表示节点所属的社区数量.表1 真实数据情况表数据集节点边Karate 3478Dolphins 62159Football 115616Email-EU 100525 571Ca-HepPh12 008118 5213.3 实验结果εεεh =0.1ε本文提出的算法在基于种子节点进行社区扩展时,社区划分结果易受阈值大小的影响, 故首先在不同数据集上在不同阈值的指引下进行社区划分, 通常情况下阈值的取值范围为0.3~0.7, 取步长进行实验,社区划分结果随阈值大小改变而变化的情况如图20.550.500.450.400.350.300.300.350.400.450.500.550.600.650.70E Q 值Karate Dolphins Football Email-EU Ca-HepPh阈值图2 重叠模块度随阈值变化图ε=0.5ε从图2可以看出, 在不同数据集上, 模块度总是在左右的位置取到峰值, 这也说明阈值对划分结果的影响趋势在所有数据值上是大致相当的.ε=0.5将本文算法与其他4个经典的重叠社区发现算法在不同规模不同类型的数据集上进行对比实验(阈值取), 结果如表2所示.在大多数数据集上, 本文算法均取得了最高的模块度值, 尤其是在Emai-EU 和Ca-HepPh 两个大规模的数据集上, 分别取得了接近0.5和0.4重叠模块度值,所发现的社区质量明显优于其他算法, 实验证明, 使用Node2Vec 算法将更大作用域范围内的网络信息映射到节点向量中的方式, 能够有效地避免范围限制所带来的准确率方面的牺牲, 提升社区发现质量, 在规模大、结构复杂的网络上, 提升效果格外显著.计算机系统应用2020 年 第 29 卷 第 11 期166表2 真实数据集对比结果表算法Karate Dolphins Football Email-EU Ca-HepPh CPM 0.1870.3620.5600.3750.292Link 0.1590.0030.0100.1130.132COPRA 0.3420.4820.4850.4030.328LFM 0.3170.3450.5720.4310.363本文算法0.4150.4840.5630.4940.3924 结论与展望本文提出了一种基于Node2Vec 的重叠社区发现算法, 首先获得网络结构的向量表示并计算节点之间的相似度值, 利用定义的影响力函数选择出种子节点,然后以每个种子节点为核心进行社区扩张. 本文选取了不同类型不同规模的真实网络数据集, 并在这些数据集上将本文算法与其他类经典重叠社区发现算法进行对比性实验, 实验结果表明, 本文算法在大部分数据集尤其是大规模数据集上表现出了明显的优势. 后续工作将提高算法的性能, 降低算法复杂度, 并将算法应用到动态社区发现研究中.参考文献Rice SA. The identification of blocs in small political bodies.American Political Science Review, 1927, 21(3): 619–627.[doi: 10.2307/1945514]1骆志刚, 丁凡, 蒋晓舟, 等. 复杂网络社团发现算法研究新进展. 国防科技大学学报, 2011, 33(1): 47–52. [doi: 10.3969/j.issn.1001-2486.2011.01.011]2Palla G, Derényi I, Farkas I, et al . Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814–818. [doi:10.1038/nature03607]3Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010, 12(10):103018. [doi: 10.1088/1367-2630/12/10/103018]4Ahn YY, Bagrow JP, Lehmann S. Link communities reveal multiscale complexity in networks. Nature, 2010, 466(7307):761–764. [doi: 10.1038/nature09182]5Li MM, Liu J. A link clustering based memetic algorithm for overlapping community detection. Physica A: Statistical Mechanics and its Applications, 2018, 503: 410–423. [doi:10.1016/j.physa.2018.02.133]6Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 2009, 11(3): 033015.[doi: 10.1088/1367-2630/11/3/033015]7Su YS, Wang BJ, Zhang XY. A seed-expanding method based on random walks for community detection in networks8with ambiguous community structures. Scientific Reports,2017, 7: 41830. [doi: 10.1038/srep41830]齐金山, 梁循, 王怡. 基于种子节点选择的重叠社区发现算法. 计算机应用研究, 2017, 34(12): 3534–3537, 3568. [doi:10.3969/j.issn.1001-3695.2017.12.003]9Wang XF, Liu GS, Li JH. Overlapping community detectionbased on structural centrality in complex networks. IEEEAccess, 2017, 5: 25258–25269. [doi: 10.1109/ACCESS.2017.2769484]10於志勇, 陈基杰, 郭昆, 等. 基于影响力与种子扩展的重叠社区发现. 电子学报, 2019, 47(1): 153–160. [doi: 10.3969/j.issn.0372-2112.2019.01.020]11Grover A, Leskovec J. Node2Vec: Scalable feature learningfor networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA. 2016. 855–864.12Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online learningof social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA. 2014. 701–710.13Zachary WW. An information flow model for conflict andfission in small groups. Journal of Anthropological Research,1977, 33(4): 452–473. [doi: 10.1086/jar.33.4.3629752]14Lusseau D, Schneider K, Boisseau OJ, et al . The bottlenosedolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 2003, 54(4): 396–405. [doi: 10.1007/s00265-003-0651-y ]15Girvan M, Newman MEJ Newman. Community structure insocial and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(12): 7821–7826. [doi: 10.1073/pnas.122653799]16Yin H, Benson AR, Leskovec J, et al . Local higher-ordergraph clustering. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Nova Scotia, Canada. 2017. 555–564.17Leskovec J, Kleinberg J, Faloutsos C. Graph evolution:Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): 2. [doi:10.1145/1217299.1217301]18Newman MEJ, Girvan M. Finding and evaluating communitystructure in networks. Physical Review E, 2004, 69(2):026113. [doi: 10.1103/PhysRevE.69.026113]19Shen HW, Cheng XQ, Cai K, et al . Detect overlapping andhierarchical community structure in networks. Physica A:Statistical Mechanics and its Applications, 2009, 388(8):1706–1712. [doi: 10.1016/j.physa.2008.12.021]202020 年 第 29 卷 第 11 期计算机系统应用167。

