柱坐标系与球坐标系 ppt课件
坐标系柱坐标系与球坐标系简介
坐标系柱坐标系与球坐标系简介pptxx年xx月xx日contents •引言•坐标系柱坐标系•坐标系球坐标系•柱坐标系与球坐标系的比较•如何选择合适的坐标系•坐标系在科学领域的应用及发展目录01引言描述物体位置和运动的基本工具为定量描述提供基础应用于不同领域如物理、地理、工程等坐标系在科学领域的重要性坐标系基本概念及分类直角坐标系极坐标系Array基于距离和角度基于三个互相垂直的坐标轴圆柱坐标系球坐标系基于距离、角度和高度基于距离、角度和极角本次报告的主要内容比较两种坐标系的优缺点和适用范围举例说明在物理学和工程学中的应用柱坐标系与球坐标系的定义、性质和应用02坐标系柱坐标系1柱坐标系基本概念23是三维坐标系的一种,利用长度、角度和高度来描述点的位置。
柱坐标系以长度为r、角度为θ、高度为z三个参数来表示点的位置。
圆柱坐标系以球半径R、角度θ和 φ来表示点的位置,其中θ表示经度,φ表示纬度。
球面坐标系通过将直角坐标系的x、y坐标值分别替换为r和θ角度值,将z 坐标值保持不变即可实现转换。
直角坐标系转换为柱坐标系需要将r、θ和z三个参数转换为x、y、z三个方向的坐标值,其中x=r*cos(θ),y=r*sin(θ),z=z。
柱坐标系转换为直角坐标系柱坐标系与直角坐标系转换1柱坐标系应用举例23在地球物理学中,柱坐标系常被用于描述地球表面和内部的结构和特征。
在电磁学中,柱坐标系常被用于描述圆柱形导体中的电场和磁场分布。
在流体力学中,柱坐标系常被用于描述管道内的流体流动和传热等物理现象。
03坐标系球坐标系球坐标系是三维坐标系的一种,由一个原点、一个在原点正上方的北极点以及一条从原点出发,指向北极点的极轴构成。
球坐标系基本概念定义径向距离、角度和高度。
三个基本元素在球坐标系中,点的位置由径向距离、角度和高度三个参数确定。
坐标表示直角坐标系转换为球坐标系通过将直角坐标系的三个轴分别投影到球坐标系的三个元素上,可以得到球坐标系表示的点。
人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
第1章 3 柱坐标系和球坐标系
§3 柱坐标系和球坐标系1.柱坐标系(1)定义:在平面极坐标系的基础上,通过极点O ,再增加一条与极坐标系所在平面垂直的z 轴,这样就建立了柱坐标系.设M (x ,y ,z )为空间一点,并设点M 在xOy 平面上的投影点P 的极坐标为(r ,θ),则这样的三个数r ,θ,z 构成的有序数组(r ,θ,z )就叫作点M 的柱坐标,这里规定r ,θ,z 的变化范围为0≤r <+∞,0≤θ<2π,-∞<z <+∞.特别地,r =常数,表示的是以z 轴为轴的圆柱面;θ=常数,表示的是过z 轴的半平面;z =常数,表示的是与xOy 平面平行的平面.(2)空间点M 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎨⎧x =ρcos θ,y =ρsin θ,z =z .2.球坐标系(1)定义:设M (x ,y ,z )为空间一点,点M 可用这样三个有次序的数r ,φ,θ来确定,其中r 为原点O 到点M 间的距离,φ为有向线段OM→与z 轴正方向所夹的角,θ为从z 轴正半轴看,x 轴正半轴按逆时针方向旋转到有向线段OP →的角,这里P 为点M 在xOy 平面上的投影.这样的三个数r ,φ,θ构成的有序数组(r ,φ,θ)叫作点M 的球坐标,这里r ,φ,θ的变化范围为0≤r <+∞,0≤φ≤π,0≤θ<2π.特别地, r =常数,表示的是以原点为球心的球面;φ=常数,表示的是以原点为顶点,z 轴为轴的圆锥面; θ=常数,表示的是过z 轴的半平面.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =r ·sin φ·cos θ,y =r ·sin φ·sin θ,z =r cos φ.【思维导图】【知能要点】 1.柱坐标系. 2.球坐标系.3.空间点的坐标的确定.题型一 柱坐标系柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的一部分建立起来的.空间任一点P 的位置可以用有序数组(ρ,θ,z )表示,(ρ,θ)是点P 在Oxy 平面上的射影Q 的极坐标,z 是P 在空间直角坐标系中的竖坐标. 【例1】 柱坐标满足方程ρ=2的点所构成的图形是什么?解 在平面极坐标系中,ρ=2表示以极点为圆心,2为半径的圆.因此,在柱坐标系中,设Oz 轴所在的直线为l ,则方程ρ=2表示以l 为轴,且垂直于轴的截面是半径为2的圆柱面.【反思感悟】 柱坐标满足ρ=2的点可以和平面直角坐标系中满足x =1的点构成一条直线,空间直角坐标系中满足y =2的点构成的图形是一个平面结合考虑.1.将下列各点的柱坐标化为直角坐标. P ⎝ ⎛⎭⎪⎫2,π6,1,Q ⎝ ⎛⎭⎪⎫4,23π,-3 解直接代入互化公式⎩⎨⎧x =ρcos θy =ρsin θz =z,可得P 的直角坐标为(3,1,1),Q 点的直角坐标为(-2,23,-3).题型二 球坐标系球坐标系又称空间极坐标系,用空间任意一点P 到O 的距离r 以及两个角θ,φ来刻画点P 的位置.【例2】 经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻离地面2 384千米的位置,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P 的坐标.解 在赤道平面上,我们选取地球球心为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立平面极坐标系,在此基础上,取以O 为端点且经过北极的射线Oz (垂直于赤道平面)为另一条极轴,如图所示建立一个球坐标系.由已知航天器位于经度为80°,可知θ=80°,由航天器位于纬度75°,可知,φ=90°-75°=15°,由航天器离地面2 384千米,地球半径为6 371千米,可知r =2 384+6 371=8 755千米.所以点P 的球坐标为(8 755,15°,80°).【反思感悟】 写空间任一点的球半径,就是求该点到点O 的距离和方位角、高低角.两个角可以和地球的经纬度相结合,要搞清它们的联系和区别.2.在赤道平面上,我们选取地球球心O 为极点,以O 为端点且与零子午线相交的射线Ox 为极轴,建立坐标系.有A ,B 两个城市,它们的球坐标分别为A ⎝ ⎛⎭⎪⎫R ,π4,π6,B ⎝ ⎛⎭⎪⎫R ,π4,2π3,飞机应该走怎样的航线最快,所走的路程有多远?解 由题意可知面AOO 1,面BOO 1都垂直于两圆平面, ∴∠AO 1B 是两平面AOO 1和BOO 1的夹角, 又∵A ⎝ ⎛⎭⎪⎫R ,π4,π6,B ⎝ ⎛⎭⎪⎫R ,π4,2π3,∴∠AO 1B =2π3-π6=π2, ∠AOO 1=∠BOO 1=π4, ∠AO 1O =∠BO 1O ,∴小圆O1的半径r=22R,∴AB=R,∴∠AOB=π3,则经过A、B两地的球面距离为π3R.故飞机经过A、B两地的大圆,航线最短,其路程为π3R.题型三空间点的坐标1.空间直角坐标系中点的坐标是由横坐标、纵坐标和竖坐标三度来确定的,即(x,y,z).2.空间点的柱坐标是由平面极坐标系及空间直角坐标系中的竖坐标组成的,即(ρ,θ,z).3.(1)空间点的球坐标是点和原点的连线与x轴正方向所成的角θ,与z轴的正方向所成的角φ,以及点到原点的距离r组成的,即(r,φ,θ).(2)注意球坐标的顺序为:①到原点的距离r;②与z轴正方向所成的角φ;③与x轴正方向所成的角θ.【例3】已知长方体ABCD—A1B1C1D1的边长为AB=14,AD=6,AA1=10,以这个长方体的顶点A为坐标原点,以射线AB、AD、AA1分别为Ox、Oy、Oz 轴的正半轴,建立空间直角坐标系,求长方体顶点C1的空间直角坐标,球坐标,柱坐标.