九年级数学综合测试

合集下载

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

九年级数学上册期末复习综合测试题(含答案)

九年级数学上册期末复习综合测试题(含答案)

(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。

临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】

临沂市2024年数学九年级第一学期开学综合测试模拟试题【含答案】

临沂市2024年数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,90MON ∠=︒,矩形ABCD 在MON ∠的内部,顶点A ,B 分别在射线OM ,ON 上,4AB =,2BC =,则点D 到点O 的最大距离是()A .2-B .2+C .2-D .2+2、(4分)若234a b c ==,则a b b c +-的值为()A .5B .15C .5-D .15-3、(4分)已知x=512-,y=512+,则x 2+xy +y 2的值为()A .2B .4C .5D .74、(4分)已知反比例函数(0)k y k x =≠,在每个象限内y 随着x 的增大而增大,点P (a -1,2)在这个反比例函数上,a 的值可以是()A .0B .1C .2D .35、(4分)如果△ABC 的三个顶点A ,B ,C 所对的边分别为a ,b ,c ,那么下列条件中,不能判断△ABC 是直角三角形的是()A .∠A =25°,∠B =65°B .∠A :∠B :∠C =2:3:5C .a :b :c:D .a =6,b =10,c =126、(4分)计算2221111⎛⎫÷+ ⎪--+⎝⎭x x x 的结果是()A .2B .21x +C .21x -D .-2学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………7、(4分)如图,将矩形ABCD 的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH ,若EH =5,EF =12,则矩形ABCD 的面积是()A .13B .12013C .60D .1208、(4分)顺次连接矩形四边中点所得的四边形一定是()A .正方形B .矩形C .菱形D .等腰梯形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,A 、B 两点分别位于一个池塘的两端,小聪想用绳子测量A 、B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A 、B 的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为13m ,则A 、B 间的距离为______m .10、(4分)已知直线(0)y kx k =≠与反比例函数4y x =的图象交于A 、B 两点,当线段AB 的长最小时,以AB 为斜边作等腰直角三角形△ABC ,则点C 的坐标是__________.11、(4分)3m -m 的取值范围是_________.12、(4分)若数a 使关于x 的不等式组1123522x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,a 的取值范围是__________.13、(4分)已知一次函数y =kx +b 的图像过点(-1,0)和点(0,2),则该一次函数的解析式是______。

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)

人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。

2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)

2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)

北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。

2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

2022-2023学年浙教版第一学期九年级数学第三次月考综合测试题(附答案)

浙江省杭州市杭州公益中学2022-2023学年第一学期九年级数学第三次月考综合测试题(附答案)一、选择题(共40分)1.已知圆的半径为5cm,圆心到直线l的距离为5cm,那么直线l和这个圆的公共点有()A.0个B.1个C.2个D.1个或2个2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.对于抛物线y=(x﹣1)2+2,下列说法正确的是()A.开口向下B.顶点坐标是(1,2)C.与y轴交点坐标为(0,2)D.与x轴有两个交点4.某企业对其生产的产品进行抽检,抽检结果如下表:抽检件数1040100200300500不合格件数0123610若该企业生产该产品10000件,估计不合格产品的件数为()A.80件B.100件C.150件D.200件5.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5 m B.2m C.4m D.m6.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,⊙O的半径为5,弦AB=8,点C在弦AB上,且AC=6,过点C作CD⊥AB交OB于点D,则CD的长为()A.1B.2C.1.5D.2.58.如图所示,已知⊙I是△ABC的内切圆,点I是内心,若∠A=35°,则∠BIC等于()A.35°B.70°C.145°D.107.5°9.如图,已知:45°<∠A<90°,则下列各式成立的是()A.sin A=cos A B.sin A>cos A C.sin A>tan A D.sin A<cos A 10.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.C.2.4D.3二、填空题(共30分)11.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为.12.如图(1)为折叠椅,图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB和CD的长度相等,O是它们的中点,为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm,∠DOB=100°,那么椅腿AB的长应设计为cm(结果精确到0.1cm)13.如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.14.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.你认为其中正确的信息是.(只填序号)15.如图,半径为5个单位的⊙A与x轴、y轴都相切;现将⊙A沿y轴向下平移个单位后圆与x轴交于点(2,0).16.如图,在矩形ABCD中,点E在边AB上,△BEC与△FEC关于直线EC对称,点B 的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点.若BM=BE,MG=2,则BN的长为,sin∠AFE的值为.三、解答题(共80分)17.计算:(1)4sin260°﹣3tan30°;(2)+cos245°+sin245°.18.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.19.如图,已知四边形ABCD内接于圆O,且∠A=105°,BD=CD(1)求∠DBC的度数(2)若⊙O的半径为3,求的长.20.(10分)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.21.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,D是劣弧的中点,BD交AC于点E.(1)求证:AD2=DE•DB;(2)若BC=,CD=,求DE的长.22.如图所示,在△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.(1)求证:CA是圆的切线.(2)若点E是BC上一点,已知BE=6,cos∠ABC=,tan∠AEC=,求圆的直径.23.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.24.如图1,四边形ABCD内接于⊙O,BD为直径,上存在点E,满足=,连结BE并延长交CD的延长线于点F,BE与AD交于点G.(1)若∠DBC=α,请用含α的代数式表示∠AGB.(2)如图2,连结CE,CE=BG.求证:EF=DG.(3)如图3,在(2)的条件下,连结CG,AD=2.①若tan∠ADB=,求△FGD的周长.②求CG的最小值.参考答案一、选择题(共40分)1.解:∵圆的半径为5cm,圆心到直线l的距离为5cm,∴d=r,∴直线与圆相切,∴直线l和这个圆的公共点有1个,故选:B.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:A、a=1>0,抛物线开口向上,所以A选项错误;B、y=(x﹣1)2+2,抛物线顶点坐标为(1,2),B选项错正确.C、抛物线与y轴的交点坐标为(0,3),所以C选项错误;D、△=(﹣2)2﹣4×1×3=﹣8<0,则抛物线与x轴没有交点,所以D选项错误;故选:B.4.解:抽查总体数:10+40+100+200+300+500=1150,次品件数:0+1+2+3+6+10=22,P(抽到不合格产品)=≈0.02.则10000×0.02=200(件).∴估计不合格产品的件数为200件,故选:D.5.解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选:B.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:过点O作OE⊥AB于点E,∵OE⊥AB,∴AE=BE=AB=4,∵BO=5,∴EO==3,∵AC=6,∴BC=EC=2,∵CD⊥BE,OE⊥AB,∴CD∥EO,且CD是△BEO的中位线,∴CD=EO=1.5.故选:C.8.解:∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=145°,∵⊙I是△ABC的内切圆,点I是内心,∴BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=72.5°,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣72.5°=107.5°,故选:D.9.解:∵45°<A<90°,∴根据sin45°=cos45°,sin A随角度的增大而增大,cos A随角度的增大而减小,当∠A>45°时,sin A>cos A.故选:B.10.解:如图所示:连接OP,OQ,过点O作OP′⊥AB,垂足为P′.∵A(﹣3,0)、B(0,4),∴OA=3,OB=4.由勾股定理可知AB=5.∵OP′•AB=OA•OB,∴OP′=.∵PQ是圆O的切线,∴OQ⊥QP.∴PQ=.∴当OP有最小值时,PQ有最小值.∵由垂线段最短可知PO的最小值=OP′=,∴PQ的最小值==.故选:B.二、填空题(共30分)11.解:从箱中随机取出一个球,这个球是白球的概率为,故答案为:.12.解:连接BD.由题意,OA=OB=OC=OD.∵∠DOB=100°,∴∠ADO=50°,∠OAD=∠ODB=40°,∴∠ADB=90°.又∵BD=32,∴AB=32÷sin50°≈41.8(cm).13.解:如图,过点A1作A1H⊥AB于H,∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴A1H=A1B=2,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.14.解:∵开口向上,∴a>0,∵对称轴为x=>0,∴b<0,﹣=,∴2a=﹣3b,∴2a﹣3b=﹣6b<0,故④错误,不符合题意;∵函数图象与y轴的交点在y轴负半轴上,∴c<0,故①正确,符合题意;∴abc>0,故②正确,符合题意;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故③正确,符合题意;∵3b=﹣2a,∴c﹣4b=c﹣3b﹣b=c﹣(﹣2a)﹣b=a﹣b+c+a>0,故⑤正确,符合题意,故答案为:①②③⑤.15.解:设点A向下平移x个单位后经过(2,0),则(5﹣x)2+32=52,解得x=1或9,∴将⊙A沿y轴向下平移1或9个单位后圆与x轴交于点(2,0),故答案为:1或9.16.解:∵BM=BE,∴∠BEM=∠BME,∵AB∥CD,∴∠BEM=∠GCM,又∵∠BME=∠GMC,∴MG=GC=2,∵G为CD中点,∴CD=AB=4.连接BF,FM,由翻折可得∠FEM=∠BEM,BE=EF,∴BM=EF,∵∠BEM=∠BME,∴∠FEM=∠BME,∴EF∥BM,∴四边形BEFM为平行四边形,∵BM=BE,∴四边形BEFM为菱形,∵∠EBC=∠EFC=90°,EF∥BG,∴∠BNF=90°,∵BF平分∠ABN,∴F A=FN,∴Rt△ABF≌Rt△NBF(HL),∴BN=AB=4.∵FE=FM,F A=FN,∠A=∠BNF=90°,∴Rt△AEF≌Rt△NMF(HL),∴AE=NM,设AE=NM=x,则BE=FM=4﹣x,NG=MG﹣NM=2﹣x,∵FM∥GC,∴=,即,解得x=4+2(舍)或x=4﹣,∴EF=BE=4﹣x=,∴sin∠AFE===2﹣1.故答案为:4;2﹣1.三、解答题(共80分)17.解:(1)4sin260°﹣3tan30°=4×=3﹣;(2)+cos245°+sin245°==4+1=5.18.解:(1)根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率;(2)画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为=.19.解:(1)∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;(2)连接BO、CO,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.20.解:(1)由二次函数y=(x﹣1)(x﹣a)(a为常数)知,该抛物线与x轴的交点坐标是(1,0)和(a,0).∵对称轴为直线x=2,∴=2.解得a=3;(2)由(1)知,a=3,则该抛物线解析式是:y=x²﹣4x+3.∴抛物线向下平移3个单位后经过原点.∴平移后图象所对应的二次函数的表达式是y=x²﹣4x.21.(1)证明:由D是劣弧的中点,得⇒∠ABD=∠DAC,又∵∠ADB=∠EDA,∴△ABD∽△EAD,∴,∴AD2=DE•DB;(2)解:由D是劣弧的中点,得AD=DC,则DC2=DE•DB∵CB是直径,∴△BCD是直角三角形.∴BD===由DC2=DE•DB得,DE,解得DE=.22.(1)证明:∵BC是直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACD=∠ABC,∴∠ACD+∠BCD=90°,即∠ACB=90°,∴CA是圆的切线;(2)解:∵cos∠ABC===,tan∠AEC==,∴设CB=3y,AC=5x,则EC=3x,AB=y,由勾股定理得:AC=2y,∴,解得:,∴BC=BE+CE=6+3x=10.23.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.24.解:(1)∵BD为⊙O的直径,∴∠BAD=90°,∵=,∴∠ABG=∠DBC=α,∴∠AGB=90°﹣α;(2)∵BD为⊙O的直径,∴∠BCD=90°,∴∠BEC=∠BDC=90°﹣α,∴∠BEC=∠AGB,∵∠CEF=180°﹣∠BEC,∠BGD=180°﹣∠AGB,∴∠CEF=∠BGD,又∵CE=BG,∠ECF=∠GBD,∴△CFE≌△BDG(ASA),∴EF=DG;(3)①如图,连接DE,∵BD为⊙O的直径,∴∠A=∠BED=90°,在Rt△ABD中,tan∠ADB=,AD=2,∴AB=×AD=,∵=,∴+=+,即=,∴AD=CE,∵CE=BG,∴BG=AD=2,∵在Rt△ABG中,sin∠AGB==,∴∠AGB=60°,AG=BG=1,∴EF=DG=AD﹣AG=1,∵在Rt△DEG中,∠EGD=60°,∴EG=DG=,DE=DG=,在Rt△FED中,DF==,∴FG+DG+DF=,∴△FGD的周长为;②如图,过点C作CH⊥BF于H,∵△BDG≌△CFE,∴BD=CF,∠CFH=∠BDA,∵∠BAD=∠CHF=90°,∴△BAD≌△CHF(AAS),∴FH=AD,∵AD=BG,∴FH=BG,∵∠BCF=90°,∴∠BCH+∠HCF=90°,∵∠BCH+∠HBC=90°,∴∠HCF=∠HBC,∵∠BHC=∠CHF=90°,∴△BHC∽△CHF,∴=,设GH=x,∴BH=2﹣x,∴CH2=2(2﹣x),在Rt△GHC中,CG2=GH2+CH2,∴CG2=x2+2(2﹣x)=(x﹣1)2+3,当x=1时,CG2的最小值为3,∴CG的最小值为.。