复杂网络中的社区发现算法及其应用

复杂网络中的社区发现算法及其应用

复杂网络中的社区发现算法及其应用复杂网络是由大量节点以及节点之间的连接关系构成的网络,在现实中广泛存在于许多领域,如社交网络、生物网络和互联网等。

社区发现是复杂网络研究的重要内容,目的是将网络中相互紧密连接的节点划分为具有相似特征或功能的社区。

社区发现算法是研究者们为了解复杂网络中的结构、功能和演化过程而提出的重要方法。

本文将介绍几种常见的社区发现算法及其应用。

一、模块度优化算法模块度是衡量网络社区结构好坏的重要指标,模块度优化算法就是通过最大化网络的模块度来寻找合适的社区划分。

常见的模块度优化算法有GN算法、Louvain算法和贪心算法等。

这些算法通过迭代地划分社区和优化社区内的连接关系来寻求最优解。

模块度优化算法在社交网络、组织结构分析、蛋白质相互作用网络等领域有广泛应用。

例如,在社交网络中,通过社区发现算法可以识别出不同的社区群体,有助于理解社交网络中的用户行为和信息传播规律,在推荐系统中起到重要作用。

二、基于节点相似性的算法基于节点相似性的社区发现算法认为在网络中相似的节点更可能属于同一个社区。

这类算法包括谱聚类、K均值算法和PSCAN算法等。

这些算法通过计算节点间的相似度来划分社区。

这类算法在生物网络、交通网络、图像分割等领域应用广泛。

例如,在生物网络中,通过基因的相似性来划分蛋白质相互作用网络的社区,可以帮助研究者理解蛋白质之间的功能和调控关系,从而推测未知蛋白质的功能。

三、基于概率生成模型的算法基于概率生成模型的社区发现算法通过建立模型来描述网络的生成过程,并利用模型参数推断网络的社区结构。

常见的算法有LDA、SBM等。

这些算法将网络看作是由不同社区生成的,根据模型参数的估计结果来划分社区。

这类算法在社交网络、金融网络等领域有广泛应用。

例如,在金融网络中,通过基于概率生成模型的社区发现算法可以划分出潜在的金融市场或子市场,有助于金融市场监管和风险预警。

总结起来,社区发现算法在复杂网络研究中扮演重要角色,有助于理解网络的结构和功能特征,为许多现实问题的解决提供了有力支持。

复杂网络中的社区发现算法及其应用

复杂网络中的社区发现算法及其应用

复杂网络中的社区发现算法及其应用一、引言复杂网络是指由多个节点和连接它们的边或者链组成的网络结构,它们通常是由自然界或者人工构建的系统所构成。

例如社交网络,物流网络,交通网络等,复杂网络在现实中应用广泛,而社区发现是其重要的研究领域之一。

社区发现是指在网络中发现数量较少但内部密切联系的子集,它们在某些方面显示出相对的内部一致性和跨度分离,由于社区结构的存在,网络在许多方面具有不同的行为特征和功能特征。

在社交网络中,社区是指具有相同兴趣、活动或者联系的人的子集。

在物流网络中,社区是指共享一些特定的物流资源或者共享某个交通运输方式的城市或地区等。

社区发现在许多领域都具有重要的应用,比如犯罪调查、恐怖主义分析、废柴疫情分析等。

如何高效地在复杂网络中寻找出社区结构是社区发现算法的核心问题。

二、社区发现算法社区发现算法是指在复杂网络中,通过一定的算法设计来寻找网络中存在的社区结构。

社区发现算法分为基于聚类和基于模块化的两大类。

前者是指将节点分为若干个群体,使得同一群体的节点之间关系密切。

聚类算法中,最常见的算法是k-means和层次聚类。

后者是基于网络拓扑结构的特征来刻画社区结构。

这类算法中最常见的是基于最大模块化(modularity-based)的算法。

以下将对这两类算法进行详细的介绍。

(一)、聚类算法1.k-means算法k-means算法是一种聚类分析的方法,其目标是将相似的对象划分为互不相交的k个簇,并使簇内之间的差异性最小化,而簇间之间的差异性最大化。

