专项练习图形的位似变换与坐标分解
专项练习图形的位似变换与坐标
目 录
• 位似变换基本概念与性质 • 平面直角坐标系中位似变换 • 三角形和四边形位似变换探讨 • 函数图像在位似变换下性质研究 • 实际应用问题中位似变换思想运用 • 总结回顾与拓展延伸
01 位似变换基本概念与性质
位似变换定义及特点
位似变换定义
如果两个图形不仅是相似图形,而且每组对应点的连线交于 一点,对应边互相平行(或在一条直线上),那么这两个图 形叫做位似图形。这个点叫做位似中心,这时的相似比又称 为位似比。
02 平面直角坐标系中位似变 换
平面直角坐标系简介
平面直角坐标系定义
点的坐标
在平面内画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。
平面内一点P的坐标由一对有序实数 (x,y)确定,其中x是点P到y轴的距离, y是点P到x轴的距离。
坐标轴及象限
水平数轴称为x轴或横轴,垂直数轴称 为y轴或纵轴。坐标轴将平面分为四个 象限。
然保持。
渐近线变换规律
反比例函数的渐近线在位似变换 下也会进行相应的平移和缩放,
但渐近线的斜率不会改变。
05 实际应用问题中位似变换 思想运用
几何证明题中位似变换思想运用
利用位似变换证明线段比例关系
01
通过构造位似图形,证明两条线段之间的比例关系,进而解决
几何证明问题。
利用位似变换证明角度相等关系
位似图形特点
两个位似图形中每组对应顶点所在的直线都交于一点,这个 交点叫做位似中心,图形上任意一对对应点到位似中心的距 离之比等于相似比。
相似比与位似中心关系
相似比
在位似变换中,如果两个相似图形的对应边长之比相等,那么这个比值就叫做 相似比。
位似中心与相似比关系
北师大版初三数学上册《图形的位似》知识讲解及例题演练
图形的位似--知识讲解【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化.【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k|.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k或-k.【典型例题】类型一、位似多边形1.下列每组的两个图形不是位似图形的是().A. B. C. D.【思路点拨】根据位似图形的概念对各选项逐一判断,即可得出答案.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形;而D 的对应顶点的连线不能相交于一点,故不是位似图形.故选D .【总结升华】位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的( ).A. 3倍B. 21 C. 31 D. 不知AB 的长度,无法判断 【答案】C2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A′B′C′D′E′,要与五边形ABCDE 相似且相似比为1.5.画法是: 1.在平面上任取一点O. 2.以O 为端点作射线OA 、OB 、OC 、OD 、OE. 3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A′、B′、C′、D′、E′,使OA′:OA = OB′:OB =OC′:OC =OD′:OD =OE′:OE =1.5. 4.连结A′B′、B′C′、C′D′、D′E′、E′A′.这样:A′B′AB =B′C′BC =C′D′CD =D′E′DE =A′E′AE=1.5. 则五边形A′B′C′D′E′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.【答案与解析】作法:(1)在AB 上任取一点G′,作G′D′⊥BC ;(2)以G′D′为边,在△ABC 内作一正方形D′E′F′G′;(3)连接BF′,延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型二、坐标系中的位似图形3. 如图,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB′C′D′,使它与四边形ABCD 位似,且相似比为2.A 1B 1C 1D 1E 1 A B C D E(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.【思路点拨】(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.【答案与解析】解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.【总结升华】本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4. 如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M 对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)图略;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).【总结升华】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.。
图形的位似变换
基础导练
1.如图,慢慢将电线杆竖起,如果所用力F的方向始终竖直向上,则电线杆竖起过程中所用力的大小将()
A.变大
B.变小
C.不变
D.无法判断
2.如图,为了测量池塘的宽DE,在岸边找到点C,测得CD=
30 m,在DC的延长线上找一点A,测得AC=5 m,过点A作
AB∥DE交EC的延长线于B,测出AB=6 m,则池塘的宽DE
为()
A.25 m B.30 m C.36 m D.40 m
3.张明同学想利用树影测校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米.当他测量教学楼旁的一棵大树影长时,因大树靠近教学楼,有一部分影子在教学楼的墙上. 经测量,大树在地面部分的影长为6.4米,墙上影长为1.4米,那么这棵大树高约 _____ 米.
能力提升
4.已知AB是斜靠在墙壁上的长梯,梯脚B距墙80 cm,梯上点D距墙70 cm,BD长55 cm,求梯子AB的长.
5.如图,九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m
CD=,标杆与旗杆的水平距离15m
EF=,人与标杆CD的水平距离
BD=,人的眼睛与地面的高度 1.6m
2m
DF=,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆AB的高度.
参考答案1.C 2.C 3.9.4
4.AB=440cm
5.AB=13.5 m。
6.6 图形的位似同步练习 2022-2023学年苏科版数学九年级下册
HM GFNCBA ED 九年级数学下册同步练习6.6图形的位似一、选择题1.若两个图形位似,则下列叙述不正确的是()A.两个图形的面积比等于位似比的平方B.两个图形上的对应线段必平行C.两个图形上的对应线段之比等于位似比D.每对对应点所在直线交于同一点2.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比.A.②③B.①②C.③④D.②③④3.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F 4.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为()A.(4,3) B.(3,4)C.(5,3)D.(4,4)第3题第4题第5题5.如图,BC∥DE,下列说法不正确的是()A.两个三角形是位似图形B.点A是两个三角形的位似中心C.B与D,C与E是对应位似点D.AE:AD是相似比6.在平面直角坐标系中,点P(1,﹣2)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P对应点的坐标为()A.(2,﹣4)B.(2,﹣4)或(﹣2,4)C.(,﹣1)D.(,﹣1)或(﹣,1)7.已知下列四种变化:①向下平移2个单位长度;②向左平移2个单位长度;③横坐标变为原来的2倍,纵坐标不变;④纵坐标变为原来的2倍,横坐标不变.若将函数y=x2+1图象上的所有点都经过三次变化得到函数y=x2+x的图象,则这三次变化的顺序可以是()A.③→④→①B.③→①→②C.④→②→①D.①→④→②8.如图,△DEF和△ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC的中点,若△ABC的面积是8,△DEF的面积是()A.2B.4C.6D.8二、填空题9.如果两个位似图形的对应线段长分别为3cm和5cm,且较小图形的周长为36cm,则较大图形的周长为______.10.如果把直角坐标系内多边形各点的横坐标与纵坐标均乘以2,则所得多边形与原多边形是______,它们的面积之比为______。
《图形的位似变换》练习题