九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)

九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。

(人教版)初中数学九年级上册 第二十三章综合测试试卷01及答案

(人教版)初中数学九年级上册 第二十三章综合测试试卷01及答案

第二十三章综合测试一、选择题(每小题4分,共28分)1.如图所示,在等腰直角三角形ABC 中,90B Ð=°,48C Ð=°,如果将ABC △绕顶点A 逆时针方向旋转60°后得到AB C ¢¢△,那么BAC ¢Ð等于( )A .60°B .102°C .120°D .132°2.如图所示,ABC △和BCD △都为等腰直角三角形,若ABC △经旋转后能与BCD △重合,下列说法正确的是( )A .旋转中心为点C ,旋转角为45°B .旋转中心为点B ,旋转角为45°C .旋转中心为点C ,旋转角为90°D .旋转中心为点B ,旋转角为90°3.正方形ABCD 在平面直角坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的对应点的坐标为( )A .()2,2-B .()4,1C .()3,1D .()4,04.如图所示,把ABC △绕点C 顺时针旋转30°得到A B C ¢¢△,其中A B ¢¢与AC 交于点D ,若90A DC ¢Ð=°,则A Ð为( )A .90°B .60°C .30°D .无法确定5.已知点()11,1P a -和()22,1P b -关于原点对称,则b a 的值为( )A .0B .1C .1-D .1±6.将如图所示的图案绕正六边形的中心旋转n °时与原图案完全重合,那么n 的最小值是()A .60B .90C .120D .1807.下列说法正确的是( )A .中心对称的两个图形一定是全等形B .中心对称图形是旋转90°后能与自身重合的图形C .两个形状、大小完全相同的图形一定中心对称D .中心对称图形一定是轴对称图形二、填空题(每空5分,共20分)8.若ABC △绕点A 旋转能与ADE △重合,其中AB 与AD 重合,AC 与AE 重合.若120EAD Ð=°,则CAB Ð=________;若35CAE Ð=°,则BAD Ð=________.9.在平面直角坐标系中,已知点0P 的坐标为()1,0,将点0P 绕原点O 逆时针旋转60°得点1P ,延长1OP 到点2P ,使212OP OP =,再将点2P 绕原点O 逆时针旋转60°得点3P ,则点3P 的坐标是________.10.如图所示,用两块完全相同的矩形拼成“L ”形,则ACF Ð的大小是________,ACF △的形状是________.11.已知点()221,25P a a a --+在y 轴上,则点P 关于原点O 对称的点的坐标为________.三、解答题(共52分)12.(12分)如图所示,画出四边形ABCD 绕点A 逆时针旋转90°后的图形.13.(12分)如图所示,ABC △绕点A 旋转得到ADE △,恰好使点C 旋转后落在直线BC 上的点E 处,已知105ACB Ð=°,10CAD Ð=°,求DFE Ð和B Ð的度数.14.(14分)用四块如左图所示的正方形卡片拼成一个新的正方形,使拼成的图案是一个轴对称图形,请你在右图①②③中各画出一种拼法(要求三种拼法各不相同),且其中至少有一种既是轴对称图形又是中心对称图形.15.(14分)在如图所示的网格中按要求画出图形,并回答问题:(1)先画出ABC △向下平移5格后的111A B C △,再画出ABC △以点O 为旋转中心顺时针旋转90°后的222A B C △;(2)在与同学交流时,你打算如何描述(1)中所画的222A B C △的位置?第二十三章综合测试答案解析一、1.【答案】B【解析】因为90B Ð=°,48C Ð=°,所以42BAC Ð=°.又CAC ¢Ð是旋转角,所以60CAC ¢Ð=°.所以4260102BAC BAC CAC ¢¢Ð=Ð+Ð=°+°=°.2.【答案】D【解析】因为点B 始终没有改变位置,所以点B 为旋转中心,旋转角为90ABC Ð=°.3.【答案】D【解析】作出旋转后的图形,结合旋转的性质可得点B 的对应点的坐标为()4,0.4.【答案】B【解析】由题意知,旋转角为30ACA ¢Ð=°,所以903060A ¢Ð=°-°=°.由旋转性质得60A A ¢Ð=Ð=°.5.【答案】B【解析】由题意得120a -+=,110b -+=,解得1a =-,0b =.所以()011b a =-=.6.【答案】C【解析】观察图形的组成特点可以发现图形外围的图案至少旋转120°后可以与原来的图案重合,内部的图案在旋转120°后也和原来的图案重合,故选C .7.【答案】A二、8.【答案】120° 35°【解析】由能互相重合的边得到对应边,从而确定对应角是解题关键.题中AB 与AD 重合,AC 与AE 重合,EAD Ð与CAB Ð是对应角,CAE Ð与BAD Ð是旋转角.9.【答案】(-【解析】画图确定点3P 的位置,过该点作x 轴、y 轴的垂线段,得到直角三角形,可求出点3P 的坐标.解答此题结合图形比较简便.10.【答案】90° 等腰直角三角形【解析】矩形FGCE 可以看作是由矩形ABCD 绕点C 顺时针旋转90°得到的,则90ACF Ð=°,AC FC =,所以ACF △是等腰直角三角形.11.【答案】()0,8-或()0,4-【解析】因为点()221,25P a a a --+在y 轴上,所以210a -=,所以1a =或1a =-.当1a =时,2254a a -+=,当1a =-时,2258a a -+=,所以点P 的坐标为()0,8-或()0,4-,所以点P 关于原点O 对称的点的坐标为()0,8-或()0,4-.三、12.【答案】如图所示.13.【答案】因为105ACB Ð=°,所以18010575ACF Ð=°-°=°.又因为10CAD Ð=°,所以180751095AFC Ð=°-°-°=°.所以95DFE AFC Ð=Ð=°.又ABC ADE △≌△,所以AC AE =,105AED ACB Ð=Ð=°,B D Ð=Ð,所以75AEC ACE Ð=Ð=°.所以1057530DEF AED AEC Ð=Ð-Ð=°-°=°.所以180180953055D DFE DEF Ð=°-Ð-Ð=°-°-°=°.所以55B D Ð=Ð=°.14.【答案】答案不唯一,如图所示,三种拼法仅供参考.15.【答案】(1)如图所示.(2)建立如图所示的平面直角坐标系,222A B C △各顶点的坐标分别为()25,2A ,()21,4B ,()23,1C .。