分析如图所示,此题是考查空间直角坐标,球坐标,柱坐标的概念,我们要能借此区分三个坐标,找到它们的相同和不同来.C1点的(x,y,z),分别对应着CD、BC、CC1,C1点的(ρ,θ,z)分别对应着CA、∠DCA、CC1,C1点的(r,φ,θ)分别对应着AC1、∠A1AC1、∠BAC.解C1点的空间直角坐标为(14,6,10),C1点的柱坐标为(258,arctan 37,10),C 1点的球坐标为⎝⎛⎭⎪⎫283,arccos 58383,arctan37. 【反思感悟】 注意空间任一点的直角坐标、球坐标和柱坐标的联系和区别,它们都能刻画点的位置,可以进行互化.3.结晶体的基本单位称为晶胞,图(1)是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体),图形中的点代表钠原子,其他点代表氯原子,如图(2)所示,建立空间直角坐标系O -xyz 后,试写出全部钠原子所在位置的球坐标,柱坐标.解 把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的球坐标分别为(0,0,0),⎝ ⎛⎭⎪⎫1,π2,0,⎝ ⎛⎭⎪⎫2,π2,π4,⎝ ⎛⎭⎪⎫1,π2,π2,⎝ ⎛⎭⎪⎫22,π2,π4,它们的柱坐标分别为(0,0,0),(1,0,0),⎝ ⎛⎭⎪⎫2,π4,0,⎝ ⎛⎭⎪⎫1,π2,0,⎝ ⎛⎭⎪⎫22,π4,0; 上层的钠原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为1,所以,这五个钠原子所在位置的球坐标分别为(1,0,0),⎝ ⎛⎭⎪⎫2,π4,0,⎝ ⎛⎭⎪⎫3,arctan 2,π4,⎝ ⎛⎭⎪⎫2,π4,π2,⎝ ⎛⎭⎪⎫62,arctan 22,π4,它们的柱坐标分别为(0,0,1),(1,0,1),⎝ ⎛⎭⎪⎫2,π4,1,⎝ ⎛⎭⎪⎫1,π2,1,⎝ ⎛⎭⎪⎫22,π4,1. 中层的原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为12,所以,这四个钠原子所在位置的球坐标分别为⎝ ⎛⎭⎪⎫22,π4,0,⎝ ⎛⎭⎪⎫62,arccos 66,arctan 12,⎝ ⎛⎭⎪⎫62,arccos 66,arctan 2,⎝ ⎛⎭⎪⎫22,π4,π2,它们的柱坐标分别为⎝ ⎛⎭⎪⎫12,0,12,⎝ ⎛⎭⎪⎫52,arctan 12,12,⎝ ⎛⎭⎪⎫52,arctan 2,12,⎝ ⎛⎭⎪⎫12,π2,121.一个圆形体育馆,自正东方向起,按逆时针方向等分为十六个扇形区域,顺次记为一区,二区,…,十六区,我们设圆形体育场第一排与体育中心O 的距离为500 m ,每相邻两排的间距为1 m ,每层看台的高度为0.7 m ,现在需要确定第九区第四排正中的位置A ,请建立适当的坐标系,求出点A 的坐标.解 以圆形体育场中心O 为极点,选取以O 为端点且过正东入口的射线Ox 为极轴,在地平面上建立极坐标系.则点A 与体育场中轴线Oz 的距离为503 m ,极轴Ox 按逆时针方向旋转17π16,就是OA 在地平面上的射影,A 距地面的高度为2.8 m ,因此我们可以用柱坐标来表示点A 的准确位置.所以点A 的柱坐标为⎝ ⎛⎭⎪⎫503,17π16,2.8. 2.一只蚂蚁在一个母线与轴线夹角为π3的圆锥面上从顶点出发盘旋着向上爬行,已知它上升的速度为v >0,盘旋的角速度为ω>0,求t 时刻蚂蚁所在的位置的球坐标.解 取圆锥的顶点O 为坐标原点,建立球坐标系,设t 时刻蚂蚁在点M (r ,φ,θ)处,由题意得θ=ωt ,z =v t ,φ=π3, 由于z r =cos φ=cos π3=12, 于是r =2z =2v t ,所以t 时刻蚂蚁在球坐标系中的位置为M ⎝ ⎛⎭⎪⎫2v t ,π3,ωt , t ∈[0,+∞).3.摊开世界地图,问初次降临地球的外星人:台湾在哪里?阿根廷的Formosa(福尔摩沙)省又位于何处(如图所示)?外星人必然一头雾水,如果你再给他一组数据:.想一想,它们的位置有什么关联?解两地经度差180°,纬度相反.故它们位于地球同一直径的两个端点上.1.空间点的坐标的确定(1)空间直角坐标系中点的坐标是由横坐标、纵坐标和竖坐标三度来确定的,即(x,y,z).(2)空间点的柱坐标是由平面极坐标系及空间直角坐标系中的竖坐标组成的,即(ρ,θ,z).(3)空间点的球坐标是点在Oxy平面上的射影和原点的连线与x轴正方向所成的角θ,点和原点的连线与z轴的正方向所成的角φ,以及点到原点的距离r组成的,即(r,φ,θ).注意球坐标的顺序为:①到原点的距离r;②与z轴正方向所成的角φ;③与x轴正方向所成的角θ.2.球坐标的应用在球坐标系中,它的三度实际上也是我们所熟悉的,它与前面所学的球的一些基本知识是有着密切联系的.我们得熟悉这部分内容.(1)经线与经度:地球球面上从北极到南极的半个大圆叫做经线,规定以经过英国格林尼治天文台原址的经线为0°经线.一个地方的经度是指经过当地经线的所在半平面和0°经线所在半平面之间的夹角的度数,以0°经线为基准,向东度量的为东经,向西度量的为西经.如东经30°,西经60°等.(2)纬线与纬度:与地轴(通过北极和南极的直线)垂直的平面截地球球面所得的圆叫做纬线(纬线圈),其中的大圆叫做赤道.一个地方的纬度是指当地与球心的连线和地球赤道平面之间所成的角的度数,赤道为0°纬线;以赤道为基准,向北度量为北纬,向南度量为南纬.如北纬25°,南纬23.5°.与球坐标比较,点P (r ,φ,θ)中的r 是到球心的距离,φ与纬度是互余的;θ与经度是相关的,若建立适当的坐标系,θ就是经度. 【规律方法总结】1.根据图形的特征,可以选择不同的坐标系来确定点的位置.2.点的直角坐标、柱坐标、球坐标可以相互转化.3.利用柱坐标系、球坐标系解决空间点的位置时,对于含角度的比较方便.一、选择题1.已知点P 的柱坐标为⎝ ⎛⎭⎪⎫2,π4,5,点B 的球坐标为⎝ ⎛⎭⎪⎫6,π3,π6,则这两个点在空间直角坐标系中的点的坐标为( ) A.P 点(5,1,1),B 点⎝ ⎛⎭⎪⎫364,324,62B.P 点(1,1,5),B 点⎝ ⎛⎭⎪⎫364,324,62 C.P 点⎝ ⎛⎭⎪⎫364,324,62,B 点(1,1,5) D.P 点(1,1,5),B 点⎝ ⎛⎭⎪⎫62,364,324 解析 设P 点的直角坐标为(x ,y ,z ),x =2·cos π4=2·22=1,y =2·sin π4=1,z =5. 设B 点的直角坐标为(x ,y ,z ), x =6·sin π3·cos π6=6·32·32=364, y =6·sin π3·sin π6=6·32·12=324,z =6·cos π3=6·12=62.所以,点P 的直角坐标为(1,1,5),点B 的直角坐标为⎝ ⎛⎭⎪⎫364,324,62. 答案 B2.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( ) A.⎝ ⎛⎭⎪⎫2,π3,3 B.⎝ ⎛⎭⎪⎫2,2π3,3 C.⎝ ⎛⎭⎪⎫2,4π3,3D.⎝ ⎛⎭⎪⎫2,5π3,3 解析 ∵ρ=(-1)2+(-3)2=2,θ=43π,z =3.∴M 的柱坐标为⎝ ⎛⎭⎪⎫2,43π,3.答案 C3.设点M 的直角坐标为(-1,-1,2),则它的球坐标为( ) A.⎝ ⎛⎭⎪⎫2,π4,π4 B.⎝ ⎛⎭⎪⎫2,π4,5π4 C.⎝ ⎛⎭⎪⎫2,5π4,π4D.⎝ ⎛⎭⎪⎫2,3π4,π4 解析 由变换公式r =x 2+y 2+z 2=2,cos φ=z r =22,∴φ=π4.∵tan θ=y x =1,∴θ=54π. ∴M 的球坐标为⎝ ⎛⎭⎪⎫2,π4,54π.答案 B4.点M 的球坐标为⎝ ⎛⎭⎪⎫8,π3,56π则它的直角坐标为( )A.(-6,23,4)B.(6,23,4)C.(-6,-23,4)D.(-6,23,-4)解析 由x =8sin π3cos 5π6=-6,y =8sin π3sin 5π6=23,z =8cos π3=4, 得点M 的直角坐标为(-6,23,4).