22.4图形的位似变换一.选择题1.下列说法中正确的是( )A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等2.下列图形中位似中心在图形上的是( )D.C.B.A.3.如图,正五边形FGHMN 是由正五边形ABCDE 经过位似变换得到的,若:2:3AB FG ,则下列结论正确的是( )G FNMHDCB AA.23DE MNB.32DE MNC.32A FD.23A F4.按如下方法将ABC 的三边缩小来原来的12,如图所示,任取一点O ,连AO ,BO ,CO ,并取它们的中点D ,E ,F ,得DEF ,则下列说法中正确的个数是( )①ABC 与DEF 是位似图形;②ABC 与DEF 是相似图形;③ABC 与DEF 是周长的比为2∶1; ④ABC 与DEF 面积比为4∶1.F EDCBAOA.1个B.2个C.3个D.4个5.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a ,b )对应大鱼上的点( )yx21OA.(2a ,2b )B.(a ,2b )C.(2b ,2a )D.(2a ,b )二.填空题6.如图,五边形ABCDE 与五边形'''''A B C D E 是位似图形,点O 为位似中心,12'ODOD ,则''A B :AB =___________.E'D'C'B'A'EDCBA 7.如图,五边形ABCDE 与五边形'''''A B C D E 是位似图形,且相似比为12. 若五边形ABCDE 的面积为17 cm 2,周长为20 cm ,那么五边形'''''A B C D E 的面积为________,周长为________.OE'D'C'B'A'EDCBA8.如图,''A B ∥AB ,''B C ∥BC ,且'OA ∶'A A =4∶3,则ABC 与________是位似图形,相似比为________;OAB 与________是位似图形,相似比为________.OC'B'A'CB A9.在直角坐标系中,ABC 的各个顶点的坐标为A (-1,1),B (2,3),C (0,3).现要以坐标原点O 为位似中心,相似比为23,作ABC 的位似图形'''A B C ,则点'A ,'B ,'C 的坐标分别是 . 10.如图,AOB 以O 位似中心,扩大到COD ,各点坐标分别为A (1,2),B (3,0),D (4,0)则点C 坐标为 .21y x4321D C BA O三.解答题11.将如图所示的ABC 放大,使所得到的三角形与原三角形的相似比为1.5.CB A12.如图,图中的小方格都是边长为1的正方形,ABC 与'''A B C 是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)求出ABC 与'''A B C 的相似比;(3)以点O 为位似中心,再画一个111A B C ,使它与ABC 的相似比等于1.5.13.下图是照相机的工作原理图.两条光线与相机透镜的交点A 就是位似中心,底片上的点B ,C 和树上的对应点E ,D 以及点A 组成的ABC 和AED 是相似三角形. 若底片BC 的长度是3cm ,底片与相机透镜的距离是4cm ,树高15m ,你能求出相机透镜与大树的距离GF 吗??底片GFE DCBA实物相机透镜4cm3cm15m如图,在对Rt OAB 依次进行位似、轴对称和平移变换后得到'''O A B .(1)在坐标纸上画出这几次变换相应的图形;(2)设P (x ,y )为OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标.参考答案一.选择题1. D 2. B 3. B 4. D 5. A二.填空题6. 2 7. 417cm 2,10 cm 8. '''A B C 7∶4''OA B 7∶49. 2233,,423,,02,或2233,,423,,02,10.4833,三.解答题11.解析:C'CAA'B'BO(1)任取一点O 作为位似中心;(2)以点O 为端点,作射线OA ,OB ,OC ;(3)分别在射线OA ,OB ,OC 上取点'A ,'B ,'C ,使得':OA OA =':OB OB =':OC OC =1.5;(4)连接'A 'B ,'B 'C ,'C 'A ,得到△'''C B A ,则△'''C B A 即为所求,如图. 12.解析:(1)根据两个位似图形对应点的连线必过位似中心的性质,画直线'C C 与直线'A A ,它们的交点就是位似中心点O ,如图所示.(2)因为ABC 与'''A B C 相似,由勾股定理,得2222125''2425BCB C ,.∴:'''''1:2B C A B C BC ,即ABC 与'''A B C 的相似比为1:2.(3)因为111A B C 与ABC 是以O 为位似中心的位似图形,所以111::OAA O C C A A ,?又因为11: 1.5:1AC AC,所以1: 1.5:1OA OA ,而6OA,所以19OA ,画出点A ;同理可画出点B ,点C .于是可画出111A B C ,如图所示.13.解析:设m DE x ,由题意知ABC AED ∽.∴3415x,解得20x .∴相机透镜与大树的距离GF 是20m.14.解析:(1)如图所示;(2)设坐标纸中方格边长为单位1,则P x y ,2O 以为位似中心放大为原来的倍22x y ,y 经轴翻折22x y ,4向右平移个单位242x y ,5向上平移个单位2425xy,。
初中数学位似解答题专题训练含答案
初中数学位似解答题专题训练含答案初中数学位似解答题专题训练含答案姓名:__________班级:__________考号:__________一、解答题(共20题)1、在正方形网格中,每个小正方形的边长为1,DABC在平面直角坐标系中的位置如图所示.(1)以点C为位似中心,将DABC放大两倍得到△A1B1C,请在坐标系中画;(2)点A的对应点A1的坐标为;点B的对应点B1的坐标为.2、如图,在边长均为1的小正方形网格纸中,△的顶点、、均在格点上,且是直角坐标系的原点,点在轴上.(1)以O为位似中心,将△放大,使得放大后的△与△对应线段的比为2∶1,画出△.(所画△与△在原点两侧).(2)求出线段所在直线的函数关系式.3、如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)作出与△ABC关于x轴对称的△A1B1C1,并写出A1、B1、C1的坐标;(2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使=.4、如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.在左图图(1)中完成:⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)在右图图(2)中完成(3)以O为坐标原点,建立如图平面直角坐标系,用尺规作图找出△ABC的外接圆的圆心(保留作图痕迹),并写出其坐标。
(4)求(3)中△ABC的外接圆的面积。
5、.如图,与是位似图形,且顶点都在格点上.(1)在图上标出位似中心D的位置,并写出该位似中心D的坐标是;(2)△ABC与△A/B/C/的相似比为??6、如图,在的正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).⑴以点O(0,0)为位似中心,按比例尺(OA︰OA’)1:3在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’.画出△OA’B’,并写出点A’、B’的坐标:A’(),B’().⑵在⑴中,若为线段上任一点,写出变化后点的对应点的坐标().7、如图在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC、直线和格点O.(1)画出△ABC关于直线成轴对称的;(2)画出将向上平移1个单位得到的;(3)以格点O为位似中心,将作位似变换,将其放大到原来的两倍,得到.8、如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).(1)请在网格图形中画出平面直角坐标系;(2)以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;(3)写出△A′B′C′各顶点的坐标:A′____,B′____,C′?___;9、如图在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)则S△A1B1C1:S△A2B2C2.10、如图,图中小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形顶点上.(1)画出位似中心点O;(2)△ABC与△A′B′C′的位似比为1:2;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似为1:2.11、如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.12、在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2013个正方形的面积为.13、如图在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).(1)画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)则S△A1B1C1:S△A2B2C2.14、如图,点A的坐标为(3,2),点B的坐标为(3,0).作如下操作:①以点A为旋转中心,将△ABO顺时针方向旋转90°,得到△AB1O1;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1∶2,且点A2在第三象限.(1)在图中画出△AB1O1和△A2B2O;(2)请直接写出点A2的坐标:__________.15、如图,图中的小方格都是边长为1的正方形,△ABC的A、B、C三点坐标为A(2,0)、B(2,2)、C(6,3)。
图形的位似基础训练含答案
