2018年秋八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质15.1.2.3分式的通分教案新

合集下载

15.1.2 分式的基本性质-八年级数学人教版(上册)(解析版)

15.1.2 分式的基本性质-八年级数学人教版(上册)(解析版)

第十五章 分式15.1.2分式的基本性质一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.分式256x y -和24xyz的最简公分母是 A .12xyz B .212x yz C .24xyzD .224x yz【答案】B【解析】∵两个分式的分母分别是:6x 2y ,4xyz ,∴最简公分母是12x 2yz .故选B . 2.分式251x x --与11x x -+的公分母是 A .21x - B .21x + C .1x +D .1x -【答案】A【解析】x 2-1=(x +1)(x -1),所以分式251x x --与11x x -+的公分母是(x +1)(x -1),即x 2-1.故选A . 3.将代数式44x yx y-+的分子,分母都扩大5倍,则代数式的值 A .扩大5倍 B .缩小5倍C .不变D .无法确定【答案】C4.把12x -,1(2)(3)x x -+,22(3)x +通分过程中,不正确的是A .最简公分母是2(2)(3)x x -+B .221(3)2(2)(3)x x x x +=--+ C .213(2)(3)(2)(3)x x x x x +=-+-+D .22222(3)(2)(3)x x x x -=+-+【答案】D5.下列分式从左到右边形正确的是 A .11b b a a +=+ B .(1)(1)b b m a a m +=+ C .bm bam a=D .1a b b ab b++= 【答案】C【解析】A 、由左到右的变形不符合分式的基本性质,故A 错误; B 、当m +1=0时,不成立,故B 错误; C 、正确;D 、由左到右的变形不符合分式的基本性质,故D 错误.故选C . 二、填空题:请将答案填在题中横线上. 6.约分:269aba b =__________. 【答案】23a【解析】2632=933ab ab a b ab a ⨯⨯=23a .故答案为:23a.7.下列各式:①3027b a ;②22y x x y -+;③22y x x y ++;④2m m;⑤233x x +-中,分子与分母没有公因式的分式是__________.(填序号)【答案】③⑤8.不改变分式的值,使分式的分子、分母中的首项的系数都不含“-”号.①23x y --=__________;②211x x --+=__________; ③2212x x x -+--=__________;④2131x x x ----+=__________. 【答案】23x y ;211x x --;2212x x x-+-;2131x x x ++- 【解析】①23x y --=23xy. ②211x x --+=211x x--. ③2212x x x -+--=2212x x x-+-.④2131x x x ----+=2131x x x ++-.故答案为:①23x y ;②211x x --;③2212x x x-+-;④2131x x x ++-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 9.通分:(1)x y ac bc ,;(2)229x x -,26xx +. 【解析】(1)∵:x yac bc,的最简公分母是abc ,∴x xb ac abc =,y ya bc abc=.(2)∵229x x -,26xx +的最简公分母是2(3)(3)x x +-, ∴22492(3)(3)x x x x x =-+-,(3)262(3)(3)x x x x x x -=++-. 10.化简下列各分式.(1)2223ax y axy ;(2)242x xy y -+. 【解析】(1)2223ax y axy(2)2(3)3axy x xaxy y y ==. (2)原式=(2)(2)2(2)x x x y x y+--=+.。

15.1.2分式的基本性质(2)

15.1.2分式的基本性质(2)

式时,应先将 各分母分解因 式,再找出最 简公分母。
课堂练习
y x 1 , 2, 1.三个分式 的最简公分母是( 2 x 3 y 4 xy

A. 4 xy
B. 3 y
2
C. 12xy
2
2 2 12 x y D.
1 x , 2.分式 2 的最简公分母是_________. x x 2( x 1)
3.分母中所有字母的最高次幂。
例.通分:
3 ab (1) 2 与 2 2a b ab c
2 a 2 b 2
c
最简 公分母
例.通分:
解:最简公分母是 2a 2b 2c
3 ab (1) 2 与 2 2a b ab c
3 3bc 3 bc 2 2 2 2 2a b 2a b bc 2a b c 2 a b (a b) 2a 2a 2ab 2 2 2 2 ab c ab c 2a 2a b c
(1)将各个分式的分母分解因式;(2)取 各分母系数的最小公倍数(3)凡是出现的 所有字母或因式都要取;(4)相同字母 (或含字母的式子)的幂取指数最大的; (5)将上述所得系数的最小公倍数与各字 母(或因式)的最高次幂全都乘起来,就
得到了最简公分母
通过本课时的学习,需要我们掌握 1.分式的基本性质. 2.通分和约分是根据分式的基本性质的“等值”变形.
3
x x x6 x 7x 49 x
2
2 2
2
4 x 3 先进行分解因式,再约分
问题情景
1.分数的通分:
7 1 (1) 与 12 8
什么叫做分数的通分?
问题情景
1. 通分:
7 1 (1) 与 12 8

15.1.2_分式的基本性质(1)最新

15.1.2_分式的基本性质(1)最新

【跟踪训练1】
化简下列分式:
25a bc (1) 2 15ab c
2
3
2
2
x 9 2 x 6x 9
2
3
6 x 12 xy 6 y 3x 3 y
2
【跟踪训练2】
教科书:P132
练习题1
【作业】
教科书:P133
复习巩固 第6题
通过本课时的学习,需要我们 1.掌握分式的基本性质 2.能利用分式的基本性质对分式进行恒等变形. 3.在对分式进行变形时要注意乘(或除以) 的整式是同 一个并且不等于0. 4.约分(约分的最后的结果必须是最简分式)