答案 A5.点P 的柱坐标为⎝ ⎛⎭⎪⎫8,π4,2,则点P 到原点的距离为( ) A.17 B.217 C.417D.817解析 x =8cos π4=42,y =8sin π4=42, ∴柱坐标化为直角坐标为(42,42,2), |OP |=32+32+4=68=217.答案 B 二、填空题6.在球坐标系中A ⎝ ⎛⎭⎪⎫2,π4,π4和B ⎝ ⎛⎭⎪⎫2,3π4,3π4的距离为________.解析 把A 、B 两点的球坐标化为直角坐标为A ()1,1,2, B ()-1,1,-2. |AB |=(1+1)2+(1-1)2+(2+2)2=12=2 3.答案 2 37.在空间的柱坐标系中,方程ρ=2表示________. 解析 在极坐标系中,ρ=2表示圆心在极点半径为2的圆.在柱坐标系中方程ρ=2表示以z 轴为中轴线的,半径为2的圆柱面. 答案 以z 轴为中轴线的,半径为2的圆柱面8.已知点M 的球坐标为⎝ ⎛⎭⎪⎫4,π4,34π,点N 的球坐标为⎝ ⎛⎭⎪⎫4,-π4,34π,则M 、N 两点间的距离为________.解析 x =4sin π4cos 3π4=4·22·⎝ ⎛⎭⎪⎫-22=-2, y =4sin π4sin 3π4=4·22·22=2,z =4cos π4=4·22=22,∴点M 的直角坐标为(-2,2,22).同理点N 的直角坐标为(2,-2,22),∴|MN |=16+16=4 2.答案 4 29.在球坐标系中,方程r =1表示______________________,方程φ=π4表示空间的________________________.解析 r =1表示球心在原点半径为1的球面,φ=π4表示顶点在原点,母线与z 轴夹角为π4的圆锥面.答案 球心在原点,半径为1的球面 顶点在原点,轴截面夹角为π2的圆锥面三、解答题10.如图所示,在长方体OABC -D ′A ′B ′C ′中,|OA |=3,|OC |=5,|OD ′|=3,A ′C ′与B ′D ′相交于点P ,分别写出点C 、B ′、P 的柱坐标.解 C 点的ρ、θ分别为|OC |及∠COA .B ′点的ρ为|OB |=|OA |2+|AB |2=32+52=34;θ=∠BOA ,而tan ∠BOA =|AB ||OA |=53,所以∠BOA =arctan 53.P 点的ρ、θ分别为OE 、∠AOE ,|OE |=12|OB |=342,∠AOE =∠AOB .∴各点的柱坐标为C ⎝ ⎛⎭⎪⎫5,π2,0,B ′⎝ ⎛⎭⎪⎫34,arctan 53,3,P ⎝ ⎛⎭⎪⎫342,arctan 53,3.11.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A ⎝ ⎛⎭⎪⎫8,π4,θA 、B ⎝ ⎛⎭⎪⎫8,34π,θB ,求出这两个截面间的距离. 解 在△OO 1A 中,由球坐标知∠AOO 1=π4,|OA |=8,∴|OO 1|=8cos ∠AOO 1=8×22=42,同理在△OO 2B 中,|OB |=8,∠O 2OB =π4,∴OO 2=42,∴O 1O 2=82, ∴两个截面间的距离为8 2.12.在柱坐标系中,求满足⎩⎨⎧ρ=1,0≤θ<2π,0≤z ≤2的动点M (ρ,θ,z )围成的几何体的体积.解 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z ≤2的动点M (ρ,θ,z )的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r=1,h =2,∴V =Sh =πr 2h =2π(体积单位).习题1-3 (第22页)1.解 点A 的柱坐标为(3,0,3),球坐标为⎝ ⎛⎭⎪⎫32,π4,0; 点B 的柱坐标为⎝ ⎛⎭⎪⎫2,π2,2,球坐标为⎝ ⎛⎭⎪⎫22,π4,π2; 点C 的柱坐标为⎝ ⎛⎭⎪⎫42,π4,0,球坐标为⎝ ⎛⎭⎪⎫42,π2,π4. 图略2.解 点A 的直角坐标为(-22,22,2);点B 的直角坐标为(3,33,-5). 图略.3.解 点M 的直角坐标为⎝ ⎛⎭⎪⎫12,32,3;点N 的直角坐标为(6,23,4).。
柱坐标系和球坐标系
§3柱坐标系和球坐标系1.柱坐标系如图1-3-1,建立空间直角坐标系O -xyz .设M (x ,y ,z )为空间一点,并设点M 在xOy 平面上的投影点P 的极坐标为(r ,θ),则这样的三个数r ,θ,z 构成的有序数组(r ,θ,z )就叫作点M 的柱坐标,这里规定r ,θ,z 的变化范围为0≤r <+∞,0≤θ<2π,-∞<z <+∞.图1-3-1特别地,r =常数,表示的是以z 轴为轴的圆柱面;θ=常数,表示的是过z 轴的半平面; z =常数,表示的是与xOy 平面平行的平面. 2.球坐标系设M (x ,y ,z )为空间一点,点M 可用这样三个有次序的数r ,φ,θ来确定,其中r 为原点O 到点M 间的距离,φ为有向线段OM →与z 轴正方向所夹的角,θ为从z 轴正半轴看,x 轴正半轴按逆时针方向旋转到有向线段O P →的角,这里P 为点M 在xOy 平面上的投影(如图1-3-2).这样的三个数r ,φ,θ构成的有序数组(r ,φ,θ)叫作点M 的球坐标,这里r ,φ,θ的变化范围为0≤r <+∞,0≤φ≤π,0≤θ<2π.图1-3-2特别地,r =常数,表示的是以原点为球心的球面;φ=常数,表示的是以原点为顶点,z 轴为轴的圆锥面; θ=常数,表示的是过z 轴的半平面. 3.空间中点的坐标之间的变换公式设空间一点M 的直角坐标为(x ,y ,z ),柱坐标为(r ,θ,z ),球坐标为(r ,φ,θ),则1.空间中点的三种坐标各有何特点?【提示】 设空间中点M 的直角坐标为(x ,y,z ),柱坐标为(r ,θ,z ),球坐标为(r ,φ,θ),它们都是有序数组,但意义不同.直角坐标为三个实数;柱坐标分别表示距离、角、实数;球坐标分别表示距离、角、角.2.在空间的柱坐标系中,方程r =r 0(r 0为不等于0的常数),θ=θ0,z =z 0分别表示什么图形?【提示】 在空间的柱坐标系中,方程r =r 0表示中心轴为z 轴,底半径为r 0的圆柱面,它是上述圆周沿z 轴方向平行移动而成的.方程θ=θ0表示与zOx 坐标面成θ0角的半平面.方程z =z 0表示平行于xOy 坐标面的平面,如图所示.常把上述的圆柱面、半平面和平面称为柱坐标系的三族坐标面. 3.在空间的球坐标系中,方程r =r 0(r 0为正常数),θ=θ0(0≤θ0<2π),φ=φ0(0≤φ0<π),各表示什么图形?【提示】 在空间的球坐标系中,方程r =r 0(r 0为正常数),表示球心在原点,半径为r 0的球面;方程θ=θ0(0≤θ0<2π),表示过z 轴的半平面,它与zOx 坐标面的夹角为θ0;方程φ=φ0(0≤φ0≤π),表示顶点在原点,半顶角为φ0的圆锥面,它的中心轴是z 轴,φ0<π2时它在上半空间,φ0>π2时它在下半空间,φ0=π2时它是xOy 平面(如图所示).根据下列点的柱坐标,分别求直角坐标:(1)(2,5π6,3);(2)(2,π4,5). 【思路探究】柱坐标――→x =r cos θy =r sin θz =z直角坐标 【自主解答】 设点的直角坐标为(x ,y ,z ). (1)∵(r ,θ,z )=(2,5π6,3),∴⎩⎪⎨⎪⎧x =r cos θ=2cos 5π6=-3,y =r sin θ=2sin 5π6=1,z =3,∴(-3,1,3)为所求.(2)∵(r ,θ,z )=(2,π4,5),∴⎩⎪⎨⎪⎧x =r cos θ=2cos π4=1,y =r sin θ=2sin π4=1,z =5,∴(1,1,5)为所求.点(r ,θ,z )是三维空间坐标系中的点的坐标,在平面xOy 内实际为极坐标系,且r ≥0,0≤θ<2π,在竖直方向上,z 为任意实数.