图形的位似基础训练含答案一.选择题(共19小题)1.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点2.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)3.等边三角形OAB在平面直角坐标系中的位置如图所示,已知△OAB边长为6,且△OAB 与△OA′B′关点O成位似图形,且位似比为1:2,则点A′的坐标可能是()A.(﹣6,6)B.(6,6)C.(﹣3,﹣3)D.(6,﹣6)4.如图,△ABC与△DEF位似,其位似中心为点O,且OD=AD,则△ABC与△DEF的位似比是()A.2:1B.4:1C.D.5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)6.在平面直角坐标系xOy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(4,2)C.(2,4)或(﹣2,﹣4)D.(4,2)或(﹣4,﹣2)7.已知,△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,)C.(,)D.(m,n)8.如图,已知△ABC和△A1B1C1是位似图形,其中点P为位似中心,且AP:A1P=3:2,则BC:B1C1等于()A.2:3B.3:2C.5:3D.2:59.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=4,则S△A′B′C′等于()A.6B.8C.9D.1210.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.11.如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.4912.如图,两个三角形是以点P为位似中心的位似图形,则点P的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,﹣3)D.(﹣2,3)13.如图,△ABC和△ADE是以点A为位似中心的位似图形,已知点A(1,0),B(﹣1,4),D(0,2),E(﹣,),则点E的对应点点C的坐标是()A.(﹣1,2)B.(﹣1,3)C.(﹣2,1)D.(﹣2,2)14.如图,在平面直角坐标系中,已知点A(﹣3,﹣1),B(0,﹣2),P(1,1)以点P 为位似中心,把△P AB扩大为原来的2倍,得到△P A'B',则A'的坐标为()A.(6,2)B.(6,5)C.(9,3)D.(9,5)15.如图,△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,若线段AC=6,则线段DE为()A.2B.4C.6D.316.如图,以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,若点B的横坐标是﹣2,点B的对应点B'的横坐标是2,则△ABC与△A'B'C的周长之比为()A.1:2B.1:3C.2:3D.2:117.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR18.已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣19.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2二.填空题(共6小题)20.如图,正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,且点A',E'分别在OA,OE上,点C,C'在x轴正半轴上.已知AB=4,则点C'的坐标为.21.如图,在平面直角坐标系中,△ABC与△DOE是位似图形.若A(0,3)、B(﹣2,0)、C(1,0)、E(6,0),△ABC与△DOE的位似中心是点M,则M点的坐标为.22.如图,在平面直角坐标系中,以原点O为位似中心,将ΔABO扩大到原来的2倍,得到ΔA'B'O.若点A的坐标是(1,2),则点A'的坐标是.23.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为.24.如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=.25.如图,在平面直角坐标系中,以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,已知,则点F的坐标为.三.解答题(共5小题)26.如图,在矩形ABCD中,AB=10,四边形EFCD是正方形,若矩形ABFE和矩形ABCD的宽与长的比都是黄金比,求BC的长.27.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.28.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.29.如图,在平面直角坐标系中,△OAB的三个顶点都在格点上,其中点A的坐标为(2,1).请在y轴的左侧,以原点O为位似中心,作△OAB的位似图形(△OA'B'),并使△OA'B'与△OAB的相似比为2.30.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,2),B(﹣6,4),C (﹣4,8).(1)以坐标原点O为位似中心,位似比为,将△ABC缩小得到△A′B′C′,请在平面直角坐标系中画岀△A′B′C′;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=.图形的位似基础训练含答案参考答案与试题解析一.选择题(共19小题)1.下列关于比例线段和相似的叙述,不正确的是()A.若a:b=c:d,则ac=bdB.相似三角形的面积比等于相似比的平方C.点C是线段AB的黄金分割点,且AC>BC,则D.经过位似多边形对应顶点的直线一定交于同一点【答案】A【解答】解:若a:b=c:d,则ad=bc,A不正确;相似三角形的面积比等于相似比的平方,B正确;点C是线段AB的黄金分割点,且AC>BC,则,C正确;经过位似多边形对应顶点的直线一定交于同一点,D正确.故选:A.2.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点O为位似中心,把这个三角形放大为原来的2倍,得到△CDO,则点A的对应点C的坐标为()A.(﹣4,8)B.(4,﹣8)C.(﹣4,8)或(4,﹣8)D.(﹣1,2)或(1,﹣2)【答案】C【解答】解:∵△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,0),O(0,0),以原点为位似中心,将这个三角形放大为原来的2倍,得到△CDO,∴点A的对应点C的坐标为:(﹣4,8)或(4,﹣8).故选:C.3.等边三角形OAB在平面直角坐标系中的位置如图所示,已知△OAB边长为6,且△OAB 与△OA′B′关点O成位似图形,且位似比为1:2,则点A′的坐标可能是()A.(﹣6,6)B.(6,6)C.(﹣3,﹣3)D.(6,﹣6)【答案】B【解答】解:作AC⊥OB于C,∵△OAB为等边三角形,AC⊥OB,∴OC=OB=3,∴AC==3,∴点A的坐标为(3,3),∵△OAB与△OA′B′关点O成位似图形,且位似比为1:2,∴点A′的坐标为(3×2,3×2)或(﹣3×2,﹣3×2),即(6,6)或(﹣6,﹣6),故选:B.4.如图,△ABC与△DEF位似,其位似中心为点O,且OD=AD,则△ABC与△DEF的位似比是()A.2:1B.4:1C.D.【答案】A【解答】解:∵△ABC与△DEF位似,∴DF∥AC,∴△ODF∽△OAC,∴==2,∴△ABC与△DEF的位似比是2:1,故选:A.5.如图,在平面直角坐标系中,已知点A(﹣2,1),B(﹣1,2),以原点O为位似中心,相似比为2,把△ABO放大,则点B的对应点B′的坐标是()A.(﹣4,2)B.(﹣2,4)C.(﹣4,2)或(﹣2,4)D.(﹣2,4)或(2,﹣4)【答案】D【解答】解:∵以原点O为位似中心,相似比为2,将△OAB放大为△OA′B′,点B (﹣1,2),∴B′点的坐标为(﹣2,4)或(2,﹣4).故选:D.6.在平面直角坐标系xOy中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(4,2)C.(2,4)或(﹣2,﹣4)D.(4,2)或(﹣4,﹣2)【答案】C【解答】解:∵O(0,0),A(1,2),B(3,0),以原点O为位似中心,相似比为2,将△OAB放大,∴A点的对应点A′坐标为:(2,4)或(﹣2,﹣4).故选:C.7.已知,△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,)C.(,)D.(m,n)【答案】C【解答】解:∵△ABO缩小后变为△A′B′O,其中A(4,6)、B(6,2)的对应点分别为A′(2,3)、B′(3,1),∴△ABO与△A′B′O的位似比为:,∴当线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为(,).故选:C.8.如图,已知△ABC和△A1B1C1是位似图形,其中点P为位似中心,且AP:A1P=3:2,则BC:B1C1等于()A.2:3B.3:2C.5:3D.2:5【答案】B【解答】解:∵△ABC和△A1B1C1是位似图形,∴△ABC∽△A1B1C1,AC∥A1C1,∴△APC∽△A1PC1,∴==,∵△ABC∽△A1B1C1,∴==,故选:B.9.