华东理工大学多元统计分析与SPSS应用实验-(2)

合集下载

多元统计分析(聚类分析,判别分析,对应分析)

多元统计分析(聚类分析,判别分析,对应分析)

操判作步别骤分析
输入数据,选择分析→分类→判别,然后把“概 况”选入分组变量中,再点击“定义范围…”来定义 范围为1(最小数值)到4(最大数值),然后将 “语文”、“数学”、“外语”、“体育”选入自 变量中,然后点击“Statistics…”,在出现的对话框 中勾选平均值与Fisher’s,其余选项为默认,点击 继续,确定运行。
Wilks' Lambda (λ)
Wilks' Lambda
函數的檢定 (λ)
卡方
df
1 至3
.083
87.142 12
2 至3
.936
2.302
6
3
.990
.352
2
顯著性 .000 .890 .839
是对三个判别函数的显著性检验, 看出第一判别函数在0.05的显著 性水平上是显著的,第二与第三 判别函数不显著。
目录
定聚义类分析
聚类分析是统计学中研究“物以类聚”问题的多 元统计分析方法。聚类分析又称群分析,它是研究对 样品或指标进行分类的一种多元统计方法。所谓的 “类”,通俗地说就是相似元素的集合。
基聚本步类骤 分析
(1)计算n个样品两两间的距离,得样品间的距离矩阵 。 类与类之间的距离本文应用的是类平均法。所谓类平均法 就是:两类样品两两之间平方距离的平均作为类之间的距 离,即: 采用这种类间距离的聚 类方法,称为类平 均法。 (2) 初始(第一步:i=1)n个样本各自构成一类,类的 个数k=n,第t类 (t=1,2···,n)。此时类间的距离就是样 品间的距离(即 )。 (3)对步骤i得到的距离矩阵 ,合并类间距离最小的两类 为一新类。此时类的总个数k减少1类,即k=n-i+1. (4)计算新类与其他类的距离,得新的距离矩阵 。若合 并后类的总个数k扔大于1,重新步骤(3)和(4);直到 类的总个数为1时转到步骤(5)。 (5)画谱系聚类图; (6)决定总类的个数及各类的成员。

(整理)多元统计分析上机实验.

(整理)多元统计分析上机实验.

多元统计分析上机实验指导第一部分 SPSS软件基本操作当用户安装SPSS软件后,点击快捷图标,将会出现以下界面:图1.1 启动SPSS后出现的对话框对话框包括一个六选一单选对话框和一个复选对话框,其内容为:●Run the tutorial 运行操作指南;●Type in data 输入数据选项,建立新的数据集时可选择此项;●Run an existing query 运行一个已经存在的数据文件选项;●Create new query using Database Wizard 用数据库处理工具建立新文件;●Open an existing date source 打开一个已经存在的数据文件;●Open another type of file 打开其他类型的文件。

●Don’t show this dialog in the future 是一复选对话框,选中该复选项后,下次启动SPSS时将不会显示对话框,直接显示数据编辑窗口。

如果只是利用该软件做一般性的统计分析,不做高级开发工作,可以在“Don’t show this dialog in the future”左方的小方块里打钩,以后启动SPSS时将不会显示对话框,直接显示数据编辑窗口。

§1.1 数据文件的建立SPSS 软件包的数据编辑主窗口类似于EXCEL ,数据文件的建立就是在数据编辑窗口中完成的。

数据编辑窗口可以显示两张表,分别是Data View (见图1.2)和Variable View (见图1.3),通过点击下端的2个同名窗口标签按钮实现相互切换。

数据编辑区是SPSS 的主要操作窗口,是一个二维平面表格,用于对数据进行各种编辑;标尺栏由纵向标尺栏和横向标尺栏,横向标尺栏显示数据变量,纵向标尺栏显示数据顺序(如时间顺序)。