河北省保定市2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】

河北省保定市2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】

河北省保定市2024-2025学年数学九年级第一学期开学综合测试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)ABCD 是一块正方形场地,小华和小萌在AB 上取一点E ,测量得,,这块场地的对角线长是()A .10B .30C .40D .502、(4分)如图,在△ABC 中,AB =4,BC =8,AC =6,D 、E 分别是BC 、CA 的中点,则△DEC 的周长为()A .18B .8C .10D .93、(4分)人体内一种细胞的直径约为0.00000156m ,数据0.00000156用科学记数法表示为()A .0.156×10﹣6B .1.56×10﹣6C .15.6×10﹣7D .1.56×10-84、(4分)如图,点A ,B 分别在函数y =1k x (k 1>0)与函数y =2kx (k 2<0)的图象上,线段AB 的中点M 在x 轴上,△AOB 的面积为4,则k 1﹣k 2的值为()A .2B .4C .6D .85、(4分)关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 的取值范围是()A .6m <-且2m ≠B .6m >且2m ≠C .6m <且2m ≠-D .6m <且2m ≠6、(4分)下列手机软件图标中,是轴对称图形的是()A .B .C .D .7、(4分)下列运算正确的是()A .-B 123=C D 2=8、(4分)下列多项式中,可以使用平方差公式进行因式分解的是()A .x 2+1B .﹣x 2+1C .x 2+x D .x 2+2x +1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)函数11x +中自变量x 的取值范围是______.10、(4分)在正方形ABCD 中,对角线AC 、BD 相交于点O .如果AC ,那么正方形ABCD 的面积是__________.11、(4分)比较大小:2____3(填“>、<、或=”).12、(4分)如图,平行四边形ABCD 的对角线相交于点O,且AB≠AD,过O 作OE⊥BD 交BC 于点E,若平行四边形ABCD 的周长为20,则△CDE 的周长为_____.13、(4分)一次函数y=﹣x+4图象与x 轴、y 轴分别交于点A 、点B ,点P 为正比例函数y=kx (k >0)图象上一动点,且满足∠PBO=∠POA ,则AP 的最小值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,一次函数2y x b =+的图像经过点A (-1,0),并与反比例函数1k y x =(0x >)的图像交于B (m ,4)(1)求1k 的值;(2)以AB 为一边,在AB 的左侧作正方形ABCD ,求C 点坐标;(3)将正方形ABCD 沿着x 轴的正方向,向右平移n 个单位长度,得到正方形1111D C B A ,线段11A B 的中点为点E ,若点1C 和点E 同时落在反比例函数2k y x =的图像上,求n 的值.15、(8分)如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接PQ ,DQ ,过点P 作PE ⊥DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若AB =4,以点P ,E ,Q 为顶点的三角形与△ADQ 相似,试求出DP 的长.16、(8分)如图,等边△ABC 的边长是2,D 、E 分别为AB 、AC 的中点,连接CD ,过E 点作EF ∥DC 交BC 的延长线于点F .(1)求证:四边形CDEF 是平行四边形;(2)求四边形CDEF 的周长.17、(10分)(1)因式分解:9(m+n)2﹣(m ﹣n)2(2)已知:x+y=1,求12x 2+xy+12y 2的值.18、(10分)如图,正比例函数2y x =的图象与反比例函数(0)k y k x =≠的图象交于A ,B 两点,其中点B 的横坐标为1-.(1)求k 的值.(2)若点P是x 轴上一点,且6ABP S ∆=,求点P 的坐标.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形ABCD 中,6AB =,8BC =,点E 是BC 边上一点,连接AE ,把B Ð沿AE 折叠,使点B 落在点B '处.当CB E '∆为直角三角形时,则AE 的长为________.20、(4分)如果一组数据:8,7,5,x ,9,4的平均数为6,那么x 的值是_____.21、(4分)观察式子3b a ,52b a -,73a a ,94b a -……,根据你发现的规律可知,第n 个式子为______.22、(4分)计算=_______.23、(4分)菱形ABCD 的两条对角线相交于O ,若8AC =,6BD =,则菱形ABCD 的周长是___.二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫做格点.(1)以格点为顶点画ABC ∆;(2)若Rt DEF ∆的三边长分别为m、n、d,满足244n n =--,求三边长,若能画出以格点为顶点的三角形,请画出该格点三角形.25、(10分)如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D,AC 与A 1C 1、BC 1分别交于点E.F.(1)求证:△BCF ≌△BA 1D .(2)当∠C=α度时,判定四边形A 1BCE 的形状并说明理由.26、(12分)已知求代数式:x =,y =.(1)求代数式x 2+3xy+y 2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】根据勾股定理求出BC 长,由正方形的性质可得对角线长.【详解】解:由正方形ABCD 可知:在直角三角形EBC 中,根据勾股定理得:,则,在直角三角形ABC 中,根据勾股定理得:所以这块场地对角线长为40.故选:C 本题考查了勾股定理,灵活应用勾股定理求线段长是解题的关键.2、D 【解析】根据三角形中位线的性质可得出DE,CD,EC 的长度,则△DEC 的周长可求.【详解】∵D 、E 分别是BC 、CA 的中点,∴DE 是△ABC 的中位线.∵AB =4,BC =8,AC =6,∴DE =12AB =2,EC =12AC =3,CD =12CB =4,∴△DEC 的周长=2+3+4=9,故选:D .本题主要考查三角形中位线,掌握三角形中位线的性质是解题的关键.3、B【解析】绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000156=1.56×10﹣6.故选B.本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).4、D 【解析】过点A 作AC ⊥y 轴交于C ,过点B 作BD ⊥y 轴交于D,然后根据平行与中点得出OC =OD ,设点A (a ,d ),点B (b ,﹣d ),代入到反比例函数中有k 1=ad ,k 2=﹣bd ,然后利用△AOB 的面积为4得出ad+bd =8,即可求出k 1﹣k 2的值.【详解】过点A 作AC ⊥y 轴交于C ,过点B 作BD ⊥y 轴交于D ∴AC ∥BD ∥x 轴∵M 是AB 的中点∴OC =OD设点A (a ,d ),点B (b ,﹣d )代入得:k 1=ad ,k 2=﹣bd∵S △AOB =4∴111()24222a b d ad bd +--=整理得ad+bd =8∴k 1﹣k 2=8故选:D .本题主要考查反比例函数与几何综合,能够根据△AOB 的面积为4得出ad+bd =8是解题的关键.5、D 【解析】先根据分式方程的解法,求出用m 表示x 的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【详解】2322x m m x x ++=--去分母,得x+m+2m=3(x-2)解得x=62m -+∵关于x 的分式方程2322x m m x x ++=--的解为正实数∴x-2≠0,x >0即62m -+≠2,62m -+>0,解得m≠2且m <6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m 的式子表示x 解分式方程,构造不等式组是解题关键.6、C【解析】根据轴对称图形的概念求解.【详解】A 、不是轴对称图形,故错误;B 、不是轴对称图形,故错误;C 、是轴对称图形,故正确;D 、不是轴对称图形,故错误.故选C .本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7、D 【解析】试题分析:根据二次根式的混合运算的法则及二次根式的性质依次分析各选项即可作出判断.解:A 不是同类二次根式,无法化简,B .,C .,故错误;D 2=,本选项正确.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8、B 【解析】根据提公因式法、平方差公式、完全平方公式进行因式分解,判断即可.【详解】A 、x 2+1,不能进行因式分解;B 、﹣x 2+1=1﹣x 2=(1+x )(1﹣x ),可以使用平方差公式进行因式分解;C 、x 2+x =x (x +1),可以使用提公因式法进行因式分解;D 、x 2+2x +1=(x +1)2,可以使用完全平方公式进行因式分解;故选:B .此题考查因式分解,掌握提公因式法、平方差公式、完全平方公式进行因式分解的一般步骤是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、x ⩽2且x ≠−1.【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,2−x ⩾0且x+1≠0,解得x ⩽2且x≠−1.故答案为:x ⩽2且x≠−1.此题考查函数自变量的取值范围,解题关键在于掌握各性质定义.10、1【解析】根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC 是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD 的一条对角线将正方形分为两个全等的等腰直角三角形,即AC 是等腰直角三角形的斜边,∵∴正方形ABCD 的面积两个直角三角形的面积和,∴正方形ABCD 的面积=221111212222AC AC AC ⨯⨯⨯==⨯=,故答案为:1.此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.11、<【解析】试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.12、3.【解析】试题分析:由平行四边形ABCD 的对角线相交于点O ,OE ⊥BD ,根据线段垂直平分线的性质,可得BE=DE ,又由平行四边形ABCD 的周长为30,可得BC+CD 的长,继而可得△CDE 的周长等于BC+CD .试题解析:∵四边形ABCD 是平行四边形,∴OB=OD ,AB=CD ,AD=BC ,∵平行四边形ABCD 的周长为30,∴BC+CD=3,∵OE ⊥BD ,∴BE=DE ,∴△CDE 的周长为:CD+CE+DE=CD+CE+BE=CD+BC=3.考点:3.平行四边形的性质;3.线段垂直平分线的性质.13、2【解析】如图所示:因为∠PBO=∠POA ,所以∠BPO=90°,则点P 是以OB 为直径的圆上.设圆心为M ,连接MA 与圆M 的交点即是P ,此时PA 最短,∵OA =4,OM =2,∴MA ==又∵MP =2,AP =MA -MP∴AP =2-.三、解答题(本大题共5个小题,共48分)14、(1)k 1=4;(2)C 点坐标为(-3,6);(3)n=92.【解析】(1)把A 点坐标代入y=2x+b ,可求出b 值,把B (m ,4)代入可求出m 值,代入1k y x =即可求出k 1的值;(2)过B 作BF ⊥x 轴于F ,过C 作CG ⊥FB ,交FB 的延长线于G ,利用AAS 可证明△CBG ≌△BAF ,可得AF=BG ,CG=BF ,根据A 、B 两点坐标即可得C 点坐标;(3)由A 、B 、C 三点坐标可得向右平移n 个单位后A 1、B 1、C 1的坐标,即可得E 点坐标,根据k 2=xy 列方程即可求出n 值.【详解】(1)∵一次函数2y x b =+的图像经过点A (-1,0),∴-2+b=0,解得:b=2,∵点B (m ,4)在一次函数y=2x+2上,∴4=2m+2,解得:m=1,∵B (1,4)在反比例函数1k y x =图象上,∴k 1=4.(2)如图,过B 作BF ⊥x 轴于F ,过C 作CG ⊥FB ,交FB 的延长线于G ,∵A (-1,0),B (1,4),∴AF=2,BF=4,∴∠GCB+∠CBG=90°,∵四边形ABCD 是正方形,∴∠ABC=90°,∴∠ABF+∠CBG=90°,∴∠GCB=∠ABF ,又∵BC=AB ,∠AFB=∠CGB=90°,∴△CBG ≌△BAF ,∴BG=AF=2,CG=BF=4,∴GF=6,∵在AB 的左侧作正方形ABCD ,∴C 点坐标为(-3,6).(3)∵正方形ABCD 沿x 轴的正方向,向右平移n 个单位长度,∴A 1(-1+n ,0),B 1(1+n ,4),C 1(-3+n ,6),∵线段A 1B 1的中点为点E ,∴E (n ,2),∵点1C 和点E 同时落在反比例函数2k y x =的图像上,∴k 2=2n=6(-3+n)解得:n=92.本题考查一次函数与反比例函数综合,涉及的知识点有平移的性质、全等三角形的性质,一次函数和反比例函数图象上点的坐标特征及正方形的性质,熟练掌握性质和定理是解题关键.15、(1)△DPE ∽△QDA ,证明见解析;(2)DP=2或5【解析】(1)由∠ADC =∠DEP =∠A =90︒可证明△ADQ ∽△EPD ;(2)若以点P ,E ,Q 为顶点的三角形与△ADQ 相似,有两种情况,当△ADQ ∽△EPQ 时,设EQ =x ,则EP =2x ,则DE =,由△ADQ ∽△EPD 可得EP DE AD AQ =,可求出x 的值,则DP 可求出;同理当△ADQ ∽△EQP 时,设EQ =2a ,则EP =a ,可得22142a a -==,可求出a 的值,则DP 可求.【详解】(1)△ADQ ∽△EPD ,证明如下:∵PE ⊥DQ ,∴∠DEP =∠A =90︒,∵∠ADC =90︒,∴∠ADQ +∠EDP =90︒,∠EDP +∠DPE =90︒,∴∠ADQ =∠DPE ,∴△ADQ ∽△EPD ;(2)∵AB =4,点Q 为AB 的中点,∴AQ =BQ =2,∴DQ ==,∵∠PEQ =∠A =90︒,∴若以点P ,E ,Q 为顶点的三角形与△ADQ 相似,有两种情况,①当△ADQ ∽△EPQ 时,2AD PE AQ EQ ==,设EQ =x ,则EP =2x ,则DE =,由(1)知△ADQ ∽△EPD ,∴EP DE AD AQ =,∴242x x-=,∴x∴DP 5;②当△ADQ ∽△EQP 时,设EQ =2a ,则EP =a ,同理可得22142a a -==,∴a =5,DP 2=.综合以上可得DP 长为2或5,使得以点P ,E ,Q 为顶点的三角形与△ADQ 相似.本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.16、(1)证明见解析;(2)四边形CDEF 的周长为.【解析】(1)直接利用三角形中位线定理得出//DE BC ,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC EF =,进而求出答案.【详解】(1)证明:D Q 、E 分别为AB 、AC 的中点,DE ∴是ABC ∆的中位线,//12DE BC ∴=,//EF DC ,∴四边形CDEF 是平行四边形;(2)解:四边形DEFC 是平行四边形,DC EF ∴=,D Q 为AB 的中点,等边ABC ∆的边长是2,1AD BD ∴==,CD AB ⊥,2BC =,DC EF ∴==,∴四边形CDEF 的周长2(12==+.此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.17、(1)4(2m+n)(m+2n);(2)12.【解析】(1)直接利用平方差公式分解因式得出答案;(2)直接提取公因式12,再利用完全平方公式分解因式,进而把已知代入求出答案.【详解】解:(1)9(m+n)2﹣(m ﹣n)2=[3(m+n)+(m ﹣n)][3(m+n)﹣(m ﹣n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n);(2)12x 2+xy+12y 2=12(x 2+2xy+y 2)=12(x+y)2,当x+y =1时,原式=12×12=12.此题主要考查了公式法分解因式,正确运用公式是解题关键.18、(1)k=2;(2)P 点的坐标为(3,0)或(3,0)-.【解析】(1)把1x =-代入正比例函数2y x =的图象求得纵坐标,然后把B 的坐标代入反比例函数(0)ky k x =≠,即可求出k 的值;(2)因为A 、B 关于O 点对称,所以OA OB =,即可求得132AOP ABP S S ∆∆==,然后根据三角形面积公式列出关于m 的方程,解方程即可求得.【详解】解:(1)正比例函数2y x =的图象经过点B ,点B 的横坐标为1-.2(1)2y ∴=⨯-=-,∴点(1,2)B --,∵反比例函数(0)k y k x =≠的图象经过点(1,2)B --,1(2)2k ∴=-⨯-=;(2)OA OB =,132AOP ABP S S ∆∆∴==,设(,0)P m ,则1||232m ⨯=,||3m ∴=,即3m =±,P ∴点的坐标为(3,0)或(3,0)-.本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识点,利用数形结合是解答此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】当△CB′E 为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,先利用勾股定理计算出AC=10,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x ,则EB′=x ,CE=8-x ,然后在Rt △CEB′中运用勾股定理可计算出x .再在Rt △ABE 中,利用勾股定理可得AE 的长②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形.可得AB=BE,在Rt △ABE 中,利用勾股定理可得AE 的长.【详解】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC ,在Rt △ABC 中,AB=6,BC=8,∴AC=10,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处,∴EB=EB′,AB=AB′=6,∴CB′=10-6=4;设BE=x ,则EB′=x ,CE=8x -在Rt △CEB′中,由勾股定理可得:()22248x x +=-,解得:3x =在Rt △ABE 中,利用勾股定理可得:AE ===②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=6,∴在Rt △ABE 中,利用勾股定理可得:AE ===综上所述,AE 的长为或故答案为或本题考查了折叠问题:折叠前后两图形全等,也考查了矩形的性质以及勾股定理.注意需要分类讨论20、1【解析】利用平均数的定义,列出方程875946x +++++=6即可求解.【详解】解:根据题意知875946x +++++=6,解得:x =1,故答案为1.本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.21、()2111n n n b a ++-【解析】分别找出分子指数规律和分母指数规律,再结合符号规律即可得出答案.【详解】∵3b a ,52b a -,73a a ,94b a -……,∴第n 个式子为(−1)n+1•21n n b a +故答案为:(−1)n+1•21n n b a +.主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律22、【解析】利用二次根式的减法法则计算即可.【详解】解:原式=-=故答案为:本题考查二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题关键.23、20【解析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD ,AO=OC ,在Rt △AOD 中,根据勾股定理可以求得AB 的长,即可求菱形ABCD 的周长.【详解】∵菱形ABCD 的两条对角线相交于O ,AC=8,BD=6,由菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴=5,故菱形的周长为1,故答案为:1.本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB 的长是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析如图(1);(2)三边分别为是格点三角形.图见解析.【解析】(1)根据勾股定理画出图形即可.(2)先将等式变形,根据算术平方根和平方的非负性可得m 和n 的值,计算d 的值,画出格点三角形即可.【详解】(1)如图(1)所示:244n n =--,()220n +-=,解得:m=3,n=2,∴三边长为,3,2,,3,2是格点三角形.本题考查的是勾股定理,格点三角形、算术平方根和平方的非负性,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.25、(1)证明见解析(2)四边形A 1BCE 是菱形【解析】(1)根据等腰三角形的性质得到AB=BC ,∠A=∠C ,由旋转的性质得到A 1B=AB=BC ,∠A=∠A 1=∠C ,∠A 1BD=∠CBC 1,根据全等三角形的判定定理得到△BCF ≌△BA 1D ;(2)由旋转的性质得到∠A 1=∠A ,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A 1BC=360°﹣∠A 1﹣∠C ﹣∠A 1EC=180°﹣α,证得四边形A 1BCE 是平行四边形,由于A 1B=BC ,即可得到四边形A 1BCE 是菱形.【详解】(1)证明:∵△ABC 是等腰三角形,∴AB=BC ,∠A=∠C ,∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B=AB=BC ,∠A=∠A 1=∠C ,∠A 1BD=∠CBC 1,在△BCF 与△BA 1D 中,111A C A B BC A BD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCF ≌△BA 1D ;(2)解:四边形A 1BCE 是菱形,∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A ,∵∠ADE=∠A 1DB ,∴∠AED=∠A 1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A 1=α,∴∠A 1BC=360°﹣∠A 1﹣∠C ﹣∠A 1EC=180°﹣α,∴∠A 1=∠C ,∠A 1BC=∠A 1EC ,∴四边形A 1BCE 是平行四边形,∴A 1B=BC ,∴四边形A 1BCE 是菱形.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.26、(1)18;(2)1.【解析】(1)求出x+y,xy 的值,利用整体的思想解决问题;(2)根据菱形的面积等于对角线乘积的一半计算即可.解:(1)∵x=2+,y=2∴x+y=4,xy=4-2=2∴x 2+3xy+y 2=(x+y)2+xy =16+2=18(2)S 菱形=12xy=12(2+(2=12(4-2)=1“点睛”本题考查菱形的性质,二次根式的加减乘除运算法则等知识,解题的关键是学会整体的思想进行化简计算,属于中考常考题型.。