如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=4,则S△A′B′C′等于()A.6B.8C.9D.12【答案】C【解答】解:∵△ABC与△A′B′C′是位似图形,点O是位似中心,∴△ABC∽△A′B′C′,AC∥A′C′,∴△AOC∽△A′OC′,∴==,∴=()2=,∵S△ABC=4,∴S△A′B′C′=9,故选:C.10.如图,四边形ABCD与四边形EFGH位似,位似中心点是O,=,则=()A.B.C.D.【答案】B【解答】解:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,=,∴==,则=()2=()2=,故选:B.11.如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49【答案】D【解答】解:∵ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,∴OA:OD=3:7,∴S△ABC:S△DEF=9:49,∵S△ABC=9,∴△DEF的面积为:49.故选:D.12.如图,两个三角形是以点P为位似中心的位似图形,则点P的坐标是()A.(﹣3,2)B.(﹣3,1)C.(2,﹣3)D.(﹣2,3)【答案】见试题解答内容【解答】解:如图点P为位似中心,∴=,即=,解得,PB=3,∴点P的坐标为(﹣3,2),故选:A.13.如图,△ABC和△ADE是以点A为位似中心的位似图形,已知点A(1,0),B(﹣1,4),D(0,2),E(﹣,),则点E的对应点点C的坐标是()A.(﹣1,2)B.(﹣1,3)C.(﹣2,1)D.(﹣2,2)【答案】C【解答】解:∵点A(1,0),B(﹣1,4),D(0,2),∴点D是线段AB的中点,∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,∴点E是线段AC的中点,∵点A(1,0),E(﹣,),∴点E的对应点点C的坐标为(﹣2,1),故选:C.14.如图,在平面直角坐标系中,已知点A(﹣3,﹣1),B(0,﹣2),P(1,1)以点P 为位似中心,把△P AB扩大为原来的2倍,得到△P A'B',则A'的坐标为()A.(6,2)B.(6,5)C.(9,3)D.(9,5)【答案】D【解答】解:如图所示:过点A′作A′D⊥x轴于点D,过点A作AC⊥x轴于点E,过点P作x轴的平行线,交A′D于点F,交AE延长线于点E,由题意可得:△ACP∽△A′FP,∵点A(﹣3,﹣1),P(1,1)∴CP=3+1=4,AC=1+1=2,∵以点P为位似中心,把△P AB扩大为原来的2倍,∴==,∴PF=8,A′F=4,∴A′D=5,∴A'的坐标为(9,5).故选:D.15.如图,△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,若线段AC=6,则线段DE为()A.2B.4C.6D.3【答案】D【解答】解:∵△ABC与△DFE是位似图形,且位似中心为O,OB:OF=2:1,线段AC=6,∴线段DE为:6×=3.故选:D.16.如图,以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,若点B的横坐标是﹣2,点B的对应点B'的横坐标是2,则△ABC与△A'B'C的周长之比为()A.1:2B.1:3C.2:3D.2:1【答案】B【解答】解:过点B作BE⊥x轴于点E,过点B′作B′F⊥x轴于点F,∵以点C(﹣1,0)为位似中心,作△ABC的位似图形△A'B'C,点B的横坐标是﹣2,∴EC=1,∵点B的对应点B'的横坐标是2,∴CF=3,∴==,∴△ABC与△A'B'C的周长之比为:1:3.故选:B.17.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 【答案】A【解答】解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA ==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.18.已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣【答案】C【解答】解:∵点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,点D与点B对应,∴点D的横坐标为:3×=1或3×(﹣)=﹣1.故选:C.19.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.B.2C.4D.2【答案】D【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF==2.故选:D.二.填空题(共6小题)20.如图,正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,且点A',E'分别在OA,OE上,点C,C'在x轴正半轴上.已知AB=4,则点C'的坐标为(4,0).【答案】(4,0).【解答】解:∵正六边形OABCDE的边AB=4,∴OC=8,∴C(8,0)∵正六边形OABCDE与正六边形OA'B'C'D'E'是关于原点O的位似图形,相似比为2:1,∴点C'的坐标为(4,0).故答案为(4,0).21.如图,在平面直角坐标系中,△ABC与△DOE是位似图形.若A(0,3)、B(﹣2,0)、C(1,0)、E(6,0),△ABC与△DOE的位似中心是点M,则M点的坐标为(﹣4,0).【答案】(﹣4,0).【解答】解:过点D作DH⊥OE于点H,由题意可得:BC=3,OE=6,△ABC∽△DOE,则位似比为:3:6=1:2,故OH=2OB=4,DH=2OA=6,则D点的坐标为:(4,6),由MO:MH=1:2,MH=MO+4,故MO:(MO+4)=1:2,解得:MO=4,则M点坐标为:(﹣4,0).故答案为:(﹣4,0).22.如图,在平面直角坐标系中,以原点O为位似中心,将ΔABO扩大到原来的2倍,得到ΔA'B'O.若点A的坐标是(1,2),则点A'的坐标是(﹣2,﹣4).【答案】(﹣2,﹣4).【解答】解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).23.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为4.【答案】4.【解答】解:连接BG,∵▱ABCD和▱EBFG是以B为位似中心的位似图形,∴点D、G、B在同一条直线上,EG∥AD,∵四边形ABCD是平行四边形,面积为24,∴△ADB的面积为12,∵EG∥AD,∴==,∴=,∴△ADG的面积=12×=4,故答案为:4.24.如图,四边形ABCD与四边形A′B′C′D′位似,位似中心为点O,OC=6,CC′=4,AB=3,则A′B′=5.【答案】5.【解答】解:∵四边形ABCD与四边形A′B′C′D′位似,其位似中心为点O,OC=6,CC′=4,∴==,∴=,∵AB=3,∴A′B′=5.故答案为:5.25.如图,在平面直角坐标系中,以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,已知,则点F的坐标为(3,3).【答案】见试题解答内容【解答】解:∵以原点O为位似中心,相似比为3:1,将△ABC放大为△DEF,∴点F的坐标为(1×3,×3),即F(3,3).故答案为(3,3).三.解答题(共5小题)26.如图,在矩形ABCD中,AB=10,四边形EFCD是正方形,若矩形ABFE和矩形ABCD 的宽与长的比都是黄金比,求BC的长.【答案】见试题解答内容【解答】解:∵矩形ABCD的宽与长的比是黄金比,∴=,又AB=10,∴BC=5+5.27.△ABC在边长为1的正方形网格中如图所示.(1)以点C为位似中心,作出△ABC的位似图形△A1B1C1,使其位似比为1:2.且△A1B1C1位于点C的异侧,并表示出A1的坐标.(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C2.【答案】(1)A1(3,﹣3);(2)见解答.【解答】解:(1)如图,△A1B1C1所作,点A1的坐标为(3,﹣3);(2)如图,△A2B2C2为所作.28.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出将△ABC绕点A逆时针旋转90°的△AB1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格纸中画出△A2B2C2,并写出点C2的坐标.【答案】(1)见解答;(2)C2(2,10).【解答】解:(1)如图,△AB1C1为所作;(2)如图,△A2B2C2为所作;点C2的坐标为(2,10).29.如图,在平面直角坐标系中,△OAB的三个顶点都在格点上,其中点A的坐标为(2,1).请在y轴的左侧,以原点O为位似中心,作△OAB的位似图形(△OA'B'),并使△OA'B'与△OAB的相似比为2.【答案】作图见解析部分.【解答】解:如图,△OA'B'即为所求.30.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,2),B(﹣6,4),C (﹣4,8).(1)以坐标原点O为位似中心,位似比为,将△ABC缩小得到△A′B′C′,请在平面直角坐标系中画岀△A′B′C′;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=2:1.【答案】见试题解答内容【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)设△ABC与△A′B′C′的周长分别为l1,l2,则l1:l2=2:1.故答案为:2:1.。
[数学]-专项训练:坐标的变化(30题)(原版)