Data View 表可以直接输入观测数据值或存放数据,表的左端列边框显示观测个体的序号,最上端行边框显示变量名。

多元分析与spss 应用

多元分析与spss 应用

多元统计分析习题(二)
利用文件标准木测树数据.sav,选择树高和胸径两变量进行方差分析,分析不同样地间的差异是否显著,并进行多重比较。

在某化工生产中,为了提高收效率,选了三种不同浓度,四种不同温度做试验。

在同一浓度与温度组合下各做两次试验,其收效率数据列于下表。

试检验不同浓度不同温度以及它们间的交互作用对收效率有
P值都>0.05,它们对收效率没有影响。

A3因素对收效率最好。

通过比较A, B因素的交互作用发现A3对B2组合的均值最大,说明A3对B2组合对收效率最好,因此说A3对B2是最优组合。

根据实验结果,进行多元方差分析SPSS操作步骤

根据实验结果,进行多元方差分析SPSS操作步骤

根据实验结果,进行多元方差分析SPSS操作步骤多元方差分析(MANOVA)是一种统计方法,用于比较两个以上组之间在多个连续因变量上的差异。

SPSS是一款功能强大的统计分析软件,可以用于进行多元方差分析。

下面是进行多元方差分析的SPSS操作步骤:1. 打开SPSS软件,并导入实验数据。

2. 在菜单栏选择“分析”(Analyze),然后选择“一元方差分析”(General Linear Model)。

3. 在弹出的对话框中,将多个连续因变量添加到“因变量”(Dependent Variables)框中。

点击“添加”按钮,然后选择需要分析的连续因变量。

4. 将一个或多个离散自变量添加到“因子”(Factors)框中。

点击“添加”按钮,然后选择需要分析的离散自变量。

5. 点击“选项”(Options)按钮,可以进行一些附加的设置。

例如,可以选择是否计算效应大小、调整误差项或进行共同协方差矩阵的检验等。

6. 点击“确定”按钮,开始进行多元方差分析。

7. 分析结果会显示在SPSS的输出窗口中。

可以查看因变量之间的差异是否显著,以及不同组之间是否存在显著差异。

8. 为了更好地理解结果,可以进一步进行后续分析。

例如,可以进行事后比较(Post hoc tests)来确定具体哪些组之间存在显著差异。

请注意,进行多元方差分析前,需要确保数据满足一些假设条件,如正态性、方差齐性和无多重共线性等。

另外,为了减少假阳性结果,应谨慎解释显著性水平。

以上是根据实验结果进行多元方差分析SPSS操作的步骤。

希望对您有所帮助!如有需要,请随时与我联系。

多元统计分析及SPSS应用课件

多元统计分析及SPSS应用课件
总结词
03
详细描述
SPSS的对应分析功能可以将分类变量 转换为数量型变量,通过降维技术展 示变量间的关系。
SPSS的对应分析功能简单易用,能够 处理大型数据集,并且可以清晰地展 示变量间的关系和类别间的比较。
SPSS的对应分析功能支持多种距离度 量方式,允许用户自定义类别间的比 较方式,并且可以结合图形界面直观 地展示结果,如散点图和气泡图。
03
生物医学
分析生物标志物和疾 病之间的关系,发现 潜在的治疗方法和药 物。
04
金融
分析多个经济指标和 股票价格,进行投资 决策和风险管理。
02
SPSS软件介绍
Chapter
SPSS软件的特点与优势
强大的统计分析功能
SPSS提供了广泛的统计分析方法,包括描述性统计、推论性统计、 多元统计分析等,可满足各种数据分析和科学研究的需求。
多维尺度分析
01
用于研究数据之间的相似性或差异性。
02
多维尺度分析是一种用于研究数据之间的相似性或差异性的方法。它通过建立一 个低维空间来表示高维数据,使得相似的数据点在空间中距离较近,差异较大的 数据点距离较远。多维尺度分析广泛应用于市场研究、心理学等领域。
判别分析
基于已知分类的数据建立判别函数, 对新的观测值进行分类。
用户可以从SPSS官网或其他授权渠道获取 SPSS软件的安装包。
安装过程
按照安装向导的指引,逐步完成软件的安装过程, 包括选择安装路径、配置软件组件等。
启动SPSS软件
安装完成后,双击桌面快捷方式或从开始菜 单启动SPSS软件。
SPSS软件的基本操作界面
主界面概览
SPSS的主界面包括菜单栏、工具栏、 数据编辑窗口、结果输出窗口等部分 。

应用多元统计分析课后答案 (2)

应用多元统计分析课后答案 (2)