该算法可用于分辨噪声、找到一个点集的最优分组、刻画数据集中不同群体的特征等。

在社区发现中,k-means算法可以用来寻找相同兴趣爱好的人群等。

2.层次聚类算法层次聚类是指将所有观测数据首先看做是一组单独的簇,然后逐渐有收缩的方式合并这些簇到一个大的簇,直到得到一个包含所有对象的唯一簇为止。

因此,其层次性很强,对于不同的数据集,其结果也不同。

层次聚类常用于生物分子分类、文本分类等领域,同样也可以用于社区发现算法。

复杂网络中的社区发现算法研究

复杂网络中的社区发现算法研究

复杂网络中的社区发现算法研究一、引言社交网络成为了人们日常交流中不可或缺的一部分,复杂网络中的推荐系统、广告分发、用户画像等问题也得到了广泛的研究。

而复杂网络中的社区结构发现的研究则是在社交网络中最为基础的问题之一。

随着复杂网络的不断发展和壮大,社区发现问题变得越来越复杂和具有挑战性。

社区发现的研究不仅能够揭示社交网络的本质结构,还能够为推荐、广告等应用提供重要的基础数据支持。

二、社区发现算法综述社区发现算法是指在一个无向或有向的、加权或不加权的复杂网络中,找到一些具有内部相似度高、外部相似度低的子集,这些子集被称为社区。

常见的社区发现算法包括基于图划分的方法、基于谱分析的方法、基于模块度的方法以及基于聚类的方法等。

在社区发现研究中,基于模块度的方法是最常用的一种方法。

基于图划分的方法将图中节点划分为若干个子区域,每个子区域即为一个社区。

基于谱分析的方法是基于图的拉普拉斯算子,通过计算图的特征向量来发现社区。

基于模块度的方法是通过定义模块度来测算一个社区的好坏程度,然后将模块度最大的社区作为整个网络的社区结构。

基于聚类的方法是将节点分组成互相影响或接近的部分,以揭示网络数据的内部结构和性质。

三、社区发现算法优化社区发现算法有许多经典的算法,如Louvain算法、GN算法、Leida算法等。

然而随着网络规模的不断扩大,这些经典算法面临着计算复杂度过高、精度不高等问题。

针对这些问题,研究人员提出了许多社区发现算法的优化方案。

1. 分层社区发现优化分层社区发现算法是一种通过把网络划分成多个层级来处理网络的算法。

这种算法不仅能够处理大规模网络的社区发现问题,还能避免算法计算过程中的过度优化问题。

2. 基于采样的算法优化采样是一种常用的算法优化方法。

基于采样的优化方法可以将网络简化为一个小规模的子图,进而提高算法的计算效率。

例如,有些算法可以将网络中的度数较高的节点集合选择为采样的节点,这样可以保证算法的计算效率和准确性。

复杂网络的社区检测算法研究

复杂网络的社区检测算法研究

复杂网络的社区检测算法研究随着互联网和社交媒体的普及,人与人之间的联系日益紧密,形成了庞大而复杂的网络结构,如何有效地对这些网络进行社区检测成为了一个重要的研究领域。

社区检测是指将网络中的节点划分成若干个互不重叠的社区群体,使得社区内部联系紧密,社区间联系相对松散。

在社会学、生物学、信息学等领域中都有着广泛的应用。

复杂网络的社区检测算法分为无监督和有监督两类。

无监督的算法是指根据节点之间的结构和相互之间的关系来进行社区检测,而有监督的算法是指利用已经标注好的社区节点信息来进行有针对性的社区发现。

无监督算法主要有基于聚类的方法、基于模块划分和最大化似然估计等。

有监督算法则主要有非监督学习和半监督学习两种。

综合来看,目前较为常用的社区检测算法主要有以下几种:1. 物理模拟算法物理模拟算法主要依靠物理力学和动力学理论,通过模拟网络节点之间的相互作用以及节点的运动,来推演社区结构。