化点的柱坐标(r ,θ,z )为直角坐标(x ,y ,z ),需要运用公式⎩⎪⎨⎪⎧x =r cos θy =r sin θz =z 转化为三角函数的求值与运算即得.将下列各点的柱坐标分别化为直角坐标: (1)(2,π6,1);(2)(1,π,0).【解】 设点的直角坐标为(x ,y ,z ), (1)∵(r ,θ,z )=(2,π6,1),∴⎩⎪⎨⎪⎧x =r cos θ=2cos π6=3,y =r sin θ=2sin π6=1,z =1,∴(3,1,1)为所求.(2)∵(r ,θ,z )=(1,π,0), ∴⎩⎪⎨⎪⎧x =r cos θ=cos π=-1,y =r sin θ=sin π=0,z =0,∴(-1,0,0)为所求.把下列各点的球坐标化为直角坐标.(1)(2,34π,54π);(2)(6,π3,π6). 【思路探究】球坐标――→x =r sin φcos θy =r sin φsin θz =r cos φ直角坐标【自主解答】 设点的直角坐标为(x ,y ,z ), (1)∵(r ,φ,θ)=(2,3π4,5π4),∴⎩⎪⎨⎪⎧x =r sin φcos θ=2sin 3π4cos 5π4=-1,y =r sin φsin θ=2sin 3π4sin 5π4=-1,z =r cos φ=2cos 3π4=-2,∴(-1,-1,-2)为所求. (2)∵(r ,φ,θ)=(6,π3,π6),∴⎩⎪⎨⎪⎧x =r sin φcos θ=6sin π3cos π6=364,y =r sin φsin θ=6sin π3sin π6=324,z =r cos φ=6cos π3=62,∴(364,324,62)为所求.首先要明确点的球坐标(r ,φ,θ)中角φ,θ的边与数轴Oz ,Ox 的关系,注意各自的限定范围,即0≤φ≤π,0≤θ<2π.化点的球坐标(r ,φ,θ)为直角坐标(x ,y ,z ),需要运用公式⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z=r cos φ转化为三角函数的求值与运算.将下列各点的球坐标分别化为直角坐标: (1)(6,π3,23π);(2)(3,π,π). 【解】 设点的直角坐标为(x ,y ,z ) (1)∵(r ,φ,θ)=(6,π3,2π3),∴⎩⎪⎨⎪⎧x =r sin φcos θ=6sin π3cos 2π3=-332,y =r sin φsin θ=6sin π3sin 2π3=92,z =r cos φ=6cos π3=3,∴(-332,92,3)为所求. (2)∵(r ,φ,θ)=(3,π,π),∴⎩⎪⎨⎪⎧x =r sin φcos θ=3sin πcos π=0,y =r sin φsin θ=3sin πsin π=0,z =r cos φ=3cos π=-3,∴(0,0,-3)为所求.坐标图1-3-3已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图1-3-3,建立空间直角坐标系A -xyz ,以Ax 为极轴,求点C 1的直角坐标、柱坐标以及球坐标.【思路探究】 先求C 1的直角坐标,再根据柱坐标、球坐标与直角坐标的关系,求得其柱坐标、球坐标.【自主解答】 点C 1的直角坐标为(1,1,1).设点C 1的柱坐标为(r ,θ,z ),球坐标为(r ,φ,θ),其中r ≥0,r ≥0,0≤φ≤π,0≤θ<2π.由公式⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ,z =z及⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ,得⎩⎨⎧r =x 2+y 2,tan θ=yx (x ≠0),及⎩⎨⎧r =x 2+y 2+z 2,cos φ=z r ,得⎩⎪⎨⎪⎧r =2,tan θ=1,及⎩⎨⎧r =3,cos φ=33,结合图形,得θ=π4, 由cos φ=33得tan φ= 2.所以点C 1的直角坐标为(1,1,1),柱坐标为(2,π4,1),球坐标为(3,φ,π4),其中tan φ=2,0≤φ≤π.化点M 的直角坐标(x ,y ,z )为柱坐标(r ,θ,z )或球坐标(r ,φ,θ),需要对公式⎩⎪⎨⎪⎧x =r cos θy =r sin θz =z以及⎩⎪⎨⎪⎧x =r sin φcos θy =r sin φsin θz =r cos φ进行逆向变换,得到⎩⎪⎨⎪⎧r =x 2+y 2tan θ=yx(x ≠0)z =z以及⎩⎨⎧r =x 2+y 2+z 2,cos φ=zr .提醒在由三角函数值求角时,要结合图形确定角的范围再求值.若本例中条件不变,求点C 、D 的柱坐标与球坐标.【解】 结合图形知点C 的直角坐标为(1,1,0),柱坐标为(2,π4,0),球坐标为(2,π2,π4),同样点D的直角坐标为(0,1,0),柱坐标为(1,π2,0),球坐标为(1,π2,π2).(教材第22页练习第1题)如图1-3-4,把边长为1个单位长度的正方体分别放到空间直角坐标系中的不同位置,试说出正方体各个顶点的柱坐标和球坐标.图1-3-4(2013·镇江模拟)结晶体的基本单位称为晶胞,如图1-3-5是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体).图形中的点代表钠原子,如图1-3-6,建立空间直角坐标系O —xyz 后,试写出下层钠原子所在位置的球坐标、柱坐标.图1-3-5图1-3-6【命题意图】 本题以食盐晶胞为载体,主要考查柱坐标系及球坐标系在确定空间点的位置中的应用.【解】 下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的球坐标分别为(0,0,0),(1,π2,0),(2,π2,π4),(1,π2,π2),(22,π2,π4);它们的柱坐标分别为(0,0,0),(1,0,0),(2,π4,0),(1,π2,0),(22,π4,0).1.要刻画绕地球运转的某气象卫星的位置,应适合运用( ) A .极坐标系 B .空间直角坐标系 C .柱坐标系D .球坐标系【解析】 由题意知D 正确. 【答案】 D2.已知点A 的柱坐标为(1,0,1),则点A 的直角坐标为( )A .(1,1,0)B .(1,0,1)C .(0,1,1)D .(1,1,1)【解析】 由点A 的柱坐标为(1,0,1)知,r =1,θ=0,z =1, 故x =r cos θ=1,y =r sin θ=0,z =1,所以直角坐标为(1,0,1). 【答案】 B3.已知点A 的球坐标为(3,π2,π2),则点A 的直角坐标为( ) A .(3,0,0) B .(0,3,0) C .(0,0,3)D .(3,3,0)【解析】 ∵x =3×sin π2×cos π2=0,y =3×sin π2×sin π2=3,z =2×cos π2=0,∴直角坐标为(0,3,0).故选B. 【答案】 B4.设点M 的直角坐标为(1,1,2),则点M 的柱坐标为________,球坐标为________.【解析】 由坐标变换公式,可得ρ=x 2+y 2=2,tan θ=y x =1,θ=π4(点(1,1)在平面xOy 的第一象限),r =x 2+y 2+z 2=12+12+(2)2=2. 由r cos φ=z =2, 得cos φ=2r =22,φ=π4.∴点M 的柱坐标为(2,π4,2),球坐标为(2,π4,π4). 【答案】 (2,π4,2) (2,π4,π4)一、选择题1.在空间球坐标系中,方程r =2(0≤φ≤π2,0≤θ<2π)表示( ) A .圆 B .半圆 C .球面 D .半球面【解析】 由球坐标系的定义知,r =2(0≤φ≤π2,0≤θ<2π)表示半球面,故选D.【答案】 D2.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( ) A .