(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
'.
.
fx1 (x1)
d c
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
c) c)2
2( x1
a)( x2
c)]
dx
d
2(d c)(x1 (b a)2 (d
a)x2 c)2
d c
2[(b
a)( x2 (b
差阵。)
2.6 渐近无偏性、有效性和一致性;
2.7 设总体服从正态分布, X ~ N p (μ, Σ) ,有样本 X1, X2 ,..., Xn 。由于 X 是相互独立的正
态分布随机向量之和,所以 X 也服从正态分布。又
E(X)
E
n
Xi
n
n
E Xi
n
n μ

i1
i1
i1
D(X) D n Xi i1
μ j
nj i1
Σ1 ( Xij
μj)
0(
j
1, 2,..., k)
解之,得
μˆ j
xj
1 nj
nj
xij , Σˆ
i 1
k nj
xij x j
j1 i1
xij x j
n1 n2 ... nk
第三章
3.1 试述多元统计分析中的各种均值向量和协差阵检验的基本思想和步骤。 其基本思想和步骤均可归纳为: 答:
i 1
i 1
n
(Xi - μ)(Xi - μ) 2n(X μ)(X μ) n(X μ)(X μ) i 1
n
(Xi - μ)(Xi - μ) n(X μ)(X μ) i 1

SPSS统计分析实用教程(第2版)

SPSS统计分析实用教程(第2版)

探索性分析
03
均值比较与t检验
总结词
单样本t检验用于检验单个样本的均值是否与已知的某个值或参考值存在显著差异。
详细描述
在单样本t检验中,我们将已知的某个值或参考值作为检验标准,然后比较单个样本的均值与此标准之间的差异。通过计算t统计量和对应的p值,我们可以判断样本均值与标准值是否存在显著差异。
单样本t检验
通过图形方式展示两个变量之间的关系,可以直观地观察到它们之间的模式和趋势。
相关分析
散点图
相关系数
预测模型
通过一个或多个自变量预测因变量的值,建立预测模型,并评估模型的拟合优度和预测能力。
回归系数
描述自变量对因变量的影响程度,通过回归系数可以了解各个自变量对因变量的贡献。
线性回归分析
非线性关系
协方差分析是在考虑一个或多个协变量的影响后,比较两个或多个分类变量对数值型变量的影响。通过控制协变量的影响,可以更准确地评估各组之间的差异,并确定分类变量对数值型变量的真实效应。
总结词
详细描述
协方差分析
05
非参数检验
适用范围
01
卡方检验主要用于比较实际观测频数与期望频数之间的差异。
计算方法
02
通过卡方统计量,即实际观测频数与期望频数的差的平方与期望频数的比值,来评估两者之间的差异程度。
聚类分析
聚类分析基于观测数据之间的相似性或距离将它们分组,使得同一聚类中的数据尽可能相似,不同聚类中的数据尽可能不同。
聚类分析在市场细分、生物信息学和社交网络等领域有广泛应用。
THANKS FOR
WATCHING
感谢您的观看
详细描述
探索性分析
总结词
探索性分析还可以用于预测和分类,例如决策树、逻辑回归等。

华东理工大学《多元统计分析与SPSS应用实验》实验报告2

华东理工大学《多元统计分析与SPSS应用实验》实验报告2

华东理工大学《多元统计分析与SPSS应用实验》实验报告2 班级学号姓名开课学院商学院任课教师任飞成绩实验报告:实验2.1 熟悉One---Sample T Test 功能(1)选用Employee data.sav 文件中的变量,Analyze→Compare Means→One---Sample T Test,将salary作为Test因变量,test值分别取34000、35000、34419、24000,作均值检验。

如图实验结果:1.Test Value=34000:双尾概率P=0.593>α=0.05,故接受原假设,说明样本salary均值与假设值34000无显著性差异;2.Test Value=35000:双尾概率P=0.460>α=0.05,故接受原假设,说明样本salary均值与假设值35000无显著性差异;3.Test Value=34419:双尾概率P=0.999>>α=0.05,故接受原假设,说明样本salary均值与假设值35000不仅无显著性差异,而且接近样本均值。

4.Test Value=24000:双尾概率P=0.00<<α=0.05,故接受原假设,说明样本salary均值与假设值24000显著性差异。

(2). 仍选用Employee data.sav 文件中的变量,先作10%的随机抽样,然后将salary作为Test因变量,test 值取34419,作均值检验。

随机抽样:data→select cases→random sample of cases→sample→approximately 10%→Continue→OK实验结果(部分原始数据序号被划掉):再均值检验过程:Analyze →Compare Means →One---Sample T Test,将salary作为Test因变量,test 值取34419,所得实验数据结果如下图所示:双尾概率P=0.284>α=0.05,故接受原假设,说明随机抽样样本的salary均值与假设值34419无显著性差异。

《多元统计分析分析》实验报告

《多元统计分析分析》实验报告

《多元统计分析分析》实验报告2012 年月日学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。

选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。

最后点击“确定”,运行线性回归,输出相关结果(见表1-3)图5 图6图7图8图9回归分析输出结果:的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。