1 a (2) 2 ab ab
2a b 2ab b 2 b 0 , 2 2 a ab
3x 3xy x y 2 2x 6x
2
【例题】
例2 下列等式成立吗?右边是怎样从左边得到的? an a b bm ( m 0 ); 1) 2) (n 0). 2 a 2 am bn b 解: 1)成立.因为 m 0
如何用语言和式子表示分式的基本性质? 分式的基本性质
A AC C 0 B B C
用语言表示
A AC C 0 其中A,B,C是整式. B B C
分式的分子与分母乘(或除以)同一个不等于0的整 式 ,分式的值不变.
【例题】
例1 填空
x x (1) xy y
3
2
a a (a b) × (1) 与 a b a b
x x ( x 2 1) × (2) 与 2 3 y 3 y ( x 1)
(4)
x xa (3) 与 (a 0) √ y ya
xy y √ 与 2 x x

15.1.2分式基本性质考点与练习

15.1.2分式基本性质考点与练习

15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。

1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。

(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。

八年级数学上册 第十五章 分式 15.1 分式 15.1.2 分式的基本性质教学课件

八年级数学上册 第十五章 分式 15.1 分式 15.1.2 分式的基本性质教学课件
分母乘同一个适当的整式,使这几个异分母的分式化为同分母的分式.
第二十四页,共三十八页。
新课讲解( jiǎngjiě)
典例分析
例 (1) 2a32b与a ab2b c ;
2 a2 b2 cc.
3
3bc
2a2b 2a2bbc
a b (a b) 2a ab2c ab2c2a
⑵ 0 .6 a 5 b
3 0 .7 a 2 b
5
第二十八页,共三十八页。
当堂 小练 (dānɡ tánɡ)
不改变分式的值,使下列(xiàliè)分子与分母都不含“-”号
⑴ 2x ; ⑵ 5y
3 a⑶; 7b
10m . 3n
解:(1) 5 2 y x
=
2x 5y
.
3a
(2)
=
3a .
7b 7b
x ab 3 m
第十五页,共三十八页。
新课讲解( jiǎngjiě) 知识点3 分式(fēnshì)的约分
例 根据分式的基本性质,把分子、分母 的公因式3x约去,不改变分式的值.
3x26+x23xy=x2+xy
约分不改变分式的值,但可能改变分式中字母的取值范围,因此在确定分式 中字母的范围时,不能进行约分.
x3 x3 x x2
.
xy xyx y
3x 2 3xy 的分子 3x2 3xy除以3x才能得到x+y,根据分式的基本性质,分母
也需6 x要2 除以3x;
3x26x23.xy
xy 2x
第九页,共三十八页。
新课讲解( jiǎngjiě)
练一练
1 填空(tiánkòng):
(1)
a-b ab
() a2b

