苏教版八年级初二下数学知识点总结归纳
苏教版八年级数学下册知识点总结
苏教版八年级数学下册知识点总结苏教版数学八年级下册知识点数据的收集、整理与描述数据的收集可以通过全面调查和抽样调查两种方式进行。
全面调查是指考察全体对象的调查方式,而抽样调查则是调查部分数据,根据部分来估计总体的调查方式。
总体是要考察的全体对象,而组成总体的每一个考察对象称为个体。
被抽取的所有个体组成一个样本,样本中个体的数目称为样本容量。
频率分布频率分布是对一组数据进行整理,以便得到它的频率分布,即样本中数据在各个小范围所占的比例的大小。
研究频率分布的一般步骤包括计算极差、决定组距与组数、决定分点、列频率分布表和画频率分布直方图。
频率分布的有关概念包括极差、频数和频率。
确定事件和随机事件确定事件是在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件则是在每次试验中都不会发生的事件。
随机事件是在一定条件下,可能发生也可能不发生的事件。
随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
概率的意义与表示方法概率是指在大量重复试验中,事件发生的频率会稳定在某个常数p附近,这个常数p就叫做事件的概率。
事件用英文大写字母A、B、C等表示,而事件A的概率p可记为P(A)。
确定事件的概率是1,而不可能发生的事件概率是0.确定事件和随机事件之间的概率关系是重要的数学概念。
不可能事件、随机事件和必然事件是其中的三种形式。
在古典概型中,试验具有有限多个可能的结果,并且每个结果发生的概率相等。
这种情况下,可以用公式 P(A) = m/n 计算事件 A 发生的概率。
列表法和树状图法是求解概率的两种常用方法,它们适用于不同的试验设计。
另一种估计概率的方法是利用频率,通过大量重复试验来估算事件的概率。
分式是另一个重要的数学概念,其中 A 和 B 是整式,且 B 包含字母。
分式的值取决于分子和分母的值,分式的约分和通分是常见的操作。
最简公分母是各分式分母因式的最高次幂的积。
整式和分式统称为有理式。
苏教版八年级数学下册知识点(详细精华版)
苏教版八年级数学下册知识点(详细精华版)一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。
(2)折线图:反映数据的变化趋势。
(3)条形图:反映每个项目的具体数据。
(4)扇形图:反映各部分在总体中所占的百分比。
(5)频数分布直方图:直观形象地反映频数分布情况。
6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。
三、统计调查1、全面调查(普查):考察全体对象的调查,就是全面调查。
例如我国进行的第六次人口普查。
2、抽样调查:采用调查部分对象的方式来收集数据, 根据部分来估计整体的情况, 叫做抽样调查。
统计中常用样本特性来估计总体特性。
需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
⑴总体:所要考察对象的全体叫做总体。
⑵个体:总体中每一个考察对象叫做个体。
⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。
⑷样本容量:样本中个体的数目(不含单位)。
3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
4、【总结】全面调查与抽样调查的比较:⑴全面调查:是通过调查总体的方式来收集数据,因而得到的调查结果比较精确;但可能要投入数倍甚至更多的人力、物力和时间、⑵抽样调查:是通过调查样本的方式来收集数据,因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。
苏教版初中数学八年级下册知识梳理
初二数学下册知识点总结七、数据的收集、整理、描述1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:抽样调查是,一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。
又称“子样”。
按照一定的抽样规则从总体中取出的一部分个体。
6.样本容量:样本中个体的数目称为样本容量。
7.8.扇形统计图、条形统计图、折线统计图(1)扇形统计图:以整个圆代表统计项目的总体,每一统计项目分别用圆中不同面积表示,扇形面积占圆面积的百分之几就代表该统计项目占总体的百分之几,这样的统计图就称为扇形统计图。
扇形统计图的特点:1、用扇形的面积表示各部分在总体中所占的百分比;2、易于显示每组数据相对于总数的大小。
(2)条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不等的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。
条形统计图的特点:1、能够显示每个项目的具体数据。
2、易于比较数据之间的差别。
(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后顺次把各点连接起来,这样的统计图叫做折线统计图。
它既可以表示项目的具体数量,又能清楚的反映事物变化的情况。
折线统计图的特点:易于显示数据的变化趋势。
