自动控制原理第1
自动控制原理第1章
⑴ 稳定性 稳定性是保证控制系统正常工作的先决条件.
稳定性是这样来表述的:系统受到外作用后,其动态过程的振荡倾向和 系统恢复平衡的能力。
线性自动控制系统的稳定性是由系统的结构和参数所决定, 与外界因素和初始条件无关.
不稳定系统是无法正常工作的。
c(t) r(t)
c(t ) r (t )
c(t) r(t)
③ 可以完成人工控制系统无法完成的工作。
自动控制已成为现代社会活动中不可缺少的重要组成部分。
6
比如:人造地球卫星的
发射成功与安全返回
7
导弹的准确击中目标, 雷达系统的准确跟踪目标;
8
交通系统:
安全、快捷、舒适、准点
9
钢 铁 生 产
10
家用电器:
电扇:控制转速
洗衣机:控制水位、强弱、时间等
23
⑶ 复合控制方式 把按偏差控制和按扰动控制结合起来,是一种比较合理的控 制方式.这种按偏差控制和按扰动控制相结合的控制方式称为复 合控制方式. 下图表示的是电动机速度的复合控制系统的方块图. 电压 放大器 电阻R Mc
u0 ut -
ue
电压 放大器
测速 发电机
功率 放大器
电动机
n
图1-10 电动机速度复合控制系统
1.1 自动控制的基本概念与方式
1.2 自动控制系统的分类 1.3 对控制系统性能的基本要求及评价
5
1.1 自动控制的基本概念与方式
1.1.1 自动控制的基本概念
自动控制:在没有人直接参与的情况下,通过控制器,
使被控对象或过程自动地按预定的规律运行。 应用:工业、农业、交通、国防、宇航、社会。 自动控制的优点:① 节省人力; ② 提高系统的精度;
自动控制原理_第一章
(b)只有有限个极值点。 满足狄利赫里条件的函数 fT (t ) 在 叶级数。
T T , 2 2
上可展成傅里
在 fT (t ) 的连续点处,级数的三角形式为
a0 fT (t ) (an cos n0t bn sin n0t ) 2 n 1
(1-1)
其中:0
《现代控制工程》(第四版)
E-mail: goulinfeng @
第一章 概 论
主要问题:
(1) 自动控制系统的基本概念
(2) 自动控制系统的分类
(3) 自动控制系统的性能指标
(4) 拉普拉斯变换简介
(5) 典型输入信号
一、自动控制系统的基本概念
瓦特(James Watt)
2
3s 4 2 3s 2 4 s 2 y( s) 2 2 s 3s 2 s ( s 3s 2) s ( s 1)( s 2) 1 1 3 s s 1 s 2
y (t ) L [ y( s)] 1 e 3e
1
t
d 2 y (t ) dy (t ) x(t ) 2, 3 2 y (t ) x(t ), 例1: 2 dt dt y(0) 5 y(0) 3, 求响应 y (t )
解:对方程两边做拉氏变换:
2 s y( s) sy(0) y(0) 3[sy (s) y (0)] 2 y (s) s y(0) 5 可得: 代入 y(0) 3,
3 傅立叶变换:
e jx e jx e jx e jx 利用欧拉公式:cos x , sin x 2 2j
代入式(1-1)可得可积周期函数连续点处的傅里叶三角级 数表达式 化简后: fT (t ) 其中
(完整版)自动控制原理课后习题及答案
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
自控原理第1、第2章
第一章自动控制系统概念【教学目的】1了解自动控制系统的工作原理、分类和特点。
2.掌握负反馈在自动控制系统中的作用。
3.掌握自动控制系统的组成和各部分的作用。
4.根据工作原理图,确定控制系统的被控对象、控制量和被控制量正确画出系统的方框图。
5.了解对控制系统的要求。
【教学重点】1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用。
2 典型闭环系统的功能框图。
【教学难点】由系统的物理结构图或工作原理示意图绘出系统元件框图。
【教学方法及手段】通过课堂授课讲解几个典型例题使学生对概念能够理解,建立负反馈概念,并举一些生活例子来说明。
【课外作业】系统分析例题,完成课后习题1-1,1-4。
【学时分配】2课时。