【专项训练】坐标的变化(30题)一.选择题(共20小题)1.(2023•桐乡市校级开学)在直角坐标系中,点P(﹣2,3)向右平移4个单位长度后的坐标为()A.(﹣6,3)B.(2,3)C.(﹣2,﹣1)D.(﹣2,7)2.(2022秋•宣州区期末)佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标()A.纵坐标不变,横坐标减2B.纵坐标不变,横坐标先除以2,再均减2C.纵坐标不变,横坐标除以2D.纵坐标不变,横坐标先减2,再均除以23.(2022春•晋州市期中)在平面直角坐标系中,有M(﹣3,a+2),N(a+1,6﹣a)两点,若MN∥x 轴,则M,N两点间的距离为()A.5B.6C.7D.124.(2022春•殷都区校级月考)如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7)B.(2,2),(4,3),(1,7)C.(﹣2,2),(3,4),(1,7)D.(2,﹣2),(4,3),(1,7)5.(2022•青岛二模)如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段A'B'有一个点P'(a,b),则点P'在AB上的对应点P的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(2022春•如东县期中)三角形ABC在经过某次平移后,顶点A(﹣1,m+2)的对应点为A(2,m﹣3),若此三角形内任意一点P(a,b)经过此次平移后对应点P1(c,d).则a+b﹣c﹣d的值为()A.8+m B.﹣8+m C.2D.﹣27.(2022春•信都区期末)已知点A(﹣3,4),B(﹣6,﹣1),将线段AB平移至AʹBʹ,点A的对应点Aʹ在y轴上,点B的对应点Bʹ在x轴上,点Aʹ的纵坐标为a,点Bʹ的横坐标为b,则a+b的值为()A.2B.3C.﹣3D.﹣28.(2022春•罗庄区期末)如图,第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是()A.(﹣2,0)B.(0,3)C.(0,3)或(﹣4,0)D.(0,3)或(﹣2,0)9.(2022•长兴县开学)第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)10.(2021春•思明区校级期中)对于点A(2,m)与点B(2,m﹣5),下列说法不正确的是()A.将点A向下平移5个单位长度可得到点BB.A、B两点的距离为5C.点A到y轴的距离为2D.直线AB与x轴平行11.(2021•海珠区校级二模)平面直角坐标系上一点P(m,﹣m+1),若将点P平移使得它与坐标原点重合,那么需要平移的最短距离为()A.B.C.1D.12.(2022秋•海口期末)如图,点A(0,3)、B(1,0),将线段AB平移到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是()A.(5,6)B.(6,5)C.(7,5)D.(7,2)13.(2022春•武侯区期末)在平面直角坐标系中,将点M(3m﹣1,m﹣3)向上平移2个单位长度得到点M',若点M'在x轴上,则点M的坐标是()A.(2,﹣2)B.(14,2)C.(﹣2,﹣)D.(8,0)14.(2022•邓州市一模)如图,在Rt△ABC中,点B(0,0),点A(0,3),点C(4,0),将Rt△ABC沿x轴正方向平移得到Rt△DEF,DE交AC于点M,若△MEC的周长为4,则点M的坐标为()A.B.C.D.15.(2022•中原区校级模拟)如图,在平面直角坐标系xOy中,将折线AEB向右平移得到折线CFD,则折线AEB在平移过程中扫过的面积是()A.4B.5C.6D.716.(2022春•林州市期中)如图,在平面直角坐标系中,设一质点M自P.(1,0)处向上运动1个单位至P(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…,如此继续运动下去,则P2022的坐标为()A.(1011,1011)B.(﹣1011,1011)C.(504,﹣505)D.(505,﹣504)17.(2022春•鹿邑县月考)如图,点A1(1,1)向上平移1个单位长度,再向右平移2个单位长度,得到点A2;将点A2向上平移2个单位长度,再向右平移4个单位长度,得到点A3;将点A3向上平移4个单位长度,再向右平移8个单位长度,得到A4,…,按照这个规律平移得到的点A2022,则点A2022的横坐标为()A.22021B.22022﹣1C.22022D.22022+118.(2022秋•永善县期中)如图,在平面直角坐标系中,设一质点M自P0(1,0)处向上运动1个单位P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,……,如此继续运动下去,则P2022的坐标为()A.(﹣1011,1011)B.(505,﹣504)C.(504,﹣505)D.(1011,1011)19.(2022春•西城区校级期中)如图,在平面直角坐标系中,一动点从原点O出发,向右平移3个单位长度到达点A1,再向上平移6个单位长度到达点A2,再向左平移9个单位长度到达点A3,再向下平移12个单位长度到达点A4,再向右平移15个单位长度到达点A5……按此规律进行下去,该动点到达的点A2022的坐标是()A.(3030,3033)B.(3030,3030)C.(3033,﹣3030)D.(3033,3036)20.(2022春•玉山县期中)如图,在坐标平面上,小七从点A(0,﹣8)出发,每天都是先向右走1个单位,再向上走3个单位.小七第一天由A点走到A1点,第二天由A1点走到A2点,…….那么小七第二十九天走到的点的坐标是()A.(28,70)B.(28,79)C.(29,70)D.(29,79)二.解答题(共10小题)21.(2022春•七里河区校级期中)如图,A(1,0),B(0,2)两点,若将线段AB平移至A1B1,求a ﹣b的值.22.(2022春•芜湖期末)如图,已知三角形ABC在平面直角坐标系中,且点A的坐标为(﹣2,﹣3),点C的坐标为(0,1),三角形ABC通过平移得到三角形A′B′C′.(1)在图中补画出平面直角坐标系xOy;(2)分别写出三角形A′B′C′的顶点A′和顶点C′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(3)请你在图中标出点M(3,﹣5)和点N(﹣4,4)的位置.23.(2022春•潼关县月考)如图,已知每个小正方形的边长为1,且正方形的顶点称为格点,网格中有一只小鱼,若小鱼平移游动,平移后的鱼头部分已画出(鱼身顶点都在格点上),请补全平移后的鱼尾部分.24.(2022•同心县二模)在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.25.(2022春•昭化区期末)如图,△ABC的顶点A(﹣1,4),B(﹣4,﹣1),C(1,1).若△ABC 向右平移4个单位长度,再向下平移3个单位长度得到△A'B'C',且点C的对应点坐标是C'.(1)画出△A'B'C',并直接写出点C'的坐标;(2)若△ABC内有一点P(a,b)经过以上平移后的对应点为P',直接写出点P'的坐标;(3)求△ABC的面积.26.(2022春•江岸区校级月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系∠CBC′﹣∠B′C′O=90°;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.27.(2022春•邻水县期末)如图,△ABC在直角坐标系中,(1)请写出△ABC各顶点的坐标.(2)若把△ABC向上平移2个单位,再向右平移3个单位得到△A1B1C1,请在图中画出△A1B1C1,并写出点A1、B1、C1的坐标.(3)求出△ABC的面积.28.(2022春•石城县期末)如图,在直角坐标系中,已知A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别是点A1、B1、C1.(1)画出△A1B1C1;(2)直接写出点A1、B1、C1的坐标;(3)直接写出△A1B1C1的面积.29.(2020秋•西湖区期末)已知点P(3a﹣15,2﹣a).(1)若点P到x轴的距离是3,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移2个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.30.(2021春•海东市期末)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,观察点与点坐标之间的关系,解答下列问题.(1)分别写出点A、点B、点C、点A'、点B'、点C'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)若点M(a+2,4﹣b)是点N(2a﹣3,2b﹣5)通过(1)中的平移变换得到的,求(b﹣a)2的值.。
2022-2023学年人教版九年级数学下册《27-3位似》同步题型分类练习题(附答案)
2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。
人教版九年级数学上图形的位似 课时练习(含答案解析)