人教版九年级数学上册期末综合测试题(含答案)

人教版九年级数学上册期末综合测试题(含答案)
11.
12.
13.
14.
15.20
16.(1)解: ,




∴ , ;
(2)解: ,


或 ,
∴ , ;
(3)解: ,
化简整,得 ,

或 ,
∴ , .
17.(1)解:∵参与 活动的人数为36人,占总人数 ,
∴总人数 人,
则参与 活动的人数为: (人);
补全统计图如下:
(2)解:扇形 的圆心角为: ,
A.18°B.28°C.37°D.58°
10.如图,某公司准备在一个等腰直角三角形 的绿地上建造一个矩形的休闲书吧 ,其中点P在 上点N,M分别在 , 上,记 , ,图中阴影部分的面积为S,若 在一定范围内变化,则y与x,S与x满足的函数关系分别是()
A.一次函数关系,一次函数关系B.二次函数关系,一次函数关系
(3)解: 与 相交于 点,如图3,

为 的直径,
四边形 是 的神奇四边形,

, , ,
, ,
在 中, ,

设 ,则 ,
在 中, ,
解得 ,
即 ,
在 中, ,



23.(1)பைடு நூலகம்明:∵ ,
∴ ,
∴ ,
∴弦 平分圆周角 ,
∴圆中存在“爪形 ”;
(2)延长 至点E,使得 ,连接 ,
∵ ,
∴ ,
∵ , ,
根据以上信息,解答下列问题:
(1)参与此次抽样调查的学生人数是______人,补全统计图①;
(2)图②中扇形C的圆心角度数为______度;
(3)若参加成果展示活动的学生共有3600人,估计其中最喜爱“测量”项目的学生人数是多少;