【教学内容】第一节一些重要的概念与名词自动控制在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量在控制系统中.按规定的任务需要加以控制的物理量。
控制量作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
(l)无扰动补偿开环控制原理方框图如图1.1(a)所示。
信号由控制信号到被控制信号单向传递,对扰动引起的误差无补偿作用。
这种方式结构简单,适用于结构参数稳定、扰动信号较弱的场合。
自动控制原理第一章自动控制原理
如图1-5所示。
给定量 控制器
干扰量
被控量 受控对象
自控系统
图1-5 自动控制系统
第一章 自动控制概论
• 如水位自动控制系统:
比较元件
进 水 + 连 杆
测量 元件
实 际 水 位 浮 子
输出量
M 电 机
干扰 信号
出 水
<
受控对象
图1-3 水位自动控制系统原理图
第一章 自动控制概论
1.2.2 自动控制系统的基本组成
基 本 要 求
通过学习本课程,获得自动控制
系统的基本概念和基本理论;掌握分 析自动控制系统或过程控制系统的基 本方法。
自动控制理论
经典控制理论 线性控制系统
连续控制系统
第 二 章 第 三 章 第 四 章 第 五 章
现代控制理论 非线性控制系统
离散控制系统
第 六 章
第 七 章
第 八 章
第一章 自动控制概论
控制理论和现代控制理论两大部分。
经典控制理论也就是自动控制原理,是20世纪 40年代到50年代形成的一门独立学科。早期的控制
系统较为简单,只要列出微分方程并求解之,就可 以用时域法分析他们的性能。第二次世界大战前后,
由于生产和军事的需要,各国均在大力研制新型武
器,于是出现了较复杂的控制系统,这些控制系统
自动控制的任务—利用控制器操纵受控对象,使其
被控量按技术要求变化。若r(t)—给定量,c(t)—被
控量,则自控的任务之数学表达式为:使被控量满 足c(t) ≈r(t)。自控系统的组成如1-6图所示。
输入量 输出量
串 联 校 正
放 大
执 行
受 控 对 象
自动控制原理_清华大学出版社课后习题答案
第一章习题答案1.自动控制:就是在人不直接参与的情况下,依靠外加装置或设备(称为控制装置或控制器),使机械、设备或生产过程(称为被控对象)的某个工作状态或参数(称为被控量)自动地按照预定的规律运行,或使某个被控制的参数按预定要求变化。
给定量:它是人们期望系统输出按照这种输入的要求而变化的控制量。
故一般又称给定输入或简称输入。
上例中的调节器的给定值u g 即是给定输入。
扰动量:它是一种人们所不希望的﹑影响系统输出使之偏离了给定作用的控制量。
上例中给水压力变化或蒸汽负荷变化都属于扰动。
开环控制:指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的输入量产生影响。
闭环控制:按照偏差进行控制的,其特点是不论什么原因使被控量偏离期望而出现偏差时,必定会产生一个相应的控制作用去减小或消除这个偏差,使被控量与期望值趋于一致。
复合控制:将闭环控制系统和开环控制系统结合在一起构成的开环-闭环相结合的控制系统,称为复合控制恒值控制:给定量是一定的,控制任务是保持被控量为一不变常数,在发生扰动时尽快地使被控量恢复为给定值。
随动控制:给定量是按照事先不知道的时间函数变化的,要求输出跟随给定量变化。
2.7. 自动控制系统的性能的要求:稳定性、快速性、准确性。
自动控制系统的性能的最基本要求:稳定性第二章习题答案1. (a) 22()()1()()d y t f dy t k y t t dt m dt m m++=F (b )1211212()()()()k k k dy t y t t dt f k k k k +=++F (c )42422()2()()dy t k dy t kt dt m dt m+=F2. (a) 22211221122122112()d u du dvR C R C R C R C R C u R C vdt dt dt ++++=+(b )233112211221232()d u duR C R C R C R C R C u dt dt++++2112211222()d v dvR C R C R C R C vdt dt=+++(c )222220.25 1.5d u du