该算法的优点在于适用性非常广泛,不需要预先定义社区属性和数量,能够自适应地根据网络结构进行社区划分。

缺点则在于需要大量的计算资源和时间,同时对于大规模的网络划分效果不一定理想。

2. 聚类算法聚类算法是指将相似度高的节点聚集成同一个社区,计算相似度的方式可以采用距离、相似矩阵等方法。

其中最常用的聚类算法是k均值算法、DBSCAN算法和层次聚类算法。

聚类算法的优点在于实现简单,速度快,而且能够处理大规模网络,缺点则在于对于不同的距离度量方式和初始的聚类中心选择会产生不同的结果。

3. 模块度最优化算法模块度最优化算法是指最大化网络划分后社区之间的模块度值,即增加社区内部联系,减少社区之间的联系。

这种方法适用于任意大小的网络,具有较高的准确性。

其中最著名的算法是Louvain算法和GN算法,它们分别通过迭代优化来实现社区最大化。

此外,基于模块度的算法还有LPA算法、SA算法和ILOF算法等,它们通过不同的方式求解社区划分问题,能够优化不同的划分目标。

基于GraphX的重叠社区发现算法研究

基于GraphX的重叠社区发现算法研究

基于GraphX的重叠社区发现算法研究随着社交网络的兴起和快速发展,人们在网络中形成了各种各样的社区。

社区发现算法成为了社交网络数据分析中的重要研究方向之一。

重叠社区发现算法则是在传统的社区发现算法基础上进行的一种扩展,能够识别出一个节点可以同时属于多个社区的情况。

本文研究了一种基于GraphX的重叠社区发现算法。

GraphX 是Apache Spark中的图计算框架,提供了一种高效的分布式图处理方法。

我们利用GraphX来处理大规模的社交网络数据,以实现高效的重叠社区发现算法。

在我们的算法中,首先将社交网络数据表示为一个有向图。

每个用户表示为一个节点,用户之间的关系表示为边。

然后,我们对图进行预处理,剔除掉度数较小的节点,以减少计算复杂度。

接着,我们利用GraphX的消息传递机制来进行社区划分。

我们将每个节点初始化为一个社区,并在每次迭代中,节点将消息发送给其邻居节点,消息中包含节点所属的社区信息。

接收到消息后,节点会根据一定的规则来更新自己的社区归属。

迭代过程将一直进行,直到收敛为止。

我们的算法不仅能够发现重叠社区,而且还能够获得每个节点在每个社区中的归属度。

这样的结果能够更全面地描述社交网络中节点的社区归属情况。

同时,我们的算法还具有较高的可扩展性和效率,能够处理大规模的社交网络数据。

为了验证算法的有效性,我们在多个真实的社交网络数据集上进行了实验。

实验结果表明,我们的算法能够准确地识别出重叠社区,并且在效率上优于其他相关算法。

此外,我们还对算法的参数进行了敏感性分析,研究了参数设置对算法结果的影响。

总之,本文研究了一种基于GraphX的重叠社区发现算法。

通过将社交网络数据表示为图,并利用GraphX的分布式图处理能力,我们能够高效地发现重叠社区,并获得节点在社区中的归属度。

实验结果表明,我们的算法在准确性和效率上都具有优势。

未来,我们将进一步改进算法,提高其性能和适用性,以应对不断增长的社交网络数据规模。

复杂网络中的社区检测算法研究

复杂网络中的社区检测算法研究

复杂网络中的社区检测算法研究一、引言在社交网络、生物网络、物流网络、通信网络等许多领域中,人们普遍观察到网络中存在着一些相关的物理、化学、生物、社会等性质。

网络中的节点(网站、人、蛋白质、公司)普遍形成社区,即节点间相互连接更加紧密,而不同社区之间的连接则非常稀少。

社区被定义为一组节点的集合,其中节点之间的联系比较紧密,而在集合之外则联系较少。

社区检测可以帮助我们更好地理解这些网络,从而预测节点之间的行为、他们对信息流动的影响以及最大化总体社区的效益等方面提供更多的理论指导。

二、研究背景社区检测的研究领域已经成为复杂网络分析研究领域中最活跃的方向之一。

复杂网络中的社区检测问题,实质上是将网络节点划分为若干个互不重叠的子集,每个子集内部节点之间的连通性强,而子集之间的联通性很弱。

其任务是找到一个划分,使得模块化得分最大,同时每个子集的规模也不能太小。

社区检测算法依赖于图形的特定性质,例如密度或连通性,已经被广泛用于社交网络、互联网、生物网络、通信网络等的分析中,尤其是在机器学习和数据挖掘领域中。

社区检测算法不仅可以揭示网络的内在结构和特性,同时也可以为社交网络推荐、个性化定向广告投放的数据处理和分析奠定基础。

三、社区检测算法社区是复杂网络的基本组成,因此研究社区检测算法已经成为复杂网络分析的一个热门研究方向。

目前的社区检测算法主要涵盖以下几种:(一)谱聚类算法该算法是通过计算网络的特征向量,实现各个节点的聚类。

谱聚类算法是发现聚类结构的强力工具。

该算法将图看作一个线性连接矩阵,即拉普拉斯矩阵,并将拉普拉斯矩阵的特征值和特征向量计算出来作为聚类的输入。

(二)模块度最大化算法最大化模块度是常用的社区检测策略。

该方法基于网络的度和社区间边的连接情况,寻找具有最高模块度的社区。

模块度定义了在社区中节点的连接程度比社区之间连接程度大的程度。

该算法通常基于基于启发式的贪婪算法(例如,Louvain算法)。

(三)标签传递算法标签传递算法是最为普及的社区检测算法之一,该算法从每个节点的标签开始,并通过传递标签来实现社区检测。

复杂网络中的社区检测算法研究与实现

复杂网络中的社区检测算法研究与实现

复杂网络中的社区检测算法研究与实现在复杂网络中,社区检测是一项重要的研究任务,旨在识别网络中紧密联系的节点群体。

社区结构的发现有助于我们理解网络的内部组织结构、信息传播模式和网络的功能特性。

近年来,社区检测算法的研究与实现成为网络科学领域的热点之一。

本文将对复杂网络中的社区检测算法进行研究与实现。

首先介绍社区检测的概念和背景,然后对不同的社区检测算法进行综述和对比,并最终实现一种经典的社区检测算法——Louvain算法。

社区检测的概念是基于网络的节点之间存在紧密联系的观点。

在真实世界的复杂网络中,节点之间的连接并非是均匀分布的,而是呈现出一种“疏密相间”的特点,即某些局部区域会密集地连接在一起,形成一种社群或社区的结构。

在社区内部,节点之间的连接往往比与社区外部的连接更稠密。

因此,社区检测算法旨在识别这种节点的紧密联系并将其组织成相应的社区。

目前,已经提出了许多社区检测算法,其中一些较为经典且有效。

以下是对几种常见社区检测算法的综述和对比:1. Girvan-Newman算法:基于边的介数(Betweenness)来度量网络中的关键边。