多元统计分析实验报告2

多元统计分析实验报告2

多元统计分析
实验报告一
学生姓名刘琪
学号20111315008
院系数学与统计学院
专业统计学
课程名称多元统计分析
任课教师来鹏
二0一三年十一月五日
一、测量15名两周岁婴儿的身高胸围上半臂围的数据如下表所示,假定这三组都服从
正态总体且协方差相等,试在显著性水平α=0.05下检验男女婴幼儿的这三项指标是否有差异。

data baby;
input sex$ X1 X2 X3@@;
cards;
f 78 60.6 16.5
f 76 58.1 12.5
f 98 63.2 14.5
f 81 59.0 16.0
f 81 60.8 14.0
f 84 59.5 15.0
m 80 58.4 14.0
m 75 59.2 13.0
m 78 60.3 14.0
m 75 57.4 12.0
m 79 59.5 12.5
m 78 58.1 14.0
m 75 58.0 12.5
m 64 55.5 11.0
m 80 59.2 12.5
;
proc glm;
/*proc anova data=baby;*/
class sex;
model X1 X2 X3=sex/ss3; run;
结果:
有上述结果可以得出
二、1992年美国总统选举的三位候选人为布什、佩罗特和克林顿。

从支持三位候选人的选民中分别抽取了20人,登记他们的年龄段(X1)和受教育程度(X2)资料如下表所示:。

多元统计分析——对应分析实验报告

多元统计分析——对应分析实验报告

多元统计分析实验报告表2-2 对应分析数据(老龄化数据)三、实验过程在spss16.0软件中,对表2-2数据做对应分析。

首先应对个案进行加权操作。

选择【Date】—【Weight Cases】,出现表3对话框。

选择frequency作为加权,如图3-1所示。

图3-1 加权个案对个案加权后,开始做对应分析。

选择【Analyze】—【Date Reduction】—【Corespondence Analysis】,会出现图3-2对话画框。

图3-2 对应分析对话框接下来对行变量和列变量进行设置。

将selfassess(自评健康状况)选入Row,作为行变量,并选择【Define Range】,填写范围后点击【Update】—【Continue】,如图3-3所示;按同样的步骤,将independence(生活自理能力)选入Column(列变量),并设置列变量,如图3-4所示;最终设置结果如图3-5所示。

图3-3 行变量设置图3-4 列变量设置图3-5 对应分析设置结果点击【OK】,便可得到对应分析结果。

四、实验过程表4-1为对应分析的版本信息。

图中显示为1.1版本。

表4-1 对应分析版本信息表4-2是列联表,列示了在各个水平下的人数。

表4-2 列联表表4-3为对应分析总述表。

表中显示了奇异值(Singular Value),第一个维度的奇异值为0.253,第二个维度的奇异值为0.125;惯量(Inertia)为特征根,就是奇异值的平方;Chi Square 值为212.593,是总样本数除以总的Inertia 觉原假设,认为两个随机变量不是相互独立的,本例中就是自评健康状况和生活自理能力不是相互独立的;贡献率(Accounted for)显示,第一个维度解释了总变异的80.4%,第二个维度解释了19.6%,两个维度解释了所有的变异;接下来依次为累计贡献率(Cumulative)、奇异值的方差(Standard Deviation)、奇异值的相关系数(Correlation)。

多元统计分析实验指导书——实验一-均值向量和协方差阵检验

多元统计分析实验指导书——实验一-均值向量和协方差阵检验

实验一SPSS软件的基本操作与均值向量和协方差阵的检验【实验目的】通过本次实验,了解SPSS的基本特征、结构、运行模式、主要窗口等,了解如何录入数据和建立数据文件,掌握基本的数据文件编辑与修改方法,对SPSS有一个浅层次的综合认识。

同时能够掌握对均值向量和协方差阵进行检验。

【实验性质】必修,基础层次【实验仪器及软件】计算机及SPSS软件【实验内容】1.操作SPSS的基本方法(打开、保存、编辑数据文件)2.问卷编码3.录入数据并练习数据相关操作4.对均值向量和协方差阵进行检验,并给出分析结论。