人教版2022-2023学年第一学期九年级数学第三次阶段性综合测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次阶段性综合测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次阶段性综合测试题(附答案)一、单项选择题(共18分)1.中秋节是中国的传统节日,有“团圆”、“丰收”的寓意.月饼是首选传统食品,不仅美味,而且设计多样.下列月饼图案中,为中心对称图形的是()A.B.C.D.2.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=4 3.若气象部门预报明天下雪的概率是85%,下列说法正确的是()A.明天下雪的可能性比较大B.明天一定不会下雪C.明天一定会下雪D.明天下雪的可能性比较小4.如图,AB为⊙O的直径,C,D为⊙O上的两点,若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°5.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A.x1=﹣1,x2=5B.x1=﹣2,x2=4C.x1=﹣1,x2=2D.x1=﹣5,x2=56.截止到2021年3月15日,返乡入乡创业就业规模扩大,全国当年各类返乡入乡创业创新人员由2018年的320万人增加到2020年的1010万人.设我国从2018年到2020年返乡入乡创业创新人员的平均增长率为x,则可列方程为()A.320(1+2x)=1010B.320×2(1+x)=1010C.320(1+x)2=1010D.320+320(1+x)+320(1+x)2=1010二、填空题(共24分)7.一元二次方程x2=﹣x的根是.8.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.9.抛物线y=(x+2)2﹣2的顶点是.10.已知抛物线y=﹣(x+3)2﹣5,当x时,y随x的增大而增大.11.如图,矩形ABCD中,AB=3,AC=5.以点A为中心,将矩形ABCD旋转得到矩形AB′C′D′,使得点B′落在边AD上,此时DB′的长为.12.如图,已知四边形ABCD内接于⊙O,∠ABC=68°,则∠ADC的度数是.13.如图,⊙O的内接正六边形ABCDEF边长为cm,则该正六边形的面积为cm2.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为弧AB上一点,CD⊥OA,CE⊥OB,垂足分别为D,E.若∠CDE=40°,则图中阴影部分的面积为(结果保留π).三、解答题(共78分)15.解一元二次方程:x2﹣x﹣1=0.16.已知关于x的方程x2+4x+3﹣a=0有两个不相等的实数根,求a的取值范围.17.已知抛物线y=x2﹣kx﹣3k与x轴的一个交点为(﹣2,0)(1)求k的值;(2)求抛物线与x轴的另一个交点坐标.18.红红和丁丁玩纸牌游戏,如图是同一副扑克中的4张牌的正面,将它们正面洗匀后放在桌面上.(1)红红从4张牌中抽取一张,这张牌的数字为大于7的概率是.(2)红红先从中抽取一张,丁丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树状图或列表法求出红红获胜的概率.19.如图,在7×8的正方形网格中,每个小正方形的边长均为1,点A,B,C均在小正方形的顶点上.(1)将线段AB绕点C逆时针旋转90°得到线段DE(点A,B的对应点分别为点D,E),请画出线段DE.(2)以AD为对角线作▱AEDF,画出▱AEDF,并直接写出▱AEDF的面积.20.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE ⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.21.如图,在正方形ABCD中,AD=2,将边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC.(1)判断△ABP的形状,并说明理由.(2)求CE的长.22.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?23.小明进行铅球训练,他尝试利用数学模型来研究铅球的运动情况.他以水平方向为x 轴方向,1m为单位长度,建立了如图所示的平面直角坐标系,铅球从y轴上的A点出手,运动路径可看作抛物线,在B点处达到最高位置,落在x轴上的点C处.小明某次试投时的数据如图所示.(1)在图中画出铅球运动路径的示意图;(2)根据图中信息,求出铅球路径所在抛物线的表达式;(3)若铅球投掷距离(铅球落地点C与出手点A的水平距离OC的长度)不小于10m,成绩为优秀.请通过计算,判断小明此次试投的成绩是否能达到优秀.24.如图,△ABC中,AB=AC,∠BAC=120°,将△ABC绕点A逆时针旋转一个角度α(0<α<120°)得到△ADE,DE交BC于点F,连接AF,在旋转过程中,有下列对某些四边形状的判断.甲:四边形AFCE可能是矩形;乙:四边形ADCE可能是菱形;丙:四边形ABFE可能是菱形.解答下列问题:(1)上述判断正确的是.(2)请选择一个你认为正确的判断,画出相应的图形,求出此时旋转角a的度数,并给予证明.25.如图,△ABC中,AB=AC=8cm,∠BAC=120°.动点P从点A出发,在AB边上以每秒1cm的速度向终点B匀速运动(点P不与点A,B重合),同时动点Q从点B出发,沿BC边以每秒cm的速度向终点C匀速运动,连接PQ.设运动时间为x(s),△BPQ 的面积为y(cm2).(1)BP=cm,点Q到AB的距离为cm.(用含x的代数式表示)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)当y=S△ABC时,求x的值.(4)在点P,Q的运动过程中,以PQ为直径作⊙O,⊙O能与AB或BC相切吗?若能,请直接写出x的值;若不能,请说明理由.26.如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C (0,3).(1)若抛物线的对称轴是直线x=﹣2.①求抛物线的解析式.②点P在对称轴上,若△PBC的面积是6,求点P的坐标.(2)当b≤0,﹣2≤x≤0时,函数y的最大值满足3≤y max≤16,求b的取值范围.参考答案一、单项选择题(共18分)1.解:选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以不是中心对称图形;选项C能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以是中心对称图形;故选:B.2.解:移项得:x2+6x=5,配方可得:x2+6x+9=5+9,即(x+3)2=14,故选:A.3.解:若气象部门预报明天下雪的概率是85%,说明明天下雪的可能性比较大,故选:A.4.解:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣54°=36°,∴∠C=∠A=36°.故选:B.5.解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是﹣1.所以x1=﹣1,x2=5.故选:A.6.解:依题意得:320(1+x)2=1010.故选:C.二、填空题(共24分)7.解:∵x2=﹣x,∴x2+x=0,则x(x+1)=0,∴x=0或x+1=0,解得x1=0,x2=﹣1.故答案为:x1=0,x2=﹣1.8.解:点(﹣2,4)关于原点对称的点的坐标为(2,﹣4).故答案为:(2,﹣4).9.解:∵y=(x+2)2﹣2是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).10.解:∵抛物线y=﹣(x+3)2﹣5,∴抛物线开口向下,对称轴为直线x=﹣3;∵x<﹣3时,y随x的增大而增大,故答案为:<﹣3.11.解:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,AD=BC,∵AB=3,AC=5,∴BC===4,∴AD=4,由旋转的性质可知,AB=AB′=3,∴DB′=AD﹣AB′=4﹣3=1,故答案为:1.12.解:∵四边形ABCD内接于⊙O,∠ABC=68°,∴∠ADC=180°﹣∠ABC=180°﹣68°=112°,故答案为:112°.13.解:过点O作OH⊥AB于点H,连接OA,OB,∵⊙O的内接正六边形ABCDEF边长为cm,∴OA=OB=AB=2cm,∴OH=OA•cos30°=2×=3(cm),∴S正六边形ABCDEF=6S△OAB=6××=18(cm)2.故答案为:18.14.解:如图,连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴OD=CE,DE=OC,CD∥OE,∵∠CDE=40°,∴∠DEO=∠CDE=40°,在△DOE和△CEO中,,∴△DOE≌△CEO(SSS),∴∠COB=∠DEO=40°,∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC==,故答案为:.三、解答题(共78分)15.解:∵a=1,b=﹣1,c=﹣1,∴Δ=(﹣1)2﹣4×1×(﹣1)=5>0,则x==,∴x1=,x2=.16.解:∵方程x2+4x+3﹣a=0有两个不相等的实数根,∴Δ=42﹣4×1×(3﹣a)=4+4a>0,解得:a>﹣1.17.解:(1)根据题意得,4+2k﹣3k=0,所以k=4;得抛物线的解析式为y=x2﹣4x﹣12;(2)∵x2﹣4x﹣12=0,解得x1=﹣2,x2=6,∴抛物线与x轴的另一个交点坐标(6,0).18.解:(1)从4张牌中抽取一张,这张牌的数字为大于7的概率是=,故答案为:;(2)根据题意画树状图如下:共有12种等可能的结果数,其中红红获胜的结果有6个,∴红红获胜的概率为=.19.解:(1)如图,线段DE即为所求;(2)如图,平行四边形AEDF即为所求.四边形AEDF的面积=2×4=8.20.(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.(2)解:连接AD,∵AC是直径,∴∠ADC=90°,∵AB=AC,∠C=30°,∴∠B=∠C=30°,BD=CD,∴∠OAD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠AOD=60°,∵DE=,∠B=30°,∠BED=90°,∴CD=BD=2DE=2,∴OD=AD=tan30°•CD=×2=2,∴的长为:=.21.解:(1)△ABP是等边三角形.理由:∵四边形ABCD是正方形,∴∠ABC=∠BAD=∠D=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形;(2)∵△ABP是等边三角形,∴∠BAP=60°,∴∠DAE=30°,∵AD=2,∴DE=AD•tan30°=2,∴CE=2﹣2.22.解:(1)由题意,可设y=kx+b(k≠0),把(5,30000),(6,20000)代入得:,解得:,所以y与x之间的关系式为:y=﹣10000x+80000;(2)设利润为W元,则W=(x﹣4)(﹣10000x+80000)=﹣10000(x﹣4)(x﹣8)=﹣10000(x2﹣12x+32)=﹣10000[(x﹣6)2﹣4]=﹣10000(x﹣6)2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.23.解:(1)如图所示.(2)解:依题意,抛物线的顶点B的坐标为(4,3),点A的坐标为(0,2).设该抛物线的表达式为y=a(x﹣4)2+3,由抛物线过点A,有16a+3=2.解得,∴该抛物线的表达式为;(3)解:令y=0,得.解得,(C在x轴正半轴,故舍去).∴点C的坐标为(,0).∴.由,可得.∴小明此次试投的成绩达到优秀.24.解:(1)甲不正确:理由是当AF⊥CF时,DE与BC重合,四边形不存在.乙,丙正确(理由见2中证明).故答案为:乙,丙;(2)①四边形ADCE可能是菱形.当α=60°时,四边形ADCE是菱形.理由:如图1中,∵∠BAC=∠DAE=120°,∠BAD=60°,∴∠CAD=∠CAE=60°,∵AD=AC=AE,∴△ADC,△AEC都是等边三角形,∴AC=EC=CD,∴AE=AD=CD=EC,∴四边形ADCE是菱形.②四边形ABFE可能是菱形.当α=30°时,四边形ABFE是菱形.理由:如图2中,∵AB=AC,AD=AE,∠BAC=∠DAE=120°,∴∠B=∠ACB=∠ADE=∠AED=30°∵∠BAD=∠ADE=30°,∴AB∥DE,∵∠BAD=∠CAE=∠ACB=30°,∴AE∥CB,∴四边形ABFE是平行四边形,∵AB=AE,∴四边形ABFE是菱形.25.解:(1)由题意可得AP=xm,BQ=xcm,∵AB=8cm,∴BP=(8﹣x)cm,过Q点作QH⊥AB交于H,∵AB=AC,∠BAC=120°,∴∠B=30°,在Rt△BQH中,HQ=BQ=xcm,故答案为:8﹣x,x;(2)过点A作AG⊥BC交于G,∵BA=8cm,∠B=30°,∴AG=4cm,BG=4cm,∴BC=8cm,当Q点从B点运动到C点时,x=8,当P点从A点运动到B点时,x=8,∴P、Q点同时到达终点,∴0<x<8,由(1)知,BP=(8﹣x)cm,HQ=xcm,∴y=×BP×HQ=(8﹣x)×x=﹣x2+2x,∴y=﹣x2+2x(0≤x≤8);(3)由(2)知,AG=4cm,BC=8cm,∴S△ABC=×8×4=16cm2,∵y=S△ABC,∴﹣x2+2x=×16,解得x=4+2或x=4﹣2;(4)⊙O能与AB或BC相切,理由如下:如图3,当⊙O与AB相切时,P为切点,此时PQ⊥AB,∴8﹣x=×x,∴x=;如图4,当⊙O与BC相切时,Q为切点,此时PQ⊥BC,∴x=(8﹣x),解得x=;综上所述:x=或.26.解:(1)①抛物线y=x2+bx+c的对称轴为直线x=−=−2,∴b=4,又∵抛物线与y轴的交点为(0,3),∴c=3,∴抛物线的解析式为y=x2+4x+3;②∵抛物线的解析式为y=x2+4x+3,令y=0,则x2+4x+3=0,解得x=﹣1或﹣3,∴A(﹣3,0),B(﹣1,0),当点P在直线BC的上方时,∵点P在抛物线的对称轴上,∴设点P的坐标为(﹣2,m),则S△PBC=S梯形PDOC﹣S△PDB﹣S△COB=(m+3)×2﹣×1×m﹣×1×3=6,解得m=9,∴点P的坐标为(﹣2,9);当点P在直线m的下方时,设直线BC的解析式为y=mx+n,∵B(﹣1,0),C(0,3).∴,解得,∴直线BC的解析式为y=3x+3,∴直线BC与抛物线的对称轴的交点为(﹣2,﹣3),∴S△PBC=S△PEC﹣S△PEB=×2×(﹣3﹣m)﹣×1×(﹣3﹣m)=6,解得m=﹣15,∴点P的坐标为(﹣2,﹣15).综上所述,满足条件的点P的坐标为(﹣2,9)或(﹣2,﹣15);(2)∵b≤0时,∴−≥0,∴x=−≥0,∵抛物线开口向上,在对称轴左边,y随x的增大而减小,∴当﹣2≤x≤0时,取x=﹣2,y有最大值,即y=4﹣2b+3=﹣2b+7,∵C(0,3),∴当x=0时,取x=0,y有最小值3,∴3≤﹣2b+7≤16,解得:−≤b≤2,又∵b≤0,Δ=b2﹣12>0,∴<﹣2.。

湖北省阳新县2025届数学九年级第一学期开学综合测试试题【含答案】

湖北省阳新县2025届数学九年级第一学期开学综合测试试题【含答案】

湖北省阳新县2025届数学九年级第一学期开学综合测试试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知一组数据1a ,2a ,3a ,4a ,5a 的平均数为5,则另一组数据14a +,21a -,37a +,45a -,55a +的平均数为()A .4B .5C .6D .72、(4分)某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.52323.52424.5销售量/双354030178通过分析上述数据,对鞋店业主的进货最有意义的是A .平均数B .众数C .中位数D .方差3、(4分)如图,已知P 为正方形ABCD 外的一点,PA=1,PB=2,将△ABP 绕点B 顺时针旋转90°,使点P 旋转至点P′,且AP′=3,则∠BP′C 的度数为()A .105°B .112.5°C .120°D .135°4、(4分)下列说法正确的是()A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .投掷一枚硬币100次,一定有50次“正面朝上”D .若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定5、(4分)某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是()A.50,8B .50,50C .49,50D .49,86、(4分)如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是()A .16B .25C .144D .1697、(4分)如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是()A .B .C .D .8、(4分)已知:n 为()A .2B .3C .4D .5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .10、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:2S 甲=2,2S 乙=1.5,则射击成绩较稳定的是_______(填“甲”或“乙”).11、(4分)如图,矩形ABCD 中,AB=16cm ,BC=8cm ,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为______.12、(4分)已知x=2时,分式31x kx ++的值为零,则k=__________.13、(4分)将直线y =2x 向下平移2个单位,所得直线的函数表达式是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在ABC ∆中,AB AC =,D 是BA 延长线上一点,点E 是AC 的中点。