(2,π3,3) B .(2,2π3,3)C .(2,4π3,3)D .(2,5π3,3)【解析】 ∵r =(-1)2+(-3)2=2,θ=4π3,z =3,∴M 的柱坐标为(2,4π3,3),故选C. 【答案】 C3.设点M 的直角坐标为(-1,-1,2),则它的球坐标为( ) A .(2,π4,π4) B .(2,π4,5π4) C .(2,5π4,π4) D .(2,3π4,π4)【解析】 由坐标变换公式,得r =x 2+y 2+z 2=2,cos φ=zr =22,∴φ=π4.∵tan θ=y x =-1-1=1,∴θ=54π,∴M 的球坐标为(2,π4,54π),故选B. 【答案】 B4.已知点M 的球坐标为(4,π4,3π4),则点M 到Oz 轴的距离为( ) A .2 2 B. 2 C .2 D .4【解析】 设点M 的直角坐标为(x ,y ,z ), ∵(r ,φ,θ)=(4,π4,3π4),∴⎩⎪⎨⎪⎧x =r sin φcos θ=4sin π4cos 3π4=-2,y =r sin φsin θ=4sin π4sin 3π4=2,z =r cos φ=4cos π4=22,∴M (-2,2,22),到Oz 轴的距离为(-2)2+22=2 2.故选A. 【答案】 A 二、填空题5.若点M 的球坐标为(3,5π6,5π3),则点M 的直角坐标为________. 【解析】 设M 的直角坐标为(x ,y ,z )则⎩⎪⎨⎪⎧x =r sin φcos θ=3sin 5π6cos 5π3=34,y =r sin φsin θ=3sin 5π6sin 5π3=-334,z =r cos φ=3cos 5π6=-332.∴点M 的直角坐标为(34,-334,-332). 【答案】 (34,-334,-332)6.(2013·长春检测)在柱坐标系中,点M 的柱坐标为(2,23π,5),则|OM |=________.【解析】 设点M 的直角坐标为(x ,y ,z ). 由(r ,θ,z )=(2,23π,5)知x =r cos θ=2cos 23π=-1, y =2sin 23π= 3. 因此|OM |=x 2+y 2+z 2 =(-1)2+(3)2+(5)2=3. 【答案】 3 三、解答题7.已知点P 的柱坐标为(2,π4,5),点B 的球坐标为(6,π3,π6),求这两个点的直角坐标.【解】 设点P 的直角坐标为(x ,y ,z ), 则x =2cos π4=2×22=1, y =2sin π4=1,z =5.设点B 的直角坐标为(x ,y ,z ),则x =6sin π3cos π6=6×32×32=364, y =6sin π3sin π6=6×32×12=324, z =6cos π3=6×12=62.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为(364,324,62). 8.经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2 384千米,地球半径为6 371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P 的坐标.【解】 在赤道平面上,选取地球球心为极点,以O 为原点且与零子午线相交的射线Ox 为极轴,建立球坐标系.由已知航天器位于经度为80°,可知θ=80°=49π.由航天器位于纬度75°,可知,φ=90°-75°=15°=π12,由航天器离地面2 384千米,地球半径为6 371千米,可知r =2 384+6 371=8 755千米.所以点P 的球坐标为(8 755,π12,4π9).9.在柱坐标系中,求满足⎩⎪⎨⎪⎧r =1,0≤θ<2π0≤z ≤2,的动点M (r ,θ,z )围成的几何体的体积.【解】 根据柱坐标系与点的柱坐标的意义可知,满足r =1,0≤θ<2π,0≤z ≤2的动点M (r ,θ,z )的轨迹如图所示,是以直线Oz 为轴,轴截面为正方形的圆柱.圆柱的底面半径r =1,h =2. 所以V =Sh =πr 2h =2π.教师备选10.已知在球坐标系Oxyz 中,M (6,π3,π3),N (6,2π3,π3),求|MN |. 【解】 法一 由题意知,|OM |=|ON |=6,∠MON =π3, ∴△MON 为等边三角形,∴|MN |=6. 法二 设M 点的直角坐标为(x ,y ,z ),则⎩⎪⎨⎪⎧x =6sin π3cos π3=332,y =6sin π3sin π3=92,z =6cos π3=3.故点M 的直角坐标为(332,92,3), 同理得点N 的直角坐标为(332,92,-3), ∴|MN |=(323-323)2+(92-92)2+(3+3)2=0+0+62=6.。
简单曲线的极坐标方程 柱坐标系与球坐标系简介课件
题型四 极坐标系中曲线位置关系
例4 已知曲线 C1,C2 的极坐标方程分别为 ρcos θ=3,ρ=
2.柱坐标系 一般地,如图建立空间直角坐标系Oxyz.设P是空间_任_意___ 一点,它在Oxy平面上的射__影____为Q,用(ρ,θ)(ρ≥0,0≤θ<2π) ___________________表极示坐点标Q在平面Oxy上的
__________,
这时点的位置可用有序数组_ρ_,_θ_,_z_(z_∈__R_)__表示.这样,我
【解】 法一:将极坐标方程 ρ=3 转化为普通方程:x2+y2 =9,ρ(cos θ+ 3sin θ)=2 可化为 x+ 3y=2, 在 x2+y2=9 上任取一点 A(3cos α,3sin α), 则 点 A 到 直 线 的 距 离 d = |3cos α+3 2 3sin α-2| = |6sinα+230°-2|,所以它的最大值为 4.
【解】 以极点为原点,极轴为 x 轴正半轴,建立平面直角
坐标系,两坐标系中取相同的长度单位. (1)x=ρcos θ,y=ρsin θ,由 ρ=4cos θ 得 ρ2=4ρcos θ. 所以 x2+y2=4x. 即 x2+y2-4x=0 为圆 O1 的直角坐标方程. 同理 x2+y2+4y=0 为圆 O2 的直角坐标方程. (2)由xx22++yy22-+44xy==00.,
标
x=ρcos θ
y=ρsin θ
z=z
(ρ,θ,z)之间的变换公式为______________.
圆柱圆球坐标系
牢固掌握在直角坐标系下的三度计算式,实施正确计算;
在其它坐标系下,给定三度的计算式后,会计算场。
3、要会进行场的高阶计算
要做到此项,必须牢记矢量的点积、叉积,重要的矢量恒等式。
4、正确理解高斯散度定理和斯托克斯定理、正确认识赫姆 霍兹定理。
1.8 圆柱坐标系与球坐标系
1
CQU
1.8.1 圆柱坐标系
坐标变量 ,, z
坐标单位矢量 e , e , ez
位置矢量
r e ez z
线元矢量 dl ed e d ezdz
面元矢量
dS e dl dlz e ddz dS e dl dlz e ddz dSz ezdl dl ez dd
F (,,z)
z
F F Fz
( 0)
1.8 圆柱坐标系与球坐标系
CQU
1.8.2 球面坐标系
坐标变量 r,,
坐标单位矢量 er , e , e 位置矢量 r er r
线元矢量 dl erdr e rd e rsind
面元矢量
dSr erdl dl er r2sin d d dS e dlrdl ezrsindrd dS edlrdl e rdrd
体积元 dV r2sindrdd
1.8 圆柱坐标系与球坐标系
CQU
三单位矢量e、e和ez有以下特点:
三个单位矢量相互正交,且满足右手关系,即
er eθ e; eθ e er ; e er eθ
球坐标系中的三度表达式
er
r
e
1 r
e
1
rsin
F
1 r2
r
(r2Fr )
1
rsin
(sin F )
柱坐标系与球坐标系
球坐标系
坐标系是联系形与数的桥梁,利用 坐标系可以实现几何问题与代数问题 的相互转化,从而产生了坐标法.