9.扇形统计图的画法:(1)把一个圆的面积看成是1,以圆心为顶点的周角是3600,则圆心角是360的扇形占整个圆面积的101,即10%。
(word完整版)苏教版八年级下数学知识点总结,文档
第七章一元一次不等式1 不等式: 用不等号表示不等关系的式子叫做不等式2 不等式的解: 能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3 不等式的性质: ○1 不等式的两边都加上〔或减去〕同一个整式,不等号的方向不变。
○2不等式的两边都乘〔或除以〕一个正数,不等号的方向不变。
不等式的两边都乘〔或除以〕一个负数,不等号的方向改变。
4 解一元一次不等式的步骤与解一元一次方程近似。
但是,在不等式两边都乘〔或除以〕同一个不等于0 的数时,必定依照这个数是正数,还是负数,正确地运用不等式的性质 2,特别要注意在不等式两边都乘〔或除以〕同一个负数时,要改变不等号的方向。
5 用一元一次不等式解决问题步骤: 〔 1〕审:认真审题,分清量、未知量的及其关系,找出题中不等关系,要抓住题设中的要点字“眼〞 ,如“大于〞 、“小于〞、“不小于〞 、“不大于〞等的含义。
( 2〕设:设出合适的未知数。
( 3〕列:依照题中的不等关系,列出不等式。
( 4〕解:解出所列不等式的解集。
( 5〕答:写出答案,并检验答案可否吻合题意。
6 一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中所有不等式的解集的公共局部叫做这个不等式组的解集,求不等式组解集的过程叫解不等式 组。
一元一次不等式组解决实责问题的步骤:与一元一次不等式解决实责问题近似,不相同之处在与列出不等式组,并解出不等式组。
7 一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确准时,能够用一元一次方程确定另一个变量的值;当一次函数中的一个变量范围时,能够用一元一次不等式〔组〕确定另一个变量取值的范围。
第八章分式1 分式定义: 一般地,若是 A 、B 表示两个整式,而且B 中含有字母,那么代数式A叫做分式,其中A 是分B式的分子, B 是分式的分母。
苏教版八年级数学下册知识点
苏教版八年级数学下册知识点初二数学下册知识点归纳一次函数一、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.二、正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b0图像经过一、二、三象限;(2)k0,b0图像经过一、三、四象限;(3)k0,b=0图像经过一、三象限;(4)k0,b0图像经过一、二、四象限;(5)k0,b0图像经过二、三、四象限;(6)k0,b=0图像经过二、四象限。
一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等.并求出这个函数值解方程组从“形”的角度看,确定两直线交点的坐标.数据的分析数据的代表:平均数、众数、中位数、极差、方差八班级数学知识点(总结)函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
苏教版八年级数学下册知识点总结归纳(苏科版)
苏教版八年级数学下册知识点总结归纳(苏科版)知识点总结第七章:数据的整理、收集、描述知识概念抽样与样本1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率。
第八章:认识概率确定事件和随机事件1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。
随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
概率的意义与表示方法1、概率的意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
苏教版八年级数学下册知识点(详细精华版).docx
精品文档苏教版八年级下册数学知识点归纳第 7 章数据的收集、整理与描述知识点一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。
(2)折线图:反映数据的变化趋势。
(3)条形图:反映每个项目的具体数据。
(4)扇形图:反映各部分在总体中所占的百分比。
( 5)频数分布直方图:直观形象地反映频数分布情况。
6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。
三、统计调查1、全面调查 (普查 ):考察全体对象的调查,就是全面调查。
例如我国进行的第六次人口普查。
2、抽样调查:采用调查部分对象的方式来收集数据 , 根据部分来估计整体的情况 , 叫做抽样调查。
统计中常用样本特性来估计总体特性。
需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
⑴总体:所要考察对象的全体叫做总体。
⑵个体:总体中每一个考察对象叫做个体。
⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。
⑷样本容量:样本中个体的数目(不含单位)。
.3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