dv u v dt dt dt++=+3. (a)2111212()(1)()c r U s R R C s U s R R CR R s+=++(b )222222()21()31c r U s C R s RCs U s C R s RCs ++=++(c )2211212()()()c r U s R U s R LCs L R R C s R R =++++4. (a)21212121221212212121()1()()()1f f f fs s k k k k Y s f f f f f X s s s k k k k k +++=++++(b )21212112221212112212()()1()()1c r U s R R C C s R C R C s U s R R C C s R C R C R C s +++=++++5. 0.085d d i u ∆=6. r d h Sh Q dt ∆+=∆7.2232(),()432t ts G s g t e e s s --+==-++8. 2()142tty t ee e--=-+9.(a )21()()c r U s RU s R =-(b )112212()(1)(1)()c r U s R C s R C s U s R C s ++=-(c )212()()(1)c r U s R U s R R Cs =-+10.(1) ;012180,3,211k k k π︒==-=-(2) 略;(3)系统的闭环传递函数22301230123()11()1c M t Mr M MQ s k k k k T Q s s s k k k k k k k k k k =+++11.闭环传递函数32()0.7(6)()(0.90.7)(1.180.42)0.68c r Q s s Q s s K s K s +=+++++12.闭环传递函数12342363451234712348()()1G G G G C s R s G G G G G G G G G G G G G G G G =+++-13.传递函数,21221)()(T s T s s K K s R s C +++=2121)1()()(T s T s T s s s N s C ++-+=14.传递函数。
自动控制原理:第1章 自动控制的基本概念 (2)
m
Md ML
J s2 Bs
c
1
i
m
将每个子方程的结构图按照相互关系,正确地连接起来, 得到下图
自动控制原理
27
2.4.3 结构图的等效变换
(1)结构图的基本组成形式 1)串联连接
C(s) G2 (s)U (s) G2 (s)G1(s)R(s)
C(s) R(s)
G1(s)G2 (s)
2)并联连接
在控制系统稳定的前提下,总是希望响应越快越好,而 且超调量越小越好。
自动控制原理
4
1.4 对控制系统的性能要求
1.4.3 稳态误差
控制系统在稳定的情况下,希望的输出与实际的输出之 差称为误差,误差的稳态分量称为稳态误差(或称为静态误 差),一般用ess表示。
自动控制系统的性能指标分别描述了系统在稳定性、动态 性能、稳态性能三个方面的要求,根据这些性能指标,就可以 判别系统性能的优劣。
i
(2-6)
式(2-5)或(2-6)就是描述简单水槽对象特性的数 学模型。它是一个一阶常系数微分方程式。
T为时间常数。 K 为放大系数。
自动控制原理
16
2.3 传递函数
2.3.1 传递函数的概念
RC电路如下:根据克希霍夫定律, 可列写微分方程
Ri(t) uc (t) ur (t)
uc
(t)
1 C
1
uc (t) C idt
(2)消去中间变量i后,得输入输出微分方程式
LC
d
2uc (t) dt 2
RC
duc (t) dt
uc
(t)
ur
(t)
或
T1T2
d
2uc (t) dt 2
《自动控制原理》程鹏第一章
第一章 控制系统的一般概念 §1 绪论
一.控制系统的发展史 自动控制成为一门科学是从1945发展起来的。
• 开始多用于工业:压力、温度、流量、位移、湿度、 粘度自动控制
• 后来进入军事领域:飞机自动驾驶、火炮自动跟踪、 导弹、卫星、宇宙飞船自动控制
• 目前渗透到更多领域:大系统、交通管理、图书管 理等
缺点:被控量可能出现振荡,甚至发散。