人教版八年级数学上册第十五章《分式》教案

人教版八年级数学上册第十五章《分式》教案

第十五章分式15.1 分式15.1.1 从分数到分式1.理解分式的意义,掌握使分式有意义时分母中字母的取值范围或字母之间的相互关系.2.在经历探索、思考、类比的过程中,体会分式的意义,感受分式是刻画现实问题中数量关系的一种模型.3.进一步增强从特殊到一般的认知过程,发展学生的数学思维能力.【教学重点】理解分式的意义,掌握使分式有意义时分母中字母的取值范围的判别方法.【教学难点】在分式有意义的条件下,分式值为0的字母的取值情况.一、情境导入,初步认识问题一艘轮船在静水中的最大航速为20千米/小时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?【教学说明】章前画面和上述问题可用多媒体展示,让学生感受生活,感受数学.对所提出的问题让学生相互交流,探索解决问题的过程、方法,教师巡视,适时参与学生的讨论,最后选取学生代表展示成果,教师及时提出新问题.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1刚才大家通过探讨,获得到100602020v v+-,这样的式子,它们是整式吗?如果不是,区别在哪里?思考1(1)长方形的面积为10cm2,长为7cm,宽为;若长方形的面积为S,长为a,则宽应为;(2)把体积为200cm3的水倒入底面积为33cm2的圆柱的容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度应为.思考2 式子S/a、V/S与10/7,200/33有什么区别?它们与10060 2020v v+-,有什么共同点?谈谈你的看法.【教学说明】教师应引导学生对上述三个问题进行积极思考,感受整式与分式、分式与分数之间的联系和区别,初步形成对分式的概念的理解.教师在学生交流过程中,巡视全场,引导学生关注所给式子的分子,分母的特征,此时可类比分数分子、分母进行描述.分式:一般地如果A、B表示两个整式,并且B中含有字母,那么式子AB 叫做分式.问题2(1)使分式11x-有意义,则x的取值有什么要求?(2)使分式A/B有意义,所需要的条件是什么?【教学说明】让学生自主探究,获得结论,然后相互交流,教师再予以总结.【归纳结论】使分式A/B有意义时,必有B≠0.三、典例精析,掌握新知例1指出下列各式中的整式与分式:【教学说明】教师总结判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.然后让学生自主探索,获得结论,这里要注意:π不是字母,是常数,所以x/π是整式.例2填空:(1)当x时,分式23x有意义?(2)当b时,分式153b-有意义?(3)当x ,y 满足关系 时,分式x y x y +-有意义? (4)当x 时,分式231x x + 有意义? 解:(1)由题意有:3x ≠0,故x ≠0,所以当x ≠0时,分式23x 有意义;(2)由题意有:5-3b ≠0,故b ≠5/3,所以当b ≠5/3时,分式153b -有意义;(3)由题意有x-y ≠0,故x ≠y ,所以当x ≠y 时,分式x y x y+-有意义;(4)由题意有x 2+1≠0,因为x 2≥0,x 2+1≥1,故x 为任何数时,分式231x x +有意义. 【教学说明】让学生自主探索,获得结论,选取一、两名同学汇报自己的结论,师生共同评论.评析时,教师应注意引导学生对(3)、(4)小题进行反思,巩固对分式有意义的条件和认识.例3什么条件下,下列分式的值为0?(1)1x x - ;(2)23m n m n-+ ;(3)()236x x x x --- . 解:(1)由题意有:x-1=0,∴x=1.当x=1时,分母x ≠0,所以当x=1时,分式1x x-的值为0; (2)由题意有:2m-3n=0,∴m=32n ,∴m+n=52n ,又m+n ≠0,即52n ≠0,∴n ≠0,从而在m=32n ≠0时,分式23m n m n-+的值为0; (3)由题意有:x(x-3)=0,∴x=0或x=3,当x=0时,分母x 2-x-6=-6≠0,当x=3时,x 2-x-6=9-3-6=0,故使分式()236x x x x ---的值为0时,x 的值为x=0. 【教学说明】教学时,教师应讲清楚使分式=0时所必须的条件是:分子=0且分母≠0,这样让学生自己通过探讨三个问题的结论时,感知分式有意义是确定分式的值的前提条件,然后给一定时间让学生自己尝试解决所提出的问题,再由老师给予完整解答,让学生在比较、分析与反思中巩固所学知识.在完成上述例题后,教师可引导学生做教材P4练习,以巩固知识.四、师生互动,课堂小结1.这节课你有哪些收获?2.通过这节课的学习,你还有哪些疑问?与同伴交流.【教学说明】问题都可由学生自己总结,选取代表发表自己的看法,从而系统地对本节知识进行回顾与思考,针对学生的疑问,可当堂予以解释,帮助学生掌握所学的知识.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.这节课的内容较少,比较贴近实际生活,要求学生知道什么是分式,能区分整式与分式,对保证分式有意义、分子分母要同时满足什么条件能很准确地指出来.此外,分式的值为0时分子分母也要满足一定的条件.教学中可以多出具一些实例,让学生在实际问题中去感知.15.1.2分式的基本性质1.掌握分式的基本性质,能依据分式的性质进行约分和通分运算.2.通过归纳、类比等方法得出分式的基本性质,通过观察、实验、推理等活动,发现并总结出运用分式基本性质进行分式的约分和通分.3.进一步增强学生的创新思维能力.【教学重点】理解并掌握分式的基本性质,能用分式的性质进行分式的约分和通分.【教学难点】在分式通分时找几个分母的公分母是关键,在分式的约分时应注意将分子、分母中的多项式进行分解因式.一、情境导入,初步认识分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?【教学说明】教师应引导学生用类比分数的基本性质来解决上述问题,加深对分式性质的初步认识.教学时,让学生相互交流,感受新知.二、思考探究,获取新知(一)分式的基本性质分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即··A A C A A CB BC B B C÷==÷,(A、B、C均为整式,且C≠0)试一试【教学说明】让学生自主探究,教师巡视,针对学生可能出现的问题及时给予指导,最后师生共同分析,完善答案.教学重点在于让学生明白通过分子(或分母)的变化特征,来获得分母(或分子)的变化思路,为后面的分式约分和通分作好铺垫.2.不改变分式的值,使下列分式的分子或分母都不含有“-”号:3.不改变分式的值,将下列分式中分子或分母的系数化为整数:【教学说明】2、3两道小题均由学生自主完成,相互交流.教师在学生处理第2题时应引导学生运用分数除法法则得到商的符号来完成分式中分子(或分母)的符号的处理办法,第3题应引导学生运用分式性质在分子、分母同乘以一个合适倍数来达到目的,边巡视,边指导,让学生在练习过程中加深对性质的理解和运用.(二)分式的约分分式的约分:把分式的分子、分母中的公因式约去的过程叫做分式的约分,如由2122x x x x =--,就是分式的约分. 