其中 r 0, 0 , 0 2
空间点P的直角坐标(x, y, z)与球坐标 (r,φ,θ)之间的变换关系为
x r sin cos
y
r
sin
sin
z
P(r,φ,θ)
z r cos
oφ r θ
y
x
Q
设点的球坐标为(2,3 ,3 ),求
它的直角坐标.
44Biblioteka x2sin3
4
cos
ρ≥0, 0≤θ< 2π, -∞<Z<+∞
柱坐标系又称半极坐标系,它是由 平面极坐标系及空间直角坐标系中的 一部分建立起来的.
空间点P的直角坐标(x, y, z)与柱坐
标 (ρ,θ,Z) 之间的变换公式为
x cos
y
s
in
z z
设点的直角坐标为(1,1,1),求它
在柱坐标系中的坐标.
3
4
2
2 (-
2
2)-1
2
y
2sin
3
4
sin
3
4
2
2 2
2 1 2
z
2cos
3
4
2(-
2)-
2
2
点在直角坐标系中的坐标为
( -1 ,1 ,- 2 ).
z
P(x,y,z)
z P(ρ,θ,Z)
o
z
y
θ
x
P(r,φ,θ) x
oφ r
θ
y
x
Q
y
Q
小结 数轴
平面直角坐标系
柱坐标系、球坐标系与直角坐标系之间单位矢量的转换 PPT
笛卡儿坐标系 圆柱坐标
x r cos
ex er cos e sin
y
r
sin
ey er sin e cos
z z
ez ez
圆柱坐标 笛卡儿坐标系
r x2 y2
tan 1 y
x
z
z
er ex coseysin e ex siney cos
ez ez
A A x e x A y e y A z e z A r e r A e A z e z
定义:标量场中的某点上定义一个矢量,其方向为 函数在该点变化率最大的方向,其大小等于这个最 大变化率的值,这个矢量叫做函数在该点的梯度。
函数在该点附近沿 l 方向的增量为
dr g r r a d l d
fd if v
fro f t
grad
2
2 f f f
f f 2 f
f g f g f g g f f g g f f g
f f f
Sf d s V f dV
Lf d l S f d s
S d s V 2 dV
Ax Ar cos A sin Ay Ar sin A cos
Az Az
Ar Ax cos Ay sin A Ax sin Ay cos
Az Az
er
er
r er z
e , e
r e
z
e
er ,
ez 0 r
ez 0 z
ez 0
x r sin cos 源自A A x e x A y e y A z e z A r e r A e A e
Ax Ars incosAcoscosAs in Ay Ars ins inAcoss inAcos Az ArcosAs in
第1讲-柱坐标系和球坐标系讲解
究
业
系,空间点的坐标都是三个数值的有序数组.
菜单
新课标 ·数学 选修4-4
点的柱坐标与直角坐标互化
课
当
前
堂
自 主
(1)设点 M 的直角坐标为(1,1,1),求它的柱坐标
双 基
导
达
学 系中的坐标.
标
(2)设点 N 的柱坐标为(π,π,π),求它的直角坐标.
课
【思路探究】 (1)已知直角坐标系中的直角坐标化为柱
课 堂 互 动
∴|P1P2|=
0+322- 262+
3-12=
30- 2
10 .
课 时
探
作
究
业
柱坐标及球坐标问题可以统一化为直角坐标问题来解
决.
菜单
新课标 ·数学 选修4-4
在球坐标系中,求两点 P(3,π6,4π),Q(3,π6,34π)的距离.
课
【解】 将 P、Q 两点球坐标转化为直角坐标.设点 P 当
2.球坐标系
课
当
前
堂
自
双
主
基
导
达
学
标
图 1-4-2
课
堂 互
建立如图 1-4-2 所示的空间直角坐标系 Oxyz.设 P 是空 课
动
时
探 究
间任意一点,连接 OP,记|OP|=r,OP 与 Oz 轴正向所夹的
作 业
角为 φ.
菜单
新课标 ·数学 选修4-4
设 P 在 Oxy 平面上的射影为 Q,Ox 轴按逆时针方向旋转
菜单
新课标 ·数学 选修4-4
1.由直角坐标化为球坐标时,我们可以选设点 M 的球
课 前
1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)
对应的点在平面yOz内的是( )
【解析】选A.由点P的柱坐标(ρ,θ,z),当θ= 时,点P
在平面yOz内,故选A.
2
2.已知空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐
0≤φ≤π,0≤θ<2π.
答案: , ) (4,
6 3
9.已知柱坐标系中,点M的柱坐标为 (2, 2 , 5) ,且点M在数轴Oy
上的射影为N,则|OM|=______,|MN|=______.
【解析】设点M在平面Oxy上的射影为P,连结PN, 则PN为线段MN在平面Oxy上的射影.
3
≧MN⊥直线Oy,MP⊥平面xOy,
)
2=cos 【解析】选A.设M的柱坐标为(ρ,θ,z),由 0=sin , z=2 =2 解得 =0, ≨点M的柱坐标为(2,0,2). z=2
4.若点P的柱坐标为 (2, , 3),则P到直线Oy的距离为(
6
)
(A)1
(B)2
(C) 3
(D) 6
6
<2π,0≤z≤2的动点M(ρ,θ,
z)的轨迹是以直线Oz为轴,轴截面 为正方形的圆柱,如图所示,圆柱的
底面半径r=1,h=2,≨V=Sh=πr2h=
2π(体积单位).
标为(r,φ ,θ ),则应有( )
【解析】选D.由点M向平面xOy作垂线,垂足N一定在直线Oy
上,由极坐标系的意义知θ= 或 3 .
2 2
3.设点M的直角坐标为(2,0,2),则点M的柱坐标为( (A)(2,0,2) (C)( 2,0,2) (B)(2,π ,2) (D)( 2,π ,2)
3 3 3 3
求|MN|. 【解析】方法一:由题意知, |OM|=|ON|=6,∠MON= ,
1.3 柱坐标系与球坐标系 课件 (北师大选修4-4)
柱坐标系又称半极坐标系,它是由 平面极坐标系及空间直角坐标系中的 一部分建立起来的. 空间点P的直角坐标(x, y, z)与柱坐 标 (ρ ,θ ,Z) 之间的变换公式为
x cos y sin z z
设点的直角坐标为(1,1,1),求它 在柱坐标系中的坐标. 解 得 点在柱坐标系中的坐标为 ρ ( 2 , ,1). 4 = 注:求θ 时要注意角的终边与点的 射影所在位置一致
z
针方向旋转到OQ时所转过的最小正角
为θ. 这样点 P 的位置就可以用有序数 组(r,φ,θ)表示.
空间的点与有序数组 (r,φ,θ)之间建立了一种 对应关系.
z
P(r,φ,θ)
我们把建立上述 Q 对应关系的坐标系 x 叫做球坐标系 (或空间极坐标系) .
o θ
r φ
y
有序数组(r,φ,θ)叫做点P的球坐标, 其中 r 0 , 0 , 0 2
阅读课本P16---17
了解柱坐标系的定义, 以及如何用
柱坐标系描述空间中的点.
z 设P是空间任意一点, P(ρ,θ,Z) 在oxy平面的射影为Q, 用(ρ ,θ )(ρ ≥0, 0≤θ <2π )表示点Q o y 在平面oxy上的极坐标, θ 点P的位置可用有 Q x 序数组(ρ ,θ ,z)表示. 把建立上述对应关系的坐标系叫做柱 坐标系. 有序数组(ρ ,θ ,Z)叫点P的柱 坐标,记作(ρ ,θ ,Z). 其中 ρ ≥0, 0≤θ < 2π , -∞<Z<+∞
小结
坐标系
数轴 平面直角坐标系 平面极坐标系 空间直角坐标系 柱坐标系 球坐标系
坐标系是联系形与数的桥梁,利用 坐标系可以实现几何问题与代数问题 的相互转化,从而产生了坐标法.