适用场合:系统元件参数变化和扰动无法预计的场合。
§3 控制系统的组成
介绍由原理图画方块图的步骤:(以角度随动系统为例)
1、看懂工作原理图,找出被控量、被控对象、给定量。 2、从两头来,先画出给定量、被控对象和被控量。 3、依原理图补上中间部分。
一.组成与术语 组成: 1.测量元件:测量被控量 2.比较元件:产生偏差信号 3.放大元件:对偏差信号进行幅值、功率放大 4.执行元件:对被控对象施加作用 5.校正元件:改善系统性能 6.给定元件:给出输入信号
自动控制: 在无人直接参与的情况下,利用控制装置使设备、 生产过程(被控对象)的一个物理量(被控量)按 预定规律(给定量)运行。
自动控制系统:能对被控对象的工作状态进行自动控制的系统。
三.自动控制技术的作用
1. 自动控制技术的应用不仅使生产过程实现了自动化, 极大地提高了劳动生产率,而且减轻了人的劳动强 度。
一般的形式
输入信号 比较
放大
执行
被控对象
输出信号
测量
输入信号——系统控制目标的反映 控制系统——主要完成对有关信号的变换、处理,发出
控制量,驱动执行机构完成控制功能。 输出信号——系统的控制结果,反映了被控对象的运行 状况。
• 反馈(feedback):将输出量通过一定的方式送回到输入端, 并与输入信号比较产生偏差信号过程称为反馈
《自动控制原理》第一章-自动控制原理精选全文完整版
● 执行环节: 其作用是产生控制量,直接推动被控对象的 控制量发生变化。如电动机、调节阀门等就是执行元件。
常用的名词术语
1.稳定性
一个控制系统能正常工作的首要条件。 稳定系统:当系统受到外部干扰后,输出会偏离正 常工作状态,但是当干扰消失后,系统能够回复到 原来的工作状态,系统的输出不产生上述等幅振荡、 发散振荡或单调增长运动。
2.动态性能指标
反映控制系统输出信号跟随输入信号的变化情况。 当系统输入信号为阶跃函数时,其输出信号称为 阶跃响应。
时,线性系统的输出量也增大或缩小相同倍数。
即若系统的输入为 r(t) 时,对应的输出为 y(t),则
当输入量为 Kr(t)时,输出量为 Ky(t) 。
(2)非线性系统
● 特点:系统某一环节具有非线性特性,不满足叠加原理。 ● 典型的非线性特性:继电器特性、死区特性、饱和特性、
间隙特性等。
图1-5 典型的非线性特性
对被控对象的控制作用,实现控制任务。
图1-3 闭环控制系统原理框图
Hale Waihona Puke (3)复合控制系统 工作原理:闭环控制与开环控制相结合的一种自动控制系 统。在闭环控制的基础上,附加一个正馈通道,对干扰信 号进行补偿,以达到精确的控制效果。
图1-4 复合控制系统原理框图
2.按系统输入信号分类
(1)恒值控制系统 系统的输入信号是某一恒定的常值,要求系统能够克服 干扰的影响,使输出量在这一常值附近微小变化。
举例:连续生产过程中的恒温、恒压、恒速等自动控制 系统。
自动控制原理:第1章 自动控制的基本概念 (2)
储液量的变化率,为单位时间内液体的流入量与流
出量之差。
若贮槽的横截面A 不变,则有M=Ah。假设在输
, , 入量Qi阶跃变化之前的平衡状态下,液位为h,流人
量和流出量均为QS ,则阶跃变化后这些变量分别为
h h0 h
Q Q Q
i
s
i
Q Q Q
0
s
0
自动控制原理
14
将这些变量代入式(2-1)中,就可得到
此处的加号对应于负反馈;减号对应于正反馈。 增:闭环传递函数=前向传递函数 / 1+ 回路内所有传递函数之积
自动控制原理
29
2.4.3 结构图的等效变换(续)
(2)综合点与引出点的移动 1)综合点的前后移动 a. 综合点前移的 等效变换
b. 综合点后移的 等效变换
2)相邻综合点之 间的移动
自动控制原理
令M L 0
自动控制原理
32
2.4.3 结构图的等效变换(续)
例2 简化结构图,并求系统传递函数C(s)/R(s) 。
C(s)
G1G2G3G4
R(s) 1 G2G3H 2 G3G4H3 G1G2G3G4H1
自动控制原理
33
2.4.3 结构图的等效变换(续)
例3 化简两级RC网络结构图,并求出传递函数Uc(s)/Ur(s)。
i(t)dt
消去中间变量i(t),得
RC
duc (t) dt
uc
(t)
ur
(t)
对上式进行拉氏变换 RCsUc (s) RCuc (0) Uc (s) Ur (s)