最简分式:分子与分母中没有公因式的分式叫做最简分式.分式的约分,一般要约去分子和分母中所有公因式,使所得结果成为最简分式或整式.【教学说明】上述定义或结论,在教学时,教师可结合分数的约分和前面的1(1)小题进行说明,让学生通过感性认识获得理性思考,体验由特殊到一般的辨证思维方法.试一试4.约分:【教学说明】在学生自主探究,探索问题结论过程中,教师应关注学生以下几个方面:(1)找分式的分子、分母中的公因式是否彻底,是否考虑了分子、分母中各项的系数;(2)是否注意到分式的符号的变化;(3)约分是否彻底等,对所出现的问题一定要做好个别指导,最后师生共同讨论,给出正确答案,让学生对比自己的解答,进行必要的反思.(三)分式的通分思考:联想分数的约分,如何进行分式的通分呢?试一试5.将下列分式通分:【分析】(1)把分式化成分母相同的分式的过程叫做分式的通分;(2)通分的关键是确定几个分式的最简公分母,而确定最简公分母通常按以下三个步骤进行:①取各分母系数的最小公倍数作为公分母系数;②各个分母中所有不同的因式均作为公分母中的一个因式;③所有因式的指数以它的最高次幂作为公因式中该因式的指数.【教学说明】教学时,给几分钟时间先让学生尝试着解决问题,在学生出现思维盲区时,教师给予详细分析,边讲边演示,在思维的激烈碰撞过程中,逐渐形成对分式通分的认识.三、师生互动,课堂小结1.通过本节课的学习,你有哪些收获?2.通过这节课的学习,你觉得有哪些知识是难以把握的?你有何想法?【教学说明】通过对问题的思考,让学生回顾本节学过的知识点有哪些,怎样利用分式的性质来化简分式中分子(或分母)的符号,怎样将分子、分母中的系数化成整数,如何进行分式的约分和通分,在约分和通分时最关键的问题有哪些,如何解决等等,进一步深化对本节知识的理解.在这里,教师可引导学生做教材P8练习以及习题14.1中的题,以帮助学生进一步掌握.1.布置作业:从教材“习题15.1”中选取.2.完成练习册中本课时的练习.“分式的基本性质”在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.15.2 分式的运算15.2.1 分式的乘除第1课时分式的乘除1.掌握分式的乘除法运算法则,能进行分式的乘除法运算.2.在经历探索、类比、归纳的过程中,理解并掌握分式的乘除法运算法则.3.在类比分数乘除法运算法则获得分式乘除法法则中,让学生体验由数到式的数学发展过程,激发学生学习兴趣,增强求知欲.【教学重点】理解并掌握分式乘除法运算法则,能用它来进行分式乘除法运算.【教学难点】运用分式乘除法运算法则解决一些实际应用问题,进一步增强数学应用能力.一、情境导入,初步认识观察下列算式:由上述算式,我们知道,分数的乘法法则是;分数的除法法则是.思考类比分数的乘除法法则,你能说出分式的乘除法法则吗?【教学说明】让学生直接由分数的乘除法运算法则感知分式的乘除法法则,可激发学生的学习兴趣,增强求知欲.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知类比分数的乘除法运算,可以发现分式的乘除法也有相同的运算法则.乘法法则:分式乘分式,把分子的积作为积的分子,分母的积作为积的分母,用式子可表示为:···a d a db c b c=.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可表示为:···a d a c a cb c b d b d÷==.【教学说明】分式的乘除法则可由学生类比分数得到结论,让学生在合作交流中感受新知;教师不必直接给出结论.在教学时,教师可进一步地展示下面的一些问题,帮助学生加深理解.问题【教学说明】在教学时,上述三个问题教师可延时展示给学生,让学生逐一思考,获得结论.教师巡视,对有困难的学生适时给予指导,同时分别选派2~3名学生上黑板演示,师生共同评析.在问题1中,着重于除式是整式情形,这时应引导学生先将整式看作分母为1的式子来参与计算;问题中侧重于运算结果应予以约分化简,必须是最简分式时才算运算结束;问题3侧重于分式的分母、分子是多项式情形,此时应注重于分解因式,以便于约分化简,整个过程都应是学生自主探究,合作交流来完成的.三、典例精析,掌握新知【分析】本题是分式乘除法,分子、分母是多项式的应先把多项式分解因式再运用法则,而分式乘除法实质就是约分.【教学说明】本例仍由学生自主探究,抽学生回答,教师适时点拨,师生共同寻求解题方法,完成解题过程.在完成之后,教师可引导学生做P138练习第2、3题,在这个过程中,仍可让学生举手回答,教师予以点评.四、运用新知,深化理解1.一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的m、n时,水面的高为多少?2.大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?【教学说明】这两个题可由学生自主探究,获得结论,教师应关注学生将实际问题转化成分式模型的能力及是否能正确运用分式乘除法法则来完成解答.【答案】可参见教材P135问题1、问题2的解答.五、师生互动,课堂小结运用分式乘除法法则解决具体问题时有哪些需要注意的问题?谈谈你的看法,与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.分式的乘除不是特别难上的课,主要是要让学生掌握方法.拿乘法来说,其方法有两种:一种是先约分再乘;另一种是先乘再约分.一般应这样处理:如果分子分母全是单项式,就用先乘后约分的方法;如果分子分母含有可分解因式的多项式,就先约分后相乘.当然两种方法并不一定非得有固定的模式,你觉得哪种容易接受就选择哪种.并且在约分时应教给学生一个不容易错的方法,就是约分后把每个约好的式子写在原来的上(分子)下(分母)方,不约的照抄,最后就看写着结果再相乘,既不容易漏乘,也不容易多乘.分式除法可转变为分式乘法后再按上述方法进行.在教学方法上,教师应努力结合现实的问题情境,引导学生理解分式乘除的意义.由于练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合,创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式.第2课时分式的乘除混合运算与分式的乘方1.掌握分式的乘除法法则,能用它们进行分式的乘除混合运算.2.理解分式乘方的意义,能进行有关分式乘方的运算.3.通过对具体问题的探究思考,感受分式乘除混合运算、分式乘方运算方法,进一步增强类比的数学思想方法的理解.4.进一步增强学生的数学计算能力,发展严密的数学思维能力,增强数学学习兴趣.【教学重点】分式乘除、乘方混合运算能力.【教学难点】分式乘方法则的理解和运用.一、情境导入,初步认识问题分式乘除法运算法则是什么?如何进行分式乘除法混合运算呢?试一试参见教材P138例4.想一想小明同学在计算xy÷yx·xy时,其过程如下:原式=xy÷1=xy,你认为他的计算正确吗?说说你的理由,与同伴交流.【教学说明】教师延时展示上述三个问题,让学生自主探究,加深对分式乘除法法则的理解,体会分式乘除法混合运算方法.教师对学生的结论给予恰当评析,肯定学生的成绩,对出现的疑问给予鼓励,帮助他们形成正确认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P138“思考”.