4、【总结】全面调查与抽样调查的比较:⑴全面调查:是通过调查总体的方式来收集数据 , 因而得到的调查结果比较精确 ; 但可能要投入数十倍甚至更多的人力、物力和时间 .⑵抽样调查:是通过调查样本的方式来收集数据 , 因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。
苏教八年级下数学知识点总结
第七章一元一次不等式1 不等式:用不等号表示不等关系的式子叫做不等式2 不等式的解:能使不等式建立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3 不等式的性质:○1不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
○2不等式的两边都乘(或除以)一个正数,不等号的方向不变。
不等式的两边都乘(或除以)一个负数,不等号的方向改变。
4解一元一次不等式的步骤与解一元一次方程近似。
可是,在不等式两边都乘(或除以)同一个不等于0 的数时,一定依据这个数是正数,仍是负数,正确地运用不等式的性质 2,特别要注意在不等式两边都乘(或除以)同一个负数时,要改变不等号的方向。
5 用一元一次不等式解决问题步骤:( 1 )审:仔细审题,分清已知量、未知量的及其关系,找出题中不等关系,要抓住题设中的重点字“眼”,如“大于” 、“小于”、“不小于” 、“不大于”等的含义。
(2)设:设出适合的未知数。
(3)列:依据题中的不等关系,列出不等式。
(4)解:解出所列不等式的解集。
(5)答:写出答案,并查验答案能否切合题意。
6一元一次不等式组:由几个含有同一个未知数的一次不等式构成的不等式组叫做一元一次不等式组。
不等式组中全部不等式的解集的公共部分叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。
一元一次不等式组解决实质问题的步骤:与一元一次不等式解决实质问题近似,不一样之处在与列出不等式组,并解出不等式组。
7一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确准时,能够用一元一次方程确立另一个变量的值;一个变量范围时,能够用一元一次不等式(组)确立另一个变量取值的范围。
当已知一次函数中的第八章分式1分式定义:一般地,假如 A 、 B 表示两个整式,并且 B 中含有字母,那么代数式A叫做分式,此中 A 是分B式的分子, B 是分式的分母。
2分式的基天性质:分式的分子和分母都乘(或除以)同一个不等于0 的整式,分式的值不变。
苏科版八年级数学下册全册知识点归纳
的定义:频数与总数的比为频率。
通过长方形的高代表对应组的频数与组距的比(因为组距是一个常数,为了画图和看图方
所连成的线段都被对称中心
,如果旋转后的图形能与原来的图形重合,那么这个图中心对称图形
、平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形
(定义)
17、
四个角相等.
、定义:一般地A,B表示两个整式
分式的分子和分母同时乘以(或除以)同一个不为
通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。
取各分母所有因式的最高次幂的积作为公分母,这样的分母叫做最简公分母
分式的乘方法则:分式乘方要把分子、分母分别乘方。
分式方程是方程中的一种,且分母里含有未知数的方程叫做分式方程
上同为减函数;
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴三,二四象限角平分线),对称中心是坐标原点。
积的算数平方根的性质
二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平。
(完整版)苏教版八年级数学知识点总结
苏教版八年级数学知识点总结第一章全等三角形1.1 全等图形能够完全重合的图形叫做全等图形1.2 全等三角形两个能完全重合的三角形叫做全等三角形当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角全等三角形的对应边相等、对应角相等1.3 探索三角形全等的条件两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)第二章轴对称图形2.1 轴对称与轴对称图形把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么成这个图形是轴对称图形,这条直线就是对称轴。
2.2 轴对称的性质垂直并且平分一条线段的直线,叫做这条线段的垂直平分线成轴对称的两个图形中,对应点的连线被对称轴垂直平分2.3 设计轴对称图形2.4 线段、角的轴对称性线段垂直平分线上的点到线段两端的距离相等到线段两端距离相等的点在线段的垂直平分线上角平分线上的点到角两边的距离相等角的内部到角两边距离相等的点在角的平分线上2.5 等腰三角形的轴对称性等腰三角形的两底角相等(简称“等边对等角”)等腰三角形底边上的高线、中线及顶角平分线重合有两个角相等的三角形是等腰三角形(简称“等角对等边”)三边都相等的三角形叫做等边三角形或正三角形等边三角形的各角都等于60º三个角都相等的三角形是等边三角形有一个角是60º的等腰三角形是等边三角形直角三角形斜边上的中线等于斜边的一半等腰梯形是轴对称图形,过两底中点的直线是它的对称轴等腰梯形在同一底上的两个角相等等腰梯形的对角线相等在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形第三章 勾股定理3.1 勾股定理直角三角形两条直角边的平方和等于斜边的平方3.2 勾股定理的逆定理如果三角形的三边长分别为a 、b 、c ,且222c b a =+,那么这个三角形是直角三角形3.3 勾股定理的简单运用第四章 实数4.1 平方根如果()02>=a a x ,那么x 叫做a 的平方根,也称为二次方根。