北师大版数学九年级上册第3章第8节图形的位似同步检测一、选择题1.如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC与△DEF 的面积比是()A.1:8B.1:6C.1:4D.1:2答案:C解析:解答:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选:C.分析:先由已知条件及位似图形的性质,得AC∥DF,求得AC:DF=OA:OD=1:2,再根据相似三角形面积的比等于相似比的平方,求得△ABC与△DEF的面积比.掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.2.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(-2,0)B.(-1.5,-1.5)C.(-2,-2)D.(-2,-2)答案:C解析:解答:∵正方形OABC,点A的坐标为(1,0),∴B点坐标为:(1,1),∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴E点的坐标为:(-2,-2).故选:C.分析:首先利用正方形的性质得出B点坐标,然后利用位似图形的性质,将B点横纵坐标都乘以-2得出答案.此题主要考查了位似图形的性质以及坐标与图形的性质,得出E点与B点坐标关系是解题的关键.3.已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点'A的坐标为()A.(1,12)B.(4,2)C.(1,12)或(-1,-12)D.(4,2)或(-4,-2)答案:D解析:解答:如图,则点A 的坐标为(4,2)或(-4,-2).故选:D.分析:先由已知条件画出符合条件的两个图形,再根据图中点的位置写出坐标.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.4.如图,在3×3正方形网格中,顶点是网格线的交点的三角形叫做格点三角形,给出下列命题:①一定存在全等的两个格点三角形②一定存在相似且不全等的两个格点三角形③一定存在两个格点三角形是位似图形④一定存在周长和面积均为无理数的格点三角形其中真命题的个数是()A.4个B.3个C.2个D.1个答案:B解析:解答:根据题意,得如图所示:△FBG≌△AFH,①正确;△ABC∽△FBC,但两者不全等,②正确;△ABC与△DBE位似,③正确;因为可以得到格点三角形两直角边长为整数,所以面积无法得到是无理数的格点三角形,④错误;故选:B.分析:根据题意,先在图中作出三角形,再分析得到答案.此题考查了位似、全等、相似的相关知识,注意三者的区别与联系.5.下列语句正确的是()A.相似图形一定是位似图形,位似图形一定是相似图形B.位似图形一定是相似图形,而且位似比等于相似比C.利用位似变换只能放大图形,不能缩小图形D.利用位似变换只能缩小图形,不能放大图形答案:B解析:解答:相似图形对应点的连线不一定都经过同一点,所以不一定是位似图形,故选项A错误;位似图形一定是相似图形,而且位似比等于相似比,故选项B正确;利用位似变换能放大图形,也能缩小图形,故C和D选项错误.故选:B.分析:如果相似图形的对应点的连线都经过同一点,那么这两个图形是位似图形,并且位似比等于相似比,也能扩大原有图形,也能缩小原有图形.相似图形不一定是位似图形,但位似图形一定是相似图形.6.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)答案:B解析:解答:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选:B.分析:利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.解答此题的关键是正确把握位似比与对应点坐标的关系.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(-2,-2)D.(2,1)答案:B解析:解答:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=22,∴A(12,12),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为(1,1).故选:B.分析:先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似求得答案.若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(-kx,ky).8.已知△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,则△ABC与△DEF的面积比为()A.3:4B.3:7C.9:16D.9:49答案:C解析:解答:∵△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm和4cm,∴根据位似图形的性质,得△ABC与△DEF的位似比为:3:4,△ABC∽△DEF,∴△ABC与△DEF的相似比为:3:4,∴△ABC与△DEF的面积比为9:16.故选:C.分析:由△ABC与△DEF是关于点P的位似图形,它们的对应点到P点的距离分别为3cm 和4cm,得△ABC∽△DEF,且相似比为3:4,再由相似三角形的面积比等于相似比的平方,求得△ABC与△DEF的面积比.此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.9.如图,△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC 的中点,则△DEF与△ABC的面积比是()A.1:6B.1:5C.1:4D.1:2答案:C解析:解答:∵△DEF与△ABC是位似图形,点O是位似中心,D、E、F分别是OA、OB、OC的中点,∴两图形的位似之比为1:2,则△DEF与△ABC的面积比是1:4.故选:C.分析:根据两三角形为位似图形,且点O是位似中心,D、E、F分别是OA、OB、OC的中点,求出两三角形的位似比,根据面积之比等于位似比的平方求出面积之比.熟练掌握:位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.下列说法中正确的是()A.位似图形可以通过平移而相互得到B.位似图形的对应边平行且相等C.位似图形的位似中心不只有一个D.位似中心到对应点的距离之比都相等答案:D解析:解答:∵位似是相似的特殊形式,∴位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等∴正确答案为D.故选:D.分析:根据性质可知,位似是相似的特殊形式,位似图形的对应边平行但不一定相等,位似图形的位似中心只有一个,平移图形是全等图形,也没有位似中心.位似中心到对应点的距离之比都相等,由此得到正确答案.11.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解析:解答:∵正五边形FGHMN和正五边形ABCDE位似,∴DE:MN=AB:FG=2:3,∴3DE=2MN.故选:B.分析:位似是特殊的相似,相似图形对应边的比相等.根据相似多边形对应边成比例得出DE:MN=2:3即可求解.12.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E'的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)答案:A解析:解答:∵E(-4,2),位似比为1:2,∴点E的对应点E'的坐标为(2,-1)或(-2,1).故选:A.分析:注意位似的两种位置关系,利用位似比为1:2,可求得点E的对应点E'的坐标为(2,-1)或(-2,1).此题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.13.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点'A,'B,'C.下列说法正确的是()A.△'''A B C与△ABC是位似图形,位似中心是点(1,0)B.△'''A B C与△ABC是位似图形,位似中心是点(0,0)C.△'''A B C与△ABC是相似图形,但不是位似图形D.△'''A B C与△ABC不是相似图形答案:B解析:解答:∵△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍∴点'A,'B,'C的坐标分别为(2,4),(-4,6),(-2,0)∴直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0∴对应点的连线交于原点∴△'''A B C与△ABC是位似图形,位似中心是点(0,0)故选:B.分析:由已知条件△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,求得直线AA′,BB′,CC′得解析式分别为y=2x,y=-32x,y=0,可知△'''A B C与△ABC是位似图形,位似中心是点(0,0).此题考查了位似的相关知识,位似是相似的特殊形式,位似图形的对应点的连线交于一点.14.下列3个图形中是位似图形的有()A.0个B.1个C.2个D.3个答案:C解析:解答:根据位似图形的定义可知:两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),所以位似图形的是第1个和第3个.故选:C.分析:如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心.正确掌握位似图形的定义是解答此题的关键.15.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:2,点A的坐标为(0,1),则点E的坐标是()A.(-1.4,-1.4)B.(1.4,1.4)C.