【实验学时】4学时【实验方法与步骤】1.开机2.找到SPSS的快捷按纽或在程序中找到SPSS,打开SPSS3.认识SPSS数据编辑窗、结果输出窗、帮助窗口、图表编辑窗、语句编辑窗4.对一份给出的问卷进行编码和变量定义5.按要求录入数据6.练习基本的数据修改编辑方法7.检验多元总体的均值向量和协方差阵8.保存数据文件9.关闭SPSS,关机。

【实验注意事项】1.实验中不轻易改动SPSS的参数设置,以免引起系统运行问题。

2.遇到各种难以处理的问题,请询问指导教师。

3.为保证计算机的安全,上机过程中非经指导教师和实验室管理人员同意,禁止使用移动存储器。

4.每次上机,个人应按规定要求使用同一计算机,如因故障需更换,应报指导教师或实验室管理人员同意。

5.上机时间,禁止使用计算机从事与课程无关的工作。

【上机作业】1.定义变量:试录入以下数据文件,并按要求进行变量定义。

表1学号姓名性别生日身高(cm)体重(kg)英语(总分100分)数学(总分100分)生活费($代表人民币)200201 刘一迪男1982.01.12 156.42 47.54 75 79 345.00 200202 许兆辉男1982.06.05 155.73 37.83 78 76 435.00 200203 王鸿屿男1982.05.17 144.6 38.66 65 88 643.50 200204 江飞男1982.08.31 161.5 41.68 79 82 235.50 200205 袁翼鹏男1982.09.17 161.3 43.36 82 77 867.00 200206 段燕女1982.12.21 158 47.35 81 74200207 安剑萍女1982.10.18 161.5 47.44 77 69 1233.00 200208 赵冬莉女1982.07.06 162.76 47.87 67 73 767.80 200209 叶敏女1982.06.01 164.3 33.85 64 77 553.90 200210 毛云华女1982.09.12 144 33.84 70 80 343.00 200211 孙世伟男1981.10.13 157.9 49.23 84 85 453.80 200212 杨维清男1981.12.6 176.1 54.54 85 80 843.00 200213 欧阳已祥男1981.11.21 168.55 50.67 79 79 657.40 200214 贺以礼男1981.09.28 164.5 44.56 75 80 1863.90 200215 张放男1981.12.08 153 58.87 76 69 462.20 200216 陆晓蓝女1981.10.07 164.7 44.14 80 83 476.80 200217 吴挽君女1981.09.09 160.5 53.34 79 82200218 李利女1981.09.14 147 36.46 75 97 452.80 200219 韩琴女1981.10.15 153.2 30.17 90 75 244.70 200220 黄捷蕾女1981.12.02 157.9 40.45 71 80 253.00 要求:1)变量名同表格名,以“()”内的内容作为变量标签。

多元统计分析实验报告)

多元统计分析实验报告)

. . .数学与计算科学学院实验报告实验项目名称相应与典型相关分析所属课程名称多元统计分析实验实验类型验证型实验日期2016年6月13日星期一班级学号姓名成绩因素B 具有对等性。

通过变换。

得c '=ΣZ Z ,r '=ΣZZ 。

(3)对因素B 进行因子分析。

计算出c '=ΣZ Z 的特征向量 及其相应的特征向量计算出因素B 的因子)(4)对因素A 进行因子分析。

计算出r '=ΣZZ 的特征向量 及其相应的特征向量计算出因素A 的因子(5)选取因素B 的第一、第二公因子 选取因素A 的第一、第二公因子将B 因素的c 个水平,,A 因素的r 个水平同时反应到相同坐标轴的因子平面上上(6)根据因素A 和因素B 各个水平在平面图上的分布,描述两因素及各个水平之间的相关关系。

1.3 在进行相应分析时,应注意的问题要注意通过独立性检验判定是否有必要进行相应分析。

因此在进行相应分析前应做独立性检验。

独立性检验中,0H :因素A 和因素B 是独立的;1H :因素A 和因素B 不独立 由上面的假设所构造的统计量为2211ˆ[()]ˆ()rcij ij i j ijk E k E k χ==-=∑∑211()r c ij i j k z ===∑∑ 其中....(/)/ij ij i j i j z k k k k k k =-,拒绝区域为221[(1)(1)]r c αχχ->--()(1)()(1)i i P Pa X '++a X ()(2)()(2)i i q qb X '++b X(2))1=X 的条件下,使得()(2)()(2)i i q qb X '+b X(2))1=X 的条件下,使得(1)、(2)X 的第一对典型相关变量。