(完整版)苏教版八年级数学知识点总结
苏教版八年级数学知识点总结第一章全等三角形1.1 全等图形能够完全重合的图形叫做全等图形1.2 全等三角形两个能完全重合的三角形叫做全等三角形当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角全等三角形的对应边相等、对应角相等1.3 探索三角形全等的条件两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)第二章轴对称图形2.1 轴对称与轴对称图形把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么成这个图形是轴对称图形,这条直线就是对称轴。
2.2 轴对称的性质垂直并且平分一条线段的直线,叫做这条线段的垂直平分线成轴对称的两个图形中,对应点的连线被对称轴垂直平分2.3 设计轴对称图形2.4 线段、角的轴对称性线段垂直平分线上的点到线段两端的距离相等到线段两端距离相等的点在线段的垂直平分线上角平分线上的点到角两边的距离相等角的内部到角两边距离相等的点在角的平分线上2.5 等腰三角形的轴对称性等腰三角形的两底角相等(简称“等边对等角”)等腰三角形底边上的高线、中线及顶角平分线重合有两个角相等的三角形是等腰三角形(简称“等角对等边”)三边都相等的三角形叫做等边三角形或正三角形等边三角形的各角都等于60º三个角都相等的三角形是等边三角形有一个角是60º的等腰三角形是等边三角形直角三角形斜边上的中线等于斜边的一半等腰梯形是轴对称图形,过两底中点的直线是它的对称轴等腰梯形在同一底上的两个角相等等腰梯形的对角线相等在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形第三章 勾股定理3.1 勾股定理直角三角形两条直角边的平方和等于斜边的平方3.2 勾股定理的逆定理如果三角形的三边长分别为a 、b 、c ,且222c b a =+,那么这个三角形是直角三角形3.3 勾股定理的简单运用第四章 实数4.1 平方根如果()02>=a a x ,那么x 叫做a 的平方根,也称为二次方根。
初二下册数学知识点总结苏科版
1. 分式的定义:如果A、B表⽰两个整式,并且B中含有字母,那么式⼦A/B 叫做分式。
分式有意义的条件是分母不为零;分式值为零的条件是分⼦为零且分母不为零;2.分式的基本性质:分式的分⼦与分母同乘或除以⼀个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键是先将各分式分母分解因式4.分式的运算:分式乘法法则:分式乘分式,⽤分⼦的积作为积的分⼦,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
分式乘⽅法则:分式乘⽅要把分⼦、分母分别乘⽅。
分式的加减法则:同分母的分式相加减,分母不变,把分⼦相加减,结果化简;异分母的分式相加减,先通分,变为同分母分式,然后再加减,结果化简。
混合运算:运算顺序和整式⼀样。
能⽤运算率简算的可⽤运算率简算。
5. 任何⼀个不等于零的数的零次幂都等于1.6.正整数指数幂运算性质也可以推⼴到整数指数幂.(m,n是整数)(1)同底数的幂的乘法:底数不变指数相加;(2)幂的乘⽅: ;(3)积的乘⽅:;(4)同底数的幂的除法: ( a≠0);(5)商的乘⽅: ();(b≠0)7. 分式⽅程:含分式,并且分母中含有未知数的⽅程——分式⽅程。
解分式⽅程的过程,实质上是将⽅程两边同时乘以⼀个整式(最简公分母),把分式⽅程转化为整式⽅程。
解分式⽅程时,因为⽅程两边要同时乘以最简公分母,⽽最简公分母有可能为0,这样就可能产⽣增根,因此解分式⽅程时⼀定要验根,否则将会被扣分。
解分式⽅程的⼀般步骤:(1) ⽅程能化简的要先化为最简⽅程;(2) ⽅程两边同时乘以最简公分母,约分后化为整式⽅程;(3) 解整式⽅程;(4) 验根.(5)写出答案特别提⽰:增根应满⾜两个条件:⼀是其值应使最简公分母为0,⼆是其值应是去分母后所得的整式⽅程的根。
解分式⽅程的检验⽅法:将正确解出的整式⽅程的解带⼊最简公分母,如果最简公分母的值不为0,则整式⽅程的解是原分式⽅程的解;否则,这个解不是原分式⽅程的解。
(完整版)苏教版八年级数学下册知识点(详细精华版)
苏教版八年级下册数学知识点归纳第7 章数据的收集、整理与描述知识点一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。
(2)折线图:反映数据的变化趋势。
(3)条形图:反映每个项目的具体数据。
(4)扇形图:反映各部分在总体中所占的百分比。
(5)频数分布直方图:直观形象地反映频数分布情况。
6 )频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。
三、统计调查1、全面调查(普查):考察全体对象的调查,就是全面调查。