求出Uc(s)的表达式
Uc (s)
1 RCs
U 1
r
自动控制原理第一章绪论控制系统的一般概念
模糊控制 神经网络
智能控制理论
遗传算法
温度计
炉子 电热丝
调压器 220
自动控制
炉子 热电偶 _ 电热丝 +
给定信号 _+
u
ub
ur
电压 放大器
电动机
功率 +
放大器 _E
减速器 调压器
220
二.自动控制要解决的基本问题
自动控制是使一个或一些被控制 的物理量按照另一个物理量即控制量 的变化而变化或保持恒定,一般地说 如何使控制量按照给定量的变化规律 变化,就是一个控制系统要解决的基 本问题。
缺点:被控量可能出现振荡,甚至发散。
适用场合:系统元件参数变化和扰动无法预计的场合。
§3 反馈控制系统的组成
校正元件:基于偏差信号按一定函数规律产生供执行元件执行的 控制命令对系统进行校正以改善系统的动态和静态性能
如:由放大器、电阻、电容组成的具有预定传递函数的电路。 执行元件:也称执行器。用来执行校正元件产生的控制命令,以便
• 闭环控制(closed-loop control)
闭环控制工作原理: 外部作用:
给定量:使 c跟踪r 干扰量:使 c偏离r
控制目的:排除干扰因素、影响、使被控量随给定量变化。
1)、有反馈,能够成闭回路 是按偏差控制的、
2)、偏差信号起控制作用
具有负反馈的闭环系统
优点:具有自动修正被控制量出现偏离的能力,可以修 正元件参数变化以及外界扰动引起的误差,控制精 度高。
• 被控变量:简称被控量,指被控对象输出需按控制要 求变化的物理量,在单输出系统中,也就是系统得输 出量。
• 控制通道:控制变量通过被控对象(被控过程)到控 制系统输出的通道。
自动控制原理1卢京潮
第一章 自动控制的一般概念习题及答案1-1 根据题1-15图所示的电动机速度控制系统工作原理图,完成: (1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 〔1〕负反馈连接方式为:d a ↔,c b ↔;〔2〕系统方框图如图解1-1 所示。
1-2 题1-16图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
图1-16 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路到达平衡,电动机停止转动,大门到达开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 图1-17为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
图1-17 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
自动控制原理 第一章 自动控制系统的基本概念(2011-1)
现代控制理论
•以状态空间为基础; 研究多输入-多输出、 时变、非线性一类控 制系统的分析与设计 问题。 •具有高精度和高效能 的特点。
1.2 自动控制系统基本概念
自动控制 控制对象 控制量 给定 扰动 自动控制系统 反馈 反馈控制系统 随动系统 过程控制系统
○自动控制 在没有人直接参与的情况下,通过控制器 使被控对象的某些物理量自动地按照预定 规律进行。 控制器 控制对象 控制量
控制系统动态过程曲线
如上图,系统在外作用作用下,输出逐渐与期望值一 致,则系统稳定的,如曲线1所示; 反之,输出如曲线2所示,则系统是不稳定的。
快速性: 对过渡过程的形式和快慢提出要求,一般 称为动态性能。 □形式 □快慢
◆快速性即动态过程进行的时间的长短。过程时间越短,说明
系统快速性越好,反之说明系统响应迟钝。如曲线2所示。
○随动系统 □ 随动系统是一种反馈控制系统,在这种系统中,
输出量是机械位移、速度或者加速度。
□ 随动系统这个术语,与位置(速度或加速度)控
制系统是同义语。
□ 在现代工业中,广泛采用着随动系统。
○过程控制
在工业生产过程中,对诸如压力、温度、湿度、流 量、频率以及原料、燃料成分比例等方面的控制, 称为过程控制。
自动控制原理
Automatic Control Principle
Version 2011
中国矿业大学(北京)