1,2,,)r()p⎦()p ⎥⎦pU⎥⎥⎦p V⎥⎥⎦*(1)*== A X V Bˆˆr() ++b bz【实验过程】(实验步骤、记录、数据、分析)一.问题1的求解步骤:1. 将数据输入在SPSS后,在窗口中选择数据→加权个案,调出加权个案主界面,并将变量人数移入加权个案中的频率变量框中。

多元统计分析原理与基于spss的应用

多元统计分析原理与基于spss的应用

多元统计分析原理与基于SPSS的应用1. 引言多元统计分析是统计学中的重要分支,用于研究多个变量之间的关系和模式。

在实际应用中,SPSS是一个流行的统计分析软件,提供了丰富的功能和工具,可以用于多元统计分析。

本文将介绍多元统计分析的原理,并探讨如何利用SPSS进行实际应用。

2. 多元统计分析概述多元统计分析是一种从多个维度考察数据的统计方法。

它可以帮助研究者发现多个变量之间的模式和关联,从而提供更深入的分析和理解。

常见的多元统计分析方法包括:主成分分析、因子分析、聚类分析、判别分析等。

2.1 主成分分析(PCA)主成分分析是一种减少数据集维度的方法,它可以将大量的变量转化为少数几个主成分。

通过主成分分析,可以发现数据中的主要模式和结构,从而简化数据集和分析过程。

2.2 因子分析因子分析是一种确定变量之间潜在关系的方法。

它可以帮助研究者发现共同的因素或维度,并解释变量之间的相关性。

因子分析可用于降维或构造新的变量,进而减少数据集的复杂性。

2.3 聚类分析聚类分析是一种将观测对象分组或分类的方法。

它可以通过计算对象之间的相似性或距离,将它们划分为不同的类别。

聚类分析可帮助研究者发现数据中的隐藏结构,并进行进一步的分析和解释。

2.4 判别分析判别分析是一种预测变量类别的方法。

它可以根据已知类别的样本数据,建立预测模型并进行分类。

判别分析可用于识别不同群体或类别之间的差异,并进行进一步的推断和预测。

3. 多元统计分析的应用场景多元统计分析可以应用于各种领域,如市场调研、社会科学、医学研究等。

以下是一些常见的应用场景:•市场调研:通过主成分分析和因子分析,可以帮助企业确定消费者需求和消费行为的主要影响因素。

•社会科学:聚类分析可用于对人群进行社会分类,从而提供对人群特征和行为的深入理解。

•医学研究:判别分析可以应用于医学诊断,预测患者是否患有某种疾病或疾病的严重程度。

4. 基于SPSS的多元统计分析应用示例SPSS是一款功能强大的统计分析软件,提供了多种多元统计分析方法和工具。

多元统计分析考试-(2)

多元统计分析考试-(2)

判断:1对2对3对4对5错6对应分析是否可降维(对)7 数据的计量尺度:定类尺度,定序尺度,定距尺度,定比尺度1.应用统计学中的数据可以不是数值。

(×)2.相关系数等于零,表明变量之间不存在任何关系。

(√ )3.双因素方差分析主要用于检验两个总体方差是否相等。

(√ )4.环比增长速度的连乘积等于相应时期的定基增长速度。

(×)5.线性回归分析中,可决系数R2是对回归模型拟合程度的评价。

(√ )6.加权平均数指数是加权综合指数的一种变形,它们具有相同的权数。

(√ )7.在假设检验中,给定的显著性水平α是在原假设为真的条件下,拒绝原假设的概率。

(×)8.在抽样调查中,允许误差也称极限误差,是抽样误差的最大值。

(×)9.若样本容量确定,则假设检验中的两类错误不能同时减少。

(√ )10.如果一组数据的众数大于中位数,且中位数又大于算术平均数,则这组数据的偏态系数小于0。

(√ )简答:一、数据的清洗技术:答案一:(1)解决缺失值:均值替换法、个案剔除法、多重替换法、热卡填充法、回归替换法。

(2)错误值:偏差分析,识别不遵守分布或回归方程的值。

(3)重复记录:合半、清除(4)不一致:可定义完整性约束用于检测不一致性,也可通过分析数据发现联系,使数据保持一致。

答案二:主要为下一步数据分析做进一步的准备,最终将数据清洗为满足分析需求的具体数据集。

期间主要内容包括:(1)数据集的预先分析:对数据进行必要的分析,如数据分组、排序、分布图、平均数、标准差描述等,以掌握数据的基本特点和基本情况,保证后续工作的有效性,也为确定应采用的统计检验方法提供依据(2)相关变量缺失值的查补检查(3)分析前相关的校正和转换工作.(4)观测值的抽样筛选.(5)其他数据清洗工作二、如何处理数据缺失值:答案一:1剔除数据,即删除数据。