【归纳结论】参见教材P138最后一段.【教学说明】教师提出问题,由学生自主探究,发现规律,形成认知,从而感受分式乘方的意义.试一试计算:【教学说明】选派两名同学上黑板计算,其余同学在座位上自主探究.教师巡视,最后全班同学一道对两位同学的演示结果进行评析,教师应对学生的解答进行详细讲解,帮助学生完善认知.【归纳结论】分式的乘方,就是把分式的分子、分母各自乘方.三、典例精析,掌握新知例计算:(1)参见教材P139例5第(2)小题;(2)参见教材P139练习第2题第(2)小题.【分析】分式的乘除、乘方混合运算,应先算乘方,再算乘除,能约分的一定要约分.【教学说明】教学时,教师应对一些学生易出现错误的地方予以强调,如(-c2d)2=-c4d2或c2d2,(-3c)3=-9c3等错误,引起学生注意.四、运用新知,深化理解1.参见教材P139“练习”第1题.2.计算:(1)参见教材P139“练习”第2题第(1)小题;(2)参见教材P146第3题第(4)小题.【教学说明】学生独立完成这些小题,然后相互交流,有时间的话,教师予以评价,让学生查漏补缺,巩固新知.五、师生互动,课堂小结本节课所学习的主要知识是什么?有哪些需要特别注意的地方?谈谈你的看法,并与同伴交流.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.由于前面学生已对分式的乘除法有一定的了解,所以本课时的教学可采用类比的方法进行,一方面类比整式的乘除混合运算,另一方面类比前面分式的乘除.教学时,教师要起引导作用,引导学生自主发现和解决问题.15.2.2 分式的加减第1课时 分式的加减1.理解并掌握分式的加减法法则,能用它进行简单的分式加减.2.经历探究实际问题中数量关系的过程,感受分式的加减法也是实际需要,进而掌握分式的加减方法.3.进一步增强用类比的思想方法解决数学问题的能力,锻炼数学应用意识和用数学解决实际问题的能力,体验数学的应用价值.【教学重点】分式的加减法运算方法.【教学难点】异分母分式的加减法即化异分母分式为同分母分式的方法.一、情境导入,初步认识问题1参见教材P139“问题3”.问题2参见教材P139“问题4”.【教学说明】让学生对上述两个问题的思考,得出算式分别为11)3(n n ++ 和322121()s s s s s s --- ,教师巡视,对不能尽快得出算式的学生给予个别指导,让学生能自主分析问题,并探寻解决问题的方法.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考参见教材P140“思考”.【归纳结论】同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再加减.【教学说明】在师生共同探讨获得分式加减法法则后,教师应强调以下两个问题:①分式加减的最后结果能约分的一定要约分,化为最简分式;②异分母分式加减时,一定要先确定各分式的最简公分母,化为同分母分式后再进行加减法运算.三、典例精析,掌握新知例 参见教材P140例6.解:参见教材P140例6“解”部分.四、运用新知,深化理解参见教材P141“练习”.【教学说明】第1题只须与学生核对答案即可,而第2题建议选三名中等成绩同学上黑板演示,其它同学独立探究,然后师生共同评析三位同学的演算过程,在评讲过程中教师应有针对性地强调一些需注意的问题:如(1)中的最简公分母;(2)中化为同分母分式后分子应适时添加括号,(3)中应先将22a a b- 化为()()a a b a b +- ,再通分等.五、师生互动,课堂小结1.在进行异分母分式的加减法运算时,应关注哪些问题?2.通过这节课的学习,你还有哪些疑惑,与同伴交流.【教学说明】用问题形式对本节知识进行归纳总结,让学生对知识进行梳理,形成知识体系.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.这节课教师可采用探究与自主学习相结合的模式来完成.探究的目的是让学生经历类比分数加减运算的过程,通过将分式中的字母赋值,从而把分数的加减运算法则推及到分式的加减运算.整个过程中既有从特殊到一般的归纳,也有从一般到特殊的演绎.此外还可以通过把例题的再加工,使学生把错误暴露出来,引起他们的共鸣,而这些课堂内学生的差错会成为学生自己可贵的复习资料.接着可出些不同类型的题,让学生再次经历分式的加减运算过程,强化技能,以达到熟练的程度.第2课时分式的混合运算1.进一步掌握分式的加减法运算方法,能用它解决实际问题.2.能进行分式的乘除、加减、乘方混合运算.3.在具体问题情境的探索思考过程中,进一步增强学生的数学应用意识,锻炼分析问题、解决问题的能力.4.进一步培养学生严密的科学态度和良好的学习习惯.【教学重点】掌握分式乘除、加减、乘方混合运算.【教学难点】运用分式乘除、加减、乘方等解决实际问题.一、情境导入,初步认识问题1异分母分式的加减法的一般步骤有哪些?在运算过程中有哪些需要注意的问题?问题2在进行分式的乘除、加减,乘方混合运算时,你认为应该怎样做?谈谈你的想法.【教学说明】问题1的设置在于巩固上节课学过知识,并能用它解决本节问题,起承上启下作用;问题2则是让学生联想到分式乘除、分式加减法则是类比分数而得到的,因而可类比得到分式混合运算法则.在教学时,可让学生自主探究,相互交流,在探讨中形成认知.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】上述两个例题都应先让学生独立完成试试,然后教师再予以评讲,例1的(1)题侧重于展示分式的混合运算方法;先算乘方,再算乘除,最后算加减;而第(2)题进一步强调混合运算中的运算顺序:“先算乘方,再算乘除,最后算加减.有括号应先做括号内的运算,再算括号外的运算”.三、典例精析,掌握新知【教学说明】教学时,可让学生自主探索,获得结论,教师再行讲解.例1中计算(x2+xy+y2)(x-y)时,若已掌握公式(a2+ab+b2)(a-b)=a3-b3,可直接写出结果x3-y3,如果不知道此公式,可利用多项式乘多项式的法则计算.例2中含有一个开放性问题,这里教师应该强调:选择一个值代入时,一定要使原代数式有意义,即不能选x为0,1这两个值.四、运用新知,深化理解2.在一块a公顷的稻田上插秧,如果10个人插秧,要用m天完成;如果一台插秧机工作,需比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的多少倍?【教学说明】学生独立探究,教师巡视时,对有困难同学给予指导,最后予以评讲,让学生在自查中反思,积累解题经验和方法.五、师生互动,课堂小结1.通过这节课的学习,你有哪些收获?2.你还有哪些疑问?与同伴交流.【教学说明】让学生对照上述两个问题自我反思,既系统回顾本节所学知识,又查找问题所在,在与同伴交流中加深认识.1.布置作业:从教材“习题15.2”中选取.2.完成练习册中本课时的练习.本课时要求学生理解并掌握分式的乘除、加减和乘方混合运算,为达到教学目标,本课时通过问题的提出,让学生类比前面不含乘方的混合运算.例题的讲解旨在引导学生把实际问题数学化.当然,无论是例题的分析还是练习题的落实,都以学生为中心,给予充分的时间让学生去演算并暴露问题,再指出问题所在,为后面的教学提供较好的对比分析材料.此外,教师还应引导学生发现并总结多。