自动控制原理
第一章 自动控制系统的基本概念
第一章 自动控制系统的基本概念
1.1 引言 1.2 自动控制系统的基本概念 1.3 闭环控制和开环控制 1.4 自动控制系统的分类 1.5 对自动控制系统的基本要求
◆稳和快反映了系统过渡过程的性能的好坏。既快又稳,表明
自动控制原理 第一章
钱学森
§1.1 自动控制的基本原理与方 式
经典控制理论—标志阶段 经典控制理论 标志阶段(3/3) 标志阶段
• 从20世纪40年代到50年代末,经典控制理论的发展与应用 使整个世界的科学水平出现了巨大的飞跃,几乎在工业、 农业、交通运输及国防建设的各个领域都广泛采用了自动 化控制技术。
– 第二次世界大战期间,反馈控制方法被广泛用于设计研制飞机自 动驾驶仪、火炮定位系统、雷达天线控制系统以及其他军用系统。 – 这些系统的复杂性和对快速跟踪、精确控制的高性能追求,迫切 要求拓展已有的控制技术,促使了许多新的见解和方法的产生。 – 同时,还促进了对非线性系统、采样系统以及随机控制系统的研 究。 – 可以说工业革命和战争促使了经典控制理论的发展。
§1.1 自动控制的基本原理与方 式
经典控制理论
经典控制理论即古典控制理论 。它的发展大致 经历了以下几个过程: –萌芽阶段 萌芽阶段 – 起步阶段 –发展阶段 发展阶段 – 标志阶段
§1.1 自动控制的基本原理与方 式
经典控制理论--萌芽阶段 经典控制理论 萌芽阶段
• 早在古代,劳动人民就凭借生产实践中积累的丰富经验和 对反馈概念的直观认识,发明了许多闪烁自动控制 自动控制智慧火 自动控制 花的杰作。 • 如果要追朔自动控制技术的发展历史,早在两千年前中国 就有了自动控制技术的萌芽 萌芽。 萌芽
– 例如,两千年前我国发明的 指南车,就是一种开环 开环自动 指南车 开环 调节系统。
指南车
§1.1 自动控制的基本原理与方 式
经典控制理论—起步阶段(1/4) 经典控制理论 起步阶段(1/4) 起步阶段
• 随着科学技术与工业生产的发展,到十七、十八世 十八世 纪,自动控制技术逐渐应用到现代工业中。 – 1681年法国物理学家、发明家巴本巴本(D. Papin)发明了用做安全调节装置的锅炉压力调 节器; – 1765年俄国人普尔佐诺夫(I. Polzunov)发明了 蒸汽锅炉水位调节器等;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年12月8日
EXIT
第1章第13页
控制 信号 给定电压 ug
扰动 Mc 电压 放大器 功率 放大器 直流 电动机 被控对象 被控 制量 转速n
控制装置
只有输入量的前向控制作用,输出量并不反馈回来
影响输入量的控制作用,因而,将它称为开环控制系统
(Open-Loop Control System)。
本门课程的性质:
1. 重要的技术基础课,阐述有关自动控制技术的基础理 论——经典控制论,研究“控制论”在工程中的应用。 基本内容 —— 控制论的基本理论、方法、特点、综合 设计方法。
研究对象 —— 自动控制系统,揭示自动控制系统中存
在的信息转换、传递和反馈。 2.学习目的:
① 自动化发展的需要
② 与信息科学、系统科学关系紧密
n 输 出 量
设上述系统原已在某个给定电压 ug相对于的转速 n状 态下运行,若一旦受到某些干扰(如负载转矩突然增大) 而引起转速下降时,系统就会自动地产生相应的调整过程。
Mc↑→n↓→uf↓→ue( ue = ug - uf )↑→ua↑→n↑
人无法参与直接控制。自动控制系统可以解决以上问题。
2018年12月8日
EXIT
第1章第8页
2.自动控制
当实际水位低于要求水位时,电位器输出电压值为正, 且其大小反映了实际水位与水位要求值的差值,放大器输出 信号将有正的变化,电动机带动减速器使进水阀门开度增加, 直到实际水位重新与水位要求值相等时为止。
2018年12月8日
EXIT
第1章第9页
电位计+连杆—人脑:记住水位的期望值;
浮子—人眼:观察水池的实际水位; 电位计+连杆—人脑: 反映误差(=水位的期望值-实际 值); 电动机—人手:调节进水阀门开度,执行控制作用。
是一个反复观察测量、比较、调整执行的过程,力图
将水池水位的期望值与实际值间的差值减为 0,即误差为 0。 控制过程:测量(测量反馈机构)—浮子 比较(比较机构)—电位计+连杆 执行(执行机构)—电动机