北师版九年级数学上册第五章综合测试卷含答案

北师版九年级数学上册第五章综合测试卷含答案

北师版九年级数学上册第五章综合测试卷一、选择题(共10小题,每小题3分,共30分)1. 日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成(如图),当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻,则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定2.下列立体图形中,俯视图是三角形的是()3.下图中是同一灯光下形成的影子的是()4.如图是由五个棱长为“1”的小正方体组成的几何体,下列图形中不是其视图的是()5. 孟母教子是中国传统文化的重要组成部分,孟母像(如图)位于太谷区孟母文化园内,在晴天的日子里,从早到晚在太阳光下孟母像的影子长度是如何变化的()A.逐渐变长B.逐渐变短C.先逐渐变短,后逐渐变长D.保持不变6. 中国有悠久的金石文化,印信是金石文化的代表之一,南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图①),可以把它看成图②所示的几何体.从正面看该几何体得到的平面图形是()7.[2024六安裕安区二模]在某娱乐节目中,参赛选手背对水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以图中两个不同的“姿势”分别穿过这两个空洞,则该几何体为()8.[2023绥化]如图是一个正方体被切去一角,则其左视图是()9.[2024衡阳雁峰区二模]甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是()A.甲在丁的对面,乙在甲的左边,丙在丁的左边B.丙在乙的对面,丙的左边是甲,右边是丁C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边10.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD为12 m,塔影长DE为18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m和1 m,则塔高AB为()A.24 m B.22 m C.20 m D.18 m二、填空题(共5小题,每小题3分,共15分)11.宋代诗人释惠明在《手影戏》中写到:“三尺生绡作戏台,全凭十指逞诙谐.有时明月灯窗下,一笑还从掌握来.”手影戏是一种独特的艺术形式,它的表演全部靠手部动作投影的改变,幻化形成各种不同的形象.“手影戏”中的手影属于________.(填写“平行投影”或“中心投影”)12.一个矩形窗框在太阳光下的投影形状可能是________.(写出一种即可)13.由正方体切割得到的一个几何体的三视图如图所示,则这个几何体是________.14.[2023广州越秀区二模]如图,在平面直角坐标系中,点光源位于P(2,2)处,木杆AB两端的坐标分别为(0,1),(3,1),则木杆AB在x轴上的影长CD为________.15.如图所示的是一个几何体的三视图,其俯视图是圆心角为270°的扇形,则该几何体的表面积为________.三、解答题(共6小题,共75分)16.(10分)[2024苏州姑苏区期末]如图是由6个大小相同的小正方体搭建的几何体,其中每个小正方体的棱长为1 cm.(1)这个几何体的表面积(包括底部)为________;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.17.(12分)如图,某数学兴趣小组要测量学校旗杆AB的高度,在某一时刻测得1 m长的竹竿竖直放置时影长为1.5 m,在同一时刻测量旗杆的影长时,因旗杆靠近一教学楼,影子不全落在地面上,有一部分落在墙上,测得落在地面上的影长BD为18 m,留在墙上的影高CD为3 m,求旗杆的高度AB.18.(12分)[2024揭阳榕城区期末]用10个大小相同的小立方块搭成几何体.从上面看到的该几何体的形状图如图①所示.其中小正方形中的数字表示在该位置的小立方块的个数.(1)请在图②中画出从正面和左面看到的这个几何体的形状图;(2)如果现在你还有一些大小相同的小立方块,要求保持从正面和左面看到的形状图都不变,最多可以再添加________个小立方块.19.(12分)如图,小磊晚上在广场散步,图中线段AB表示站立在广场上的小磊,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小磊站在B处的影子BE;(2)小磊的身高为1.6 m,当小磊离开灯杆的距离OB=2.4 m时,影长为1.2 m,若小磊离开灯杆的距离OD=6 m时,则小磊(CD)的影长为多少米?20.(14分)如图,王琳同学在晚上由路灯A走向路灯B,当他行到P 处时发现,他在路灯B下的影长为2米,且影子顶端恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子顶端恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米).(1)写出王琳站在P处时,在路灯B下的影子对应的线段;(2)求王琳站在Q处时,在路灯A下的影长;(3)求路灯A的高度.21.(15分)[2024青岛市北区期末]通常,路灯、台灯、手电筒……的光可以看成是从一个点发出的,在点光源的照射下,物体所产生的影子称为中心投影.(1)【画图操作】如图①,三根底部在同一直线上的旗杆直立在地面上,第一根、第二根旗杆在同一灯光下的影长如图所示.请在图中画出光源的位置及第三根旗杆在该灯光下的影子(不写画法);(2)【数学思考】如图②,夜晚,小明从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为________;(3)【解决问题】如图③,河对岸有一灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3 m,沿BD方向前进到达点F处测得自己的影长FG=4 m.已知小明的身高为1.6 m,求灯杆AB的高度.答案一、1.B 2.B 3.C 4.C 5.C 6.D 7.C 8.B 9.D 10.A 二、11.中心投影 12.平行四边形(答案不唯一)13.三棱锥 14.615.12+15π 【点拨】由三视图的形状易得几何体是34个圆柱,圆柱的底面半径为2,高为3;几何体的表面积是圆柱表面积的34与两个长为3,宽为2的长方形的面积和,利用圆柱的表面积计算公式求解.三、16.【解】(1)26 cm 2(2)如图所示:17.【解】如图,过点C 作CE ⊥AB 于点E ,则∠BEC =90°.∵CD ⊥BD ,AB ⊥BD ,∴∠B =∠BDC =90°.∴四边形BECD 为矩形.∴CE=BD=18 m,BE=CD=3 m.根据题意可得AECE=11.5,即AE18=11.5,解得AE=12 m,∴AB=AE+BE=12+3=15(m).∴旗杆的高度AB为15 m.18.【解】(1)如图所示:(2)319.【解】(1)如图,BE为所作.(2)如图,连接PC并延长交OD的延长线于F,则DF为小磊站在D处的影子,由题意知AB=CD=1.6 m,OB=2.4 m,BE=1.2 m,OD=6 m.∵AB∥OP,∴易得△EBA∽△EOP.∴ABOP=EBEO,即1.6OP=1.21.2+2.4,解得OP=4.8 m.∵CD ∥OP ,∴易得△FCD ∽△FPO . ∴CD OP =FD FO ,即1.64.8=FD FD +6, 解得FD =3 m.∴小磊(CD )的影长为3 m.20.【解】(1)线段CP 为王琳站在P 处时在路灯B 下的影子.(2)由题意知CP =2米,PQ =6.5米,PE =1.8米,BD =9米.由PE ∥BD ,易得△CEP ∽△CBD ,∴EP BD =CP CD ,即1.89=22+6.5+QD,解得QD =1.5米. ∴王琳站在Q 处时,在路灯A 下的影长为1.5米.(3)由题意知FQ =1.8米,由FQ ∥AC ,易得△DFQ ∽△DAC ,∴FQ AC =QD CD ,即1.8AC = 1.51.5+6.5+2, 解得AC =12米.∴路灯A 的高度为12米.21.【解】(1)如图,光源的位置为O ,第三根旗杆在该灯光下的影子为线段EF .(2)D(3)∵CD ∥EF ∥AB ,∴易得△CDF ∽△ABF ,△ABG ∽△EFG . ∴CD AB =DF BF ,EF AB =GF BG .又∵CD =EF ,∴DF BF =GF BG .又∵DF =3 m ,FG =4 m ,∴3BD +3=4BD +7. ∴BD =9 m.∴BF =9+3=12(m).又∵CD =1.6 m ,DF =3 m ,∴1.6AB =312,解得AB =6.4 m.∴灯杆AB 的高度为6.4 m.。

2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)

2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)

人教版(五四制)初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(共10题,共30分)1.(3分)关于x的方程kx2−6x+9=0有实数根,k的取值范围是( )A.k<1且k≠0B.k<1C.k≤1且k≠0D.k≤12.(3分)如图,△ABC是一张纸片,∠C=90∘,AC=6,BC=8,现将其折叠,使点B与点A重合,折痕为DE,则DE的长为( )A.1.75B.3C.3.75D.43.(3分)如果x,y之间满足的关系是xy=−6,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4.(3分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )A.随着抛掷次数的增加,正面朝上的频率越来越小B.当抛掷的次数很多时,正面朝上的次数一定占总抛掷次数的12C.不同次数的试验,正面朝上的频率可能会不相同D.连续抛掷11次硬币都是正面朝上,则第12次抛掷出现正面朝上的概率小于12 5.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路x m.依题意,下面所列方程正确的是( )A.120x =100x−10B.120x=100x+10C.120x−10=100xD.120x+10=100x6.(3分)如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=( )A.13B.10C.12D.57.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F,若FB=FE=2,FC=1,则AC的长是( )A.5√22B.3√52C.4√53D.5√238.(3分)如图,已知AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=α,则下列结论中不正确的是( )A.∠BOE=12(180∘−α)B.OF平分∠BODC.∠POE=∠BOF D.∠POB=2∠DOF9.(3分)如图,在△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:① ∠DBE=∠F;② 2∠BEF=∠BAF+∠C;③ ∠F=12(∠BAC−∠C);④ ∠BGH=∠ABE+∠C,其中正确的是( )A.①②④B.①③④C.①②③D.①②③④10.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90∘,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180∘;③DE平分∠ADC;④∠F为定值,其中结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7题,共28分)11.(4分)18和30的最小公倍数是.12.(4分)近似数7.30×104精确到位.13.(4分)小明爸爸把10000元按一年期定期储蓄存入银行,年利率为1.95%,到期后可得本利和为元.14.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(−2,0),半径为2,点P为x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的直线y=−34最小值是.15.(4分)如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60∘,AB=a,CF=EF,则△ABC的面积为(用含a的代数式表示).16.(4分)三个连续奇数,中间一个为a,则它们的积为.17.(4分)将正方形ABCD的各边按如图延长,从射线AB开始,分别在各射线上标记点A1,A2,A3,⋯,按此规律,点A2019在射线上.三、解答题(共8题,共62分)18.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1) 求甲、乙两种节能灯各进多少只?(2) 全部售完100只节能灯后,该商场获利多少元?19.(6分)解答下列问题.(1) 计算:4sin60∘−√12+(√3−1)0;).(2) 化简(x+1)÷(1+1x20.(7分)计算:(1) 37∘49ʹ+44∘28ʹ.(结果用度、分、秒表示)(2) 108∘18ʹ−56.5∘.(结果用度表示)21.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩根据以上信息,身高x(cm)163171173159161174164166169164解答如下问题:(1) 计算这组数据的三个统计量:平均数、中位数、众数;(2) 请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”是哪几位男生?并说明理由.22.(8分)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1) 求证△PBE∽△QAB;(2) 你认为△PBE和△BAE相似吗?如果相似给出证明,若不相似请说明理由.23.(8分)果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91⋯高度ℎ/米 4.9×0.25 4.9×0.36 4.9×0.49 4.9×0.64 4.9×0.81 4.9×1⋯(1) 上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2) 请你按照表中呈现的规律,列出果子落下的高度ℎ(米)与时间t(秒)之间的关系式.(3) 如果果子经过2秒落到地上,请计算这果子开始落下时离底面的高度是多少米?24.(10分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(−3,0),B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1) 求抛物线的解析式和顶点C的坐标;(2) 连接AD,CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3) 若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P,C,Q为顶点的三角形与△ACH相似时,求点P的坐标.25.(10分)已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120∘,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120∘后,得到△ABEʹ,连接EEʹ.(1) 如图1,∠AEEʹ=∘;(2) 如图2,如果将直线AE绕点A顺时针旋转30∘后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3) 如图3,在(2)的条件下,如果CE=2,AE=2√7,求ME的长.答案一、选择题(共10题,共30分)1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】A6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】D10. 【答案】C二、填空题(共7题,共28分) 11. 【答案】 9012. 【答案】百13. 【答案】 1019514. 【答案】 4√215. 【答案】√3a 2516. 【答案】 a 3−a17. 【答案】 AB三、解答题(共8题,共62分)18. 【答案】(1) 设商场购进甲种节能灯 x 只,购进乙种节能灯 y 只,根据题意,得{30x +35y =3300,x +y =100.解这个方程组,得{x =40,y =60.答:甲、乙两种节能灯分别购进 40,60 只.(2) 商场获利=40×(40−30)+60×(50−35)=1300(元).答:商场获利1300元.19. 【答案】(1) 原式=4×√32−2√3+1=2√3−2√3+1=1.(2) 原式=(x+1)÷(xx+1x)=(x+1)÷x+1x=(x+1)⋅xx+1=x.20. 【答案】(1) 82∘17ʹ.(2) 51.8∘21. 【答案】(1) 平均数为:163+171+173+159+161+174+164+166+169+16410=166.4(cm);10名同学身高从小到大排列如下:159,161,163,164,164,166,169,171,173,174,中位数:166+1642=165(cm);众数:164(cm).(2) 选平均数作为标准:身高x满足166.4×(1−2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为普通身高,此时⑦⑧⑨⑩男生的身高具有“普通身高”.选中位数作为标准:身高x满足165×(1−2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为普通身高,此时①⑦⑧⑩男生的身高具有“普通身高”.选众数作为标准:身高x满足164×(1−2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为普通身高,此时①⑤⑦⑧⑩男生的身高具有“普通身高”.22. 【答案】(1) ∵∠PBE+∠ABQ=90∘,∠PBE+∠PEB=90∘,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90∘,∴△PBE∽△QAB.(2) 相似,理由如下:∵△PBE∽△QAB,∴BEAB =PEBQ,又∵BQ=PB,∴BEAB =PEPB,即BEEP=ABPB,又∵∠ABE=∠BPE=90∘,∴△PBE∽△BAE.23. 【答案】(1) 上表反映了果子成熟从树上落到地面时落下的高度ℎ与经过的时间t的关系;其中时间t是自变量,高度ℎ是因变量.(2) 观察可知,下落t秒时,高度为4.9t2,即ℎ=4.9t2.(3) 当t=2时,ℎ=4.9×22=19.6(m).故果子开始落下时离底面的高度是19.6米.24. 【答案】(1) 把点A,B,D的坐标代入二次函数表达式得:{a+b+c=0,9a−3b+c=0,c=3,解得:{a=−1,b=−2,c=3,则抛物线的表达式为:y=−x2−2x+3 ⋯⋯①,函数的对称轴为:x=−b2a=−1,则点C的坐标为(−1,4);(2) 过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=−3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=−1+n,解得:n=5,则直线CE的表达式为:y=x+5 ⋯⋯②,则点H的坐标为(0,5),联立①②并解得:x=−1或−2(x=1为点C的横坐标),即点E的坐标为(−2,3);在y轴取一点Hʹ,使DH=DHʹ=2,过点 Hʹ 作直线 EʹEʺ∥AD ,则 △ADEʹ,△ADEʺ 与 △ACD 面积相等,同理可得直线 EʹEʺ 的表达式为:y =x +1 ⋯⋯③, 联立 ①③ 并解得:x =−3±√172, 则点 Eʺ,Eʹ 的坐标分别为 (−3+√172,−1+√172),(−3−√172,−1−√172), 点 E 的坐标为:(−2,3) 或 (−3+√172,−1+√172),(−3−√172,−1−√172);(3) 设:点 P 的坐标为 (m,n ),n =−m 2−2m +3,把点 C ,D 的坐标代入一次函数表达式:y =kx +b 得:{4=−k +b,b =3, 解得:{k =−1,b =3,即直线 CD 的表达式为:y =−x +3 ⋯⋯④,直线 AD 的表达式为:y =x +3,直线 CD 和直线 AD 表达式中的 k 值的乘积为 −1, 故 AD ⊥CD ,而直线 PQ ⊥CD ,故直线 PQ 表达式中的 k 值与直线 AD 表达式中的 k 值相同, 同理可得直线 PQ 表达式为:y =x +(n −m ) ⋯⋯⑤, 联立 ④⑤ 并解得:x =3+m−n2, 即点 Q 的坐标为 (3+m−n 2,3−m+n2),则:PQ 2=(m −3+m−n2)2+(n −3−m+n2)=(m+n−3)22=12(m +1)2⋅m 2.同理可得:PC 2=(m +1)2[1+(m +1)2], AH =2,CH =4,则 AC =2√5, 当 △ACH ∽△CPQ 时, PCPQ =ACAH =√52,即:4PC 2=5PQ 2,整理得:3m 2+16m +16=0,解得:m =−4 或 −43, 点 P 的坐标为 (−4,−5) 或 (−43,359);当 △ACH ∽△PCQ 时,同理可得:点 P 的坐标为 (−23,359) 或 (2,−5),故:点 P 的坐标为:(−4,−5) 或 (−43,359) 或 (−23,359) 或 (2,−5).25. 【答案】(2) 当点E在线段CD上时,DE+BF=2ME;∵∠EʹAE=120∘,AE=AEʹ,∴∠AEEʹ=∠AEʹE=30∘.∵∠EAF=30∘,∴AN=EN,∠EʹAF=90∘,∴AN=12NEʹ,EN=12NEʹ.即NEʹ=2EN.∵EM∥AD∥BC,∴△EMN∽△EʹFN,∴MEFEʹ=ENEʹN=12.∵DE=BEʹ,∴DE+BF=BEʹ+BF=FEʹ=2ME.即DE+BF=2ME.当点E在CD的延长线上,0∘<∠EAD<30∘时,BF−DE=2ME;∵△ADE旋转到△ABEʹ,∴ED=BEʹ.EʹF=BF−BEʹ=BF−ED同上可证:△MEN∽△FEʹN,AN=EN=12NEʹ∴EʹFME =EʹNEN=2.即BF−DE=2ME.30∘<∠EAD≤90∘时,DE+BF=2ME;∵EM∥BC,∴△EMN∽△EʹFN,∴EʹFEM =EʹNEN=2.同上可证:AN=EN=12NEʹ,∴EʹF=2EM.∵ED=BEʹ,∴DE+BF=BEʹ+BF=EʹF=2EM.90∘<∠EAD<120∘时,DE−BF=2ME.∵ED=BEʹ,DE−BF=BEʹ−BF=EʹF,EM∥BC,∴△EMN∽△EʹFN,EʹF EM =EʹNEN,AN=EN=12NEʹ,∴EʹF=2EM,DE−BF=2ME.(3) 作AG⊥BC于点G,作DH⊥BC于点H.由AD∥BC,AD=AB=CD,∠BAD=120∘,得∠ABC=∠DCB=60∘,易知四边形AGHD是矩形和两个全等的直角三角形△ABG、△DCH.则GH=AD,BG=CH.∵∠ABEʹ=∠ADC=120∘,∴点Eʹ、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=12x,.作EQ⊥BC于Q.在Rt△EQC中,CE=2,∠C=60∘,∴CQ=1,EQ=√3.∴EʹQ=BC−CQ+BEʹ=2x−1+x−2=3x−3.作AP⊥EEʹ于点P.∵△ADE绕点A顺时针旋转120∘后,得到△ABEʹ.∴△AEEʹ是等腰三角形,∠AEʹE=30∘,AEʹ=AE=2√7.∴在Rt△APEʹ中,EʹP=√21.∴EEʹ=2EʹP=2√21.∴在Rt△EQEʹ中,EʹQ=√EʹE2−EQ2=9.∴3x−3=9.∴x=4.∴DE=BEʹ=2,BC=8,BG=2.∴EʹG=4在Rt△EʹAF中,AG⊥BC,∴Rt△AGEʹ∽Rt△FAEʹ.∴AEʹEʹG =EʹFAEʹ∴EʹF=7.∴BF=EʹF−EʹB=5.由(2)知:DE+BF=2ME.∴ME=72人教版(五四制)初中数学九年级(下)期末综合测试卷(二)一、单项选择题:本大题总共8小题,每小题3分,共24分。