柱坐标和球坐标简介
设 C1 的球坐标为(r, φ, θ), 其中 r≥0,0≤φ≤π, 0≤θ<2π, 由 x=rsin φcos θ,y= rsin φ sin θ, z=rcos φ, 得 r= x2+y2+z2= 12+ 22+12=2. 2 π 由 z=rcos φ,∴cos φ= ,φ= 2 4 y π 又 tan θ= =1,∴θ=4, x π π 从而点 C1 的球坐标为(2,4,4)
【思路探究】 可把两点坐标均化为空间直角坐标,再
用空间两点间的距离公式求距离.
【自主解答】 设 P1 的直角坐标为 P1(x1,y1,z1), x1=2 3sin πcos π=3 2, 3 4 2 π π 3 2 则y1=2 3sin sin = , 3 4 2 π z1=2 3cos 3= 3, 3 2 3 2 ∴P1 的直角坐标为( 2 , 2 , 3).
四
柱坐标系与球坐标系简介
课标 解读
1.了解柱坐标系、球坐标系的意 义,能用柱坐标系、球坐标系 刻画简单问题中的点的位置. 2.知道柱坐标、球坐标与空间 直角坐标的互化关系与公式, 并用于解题.
1.柱坐标系
图 1-4-1 如图 1-4-1 所示, 建立空间直角坐标系 Oxyz. 设 P 是空 间 任 意 一 点 . 它 在 Oxy 平 面 上 的 射 影 为 Q , 用 (ρ , θ)(ρ≥0,0≤θ<2π)表示点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ,θ,z)(z∈R)表示.
3.空间直角坐标与柱坐标的转化 空间点 P(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式为 x=ρcos θ, y=ρsin θ, z=z . 4.空间直角坐标与球坐标的关系 空间点 P(x,y,z)与球坐标(r,φ,θ)之间的变换公式为
高中数学第1讲坐标系第7课时柱坐标系与球坐标系简介课件新人教A版选修44
x=3sinπ6cosπ4=3×12× 22=342,
y=3sinπ6sinπ4=3×12× 22=342,
z=3cosπ6=3×
23=3
3 2.
∴P 点的直角坐标为34 2,342,323.
同理 Q 点的直角坐标为-34 2,342,32 3. ∴PQ= x1-x22+y1-y22+z1-z22=3 2 2.
坐标为1+2 1,1-2 3,1+2 4,即1,1-2 3,52.
直角坐标系与柱、球坐标系的互化
【例 1】 (1)空间一点 M 的直角坐标为(1,1,3),求其在相应 的柱坐标系中的坐标;
(2) 空间一点 M 的直角坐标为(1,1, 2),求其在相应的球 坐标系中的坐标.
【解题探究】 由柱坐标、球坐标化为直角坐标,给出了 具体的公式,将直角坐标化为柱坐标、球坐标,要会将公式逆 运用.
柱坐标系中的几何问题
【例 3】 如图,在柱坐标系中, 长方体的两个顶点坐标为 A1(4,0,5), C1 6,π2,5 , 求 长 方 体 的 外 接 球 的 体 积.
【解题探究】 根据顶点的柱坐标求出长方体的三边长, 其外接球的直径恰为长方体的对角线的长.
【解析】由柱坐标的定义可得 OA=4,OC=6,OO1=5, 则对角线的长为 42+52+62= 77. 则外接球的体积为43×π× 2773=77 677π.
B.2,π4,54π
C.2,54π,π4
D.2,34π,π4
【答案】B
x=
2cos54π,
【解析】设点 M 的直角坐标为(x,y,z),则y= 2sin54π,
z= 2,
即xy= =- -11, , z= 2,
∴M 的直角坐标为 M(-1,-1, 2).
柱坐标系与球坐标系简介
极径、极角,只是比平面极坐标多了一个量,即点在空间中的高度. -15-
四 柱坐标系与球坐标系简介
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四 题型五
【变式训练3】 经过若干个固定和流动的地面遥感观测站监测
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
2.球坐标系 (1)定义:建立空间直角坐标系Oxyz.设P是空间任意一点,连接OP, 记|OP|=r,OP与Oz轴正向所夹的角为φ.设点P在Oxy平面上的射影 为点Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为θ.这样 点P的位置就可以用有序数组(r,φ,θ)表示.这样,空间的点与有序数 组(r,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系 叫做球坐标系(或空间极坐标系),有序数组(r,φ,θ)叫做点P的球坐标, 记作P(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π. (2)空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系
的极坐标.这时点P的位置可用有序数组(ρ,θ,z)(z∈R)表示.这样,我
们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系.把建立
上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点P的柱
坐标,记作P(ρ,θ,z),其中ρ≥0,0≤θ<2π,-∞<z<+∞.
(2)空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,z)之间的变换公式
3
解:设点 M 的直角坐标为(x,y,z),则由互化公式可得,
详细版圆柱坐标系和球坐标系.ppt
第1章 矢量分析
1
电磁场与电磁波
第1章 矢量分析
2
1. 标量和矢量
1.1 矢量代数
标量: 一个只用大小描述的物理量。
矢量: 一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。
矢量的几何表示: 一个矢量可用一条有方向的线段来表示
矢量的大小或模:A A r
矢量的单位矢量: 矢量的代数表示:
erˆA r A
A A erˆA
A
erˆA
r A
常矢量: 大小和方向均不变的矢量。
A
矢量的几何表示
注意: 单位矢量不一定是常矢量。
电磁场与电磁波
第1章 矢量分析
3
矢量用坐标分量表示
z
r A
erˆx
Ax
erˆy
Ay
erˆz
Az
Ax A cos
Az
A
Ay
Ax O
y
Ay A cos
Az A cos
A// B
A B AB
电磁场与电磁波
第1章 矢量分析
6
(4)矢量的矢积(叉积)
r A
r B
erˆn
AB
sin
坐标分量表示
r A
r B
erˆx
( Ay Bz
Az By
)
erˆy
(Az Bx
Ax Bz
)
erˆz
( Ax By
Ay Bx
)
行列式形式为
r r erˆx erˆy erˆz A B Ax Ay Az
( Az
Bz
)
A B
B
A
矢量的加法
柱坐标系与球坐标系简介课件
z1=6×cosπ3=3. ∴点 M 的直角坐标为323,92,3, 设点 N 的直角坐标为(x2,y2,z2), 则 x2=6×sin23π×cosπ3=323, y2=6sin23π×sinπ3=92, z2=6cos23π=-3. ∴点 N 的直角坐标为323,92,-3, ∴|MN|= x1-x22+y1-y22+z1-z22=6.
2.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球坐标为(r,φ,θ),则
空间直角坐标(x,y,z)
转换公式
柱坐标 (ρ,θ,z)
x=_ρ_c_o_s_θ__, y=_ρ_s_in__θ__, z=z
球坐标 (r,φ,θ)
x=_r_s_i_n_φ_c_o_s__θ__ y=_r_s_in__φ_s_i_n_θ__ z= rcos φ
∴(- 3,1,3)为所求点的直角坐标.
(2)∵(ρ,θ,z)=
2,π4,5,
x=ρcos θ=
2cosπ4=1,
∴y=ρsin θ= 2sinπ4=1,
z=5,
∴(1,1,5)为所求点的直角坐标.
直角坐标与柱坐标的互化
点(ρ,θ,z)是三维空间坐标中的点的柱坐标,在平面 xOy 中实际为极坐标, 且 ρ≥0,0≤θ<2π,在竖直方向上 z 为任意实数.化点的柱坐标(ρ,θ,z)为直
柱坐标系与球坐标系简介
1.空间直角坐标系、柱坐标系与球坐标系 (1)空间直角坐标系:在空间选定一点 O,作两两垂直的三条数轴 Ox, Oy,Oz,使∠xOy=135°,∠yOz=90°,这就是空间直角坐标系.有 序实数组 (x,y,z) 叫点 P 的直角坐标.