该算法通过递归地删除具有高介数值的边来划分社区,直到网络中的连通分量数量达到预设的阈值。

尽管该算法在小规模网络上表现出色,但在大规模网络中计算复杂度较高。

2. Modularity最大化算法:基于社区内部的连接相对于社区之间的连接的比例来测量社区的质量。

该算法通过迭代地将节点移动到不同的社区来最大化网络的模块度。

然而,该算法的结果受到分辨率参数的影响,且对于重叠社区的检测效果较差。

3. Louvain算法:是一种基于模块度优化的迭代算法。

该算法首先将网络中的每个节点视为一个社区,然后迭代地将节点从一个社区移动到另一个社区以优化模块度。

该算法具有较高的效率和准确性,并能够处理重叠社区的检测。

在本文中,我们选择实现Louvain算法来探究社区检测的实践过程。

Louvain算法的实现分为两个阶段:第一阶段是局部优化,通过节点的局部移动来最大化模块度增益;第二阶段是全局优化,将节点移动到新社区中以进一步提高模块度。

社区检测算法在复杂网络中的应用研究

社区检测算法在复杂网络中的应用研究

社区检测算法在复杂网络中的应用研究在当今数字时代,人们日常生活中的社交网络和互联网已经成为人们分享信息、获取知识以及互相交流的重要平台。

复杂网络是指由大量节点和连接构成的网络结构,其中节点代表个体,连接代表节点间的关系。

社区是指网络中节点之间紧密连接、内部联系密切而与外部联系较弱的子网络。

社区检测算法是指一类用于自动发现复杂网络中社区结构的计算方法。

本文将探讨社区检测算法在复杂网络中的应用研究,为相关研究和实际应用提供理论指导。

首先,社区检测算法在社交网络中的应用已经得到广泛的关注。

社交网络是一种由用户构成的复杂网络,用户之间通过关注、好友、粉丝等方式进行连接。

社区检测算法可以帮助我们发现社交网络中的不同用户群体,从而更好地理解和分析人们在社交网络中的行为模式。

比如,通过社区检测算法可以发现在某个社交平台上活跃的用户群体,并对其进行精准的定向推送广告信息,从而提高广告的点击率和转化率。

其次,社区检测算法也在生物信息学中有着重要的应用。

生物信息学是研究生物大分子序列、结构、功能以及相关生命活动的学科。

复杂网络在生物信息学中的应用主要集中在蛋白质相互作用网络的分析上。

蛋白质相互作用网络是指由蛋白质相互作用关系构建的复杂网络,可以帮助我们揭示蛋白质之间的相互作用关系,从而对蛋白质的功能和机制进行研究。

社区检测算法可以用于发现蛋白质相互作用网络中的功能模块或者蛋白质复合物,从而帮助我们理解生物系统的功能和调控机制。

此外,社区检测算法还可以应用于推荐系统中。

推荐系统是一种根据用户的历史行为和偏好,向用户提供个性化推荐的技术。

复杂网络在推荐系统中的应用主要集中在用户行为模式的分析和相似用户的发现上。

社区检测算法可以帮助我们发现用户行为模式之间的关联性,从而为推荐系统提供更加准确的推荐结果。

例如,通过社区检测算法可以确定用户所属的社区,然后将同一社区内的用户推荐相似的物品或者内容,提升推荐系统的准确性和个性化程度。

复杂网络中的社区发现算法比较

复杂网络中的社区发现算法比较

复杂网络中的社区发现算法比较一、前言复杂网络是一种具有复杂拓扑结构的网络,节点和边的数量庞大,存在着多种复杂关系。

社区发现算法则是针对复杂网络中节点间具有相似特征的子集,对其进行划分的算法。

而在复杂网络中进行社区发现的任务则是寻找到节点之间相互依存的关系,并将它们划分成相对独立的社区,从而帮助我们更加深入地理解网络上节点之间的关系。

本文将对当前常用的几种复杂网络社区发现算法进行比较。

二、常见复杂网络社区发现算法1.谱聚类算法谱聚类是一种运用矩阵理论和谱分析思想进行聚类的算法。

在社区发现领域中,谱聚类算法主要可分为两个步骤:(1)构建邻接矩阵在谱聚类中,我们可以选择不同的邻接矩阵作为图的表示。

最常用的是无向相似矩阵和无向邻接矩阵。

无向相似矩阵表示的是节点之间的相似性,而无向邻接矩阵描述的是两个节点是否具有连线。

此外,还有一种常用的邻接矩阵是度矩阵,常用于无权重网络。

(2)特征向量分解通过对邻接矩阵进行特征向量分解,可以得到对应的特征值和特征向量。

这里,我们只需要选择最大的 k 个特征值所对应的特征向量(k 为聚类的数目),构建新的矩阵,并对该矩阵进行聚类即可。

谱聚类算法具有聚类效果好、鲁棒性强、可解释性好等优点,在实际应用中受到了广泛的研究。

2.模块度最优化算法模块度最优化算法是一种基于性能指标进行社区发现的算法。

然而,由于在多重社区中互相重叠的交叉节点的存在,这使得社区中存在着多条连边和节点连接的情况变得更为复杂。

模块度最优化算法通过计算各个社区中的模块度值,以确定最合适的社区划分。

模块度的计算基于两点之间的边权重与该点所在社区内节点度数之和之间的差值。

3.基于标签传播的社区发现算法基于标签传播的社区发现算法用于检测网络中的聚类结构,其应用范围包括社交网络、推荐系统等领域。

在这种算法中,每个节点都会初始化一个标签,然后将其“传播”到它的邻居节点。

同时,它还会与其它节点交换标签,并根据标签的相似性与其他的邻居节点进行交换。

复杂网络上的社区发现算法研究

复杂网络上的社区发现算法研究

复杂网络上的社区发现算法研究社区发现算法是一种旨在寻找网络中功能上相关或密切相关的节点组成的群体的算法。

在复杂网络中,社区是指由相似节点或连接组成的密度高、联系紧密的子集。

社区结构广泛存在于不同的复杂网络中,如社交网络、蛋白质相互作用网络、交通路网等。

社区发现算法旨在帮助我们理解网络的结构,发现网络中的隐藏结构和特征。

本文将从复杂网络和社区发现的基础知识开始,概述常见的社区发现算法,并分析它们的优缺点。

1. 复杂网络基础知识复杂网络是指具有复杂性质、结构和动力学的非线性系统。

它由多个互相连接的节点和链接组成,网络中节点和链接的数量通常呈幂律分布。

复杂网络的结构通常表现为集群化和小世界特性。

集群化是指网络中存在着由相似节点组成的局部群体,这些群体结构严密,内部交流频繁。

小世界特性是指大多数节点之间只需要通过少数中介节点就可以建立联系。

复杂网络中的社区是一种具有密度高、联系紧密的节点子集,社区内有着显著的相似性与集中度差异。

在社区内部节点之间联系的强度与社区外部节点之间联系的弱度则呈现出明显的分明性。

2. 常见社区发现算法(1)基于模块度最大化的社区发现算法(Modularity-based)基于模块度最大化的社区发现算法是一种基于用户定义的子图而被划分到社区中的算法。