(北师大版)初中数学九年级上册 第二章综合测试试卷01及答案

(北师大版)初中数学九年级上册 第二章综合测试试卷01及答案

第二章综合测试一、单选题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为()A .2352035202600x x x ´--+=.B .3520352020600x x x ´--´=C .(352)(20)600x x --=D .(35)(202)600x x --=2.把一元二次方程()()2331x x x +=-化成一般形式,正确的是( )A .22790x x --=B .22590x x --=C .24790x x ++=D .226100x x --=3.若关于x 的一元二次方程()21220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且1k ¹B .12k >C .12k ≥且1k ¹D .12k <4.用配方法解方程2250x x --=,下列配方正确的是( )A .2(2)9x -=B .2(2)5x -=C .2(1)4x -=-D .2(1)6x -=5.已知二次函数2y ax bx c =++自变量x 与函数值y 之间满足下列数量关系:则()a b c ++值为( )x245y0.380.386A .24B .36C .6D .46.已知一元二次方程230x x --=的较小根为1x ,则下面对1x 的估计正确的是( )A .121x --<<B .132x --<<C .123x <<D .110x -<<7.关于x 的方程2(21)10kx k x k -+++=(k 为常数),下列说法:①当1k =时,该方程的实数根为2x =;②1x =是该方程的实数根;③该方程有两个不相等的实数根.其中正确的是( )A .①②B .②③C .②D .③8.等腰三角形的一边长是3,另两边的长是关于的方程240x x k -+=的两个根,则k 的值为( )A .3B .4C .3或4D .7二、填空题9.若1x ,2x 是方程2420200x x --=的两个实数根,则代数式211222x x x -+的值等于________.10.如果一个矩形的一边长是某个正方形边长的2倍,另一边长比该正方形边长少1厘米,且矩形的面积比该正方形的面积大8平方厘米,那么该正方形的边长是________厘米.三、计算题11.用指定的方法解方程:(1)22530x x -+=(用公式法解方程)(2)2356x x -=(用配方法解方程)12.解方程:(1)24x x =(因式分解法)(2)22430x x --=(公式法)13.解方程:(1)()224x +=(自选方法)(2)2210x x --=(配方法)(3)²14x x -=(公式法)(4)²122x x -=+(因式分解法)四、综合题14.已知关于x 的一元二次方程2240x x m ++-=有两个实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求出此时方程的根.15.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等的实数根是a ,b ,求111a ab -++的值.16.已知1x ,2x 是一元二次方程2220x x k -++=的两个实数根.(1)求k 的取值范围;(2)是否存在实数k ,使得等式12112k x x +=-成立?如果存在,请求出k 的值,如果不存在,请说明理由.17.某网店销售某款童装,每件售价60元,每星期可卖300件,为尽快减少库存,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件。

人教版九年级数学上册期末综合复习测试题(含答案)

人教版九年级数学上册期末综合复习测试题(含答案)

人教版九年级数学上册期末综合复习测试题(含答案)时间:100分钟 总分:120分一、 选择题(每题3分,共24分)1.已知关于x 的方程()222310---=m m x x +是一元二次方程,则m 的值为( ) A .2m =B .4m =C .2m =±D .2m =-2.如图,将AOB ∆绕点O 按逆时针方向旋转40°后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是 ( )A .25°B .30°C .35°D .40°3.顶点(2,1),且开口方向、形状与函数22y x =的图像相同的抛物线是 ( ) A .221y x =+ B .22(2)1y x =-+ C .22(2)1y x =++D .22(2)1y x =+-4.把方程2630x x +-=化成2)x m n (的形式,则m n += ( ) A .15-B .9C .15D .65.如图,ABC ∆内接于O ,直径8cm AD =,=60B ∠︒,则AC 的长度为 ( )A .5cmB .42C .43D .6cm6.在一个不透明的口袋中有红色、黄色和绿色球共60个,它们除颜色外,其余完全相同.在不倒出球的情况下,要估计袋中各种颜色球的个数.同学们通过大量的摸球试验后,发现摸到红球、黄球和绿球的频率分别稳定在20%,40%和40%.由此,推测口袋中黄色球的个数有( ) A .15个B .20个C .21个D .24个7.在同一坐标系中,一次函数y ax k =+与二次函数2y kx a =+的图象可能是 ( )A .B .C .D .8.二次函数2y ax bx c =++的图像如图所示,对称轴是直线1x =.下列结论:①0abc >;②30a c +>;③a c b +<-;④520a b c -+<.其中结论正确的个数为 ( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)9.若n 是方程2210x x --=的一个根,则代数式232n n -+-的值是________. 10.如图,AB 是半圆的直径,C 、D 是半圆上的两点,且20BAC =︒∠,点D 是AC 的中点,则BAD ∠=______.11.点()()1122,,,A x y B x y 在二次函数232y x x =-++的图像上,若122x x <<-,则1y 与2y 的大小关系是1y _______________2y .(用“>”、“<”、“=”填空)12.已知关于x 的一元二次方程2()0(,,a x h k a h k -+=都是常数,且0)a ≠的解为1213x x =-=,,则方程2(1)0(,,a x h k a h k --+=都是常数,且0)a ≠的解为___________.13.如图,正方形ABCD 的边长为3,点E 为AB 的中点,以E 为圆心,3为半径作圆,分别交AD 、BC 于M 、N 两点,与DC 切于P 点.则图中阴影部分的面积是______.14.如图,正方形OABC 的顶点B 在抛物线2y x 的第一象限的图象上,若点B 的纵坐标是横坐标的2倍,则对角线AC 的长为_________.15.如图,抛物线2y ax c =+与直线y mx n =+交于()1,A p -,()3,B q 两点,则不等式2ax mx c n ++<的解集是__________.16.如图,以(0,3)G 为圆心,半径为6的圆与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,点E 为⊙G 上一动点,CF AE ⊥于F ,点E 在G 的运动过程中,线段FG 的长度的最小值为______.三、解答题(每题8分,共72分) 17.解方程: (1)(2)(3)12x x --= (2)23410x x -+=18.已知关于x 的一元二次方程24250x x m --+=有两个实数根. (1)求m 的取值范围;(2)若该方程的两个根都是符号相同的整数,直接写出它的根.19.已知二次函数图像与x 轴两个交点之间的距离是4个单位,且顶点M 为()14-,,求二次函数的解析式.20.如图,抛物线2(0)y ax bx c a =++≠与直线1y x =+相交于(-10)A ,,(4)B m ,两点,且抛物线经过点(50)C ,(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A .点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.当PE =2ED 时,求P 点坐标;(3)点P 是直线上方的抛物线上的一个动点,求ABP ∆的面积最大时的P 点坐标.21.一个不透明的口袋中有四个完全相同的小球.把它们分别标记为1,2,3,4.(1)随机摸取一个小球的标号是偶数,该事件的概率为______;(2)小雨和小佳玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜.小雨先从口袋中摸出一个小球,不放回,小佳再从口袋中摸出一个小球.用画树状图(或列表)的方法,分别求出小雨和小佳获胜的概率.22.如图,已知女排球场的长度OD 为20米,位于球场中线处的球网AB 的高度2.24米,一队员站在点O 处发球,排球从点O 的正上方2米的C 点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O 的水平距离OE 为6米时,到达最高点G ,以O 为原点建立如图所示的平面直角坐标系.(1)写出C 点坐标___________;B 点坐标___________.(2)若排球运行的最大高度为3米,求排球飞行的高度p (单位:米)与水平距离x (单位:米)之间的函数关系式(不要求写自变量x 的取值范围);(3)在(2)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.23.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线.(2)若9OC =,4AC =,8AE =,则BC =______,BE =______.24.如图,已知等边ABC ,直线AM BC ⊥,点M 为垂足,点D 是直线AM 上的一个动点,线段CD 绕点D 顺时针方向旋转60°得线段DE ,联结BE 、CE .(1)如图1,当点D 在线段AM 上时,说明BE AB ⊥的理由;(2)如图2,当点D 在线段MA 的延长线上时,设直线BE 与直线AM 交于点F ,求BFM ∠的度数;(3)定义:有一个内角是36︒的等腰三角形称作黄金三角形,联结DB ,当DBE 是黄金三角形吋,直接写出BEC ∠为______度.25.抛物线2y ax 2x c =++与x 轴交于(1,0)A -、B 两点.与y 轴交于点(0,3)C 、点(,3)D m 在抛物线上.(1)求抛物线的解析式.(2)如图1,连接BC 、BD ,点P 在对称轴左侧的抛物线上,若PBC DBC ∠=∠,求点P 的坐标.(3)如图2,过点A 的直线∥m BC ,点Q 是直线BC 上方抛物线上一动点,过点Q 作QE m ⊥,垂足为点E ,连接BE ,CE ,CQ ,QB .当四边形BECQ 的面积最大时,求点Q 的坐标及四边形BDCQ 面积的最大值。