2替换方法,一般有三种:均值替换法,即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。

spss实践题分析及答案(二)

spss实践题分析及答案(二)

期末实践考查一、一家消费者调查有限公司,它为许多企业提供消费者态度和消费者行为的调查。

在一项研究中,客户要求调查消费者的消费特征,此特征可以用来预测用户使用信用卡的支付金额。

研究人员收集了50位消费者的年收入、家庭人口和每年使用信用卡支付的金额数据。

试按照客户要求进行分析,给出分析报告(数据见附表)。

Descriptive StatisticsMean Std. Deviation N消费金额(元)3964.06 933.494 50年收入(元)43480.00 14550.742 50家庭人口(人) 3.42 1.739 50Model Summary bModel R R Square Adjusted R Square Std. Error of the Estimate结果分析:由题目可知客户要求,是根据消费者年收入、家庭人口来预测其每年使用信用卡支付的金额数据,属于多元线性回归问题,其中年收入和家庭人口 看作两个自变量,每年信用卡支付金额看作因变量。

由分析得:121304.9050.033356.296y x x =++y :信用卡支付金额 1x :年收入 2x :家庭人口拟合优度检验2R为0.818,回归方程能很好的代表样本数据。

回归方程F检验和回归系数T检验的相伴概率都小于显著性水平,拒绝零假设即回归方程和回归系数都具显著型。

二、下表为运动员与大学生的身高(cm)与肺活量(cm3)的数据,考虑到身高与肺活量有关,而一般运动员的身高高于大学生,为进一步分析肺活量的差异是否由于体育锻炼所致,试作控制身高变量的协方差分析,并给出分析报告。

Between-Subjects FactorsValue Label N类别0 0 201 1 20Tests of Between-Subjects Effects Dependent Variable:肺活量Source Type III Sumof Squares dfMeanSquare F Sig.Corrected Model 6981685.135a2 3490842.56822.860 .000Intercept 208064.290 1 208064.290 1.363 .251身高1630762.635 1 1630762.63510.679 .002类别1407847.095 1 1407847.0959.220 .004Error 5649992.36537 152702.496 Total 6.633E8 40Corrected Total 12631677.50039a. R Squared = .553 (Adjusted R Squared = .529结果分析:控制变量的相伴概率值是0.004,小于显著性水平0.05,因此拒绝零假设,故在剔除身高对肺活量的影响前提下,是否经常进行体育锻炼对肺活量有显著影响;另外协变量相伴概率为0.002,说明身高的不同水平对肺活量也有显著影响。

多元统计分析—判别分析实验报告

多元统计分析—判别分析实验报告

Unweighted Cases
N
Percent
Valid Excluded
Total
Missing or out-of-range group codes At least one missing discriminating variable Both missing or out-of-range group codes and at least one missing discriminating variable Total
组别
Function
1
2
1
-2.647
2
9.444
3
-6.797
1.013 -.259 -.754
实用文档
表5是标准化的判别函数,表示为: Y1=-17.046X1+14.757X2-1.306X3+6.381X4+1.332X5+4.315X6
Y2=-7.677X1+9.870X2-0.531X3-0.666X4+0.710X5+1.833X6 表6为结构矩阵,即判别载荷,表四是反映判别函数在各组的重心 表7是非标准化的判别函数,表示为: Y1=-78.896-1.950X1+1.748X2-0.930X3+0.825X4+0.102X5+1.662X6
3 .001
14.106 -3.393
.834
18 ungrouped
2 .000
2 1.000
31.237
1 .000
295.309 14.502
2.120
19 ungrouped
3 .310
2 1.000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东理工大学多元统计分析与SPSS应用实验-(2)
华东理工大学2013—2014 学年第二学期
《多元统计分析与SPSS应用》实验报告2
班级学号姓名
开课学院商学院任课教师任飞成绩
实验内容:实验 2 方差分析
2.1.熟悉One---Sample T Test 功能
Analyze
Compare Means
One---Sample T Test
( t检验)
(1). 选用Employee data.sav 文件中的
变量,将salary作为Test因变量,test
值分别取34000、35000、34419、24000,
作均值检验。

(2). 仍选用Employee data.sav 文件中
的变量,先作10%的随机抽样,然后将
salary作为Test因变量,test值取34419,
作均值检验。