(-2,-2)D.(2,2)答案:D解析:解答:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴OA:OD=1:2,∵点A的坐标为(0,1),即OA=1,∴OD=2,∵四边形ODEF是正方形,∴DE=OD=2.∴E点的坐标为:(2,2).故选:D.分析:根据题意可得OA :OD =1:2,由点A 的坐标为(1,0),可求得OD 的长,再由正方形的性质,可求得E 点的坐标.此题考查了位似变换的性质与正方形的性质.二、填空题16.如图,在平面直角坐标系中,△ABC 和△A BC '''是以坐标原点O 为位似中心的位似图形,且点B (3,1),'B (6,2).若△ABC 的面积为m ,则△'''A B C 的面积(用含m 的代数式表示)是答案:4m解析:解答:∵△ABC 与△A BC '''的相似比为1:2∴'''14ABC A B C S S ∆∆=,∴'''14A B C m S ∆= ∴'''4A B C S m ∆=故答案为:4m .分析:利用位似是特殊的相似,利用面积比等于位似比的平方得出即可.此题考查位似变换;坐标与图形性质;相似三角形的性质.17.如图,已知E (-4,2),F (-1,-1),以原点O 为位似中心,按比例尺2:1把△EFO 缩小,则E 点对应点E '的坐标为答案:(2,-1)解析:解答:根据题意可知,点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-, 所以点E '的坐标为(2,-1).故答案为:(2,-1).分析:以O 为位似中心,按比例尺2:1,把△EFO 缩小,结合图形得出,则点E 的对应点'E 的坐标是E (-4,2)的坐标同时乘以12-,而得到的点E '的坐标为(2,-1).关于原点成位似的两个图形,若位似比是k ,则原图形上的点(x ,y ),经过位似变化得到的对应点的坐标是(kx ,ky )或(-kx ,-ky ).18.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△'''A B C 的位似比是1:2,已知△ABC 的面积是3,则△'''A B C 的面积是答案:12解析:解答:∵△ABC 与△'''A B C 是位似图形,且△ABC 与△'''A B C 的位似比是1:2,△ABC 的面积是3,∴△ABC 与△'''A B C 的面积比为:1:4,则△'''A B C 的面积是:12.故答案为:12.分析:利用位似图形的面积比等于位似比的平方得出答案.此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解答此题的关键.19.如图,在平面直角坐标系中,以P (4,6)为位似中心,把△ABC 缩小得到△DEF ,若变换后,点A 、B 的对应点分别为点D 、E ,则点C 的对应点F 的坐标应为答案:(4,4)解析:解答:∵△DEF ∽△ABC ,且F 点在CP 的连线上,∴可得F 点位置如图所示:故P 点坐标为(4,4).故答案为:(4,4)分析:根据两个图形必须是相似形;②对应点的连线都经过同一点,即可得出F 点的坐标.此题考查位似的定义,注意掌握两位似图形的对应点的连线都经过同一点,这一点就是位似中心.20.如图,已知两点A (6,3),B (6,0),以原点O 为位似中心,相似比为1:3把线段AB 缩小,则点A 的对应点坐标是答案:(2,1)或(-2,-1)解析:解答:如图所示:∵A (6,3),B (6,0)两点,以坐标原点O 为位似中心,相似比为13,∴A '、A "的坐标分别是A '(2,1),A "(-2,-1).故答案为:(2,1)或(-2,-1).分析:易得线段AB 垂直于x 轴,根据所给相似比把各坐标都除以3或-3即可.此题主要考查了位似图形变换,用到的知识点为:各点到位似中心的距离比也等于相似比.三、解答题21.如图,△ABC 与△A ′B ′C ′是位似图形,且顶点都在格点上,每个小正方形的边长都为1. 求△ABC 与△A ′B ′C ′的面积比.答案:14解析:解答:∵由已知条件可知ABC S ∆∽'''A B C S ∆∴'''22 211 424ABCA B CSS∆∆⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.分析:已知△ABC与△A′B′C′是位似图形,且顶点都在格点上,每个小正方形的边长都为1,根据位似图形是相似图形,相似图形的面积比等于相似比的平方计算求解.22.一般的室外放映的电影胶片上每一个图片的规格为3.5cm×3.5cm,放映的银幕规格为2m×2m,若影机的光源距胶片20cm时,问银幕应在离镜头多远的地方,放映的图象刚好布满整个银幕?答案:807m解析:解答:如图,O为位似中心,先计算位似比K=200400=3.57.设银幕距镜头x cm,则400207x=,解得:x=80007.答:银幕应在离镜头807m,放映的图象刚好布满整个银幕.分析:由题意可知此题可以利用位似知识来解答,先根据胶片和银幕边之比,求出位似比,再借助位似比求得问题的答案.23.如图,已知△ABC的三个顶点的坐标分别为A(-1,2)、B(-3,0)、C(0,0)(1)请直接写出点A关于x轴对称的点'A的坐标;答案:(-1,-2)(2)以C 为位似中心,在x 轴下方作△ABC 的位似图形111A B C ∆,使放大前后位似比为1:2,请画出图形,并求出111A B C ∆的面积;答案:12解析:解答:(1)∵点A 的坐标为(-1,2),∴点A 关于x 轴对称的点'A 的横坐标为-1,纵坐标为-2,∴点A '的坐标为(-1,-2);(2)111A B C ∆的面积=12×6×4=12.分析:(1)已知点A 的坐标,点A 的横坐标不变,纵坐标变为原来的相反数,即得点'A 的坐标;(2)连接AC 延长到'A 使1A C =2AC ,延长BC 到1B ,使1B C =2BC ,点1C 的对应点为C ,顺次连接各点即可;111A B C ∆的面积=12×底边×高. 24.如图,四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A ′B ′C ′D ′和四边形A B C D """"位似,位似比2k =1.四边形A B C D """"和四边形ABCD 是位似图形吗?位似比是多少?答案:是位似图形|位似比为12解析:解答:∵四边形ABCD 和四边形A B C D ''''位似,∴四边形ABCD ∽四边形A B C D ''''.∵四边形A B C D ''''和四边形A B C D """"位似,∴四边形A B C D ''''∽四边形A B C D """".∴四边形A B C D """"∽四边形ABCD .∵对应顶点的连线过同一点,∴四边形A B C D """"和四边形ABCD 是位似图形.∵四边形ABCD 和四边形A B C D ''''位似,位似比1k =2,四边形A B C D ''''和四边形A B C D """"位似,位似比2k =1,∴四边形A B C D """"和四边形ABCD 的位似比为12. 分析:此题考查位似图形的判定方法与性质.因为位似图形是特殊的相似图形,四边形A B C D """"和四边形ABCD 位似,所以四边形A B C D """"∽四边形ABCD ;相似具有传递性,可得四边形A B C D """"∽四边形ABCD ;因为位似比等于相似比,所以求得四边形A B C D """"和四边形ABCD 的位似比.25.如图,△ABC 中,A 、B 两点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形''A B C ∆,并把△ABC 的边长放大到原来的2倍.设点B 的对应点'B 的横坐标是2,求点B 的横坐标.答案:−2.5解析:解答:过点B 、'B 分别作BD ⊥x 轴于D ,'B E ⊥x 轴于E ,∴∠BDC =∠'B EC =90°.∵△ABC 的位似图形是''A B C ∆,∴点B 、C 、'B 在一条直线上,∴∠BCD =∠'B CE ,∴△BCD ∽△'B CE .∴CD BC CE B C'=, 又∵1=2BC B C ', ∴12CD CE =, 又∵点'B 的横坐标是2,点C 的坐标是(-1,0),∴CE=3,∴CD=1.5.∴OD=2.5,∴点B的横坐标为−2.5.分析:过B和'B向x轴引垂线,构造相似比为1:2的相似三角形,那么利用相似比和所给B 的横坐标即可求得点B的横坐标.难点是利用对应点向x轴引垂线构造相似三角形,关键是利用相似比解决问题.。
专项练习图形的位似变换与坐标
A'
B〞
x o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原 点为位似中心,相似比为k,那么位似图形对 应点的坐标的比等于k或-k.
例3 如图,矩形OABC的顶点坐标分别为O(0,0), A(6,0),B(6,4),C(0,4).画出以点O为 位似中心,矩形OABC的位似图形OA ′ B ′ C ′ ,使 1 它的面积等于矩形OABC面积的 ,并分别写出A′, 4 B′,C′三点的坐标. y
y
z ( 1,4 ) y
( 5,4 )
1 ; 2
S ( 2,2 ) W ( 1,1 ) x ( 5,1 )
o
x
课堂小结:
1、如果两个图形不仅是相似图形,而且是每组对应点所在的 直线都经过同一个点, 那么这样的两个图形叫做 位似图形 。 2、 这个点叫做 位似中心 。 3、这时的相似比又称为 位似比 。
O
0
x
-1 -2
D E
0 O -1 -2 -3 -4
x
L
(图2)
M
4、如果把图(1)中的“鱼”画到同一个直角坐标系中,它 们是位似图形吗?如果是位似图形,位似中心是哪一个点?
是;
原点O.
顺次连接下列各点,你得到什么图形?