15.1.2+分式的基本性质+课件+++2024—2025学年人教版八年级数学上册

15.1.2+分式的基本性质+课件+++2024—2025学年人教版八年级数学上册
其中A,B,C是整式.
知识要点 约分的基本步骤 (1)若分子﹑分母都是单项式,则约去系数的最大公约 数,并约去相同字母的最低次幂; (2)若分子﹑分母含有多项式,则先将多项式分解因式, 然后约去分子﹑分母所有的公因式.
最简公分母
为通分先要确定各分式的公分母,一般取各分母的所有 因式的最高次幂的积作公分母,叫做最简公分母. 注意:确定最简公母是通分的关键.
=
−1

x

0


x2−3x+1 x
=
−1
,即
x
+
1 x
=
2.

x4−7x2+1 x2
=
x2
+
1 x2

7
=
x+1
2
−2−7
=
22
−2−7
= −5 ,
x

x2 x4−7x2+1
=

1 5
中考链接
(2024中考) 通分:(1) 1 , 3
3ab3 4a2b
解:最简公分母是12a2b3
1 3ab3
3 4a 2b
D. 2 x + 1 x − 1
2.若 a ≠ b ,下列分式化简正确的是( D ) .
B ).
A.
a b
=
a+2 b+2
B.
a−2 b−2
=
a b
3.分式
−3x2 6xy
约分的结果是(
C
).
A.

1 2y
B.

2x y
C.
a2 b2−
x 2y

八年级数学上册 第十五章 分式15.1 分式 15.1.2 分式的基本性质教学课件

八年级数学上册 第十五章 分式15.1 分式 15.1.2 分式的基本性质教学课件

第十四页,共三十五页。
典例精析
例3 约分:
(1)1255aab2b2cc3 ; (公因式是5ac2)
分析:为约分要先找出分子(fēnzǐ)和分母的公因式. 找公因式方法(fāngfǎ): (1)约去系数(xìshù)的最大公约数. (2)约去分子分母相同因式的最低次幂.
解: ( 1 ) 1 2 5 5 a a b 2 b 2 c c 3 5 5 a a b b c c 5 3 a b c 2 5 3 a b c 2;
小贴士:在分式的约分与通分中,通常碰到如下(rúxià)因式符号变形: (b-a)2=(a-b)2;b-a=-(a-b).
第三十二页,共三十五页。
(3) 2xy , x (xy)2 x2 y2
解:最简公分母是(x+y)2(x-y)
2 x y
2 x y (x y )
2 x2y 2 x y2
(x y )2 (x y )2 (x y ) (x y )2 (x y )
这种变形叫分式的通分.如分式 分后分母都变成了a2b.a b
ab

2a -b a2
分母分别是ab,a2,通
第二十一页,共三十五页。
最简公分母
为通分(tōng fēn)先要确定各分式的公分母,一般取各分母的所有因式的最高 次幂的积作公分母,叫做最简公分母. 注意:确定最简公母是通分的关键.
第二十二页,共三十五页。
第十六页,共三十五页。
知识(zhī shi)要点 约分的基本( 步骤 jīběn)
(1)若分子﹑分母都是单项式,则约去系数的最大公约数,并约去相同(xiānɡ tónɡ)字母的最低次幂; (2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子 ﹑分母所有的公因式.

15.1.2分式的基本性质1

15.1.2分式的基本性质1

分式的值变化吗?
提示:分式的值为原来的10倍.
例 2. 不改变分式的值,把下列各式的分子与分母中 各项的系数都化为整数.
1 a b (1) 4 . 4 1 a b 3 2 0.5x 0.7y (2) . 0.2x 0.6y
【解】(1)分子、分母同时乘以12得:
1 1 a b (a b) 12 12a 3b 4 4 4 1 4 1 16a 6b a b ( a b) 12 3 2 3 2
【方法提示】 分式变形的“三点注意” 1.注意分式变形前后的值要相等. 2.注意分式的分子和分母要同乘或同除,不能只 对分子或只对分母进行变形. 3.所乘(或除以)的整式不能为零.
二.分式的约分
例3.约分: 【思路点拨】
3ab 2c (1) . 27ab
x 2 6x 9 (2) 2 . x y-9y
15.1.2分式的基本性质
基本性质
1.分式的基本性质:
(1)语言叙述:分式的分子与分母乘(或除以)
同一个不等于0 的整式,分式的值不变. (2)字母表示:
A C A B C B
A ,B
A C B C
(C≠0),其中
A,B,C是整式.
2.约分: (1)约分:把分式的分子、分母的 公因式 约去,不改变 分式的值. 没有公因式 的分式. (2)最简分式:分子与分母___________ 3.通分: (1) 通分 : 把几个异分母的分式化成与原来的分式相 同分母 的分式. 等的_______ (2)最简公分母:各分母的所想】
2 2a c 4a bc 约分的结果为 正确吗? 2 8a 16a b 提示 : 不正确 , 约分的结果必须化为最
3
简分式.