2.2.熟悉
Independent--Samples T Test 功能Analyze
Compare Means
Independent--Samples T test…选用Employee data.sav 文件中的变量,将Current Salary作为Test Variables, gender作Grouping Variable,作两样本比较T检验。

2.3.熟悉Paired--Samples T Test 功能Analyze
Compare Means
Paired--Samples T test…
选用Trends chapter 12. sav文件中的变量,将connect, dsconect作为paired variables作配对样本统计分析。

2.4.熟悉One—Way ANOV A 功能运用Analyze
Compare Means
One—Way ANOV A…
选用Tomato.sav 文件中的变量,将height作为dependent variable, fert作为
factor,作单因素方差分析
2.5.熟悉General Factorial功能
Analyze
General Linear Model
GLM---Univariate …
选用Plastic.sav 文件中的变量,将
tear_res作为dependent variable,
extrusn,
additive作为factor,作双因素方差分析实验要求:
根据实验内容撰写分析报告。

教师评语:
教师签名:
年月日
实验报告:
实验2.1 熟悉One---Sample T Test 功能
(1)选用Employee data.sav 文件中的变量,Analyze →Compare Means→One---Sample T Test,
将salary作为Test因变量,test值分别取34000、35000、
34419、24000,作均值检验。

如图
实验结果:
1.Test Value=34000:
双尾概率P=0.593>α=0.05,故接受原假设,说明样本salary均值与假设值34000无显著性差异;
2.Test Value=35000:
双尾概率P=0.460>α=0.05,故接受原假设,说明样本salary均值与假设值35000无显著性差异;
3.Test Value=34419:
双尾概率P=0.999>>α=0.05,故接受原假设,说明样本salary均值与假设值35000不仅无显著性差异,而且接近样本均值。

4.Test Value=24000:
双尾概率P=0.00<<α=0.05,故接受原假设,说明样本salary均值与假设值24000显著性差异。

(2). 仍选用Employee data.sav 文件中的变量,先作10%的随机抽样,然后将salary作为Test因变量,test 值取34419,作均值检验。

随机抽样:data→select cases→random sample of cases →sample→approximately 10%→Continue→OK
实验结果(部分原始数据序号被划掉):
再均值检验过程:Analyze →Compare Means →One---Sample T Test,将salary作为Test因变量,test 值取34419,所得实验数据结果如下图所示:
双尾概率P=0.284>α=0.05,故接受原假设,说明随机抽样样本的salary均值与假设值34419无显著性差异。

实验 2.2 熟悉Independent--Samples T Test 功能
选用Employee data.sav 文件中的变量,选择Analyze →Compare Means→Independent--Samples T test,将Current Salary作为Test Variables, gender作Grouping Variable,作两样本比较T检验,选择define groups,两个group分别定义为0、1,如下图
实验结果如下图
表中双尾概率P都为0.000<<α=0.05,故不接受原假设,说明样本salary与gender有显著性差异。

实验 2.3 熟悉Paired--Samples T Test 功能
选用Trends chapter 12. sav 文件中的变量,选择
Analyze→Compare Means→Paired--Samples T test,将connect, dsconect作为paired variables作配对样本统计分析,如下图
实验结果如下图
双尾概率P=0.000<α=0.05,故拒绝原假设,说明connect 和dsconect变量间有显著性差异。

实验 2.4 熟悉One—Way ANOV A 功能运用
选用Tomato.sav 文件中的变量,选择Analyze →Compare Means→One—Way ANOV A,将height作为dependent variable, fert作为factor,作单因素方差分析,如下图
实验结果如下图:
概率值P=0.025<α=0.05,说明肥料的不同造成的最终高度之间有显著性差异,即肥料与高度存在因果关系。

实验 2.5 熟悉General Factorial 功能
选用Plastic.sav 文件中的变量,Analyze →General Linear Model→Univariate,将tear_res选入到“dependengt variable”框里,extrusn, additive选入到“fixed factor”框中,作双因素方差分析。

单击“model”按钮,弹出“univariate mode”对话框,选择“custom”。

在效应选项中选择主效应选项“main effects”,将extrusn ,additive两个因子选入“model”框中,如下图
实验结果如下图
由上述实验结果可知,extrusn因子的α=0.001<α=0.05,additive的P=0.015<α=0.05,则知extrusn,和additive 都高度显著,即不同的extrusn,不同的additive都会对tear_res有显著影响。

相关文档
最新文档