例如我国进行的第六次人口普查。
2、抽样调查:采用调查部分对象的方式来收集数据, 根据部分来估计整体的情况, 叫做抽样调查。
统计中常用样本特性来估计总体特性。
需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
⑴总体:所要考察对象的全体叫做总体。
⑵个体:总体中每一个考察对象叫做个体。
⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。
⑷样本容量:样本中个体的数目(不含单位)。
3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
⑴全面调查:是通过调查总体的方式来收集数据,因而得到的调查结果比较精确; 但可能要投入数十倍甚至更多的人力、物力和时间.⑵抽样调查:是通过调查样本的方式来收集数据, 因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。
【苏科版】八年级数学下册知识点梳理
【苏科版】八年级数学下册知识点梳理
一、整式与分式
- 整式的加减
- 整式的乘法
- 整式的除法
- 分式的乘除
二、一元二次方程与不等式
- 一元二次方程的解法
- 一元二次方程的应用
- 一元二次不等式的解法
- 一元二次不等式的应用
三、平面图形的认识
- 任意四边形
- 特殊四边形
- 圆的认识
- 圆的计算
四、全等与相似
- 直角三角形的性质
- 全等图形的判定与性质
- 相似图形的判定与性质
- 相似三角形的性质与判定
五、变量与函数
- 变量的概念与表示
- 函数的概念与性质
- 一次函数的性质与图像
- 一次函数与方程的应用
六、统计与概率
- 统计图与图表的分析与应用- 概率的基本概念与计算
七、数论与整式
- 整数的性质与运算
- 整数的整除与因数
- 整数的倍数与公倍数
- 整数的互质与最大公约数
八、空间几何与立体图形
- 空间几何基本概念
- 立体图形的表面积与体积计算
- 空间几何的应用
九、二次函数与解析几何初步
- 二次函数的性质与图像
- 解析几何的基本概念与性质
- 斜率与线段长度计算
- 解析几何的应用
以上为【苏科版】八年级数学下册的知识点梳理,希望对您的研究有所帮助。
苏教版八年级下数学知识点总结
第七章一元一次不等式1不等式:用不等号表示不等关系的式子叫做不等式2不等式的解:能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3不等式的性质:○1不等式的两边都加上〔或减去〕同一个整式,不等号的方向不变。
○2不等式的两边都乘〔或除以〕一个正数,不等号的方向不变。
不等式的两边都乘〔或除以〕一个负数,不等号的方向变更。
4解一元一次不等式的步骤及解一元一次方程类似。
但是,在不等式两边都乘〔或除以〕同一个不等于0的数时,必需依据这个数是正数,还是负数,正确地运用不等式的性质2,特殊要留意在不等式两边都乘〔或除以〕同一个负数时,要变更不等号的方向。
5用一元一次不等式解决问题步骤:〔1〕审:仔细审题,分清量、未知量的及其关系,找出题中不等关系,要抓住题设中的关键字“眼〞,如“大于〞、“小于〞、“不小于〞、“不大于〞等的含义。
〔2〕设:设出适当的未知数。
〔3〕列:依据题中的不等关系,列出不等式。
〔4〕解:解出所列不等式的解集。
〔5〕答:写出答案,并检验答案是否符合题意。
6一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中全部不等式的解集的公共部分叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。
一元一次不等式组解决实际问题的步骤:及一元一次不等式解决实际问题类似,不同之处在及列出不等式组,并解出不等式组。
7一元一次不等式及一元一次方程、一次函数当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值;当一次函数中的一个变量范围时,可以用一元一次不等式〔组〕确定另一个变量取值的范围。
第八章分式1分式定义:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么代数式BA 叫做分式,其中A 是分式的分子,B 是分式的分母。
2分式的根本性质: 分式的分子和分母都乘〔或除以〕同一个不等于0的整式,分式的值不变。
((完整版))苏教版八年级数学下册知识点(详细精华版),推荐文档
苏教版八年级下册数学知识点归纳第7章数据的收集、整理与描述知识点一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。
1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。
二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。
(2)折线图:反映数据的变化趋势。
(3)条形图:反映每个项目的具体数据。
(4)扇形图:反映各部分在总体中所占的百分比。
(5)频数分布直方图:直观形象地反映频数分布情况。
6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。
三、统计调查1、全面调查(普查):考察全体对象的调查,就是全面调查。
例如我国进行的第六次人口普查。