2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版

2023八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质教案(新版)新人教版
- 分式的分子与分母同乘以或同除以同一个不为零的数,分式的值不变。
- 分式的分子与分母同时乘以或除以同一个数,分式的值也不变。
3. 分式的运算
- 加减法:XXX
- 乘除法:XXX
4. 分式的应用
- 实际问题:XXX
- 解题步骤:XXX
5. 总结
- 分式的概念和性质
- 分式的运算方法
- 分式的应用实例
2. 调整教学方法:采用多种教学方法,如案例教学、小组讨论、实验法等,提高学生的学习兴趣和参与度。
3. 多元化评价:采用多元化评价方式,如过程性评价、学生互评、自我评价等,全面了解学生的学习情况,促进学生的全面发展。
八、板书设计
1. 分式的概念
- 分子:XXX
- 分母:XXX
- 分式:XXX
2. 分式的基本性质
强调分式的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对分式知识的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决分式问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
学生预习:
发放预习材料,引导学生提前了解分式的学习内容,标记出有疑问或不懂的地方。
设计预习问题,激发学生思考,为课堂学习分式内容做好准备。
教师备课:
深入研究教材,明确分式教学目标和分式重难点。
准备教学用具和多媒体资源,确保分式教学过程的顺利进行。
设计课堂互动环节,提高学生学习分式的积极性。
(二)课堂导入(预计用时:3分钟)
(五)拓展延伸(预计用时:3分钟)

八年级上册数学第十五章 分式 知识点总结

八年级上册数学第十五章  分式 知识点总结

b 第十五章 分式一、知识框架 :二、知识概念:1. 分式:形如 A , A 、B 是整式, B 中含有字母且 B 不等于 0 的整式叫做分式.其中 A 叫做分式的分B子, B 叫做分式的分母.2. 分式有意义的条件:分母不等于 0.3. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变.4. 约分:把一个分式的分子和分母的公因式(不为 1 的数)约去,这种变形称为约分.5. 通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6. 最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7. 分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为: a ± b = a ± b c c c⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a ± c = ad ± cbb d bd⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为: a ⨯ c = ac b d bd⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为: a ÷ c = a ⨯ d = ad b d b c bc⎛ a ⎫n⑸分式的乘方法则:分子、分母分别乘方.用字母表示为: ⎪ ⎝ ⎭ = a nb n8. 整数指数幂:b ⑴ a m ⨯ a n = a m +n ( m 、n 是正整数)⑵(a m )n= a mn ( m 、n 是正整数) ⑶(ab )n= a n b n ( n 是正整数)⑷ a m ÷ a n = a m -n ( a ≠ 0 , m 、n 是正整数, m > n )⎛ a ⎫n ⑸ ⎪ ⎝ ⎭ a n b n ( n 是正整数) ⑹ a -n = 1 an ( a ≠ 0 ,n 是正整数) 9. 分式方程的意义:分母中含有未知数的方程叫做分式方程.10. 分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③检验(求出未知数的值后必须验根,因为在把分式方程化 为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).=。

15.1.2 分式的基本性质(听课课件)

15.1.2 分式的基本性质(听课课件)

(2)分子分母只能同乘或同除, 注 意 不能进行同加或同减;
(3)分子分母只能同乘或同除 同一个整式;
(4)除式是不等于零的整式
(四)拓展提升
1.若把分式 y x y
的x
和y
都扩大两倍,则分式B的(
)
A.扩大两倍 B.不变 C.缩小两倍 D.缩小四倍
xy 2.若把分式 x y
中x 的 y 和
(错 )
(c≠0)
(4)
2x 2x 1

x x 1
(错)
典例精析 例1 填空:
想一想:(1) 看分母如何变化,想分子中如为何什变么化不. 给 看分子如何变化,想分母出中如x却何≠给0变,出而化了(.b2)≠0?
(1)x3 xy
(x2 ), y
3x2 3xy 6x2

x (
2 x) y(x
2.这些分数相等的依据是什么?
基本性质
分数的分子与分母同时乘(或除以)一个不 等于零的数,分数的值不变.
讲授新课
一 分式的基本性质
思考:下列两式成立吗?为什么?
3 3c (c 0) 4 4c 5c 5 (c 0) 6c 6
分数的基本性质:
分数的分子与分母同时乘(或除以)一个不等 于0的数,分数的值不变.

(5) 3x2-3xy 3x
x2 y2 x y
2. 不改变分式的值,把下列各式的分子与分母 的各项系数都化为整数.


解:

(0.6a (0.7a

5
3 2
b) 30 b) 30

18a 21a
50b 12b
5
(0.01x 5) 100 x 500 (0.3x 0.04) 100 30x 4

2018_2019学年八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质课件新版新人教版20181224161

2018_2019学年八年级数学上册第十五章分式15.1分式15.1.2分式的基本性质课件新版新人教版20181224161

1.分式的约分
【例 1】
约分:(1)5-261���������2���3���������1���50
������ ;
������
(2)1162(���(���3-3���������-������)���2)2(-(������������+-���������)���);
(3)-������3-44������������������22���-���-������43������������2.
学前温故 新课早知
1.分式的基本性质
分式的分子与分母乘(或除以)同一个不等于0 的整式,分式的
值 不变 .
2.填空:(1)������������
=
(
a2
������������
)(a≠0);
(2)������+������ ������
=
(
������2
x2+xy
(x≠0).
)
3.分式的约分
根据分式的 基本性质 ,把一个分式的分子与分母的 公因式
解析 答案
1
2
3
4
2.如果把分式3���5���+���������2���������中的 x 和 y 都扩大为原来的 3 倍,那么该分式的值
( ).
A.不变
B.扩大为原来的 3 倍
C.缩小为原来的13 D.扩大为原来的 6 倍
关闭
设原分式的值为 m,则 5·3������·3������ = 9·5������������ = 3·5������������ =3m,
=
2���3���2������������������2������.
������-������ ������������2������

八年级上册第十五章-分式知识梳理

八年级上册第十五章-分式知识梳理

八年级数学第十五章--分式知识梳理知识点一、分式1、一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子 叫做分式。