九年级数学上册各单元综合测试题含答案共13套

九年级数学上册各单元综合测试题含答案共13套

人教版九年级数学上册第二十一章综合测试卷01一、选择题(30分)1.一元二次方程22(32)10x x x --++=的一般形式是()A .2550x x -+=B .2550x x +-=C .2550x x ++=D .250x +=2.一元二次方程260x +-=的根是()A .12x x ==B .10x =,2x =-C .1x 2x =-D .1x =2x =3.用配方法解一元二次方程245x x -=时,此方程可变形为()A .2(2)1x +=B .2(2)1x -=C .229x +=()D .229x -=()4.一元二次方程220x x -=的两根分别为1x 和2x 则12x x 为()A .2-B .1C .2D .05.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定6.若2x =-是关于x 的一元二次方程22502x ax a -+=的一个根,则a 的值为()A .1或4B .1-或4-C .1-或4D .1或4-7.已知等腰三角形的腰和底的长分别是一元二次方程2680x x -+=的根,则该三角形的周长为()A .8B .10C .8或10D .128.若α,β是一元二次方程定2260x x +-=的两根,则22αβ+=()A .8-B .32C .16D .409.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的方程为()A .1(1)282x x +=B .1(1)282x x -=C .(1)28x x +=D .(1)28x x -=10.已知关于的一元二次方程2(1)2(1)0a x bx a ++++=有两个相等的实数根,下列判断正确的是()A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根二、填空题(24分)11.如果关于x 的方程220x x k -+=(k 为常数)有两个不相等的实数根,那么k 的取值范围是__________.12.若将方程定267x x +=化为2()16x m +=,则m =__________.13.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为__________.14.已知一元二次方程21)10x x -++-=的两根为1x ,2x ,则1211x x +=__________.15.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =__________.16.关于x 的一元二次方程2(5)220m x x -++=有实根,则m 的最大整数解是__________.17.若关于x 的一元二次方程号2124102x mx m --+=有两个相等的实数根,则2 2 2)1)((m m m ---的值为__________.18.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2260a x m +++=()的解是__________.三、解答题(8+6+6+6+6+7+7=46分)19.解方程.(1)3(2)2(2)x x x -=-(2)2220x x --=(用配方法)(3)()()11238x x x +-++=()(4)22630x x --=20.已知关于x 的一元二次方程()22(22)20x m x m m --+-=.(1)求证:方程有两个不相等的实数根,(2)如果方程的两实数根为1x ,2x ,且221210x x +=求m 的值.21.已知关于x 的一元二次方程2640x x m -++=有两个实数根1x ,2x .(1)求m 的取值范围.(2)若1x ,2x 满足1232x x =+,求m 的值.22.在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:(3×10=30)
1、刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定, 教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的( ) A .众数 B .方差 C .平均数 D .频数 2
是同类二次根式的是( )
A
B
C
D
1
3、如图,圆心角∠AOB=60°,则圆周角∠ACB 的度数是( )
A 、120°
B 、60°
C 、30°
D 、20°
4、(2008 河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .2
3000(1)5000x += B .2
30005000x =
C .23000(1)5000x +=%
D .2
3000(1)3000(1)5000x x +++=
5、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为( )厘米.
A 、
2
1
B 、22
C 、2
D 、22
6、已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置
关系是( )
A.内切
B.相交
C.外离
D.外切
九年级数学综合测试
7.如图,一块含有30º角的直角三角形ABC ,在水平桌面上绕点 C 按顺时针方向旋转到 A ’B ’C ’的位置。

若BC 的长为15cm ,那么 顶点A 从开始到结束所经过的路径长 ( ) A .π10cm B .π310cm C .π15cm D .π20cm
8.(2009成都)若关于x 的一元二次方程2
210kx x --=有两个不相等的实数根,则k 的取值范围是( )
(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠
9.如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )
A .202cm
B .402cm
C .20π2cm
D .40π2cm 10.如图,已知⊙O 过正方形ABCD 的顶点A 、B ,且与CD 边相切,若正方形的边
长为2,则圆的半径为( )
A .34
B .4
5 C .25 D .1
二、填空题:(3×8=24)
11.如图2所示,分别以n 边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分的面积之和为 个平方单位.
12.如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .
13.如图8,在Rt ABC △中,903C AC ∠==,.将其绕B 点顺时针旋转一周,则分别为半径的圆形成一圆环.则该圆环的面积为 . A
C
B
14.如图,奥运五环标志里,包含了圆与圆的位置关系中的外离
..和
15.(2008年四川省南充市)如图,四边
形中
,分别是
边的中点.请你添加一个条件,使四边形为菱形,应添加的条件是:
16.三角形的三边为5、12、13,则它的内切圆与外接圆的半径之比是___________. 17.如图3,小亮从A点出发前进10m,向右转15,再前进10m,又向右转15,…,这样一直走下去,他第一次回到出发点A时,一共走了m.
18.如图,已知:△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=2
4,则⊙O的直径等于。

A
三、解答题:
19.解方程:(3×2=6)
2
--=2610
--=
x x
320
x x
OC⊥交AB于点C,过B的直线交OC的延长线于点E,20、如图,AB是⊙O的弦,OA
CE=时,直线BE与⊙O有怎样的位置关系?请说明理由。

( 6分)
当BE
21. (本题满分8分)已知关于x 的方程2
2
2(1)0x m x m -++= (1) 当m 取何值时,方程有两个相等的实数根?
(2) 为m 选取一个合适的数,使方程有两个不相等的实数根,并求这两个根?
22、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图,AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π
B
A
·
图10—2
图10—1
23、如图:□ABCD的对角线AC、BD相交于点O,BD=12cm,AC=6cm,点E在线段BO 上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.(本题8分)
(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.
(2)在(1)的条件下,①当AB为何值时,四边形AECF是菱形;②四边形AECF 可以是矩形吗?为什么?
D
24、如图9,直线l的解析式为
4
4
3
y x l
=+,与x轴,y轴分别交于点A B
,.
(1)求原点O到直线l的距离;
(2)有一个半径为1的C从坐标原点出发,以每秒1个单位长的速度沿y轴正方向运动,设运动时间为t(秒).当C与直线l相切时,求t的值.(本题满分
25.(本题满分8分)如图(1),将射线OX按逆时针方向旋转角,得到射线OY,如果点P为射线OY上一点,且OP=a,那么我们规定用(α,β)表示点P在平面内的位置,并记为P(α,β)。

例如图(2)中,如果OM=8,XOM=100°,那么点M在平面内的位
图9
置记为M (8,100°),据此回答下列问题:
(1)在图(3)中,如果点N 在平面内的位置内的位置记为N(6,30°)那么 那么ON= ∠XON= 。

(此问得分按一空算)
(2)图4中若点A 、B 在平面内的位置分别计为A (4,45°)、B (43,75°)则线l 段AB 长为 。

26.(本题10分)如图①,将一组对边平行的纸条沿EF 折叠,点A 、B 分别落在A ’、B ’
处,线段FB ’与AD 交于点M .
(1)试判断△MEF 的形状,并证明你的结论;
O
a x
y
p x
M(8,100°) O 100° N(6,30°) O
x
B(4,75°)
A(4,45°)
(2)如图②,将纸条的另一部分CFMD 沿MN 折叠,点C 、D 分别落在C ’、D ’处,且使MD ’经过点F ,试判断四边形MNFE 的形状,并证明你的结论; (3)当∠BFE =_________度时,四边形MNFE 是菱形.
27. 如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形. (1)求这个扇形的面积(结果保留 ).(3分)
(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆
A (第26题图②)
B
C
E F
D A ’
B ’
A B
C
E F D A ’
B ’ D ’
C ’
M
M
N (第26题图①)
锥?请说明理由.(3分) (3)当O 的半径(0)R R 为任意值时,
(2)中的结论是否仍然成立?请说明理由.(4分)
28.(本题满分8分)如图,矩形ABCD 中,AB=10 cm ,BC=20 cm ,动圆⊙O 1从点A 出发以5 cm/s 的速度沿折线AD-DC-CB-BA 的方向运动,动圆⊙O 2同时从点D 出发以1 cm/s 的速度沿折线DC-CB-BA 的方向运动,当O 1和O 2首次重合,则运动停止,设运动的时间是t s .
(1)当t 是多少时,O 1和O 2首次重合.
图14
B
(2)如果⊙O1、⊙O2的半径分别为1cm和2 cm,那么t为何值时,⊙O1和⊙O2相切.
O2)
29.(本题满分8分)如图12,在平面直角坐标系中,A B ,两点的坐标分别为(20)(80)A B -,,,,以AB 为直径的半圆P 与y 轴交于点M ,以AB 为一边作正方形ABCD .
(1)求C M ,两点的坐标;
(2)连接CM ,试判断直线CM 是否与P 相切?说明你的理由;
(3)在x 轴上是否存在一点Q ,使得QMC △
不存在,请说明理由.。

相关文档
最新文档