(2)柱坐标系:空间直角坐标系 Oxyz 中,设 P 是空间任意一点,它在 Oxy 平面的射影为 Q,用 (ρ,θ) 表示点 Q 在平面 Oxy 上的极坐标,点 P 的位置可用有序数组 (ρ,θ,z) 表示.这就是柱坐标系.有序数组 _(_ρ_,__θ_,__z_) _叫点 P 的柱坐标.其中 ρ≥0,0≤θ<2π,-∞<z<+∞. (3)球坐标系:空间直角坐标系 Oxyz 中,设 P 是空间任意一点,连接 OP,记|OP|=r,OP 与 Oz 轴正向所夹的角为 φ.P 在 Oxy 平面的射影 为 Q,Ox 轴按逆时针方向旋转到 OQ 时所转过的最小正角为 θ.这样 点 P 的位置就可以用有序数组(r,φ,θ)表示.这就是球坐标系.有序数组(r,φ,θ) 叫作点 P 的球坐标.其中 r≥0,0≤φ≤π,0≤θ<2π.
北师大版选修1.3柱坐标与球坐标(优质课件)
, tan
x2 y2 z
22
(2 4
3)2
1
0
≤ ≤
π,
4
tan
y x
23 2
3,0
2,所以
3
所以
,点P (2
,2
3,
4 )的球坐标(4
2
,4
,3
)
变 式 练 习二
2.设点的球坐标为(2,3 ,3 ),求它的直角坐标.
44
x
2sin
3
4
cos
3
4
2
2 (-
2
2)-1
2
y
2sin
θ=xy
(x≠0).
1.如何确定空中飞行的飞机的位置?
2.教室里某位同学的头部所在的位置
z
O
y
x
空间中点的确立需要建立空间直角坐标系
z
M(x,y,z)
z
O
y
x
y
x
新 课 讲 解一 —柱坐标系
设P是空间任意一点. 在平面极坐标系的基础上,增加垂
z
P(ρ,θ,Z)
直于此平面的OZ轴,可得空间柱坐标系.
有序数组 ( r , φ , θ )叫做点P的球坐标.
新 课 讲 解 二 —球坐标系
z
有序数组 ( r , φ , θ )叫做点P的球坐标.
r 为常数
球面
P (r,φ,θ)
φr
为常数
圆锥面
o
y
为常数
半平面
x
θ
Q
新 课 讲 解 二 —球坐标系
空间点P的直角坐标(x, y, z)与球坐标(r,φ,θ)之间的变换关系
回顾复习
球坐标系与柱坐标系
【答案】 (1)(2,2 3,8) (2)(2,2,-2 2)
上一 页
返回 首页
下一 页
将点的直角坐标化为柱坐标或球坐标 已知正方体ABCD-A1B1C1D1的棱长为1,如图4-1-8建立空间直角坐标 系A—xyz,Ax为极轴,求点C1的直角坐标、柱坐标以及球坐标.
【思路探究】 义和联系计算即可.
(1)设M(x,y,z),
3À 3À 则x=2sin 4 ·cos 4 =-1, 3À 3À y=2×sin 4 ×sin 4 =1, 3À z=2×cos 4 =- 2. 即M点坐标为(-1,1,- 2).
上一 页
返回 首页
下一 页
(2)设M(x,y,z), À 则x=2×cos 6= 3, À y=2×sin 6=1,z=7. 即M点坐标为( 3,1,7).
3 2 3 2 B , ,- 2 . 2 2
AB
2
= 2
9 9 3 2 3 2 2 2 2 3- 2 + 2- 2 +(2+2) =12+ 2 -6 6 +4+ 2 -6 2 +16=41
图4-1-8 解答本题根据空间直角坐标系、柱坐标系以及球坐标系的意
上一 页
返回 首页
下一 页
【自主解答】
点C1的直角坐标为(1,1,1),
设点C1的柱坐标为(Á,¸ ,z),球坐标为(r,Æ ,¸ ), 其中Á≥0,r≥0,0≤Æ ≤À ,0≤¸ <2À , x=Ácos ¸ , 由公式y=Ásin ¸ , z=z cos ¸ , x=rsin Æ sin ¸ , 及y=rsin Æ z=rcos Æ
上一 页 返回 首页 下一 页
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT课件
13
地球的纬度与经度:
PPT课件
14
球坐标系
建立空间直角坐标系Oxyz.设P(x,y,z)是 空间任意一点,记|OP|=r,OP与Oz轴正向所
夹的角为j.点P在Oxy平面上的射影为Q,Ox
轴按逆时针方向旋转到OQ时所转过的最小正
角为θ.则P的位置可用有序数组(r, j,)表示, (r, j ,)叫做点P的球坐标.
1.设Q点的球坐标为 (2, 3 , 3 ) ,求它
的直角坐标.
44
(1,1, 2)
PPT课件
18
练习
2.设M点的直角坐标为 (1, 1, 2 ),那
么它的球坐标是
A.(2, , )
44
C.(2, 5 , )
44
B.(2, , 5 )
44
D.(2, 3 , )
它的柱坐标.
(2, 4 , 3)
3
PPT课件
7
思考:
点P的柱坐标为(ρ,θ, z), (1)当ρ为常数时,点P的轨迹是___圆__柱__面_____ (2)当θ为常数时,点P的轨迹是___半__平__面_____
(3)当z为常数时,
z
点P的轨迹是___平__面_______
P(ρ,θ, z)
o θ xPPT课件
PPT课件
15
球坐标系
P(r, j ,)
r 0
0j 0 2
z
P(r, j ,)
jr
o
y
θ
Q
x
PPT课件
16
将球坐标转化为直角坐标:
x r sin j cos
y
r
sin
j
sin
z r cosj
x
PPT课件
z
P(r, j ,)
jr
o
y
θ
Q
17
练习
20
小结
1.球坐标系学习目标: (1)理解球坐标三个分量的几何意义; (2)能够将球坐标转化为直角坐标.
2.将球坐标转化为直பைடு நூலகம்坐标:
x r sin j cos
y
r
sin
j
sin
z r cosj
PPT课件
21
PPT课件
22
柱坐标系与 球坐标系
PPT课件
1
1.柱坐标系
学习目标: (1)理解柱坐标三个分量的几何意义; (2)掌握柱坐标与空间直角坐标的互化.
PPT课件
2
思考:在一个圆形体育场内,如何确定 看台上某个座位的位置?
PPT课件
3
柱坐标系
建立空间直角坐标系Oxyz.设P(x,y,z)是
空间任意一点,它在Oxy平面上的射影为Q,
tan
y x
z z 10
2.球坐标系
学习目标: (1)理解球坐标三个分量的几何意义; (2)能够将球坐标转化为直角坐标.
PPT课件
11
思考:在**的上空有一台飞机,你如何对 它进行精确定位呢?
广东省**市的经纬度: 北纬**.12°,东经**2.19°.
PPT课件
12
地球的纬度与经度:
sin
z z
PPT课件
5
柱坐标与空间直角坐标的互化
(2)直角坐标转化为柱坐标
2 x2 y2
tan
y ( x x
0)
z z
PPT课件
6
练习
1.设P点的柱坐标为 (2, , 7),求它的直
角坐标.
6
( 3,1, 7)
2.设M点的直角坐标为 (1, 3, 3),求
Q点的极坐标为(ρ,θ ),则P的位置可用有序数
组(ρ,θ, z)表示, (ρ,θ, z)叫做点P的柱坐标.
z
0
PP(ρ(,xθ, yz), z)
0 2
zR
o
θ x
PPT课件
y Q (ρ,θ)
4
柱坐标与空间直角坐标的互化
(1)柱坐标转化为直角坐标
x cos
y
44
PPT课件
19
思考:
点P的球坐标为(r, j ,) ,
(1)当r为常数时,点P的轨迹是___球__面_______
(2)当 j为常数时,点P的轨迹是__圆__锥__面__或__平__面
(3)当为常数时,
点P的轨迹是___半__平__面_____
z
jr
o
P(r, j ,)
y
θ
Q
xPPT课件
y
Q
8
小结
1.柱坐标系学习目标: (1)理解柱坐标三个分量的几何意义; (2)掌握柱坐标与空间直角坐标的互化.
PPT课件
9
2.柱坐标与空间直角坐标的互化
(1)柱坐标转化为直角坐标
x cos
y
sin
z z
(2)直角坐标转化为柱坐标
PPT课件
2 x2 y2