的各种扰动因素,如负载变化、电源电压波动等,以及来
自系统内部的扰动因素,如元件参数变化等,都将会直接 影响到输出量,而控制系统不能自动进行补偿,抗干扰性 能差。因此,开环系统对元器件的精度要求较高。
2018年12月8日
EXIT
第1章第15页
1.2.2 闭环控制系统
偏差 ue= ug-uf
+ _
ug
2018年12月8日
EXIT
第1章第12页
1.2.1 开环控制系统
示例——直流电动机转速开环控制系统 + +
电位器
+ _
+ 功 率 u 放大器 _ a
电动机
ug
电 压 放大器 _
n
Mc
负载
给定电压 ug经放大后得到电枢电压 ua,改变 ug 可得不同 的转速n,该系统只有输入量ug对输出量n的单向控制作用。 输出端和输入端之间不存在反馈回路。
③ 掌握控制系统分析与设计的基本方法
2018年12月8日 EXIT 第1章第1页
第1章 控制系统的基本概念
2018年12月8日
EXIT
第1章第2页
1.1 引言
1.2 开环控制系统和闭环控制系统
1.3 自动控制系统的组成
1.4 自动控制系统的分类
1.5 自动控制系统的应用实例
1.6 自动控制理论发展简史
2018年12月8日
EXIT
第1章第6页
二、人工控制与自动控制
示例——水池水位控制 1.人工控制
被控对象:水池 被控量:水池的水位
观测实际水位,将期望的水位值与实际水位相比较,两者 之差为误差。根据误差的大小和方向调节进水阀门的开度, 即当实际水位高于要求值时,关小进水阀门开度,否则加大 阀门开度以改变进水量,从而改变水池水位,使之与要求值 保持一致。
1.7 对自动控制系统的基本要求
2018年12月8日
EXIT
第1章第3页
1.1
引言
2018年12月8日
EXIT
第1章第4页
一、控制系统基本概念
1. 控制(Control ):根据某种原理或方法,使特定对象 (被控对象)的某些物理量(被控量)按照预期规律变化
的操纵过程。
2.人工控制(Manual Control):由人直接或间接操作执 行装置的控制方式。
2018年12月8日 EXIT 第1章第10页
1.2
开环控制系统和闭环控制系统
2018年12月8日
EXIT
第1章第11页
控制系统的类型很多,它们的结构类型
和所完成的任务也各不相同。控制系统中最
常见的两种控制方式是开环控制和闭环控制, 这两种控制的组合 ——即为复合控制,相对 应的控制系统称为开环控制系统、闭环控制 系统和复合控制系统。
2018年12月8日
EXIT
第1章第5页
3.自动控制(Automatic Control):是指在没有人直接
参与的情况下,利用自动控制装置(或称为控制装置或控 制器),使机器、设备或生产过程(统称为被控对象)的 某个工作状态或参数(称为被控量)自动地按照预定的规 律运行。 4. 自动控制理论:是研究有关自动控制共同规律的一门技 术科学,是自动控制技术的基础理论,根据发展的不同阶 段,其内容可分为经典控制理论、现代控制理论和智能控 制理论。
2018年12月8日
EXIT
第1章第14页
开环系统的优点 —— 结构简单,系统稳定性好,调试
方便,成本低。因此,在输入量和输出量之间的关系固定, 且内部参数或外部负载等扰动因素不大,或这些扰动因素 可以预测并进行补偿的前提下,应尽量采用开环控制系统。 开环控制的缺点 —— 当控制过程中受到来自系统外部
电位器
+
+
电 压 放大器 _
功 率 放大器
_ a
电动机
u
n
Mc
负载
_
uf
+ 测速发电机
uf Kf
2018年12月8日 EXIT
第1章第16页
Mc 扰动 ug 输 入 量 + - uf ue 电 压 放大器 功 率 放大器 测 速 发电机 直流电动机转速闭环控制系统方块图 ua
直 流 电动机
2018年12月8日
EXIT
第1章第7页
•人脑:记住水位的期望值; •人眼:观察水池的实际水位;测量(测量反馈机构)
•人脑:将水池的期望值-实际值;比较(比较机构)
•人手:调节进水阀门的开度,执行控制作用。执行(执 行机构) 是一个反复观察测量、比较、调整执行的过程,力 图将水池水位的期望值与实际值之间的差值减为0。 人工控制精度不高,人的反应不够快,不少恶劣的场合