算法的目标是最大化模块度,即将节点分配到社区时所导致的链接数的增加与预期值的差距最小。

在这种算法中,社区发现的成效可通过模块度计算来衡量。

(2)层次聚类算法(Hierarchical Clustering)层次聚类算法是一种通过递归层次划分,并同时保留了局部和整体结构性质的算法。

聚类过程不断地从原始集群中剥离最小的聚类子集,形成一棵树状表示,其中根节点表示整个网络,叶节点则表示最小的聚类。

树状结构本身可用于挖掘不同尺度上的社区结构。

(3)基于Louvain算法的社区发现算法(Louvain-based)Louvain算法是一种快速发现社区结构的常见算法。

复杂网络中社区检测算法的研究与优化

复杂网络中社区检测算法的研究与优化

复杂网络中社区检测算法的研究与优化近年来,随着互联网的飞速发展和数据的爆炸式增长,复杂网络的研究逐渐成为一项热门的研究领域。

复杂网络是由大量节点和连接构成的网络系统,包括社交网络、生物网络、物流网络等。

其中,社区结构是复杂网络中的一个重要属性,它能够揭示网络中具有紧密连接和相关性的节点群体。

因此,社区检测算法的研究与优化对于揭示复杂网络的内部结构和功能具有重要意义。

社区检测算法的研究旨在寻找网络中的紧密连接的节点群体。

这些节点共享相似的特征、兴趣或功能。

社区检测可以帮助我们理解网络中的相互作用和动态演化。

然而,由于复杂网络的规模庞大和复杂性,社区检测面临许多挑战。

首先,复杂网络的规模庞大,节点数量可能达到上亿。

传统的社区检测算法在大规模网络中的计算复杂度很高,无法满足实时性和效率的需求。

因此,研究者们提出了一系列基于近似计算和分布式处理的社区检测算法。

其次,复杂网络的结构和动态性使得社区检测任务难以完成。

网络中的边缘节点、噪声和重叠社区都会对算法的准确性和鲁棒性造成挑战。

因此,研究者们提出了许多方法来提高算法的准确性和鲁棒性,例如基于密度、模块度、谱聚类等的优化算法。

另外,复杂网络中存在异质性和动态性。

节点和边缘的属性和连接可能随时间和环境的改变而变化。

传统的社区检测算法无法应对这种异质性和动态性。

因此,研究者们提出了一系列基于时间序列和动态模型的社区检测算法。

为了解决上述问题,研究者们不断对社区检测算法进行改进和优化。

其中,基于深度学习的方法在社区检测领域取得了一些重要的突破。

深度学习算法可以通过学习网络中节点的表征向量,并基于这些向量进行社区划分。

这种方法能够在保证准确性的同时,减少计算复杂度,提高算法的效率和可扩展性。

此外,在社区检测算法的研究中,网络的结构信息和节点的属性信息被广泛应用。

结构信息包括节点之间的连接关系,例如邻接矩阵、相似矩阵等。

属性信息包括节点的标签、特征向量等。

将结构信息和属性信息进行融合,可以提高社区检测算法的准确性和鲁棒性。

异质网络中重叠社区发现技术研究

异质网络中重叠社区发现技术研究

异质网络中重叠社区发现技术研究异质网络中重叠社区发现技术研究随着互联网的快速发展和大数据时代的到来,人们日益意识到网络中存在大量的潜在信息和关系。

网络社区是复杂网络中的一个重要概念,通过研究网络社区可以帮助人们更好地理解网络结构、推断用户行为和进行信息检索等。

然而,传统的社区发现算法在面对异质网络时会面临诸多挑战。

异质网络指的是网络中包含多种类型的节点和边,例如社交网络中既有人与人之间的关系,又有人与组织之间的关系。

这些不同类型之间的关联关系使得网络的复杂性增加,传统算法往往难以有效地挖掘其中的特征。

在异质网络中,重叠社区是指一个节点可以同时属于多个社区的现象。

相较于传统的非重叠社区,重叠社区更能真实地反映网络中节点之间的复杂关系。

因此,在异质网络中发现重叠社区成为了一个热门的研究方向。

为了解决异质网络中的重叠社区发现问题,学者们提出了多种算法和方法。

下面将介绍几种常见的技术研究。

1. 基于网络结构的方法:这类方法主要基于节点和边之间的关系来进行重叠社区发现。

例如,基于模块化最大化的方法将网络社区发现问题转化为一个优化问题,并通过最大化模块化指标来划分社区。

该方法非常灵活,可以应用于不同类型的网络,但是在面对复杂的异质网络时,算法的效果可能不够理想。

2. 基于属性的方法:这类方法主要利用节点的属性信息来推断其所属的社区。

例如,使用属性相似度来度量节点之间的相似度,然后通过聚类算法将相似的节点分到一起。

这种方法常用于社交网络中,可以更好地反映节点的兴趣、职业等特征。

然而,属性信息往往不完整或者存在噪声,在实际应用中可能会导致精度降低。

3. 基于深度学习的方法:近年来,随着深度学习技术的发展,越来越多的学者开始将其应用于重叠社区发现任务中。

深度学习模型可以自动地从数据中学习特征表示,从而更好地挖掘网络中的潜在信息。

例如,基于图卷积神经网络的方法可以在网络中同时考虑结构和属性信息,从而更准确地发现重叠社区。

基于SLPA优化的重叠社区发现算法

基于SLPA优化的重叠社区发现算法