2、抽样调查:采用调查部分对象的方式来收集数据, 根据部分来估计整体的情况, 叫做抽样调查。
统计中常用样本特性来估计总体特性。
需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。
⑴总体:所要考察对象的全体叫做总体。
⑵个体:总体中每一个考察对象叫做个体。
⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。
⑷样本容量:样本中个体的数目(不含单位)。
3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。
抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。
4、【总结】全面调查与抽样调查的比较:⑴全面调查:是通过调查总体的方式来收集数据,因而得到的调查结果比较精确;但可能要投入数十倍甚至更多的人力、物力和时间.⑵抽样调查:是通过调查样本的方式来收集数据,因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欢迎阅读
第七章一元一次不等式
1不等式:用不等号表示不等关系的式子叫做不等式
2不等式的解:能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3不等式的性质:○1不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
○2不等式的两边都乘(或除以)一个正数,不等号的方向不变。
不等式的两边都乘(或除以)一个负数,不等号的方向改变。
4解一元一次不等式的步骤与解一元一次方程类似。
5
6
7
1
中A
2
B÷
B M
B⋅B M
根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式,叫做分式的约分。
根据分式的基本性质,把几个异分母的分式化成同分母的分式,叫做分式的通分。
与异分母的分数通分类似,异分母的分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。
3同分母的分式相加减:分母不变,把分子相加减
异分母的分式相加减:先通分,再加减。
4分式乘分式,用分子的积做积的分子,分母的积做积的分母;
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
5分式方程:分母中含有未知数的方程叫做分式方程。
求分式方程的解,只要在方程的两边同乘各分式的最简公分母,有时就可以将分式方程转化为一元一次方程来解。
如果由变形后的方程求得的根不合适原方程,那么这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须检验。
有时,根据实际问题列出的分式方程虽然有解,但所求得的的解不符合实际意义,所以这个实际问题仍然无解。
第九章 反比例函数
1反比例函数:一般地,形如y=x
k (k 为常数,k ≠0)的函数叫做反比例函数。
其中x 是自变量,y 是x 的函数,k 是比例系数。
2 当 当|k|积。
31在b a =c
b 2BC 与AB )的比值约为0.618,这个比值称为黄金比。
3相似图形:
各角对应相等、各边对应成比例的两个三角形叫做相似三角形
两个相似三角形对应边的比值叫做它们的相似比
类似地,如果两个边数相同的多边形的各角对应相等、各边对应成比例,那么这 多边形相似。
相似多边形的对应边的比叫做相似比。
4探索三角形相似的条件
如果一个三角形的两个三角与另一个三角形的两个角对应相等,那么这两个三角形相似。
平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。
如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
5相似三角形的性质
相似三角形周长的比等于相似比
相似多边形周长的比等于相似比
相似三角形面积的比等于相似比的平方
相似多边形面积的比等于相似比的平方
相似三角形对应高的比等于相似比
相似三角形对应中线的比、对应角平分线的比都等于相似比
6图形的位似:
性质:
注意
1
2
3
4
5
7
1
2说理
如果条件成立,那么结论成立,这样的命题叫做真命题
如果条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题
3用推理的方法证明真命题的过程叫做证明。
经过证明的真命题称为定理
证明与图形有关的命题,一般有以下步骤:
(1)根据命题,画出图形。
(2)根据命题,结合图形,写出已知、求证;已知部分是已知事项(即命题的条件),求证部分是论证的事项(即命题的结论)
(3)写出证明过程
定理:内错角相等,两直线平行
两直线平行,内错角相等
两直线平行,同旁内角互补
三角形内角和定理:三角形三个内角的和等于180°
三角形内角和定理的推论:三角形的一个外角等于和它不相邻的两个内角的和
三角形的一个外角大于任何一个和它不相邻的内角
直角三角形的两个锐角互余
4互逆命题:两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题把一个命题的条件和结论互换就得到它的逆命题,所以每个命题都有逆命题
判断一个命题是假命题,只需举出一个反例就行了
1
2发生,3。