分式 中,A 叫做分子,B 叫做分母。

2、分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式 才有意义。

3、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

即: 其中A,B,C 是整式。

4、根据分式的基本性质,把一个分式的分子与分母的公因式约分,叫做分式的约分。

经过约分后的分式,分子与分母没有公因式的分式,叫做最简分式。

5、根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

6、通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母知识点二、分式的运算7、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母即 8、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

即 9、分式乘方要把分子、分母分别乘方。

即 10、同分母分式相加减,分母不变,把分子相加减。

即 cb ac b c a ±=± 11、异分母分式相加减,先通分,变为同分母的分式,再加减。

即 12、一般地,当n 是正整数时,B A B A B A CB C A B A ⋅⋅=)0(≠÷÷=C C B C A B A db c a d c b a ⋅⋅=⋅cb d acd b a d c b a ⋅⋅=⨯=÷n n n b a b a =⎪⎭⎫ ⎝⎛bdbc ad bd bc bd ad d c b a +=±=±)0(1≠=-a a a n n nn b a a b )(=-)(知识点三、分式方程13、分母中含有未知数的方程叫做分式方程14、解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母。

2018年秋八年级数学上册 第十五章 分式 15.1 分式 15.1.2 分式的基本性质备课资料教案

2018年秋八年级数学上册 第十五章 分式 15.1 分式 15.1.2 分式的基本性质备课资料教案

第十五章 15.1.2分式的基本性质知识点1:分式的基本性质分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变.用式子表示为: =,=,C≠0,其中A、B、C是整式.关键提醒:(1)基本性质式子中的A、B、C表示的是整式.(2)C是不为零的整式.C是一个含有字母的代数式,由于字母的取值是任意的,所以C就有等于0的可能性.因此运用分式的基本性质时,考查C的值是否为0,已成为重点.(3)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.知识点2:分式的约分1. 利用分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.2. 约分的关键是找出分子与分母的公因式.公因式的确定方法:①当分子和分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式.②当分子和分母是多项式时,先把多项式因式分解,再确定.归纳整理:进行约分时,应注意以下几点:(1)当分式的分子与分母都是单项式时,可直接约分,也就是约去分子、分母系数的最大公约数,相同字母的最低次幂;(2)当分式的分子与分母都是多项式时,应先进行因式分解,再进行约分;(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面;(4)约分的结果应化为最简分式.知识点3:分式的通分(1)分式的通分:利用分式的基本性质,使分子和分母同时乘以适当的整式,不改变分式的值把几个分式化成相同分母的分式,这样的分式变形叫做分式的通分.(2)最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.(3)分式通分的关键是确定几个分式的最简公分母.最简公分母的确定方法:①取各分母系数的最小公倍数;②凡单独出现的字母,则连同它的指数作为最简公分母的一个因式;③同指数幂取次数最高的,这样得到的因式的积就是最简公分母.考点1:分式的性质【例1】不改变分式的值,使下列分式的分子、分母都不含“-”号.(1);(2);(3).点拨:(1)改变分子、分母的“负”号,分式的值不变;(2)改变分子和分式本身的符号,分式的值不变;(3)改变分母和分式本身的符号,分式的值不变.解:(1)=;(2)=-;(3)=-.考点2:分数约分的计算【例2】下列约分正确的有( ).①=;②=1;③=0;④=.A. 1个B. 2个C. 3个D. 4个点拨:①分子、分母中的m分别与a和b相加,而不是相乘,故分子、分母没有公因式,①错误;②(m-n)3=-(n-m)3,约分后结果为-1,②错误;③分子、分母完全相同,约分以后应为1,③错误;④分子a2-2a-3=(a-3)(a+1),分母a2+2a+1=(a+1)2,约去公因式(a+1),结果为,④正确.答案:A.考点3:分数通分的计算【例3】通分:与.解:因为最简公分母是(m+3)(m-3),所以=,==-.点拨:通分的关键是确定各分母的最简公分母.先确定两个分式的最简公分母是(m+3)(m-3),再利用公式的基本性质分别变形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时 分式的通分
◇教学目标◇
【知识与技能】
了解分式通分的意义,能熟练地进行分式的通分.
【过程与方法】
经历探索分式的通分的过程,继续理解数学中的类比的数学思想.【情感、态度与价值观】
通过鼓励加强学生小组间的探索和交流,培养合作意识.
◇教学重难点◇
【教学重点】
通分的依据和作用.
【教学难点】
找最简公分母.
◇教学过程◇
一、情境导入
我们学过分数的通分,你还记得吗?
计算:.
类似的,你能计算吗?
二、合作探究
探究点1 最简公分母
典例1 对分式进行通分,则它们的最简公分母为 . [解析] 的最简公分母为6a2b3.
[答案] 6a2b3
最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.
将分式进行通分时,分母a2-9可因式分解为 ,分母9-3a可因式分解
为 ,因此最简公分母是 .
[解析] ∵a2-9=(a+3)(a-3),9-3a=-3(a-3),∴分式的最简公分母为-3(a+3)·(a-3).
[答案] (a+3)(a-3);-3(a-3);-3(a+3)(a-3)
探究点2 通分
典例2 (1)通分:;
(2)通分:.
[解析] (1).
(2).
通分:(1);
(2).
[解析] (1)最简公分母:2(a+3)(a-3),
.
(2)最简公分母:(a-3)2(a+3),
,
.
三、板书设计
分式的通分
分式的通分
◇教学反思◇
通分是异分母分式加减的基础,通分的依据也是分式的基本性质,设计好练习,引导学生进行比较归纳,这种学生自主探究的学习方式,让学生探究过程中有所体验,有所感悟,体会确定最简公分母的步骤以及通分需注意的问题.。

相关文档
最新文档