第38卷第1期2021年1月计算机应用与软件Computer Applications and SoftwareVol.38 No.1Jan.2021基于SLPA优化的重叠社区发现算法陈界全1王占全〃李真2汤敏伟21(华东理工大学信息科学与工程学院上海200237)2(天翼电子商务有限公司风险管理部上海200080)摘要传统的重叠社区发现算法S L P A虽然具有时间复杂度和性能上的优势,但标签传播算法内在的随机 策略使得算法结果并不稳定。

针对S L P A的缺点,提出一种高效稳定的重叠社区发现算法L-S L P A。

先对网络进 行非重叠划分,减少不同标签分配的数量,同时加入边界节点的考虑进行剪枝,以提高运行速度。

实验结果表明,相比于S L P A,该算法在降低运行时间和随机性的同时保证了结果的准确性。

关键词复杂网络社区发现重叠社区中图分类号T P301.6 文献标志码A D O I:10.3969/j.issn.1000-386x.2021.01.050AN IMPROVED OVERLAPPING COMMUNITY DETECTIONALGORITHM BASED ON SLPAChen Jie q u a n1W ang Z h an qu an1*L i Z hen2T ang M in w e i21(School o f Inform ation Science and Engineering,East China University o f Science and Technology,Shanghai200237, C hina)2(R isk Management Department,Bestpay Co. ,Ltd. ,Shanghai200080 ,C hina)A b s tr a c t As a tra d itio n a l o ve rla pping co m m u nity detection a lgo rithm,SLP A has the advantages o f tim e co m p le xity and pe rfo rm an ce.H ow ever,its results are unstable due to the in h e re n t random strategy o f la b e l pro F or the purpose o f addressing the shortcom ings o f SLP A,we propose an e ffic ie n t and stable ove rla pping com m u nity detection alg o rith m L-S L P A.The netw ork was p re lim in a rily d iv id e d in to n o n-o ve rla p p in g com m unities to reduce the nu m be r o f d iffe re n t la b e l assignm ents.M ea nw hile,we pruned the alg o rith m w ith the consideration o f boundary nodes to im prove the ru n n in g speed o f the a lg o rith m.The exp erim e ntal r esults show that com pared w ith S LP A,L-S t e ru n n in g tim e and random ness w h ile en suring the accuracy o f the re su lts.K e y w o rd s Com plex netw orks C om m unity detection O verla pp ing com m u nity〇引言社区检测是一种在网络中探索集群或社区的行 为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引 言
随着 复 杂 网 络研 究 的 逐渐 兴 起 , 复 杂 网络 正 在
既然研究复杂 网络重叠社区结构 的划分 问题 , 先 了解 问题 是什 么 。复杂 网络 是现 实系统 中无 规 则
也 不 随机 的真实 网络 , 它具 有社 区结 构 , 它展 现 了结
点关 系紧 密和疏 散 的特 点 , 而社 区 与社 区之 间 不 是
( , E ) .
定 义4 : 称 V的子集 S = {
, …, { 为一个
收 稿 日期 : 2 0 1 3— 0 3—0 4
作者 简介 : 梁沙沙( 1 9 8 7一) , 女, 汉族 , 内蒙古乌海人 , 2 0 1 0级硕 士研 究生。
1 6
社 区, 其中 ∈ 记社区. s 的结点个数s = I . s 1 .
每类 方 法 出发 角 度不 同 , 得 到 的 结果 和 运 算 效
率也 是有差 距 的 。
同的社 区活动 ; 在生物网络中, 一种蛋 白质可能与其 他 多 种蛋 白质 相互 作 用 共 同提供 生 命 有 机 功 能 J 。
自然 中大 多数 复杂 系统 都可 以通 过数 学 图论 的方式 转 换 成复 杂 网络 , 而研 究 在结 构 中起 关 键作 用 的重

要: 针对 大多数研 究复 杂网络社 区的算法致力于寻找独立不相重叠的社 区结构 , 而在 实际的网络 中 ,
社 区结构往 往是重叠的问题。本文就复杂 网络重 叠社 区研 究现状及相 关算法进行 简述 , 对重 叠社 区发现算法
的展 望及 现 实意 义 进 行 简 要 说 明。
关键词 : 复杂网络 ; 重 叠社 区结构 ; 社 区划分算法 中图分类号 : O 1 8 6 . 1 3 文献标识码 : A 文章编 号 : 1 0 0 4—1 8 6 9 ( 2 0 1 3 ) o 2— 0 0 1 6— 0 4
目.
现, 所 以对 复杂 网络 重 叠 社 区的研 究 不 仅 有 利 于 探
寻各个复杂系统 中组成成员 的关系 J , 而且能够更
加 真 实的反 映 现实 系 统 , 因此 发 现 重叠 社 区对 研 究 真 实 网络拓 扑结 构有 重 要 的指导 意义 。

定 义3 : 网络 G由点集 和边集 值构成 , 即G
叠的 ; 另一种是社 区之间通过重要信息 的传递者而 重叠起来。例 如 J , 在科 研合作 网络 中, 一个拥 有
丰 富知 识 的学者 可 能 同 时 在 多个 领 域 与 人 合 作 ; 在 社 会 网络 中 , 一个 社 交 能 力 强 的人 可 能参 与 多 个 不
以下几类 : 一, 启发式算法 ; 二, 传统图论及聚类方法 算法 ; 三, 基于重叠模块度的优化算法 。
与 其他 学科 交 织共 同影 响 着各 个 领 域 , 引起 了许 多
科 学 领域 的学 者 的关 注 … 。众所 周 知 , 结构 在 一 定
程度 上决 定着 性质 和功 能 , 所 以对 复 杂 网络 的研 究
主要 是对 复 杂 网络 的社 区结 构 进 行 多 方 面 的研 究 。 而社 区结 构 中一种 是社 区之间 是彼 此相 连但不 会 重
定 义5 : 设V ∈V , d ( V ) 为结 点 的在 网络 G中
的度。
第 一步 : 算 出网络 中所有 结点 的度 , 将 度值 最大
的结点 i 记号为初始社区 c , 初始 的种群全局贡献
度 Q =0 ;
定 义6 : 若 P ={ . s , s , …, . s l 5 =G } , 其
描述 , 而系统 中具 有 共 性 的 事 物 可 以重 叠 社 区来 展
定 义2 : 设有 n 个结 点 m条边 的网络 , 定义 网络
中边 的集合 E = { e } 1≤i , ≤n 且i ≠. 『 } . e i 表示结点 i 与 舶 所连的边 , m: I I 是边的数
完全 不交 的 j , 他们 之 间 的共 性 是 通 过重 叠 节 点 来
展 现的 , 所 谓 重叠节 点就 是 该 结 点 同 时 属于 两 个 或
多个 社 区 。结 合实 际 网络 , 研 究 含ห้องสมุดไป่ตู้重 叠 节点 的复 杂 网络 目前 以取 得一 定 的进展 。 目前研 究复 杂 网络重叠 社 区划分 算 法 的大 致 有
中. s , s : , …, . s 是 网络 G的社 区 , 则称 P为 网络 G的

第二 步 : 将 所有 与社 区 c 相连 的结 点放 人邻 结
点集 中 ;
第三 步 : 对 中每个 结 点 . 7 , 根据 公 式 ( 1 )计 算 结点 贡献 度 q j 。 若 的结 点 的最 大 贡献 度 比全局 贡
个划 分 , K为社 区 的个数 L 5 ] 。 如果 同时满足 条件
J s n s j= , i ≠ , . s , 5 c G, i √ =1 , 2 , …, ,
2 0 1 3年 6月
阴 山 学 刊
YI NS HAN AC ADE MI C J OURNAL
J u n . 2 0 1 3
Vo 1. 2 7 No . 2
第2 7卷
第 2期
复杂 网络 重 叠 社 区结 构 发 现 算 法研 究
梁 沙 沙
( 内蒙古大学 数学科学学院 , 内蒙古 呼和浩 特 0 1 0 0 2 1 )
叠部 分更 是有 助 于我们 开启 新 的思路 去解 决现 实 中
2 复 杂 网络重 叠社 区 结构 基 本 概 念
定 义1 : 设有 凡 个 结 点 的网络 , 定 义网络 中结 点
的集合 V=
, : , …, } , n= l J .
交通 堵塞 、 病 毒传 播 、 舆 论 传播 等 问题 。 如 上所 说现 时 中很 多 系统 都可 以用 复杂 网络来
相关文档
最新文档