(0,0)
(6,0)
(6,4)
(0,4)
(0,0)
(1)把上面各点坐标的横坐标、纵坐标都除2,画出这 个新图形。 y (0,0) 8
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 ) y A'
6
4 3 2 1 B 6 12 A B' C C'
《位似图形》练习及答案
《位似图形》配套练习一、选择题:1.用作位似形的方法,可以将一个图形放大或缩小,位似中心()A.只能选在原图形的外部; B.只能选在原图形的内部;C.只能选在原图形的边上; D.可以选择任意位置。
2.已知:E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2,把△EOF缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1) B.(8,-4)或(-8,4)C.(2,-1) D.(8,-4)3.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E,F分别是OA,OB,OC的中点,则△DEF 与△ABC的面积比是()A.1︰2 B.1︰4 C.1︰5 D.1︰64.如图,五边形ABCDE与五边形A′B′C′D′E′是位似图形,O为位似中心,OD=12OD′,则A′B′:AB为()A.2:3B.3:2C.1:2D.2:1(第3题图)(第4题图)5.图中的两个三角形是位似图形,它们的位似中心是()A.P B.O C.M D.N6. 如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE 对应边的比为k,则位似中心的坐标和k的值分别为()A. (00),,2 B. (22),,12C. (22),,2 D. (22),,37. 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0)。
以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C。
设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a- B.1(1)2a-+ C.1(1)2a-- D.1(3)2a-+(第5题图)(第6题图)(第7题图)二、填空题:A/1.关于对位似图形的表述,下列命题正确的是 。
(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形; ④位似图形上任意两点与位似中心的距离之比等于位似比。
中考数学复习----《位似》知识点总结与专项练习题(含答案)
中考数学复习----《位似》知识点总结与专项练习题(含答案)知识点总结1. 位似的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
2. 位似与平面直角坐标系:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 。
练习题1、(2022•百色)已知△ABC 与△A 'B 'C '是位似图形,位似比是1:3,则△ABC 与△A 'B 'C '的面积比是( )A .1:3B .1:6C .1:9D .3:1【分析】利用为位似的性质得到△ABC 与△A 'B 'C '相似比是1:3,然后根据相似三角形的性质求解.【解答】解:∵△ABC 与△A 'B 'C '是位似图形,位似比是1:3,∴△ABC 与△A 'B 'C '相似比是1:3,∴△ABC 与△A 'B 'C '的面积比是1:9.故选:C .2、(2022•梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,已知 OA OA =31,若四边形ABCD 的面积是2,则四边形A ′B ′C ′D ′的面积是( )A .4B .6C .16D .18【分析】直接利用位似图形的性质得出面积比进而得出答案.【解答】解:∵以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,=,∴==, 则四边形A ′B ′C ′D ′面积为:18.故选:D .3、(2022•威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(34)3B .(34)7C .(34)6D .(43)6 【分析】根据余弦的定义得到OB =OA ,进而得到OG =()6OA ,根据位似图形的概念得到△GOH 与△AOB 位似,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:在Rt △AOB 中,∠AOB =30°,∵cos∠AOB=,∴OB=OA,同理,OC=OB,∴OC=()2OA,……OG=()6OA,由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,∵S△AOB=1,∴S△GOH=[()6]2=()6,故选:C.4、(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2 B.1:4 C.1:3 D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.5、(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.6、(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是.【分析】利用关于原点为位似中心的对应点的坐标变换规律得到相似比为2:1,然后根据相似三角形的性质解决问题.【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,而点A(4,0),点C(2,0),∴相似比为4:2=2:1,∴△OAB与△OCD周长的比值为2.故答案为:2.7、(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.【分析】如图,连接B′D′.利用相似多边形的性质求出正方形A′B′C′D′的面积,求出边长,再求出B′D′可得结论.【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.8、(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.。
人教版初中数学第二十七章第3节《位似》单元测试题 (3)(含答案解析)
第二十七章第3节《位似》单元测试题 (3)一、单选题1.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形111OA B C 与矩形OABC 关于点O 位似,且矩形111OA B C 的面积等于矩形OABC 面积的14,那么点1B 的坐标是( )A .()2,3-B .()2,3-C .31,2⎛⎫- ⎪⎝⎭或31,2⎛⎫- ⎪⎝⎭ D .()2,3-或()2,3- 2.如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为()2,4,点E 的坐标为()1,2-,则点P 的坐标为( )A .()4,0-B .()3,0-C .()2,0-D .()1.5,0- 3.将铁丝围成的△ABC 铁框平行地面(水平)放置,并在灯泡的垂直照射下,在地面上的影子是△A′B′C′,那么△ABC 与△A′B′C′之间是属于( )A .对称变换B .平移变换C .位似变换D .旋转变换 4.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA 'B 'C '与矩形OABC 关于点O 位似,且矩形OA 'B 'C '的面积等于矩形OABC 面积的14,那么点B '的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 5.下列说法正确的是( )A .四条边相等的平行四边形是正方形B .一条线段有且仅有一个黄金分割点C .对角线相等且互相平分的四边形是菱形D .位似图形一定是相似图形6.如图ABC ∆中,已知13AD AC =,14AE AB =,且ABC ∆的面积为218cm ,则BDE ∆的面积为( )A .26cmB .C .D .7.如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为(a ,b ),那么大“鱼”上对应“顶点”的坐标为( ).A .(-a ,-2b )B .(-2a ,-b )C .(-2a ,-2b )D .(-2b ,-2a ) 8.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,则点B 的对应点B 1的坐标是( )A .(4,2)B .(1,12)C .(1,12)或(﹣1,﹣12)D .(4,2)或(﹣4,﹣2)二、填空题9.如图,DEF 和ABC 是位似图形,点O 是位似中心,点D 、E 、F 分别是OA 、OB 、OC 的中点,若DEF 的面积是2,则ABC 的面积是__________.10.如图,OAB ∆与OCD ∆是以O 点为位似中心的位似图形,相似比为1:2,90,OCD CO CD ∠=︒=,若()10B ,,则点C 的坐标为_________.11.如图,在平面直角坐标系中,将OBC 各顶点的横、纵坐标都乘以一个相同的数得到OED ,若(1,2)B ,(2,0)C ,(5,0)D ,则点E 的坐标为__________.12.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,B 的坐标是()4,2,如果以点O 为位似中心,将矩形OABC 缩小为原来的12,那么点B 的对应点B '的坐标是________.13.已知11OA B ∆在直角坐标系内的位置如图所示, 111112,60,90OA AOB A B O =∠=︒∠=︒,把11OA B ∆绕原点O 逆时针旋转60︒后,再以原点O 为位似中心放大为原来的2倍,得到22OA B ∆,完成一次图形变换,经过2019次图形变换之后,点2019A 的坐标是___________14.如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若ABC 与111A B C △是位似图形,且顶点都在格点上,则位似中心的坐标是______.15.△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4).以原点O 为位似中心,将△ABC 缩小得到△DEF ,其中点D 与A 对应,点E 与B 对应,△DEF 与△ABC 对应边的比为1:2,这时点F 的坐标是_____.三、解答题16.如图,在1010⨯的网格中,每个小方格的边长看做单位1,每个小方格的顶点叫做格点,ABC ∆的顶点都在格点上.(1)请在网格中画出ABC ∆的一个位似图形111A B C ∆,使两个图形以点C 为位似中心,且所画图形与ABC ∆的位似比为2:1;(2)将111A B C ∆绕着点1C 顺时针旋转90得到222A B C ∆,画出图形,并求1A 绕着点1C 旋转到点2A 所经过的路径的长.17.如图,ABC ∆的顶点均在正方形网格的格点上,在已知的直角坐标系中,(1,0)A ,(3,1)C (1)画出将ABC ∆绕原点O 按逆时针方向旋转90后所得的111A B C ∆,并写出点1B 的坐标; (2)在网格内,以点O 为位似中心,画出与ABC ∆位似的图形222A B C ∆,使点2C 的坐标为(6,2)--18.如图,在平面直角坐标系中,OAB 的三个顶点都在格点上,其中点A 的坐标为()2,1.请在y 轴的左侧,以原点O 为位似中心,作OAB 的位似图形()OA B ''△),并使OA B ''△与OAB 的相似比为2.19.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为(1,2)A -,(3,4)B -,(2,6)C -.(1)画出ABC ∆绕点A 顺时针旋转90︒后得到的111A B C ∆;并写出点1A ,1B ,1C 的坐标; (2)以原点O 为位似中心,画出将111A B C ∆三条边放大为原来的2倍后的222A B C ∆. 20.如图,△ABC 与△A′B′C′是位似图形,且位似比是1:2.(1)在图中画出位似中心点O ;(2)若AB=2cm ,则A′B′的长为多少?21.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2:1,点C 1的坐标是_______;(2)△A 1B 1C 1的面积是_______平方单位.22.如图,在直角坐标系中,△ABC 的三个顶点坐标分别为A (2,1),B (1,4),C (3,2).请解答下列问题:(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)以原点O 为位似中心,位似比为1:2,在y 轴的右侧,画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2点的坐标;(3)如果点D (a ,b )在线段BC 上,请直接写出经过(2)的变化后对应点D 2的坐标. 23.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标是A (0,﹣2),B (6,﹣4),C (2,﹣6).(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1.(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴左侧画出△A 2B 2C 2. (3)在y 轴上存在点P ,使得△OB 2P 的面积为6,请直接写出满足条件的点P 的坐标.24.在坐标系中,ABC ∆的三个顶点坐标分别为2,4, 3,()()2, (6),3.A B C ---(1)画出ABC ∆关于x 轴对称的111A B C ∆;(2)以M 点为位似中心,在第一象限中画出将111A B C ∆按照2:1放大后的位似图形222A B C ∆; (3)222A B C ∆面积为_______.(直接写出答案)25.如图,在10×10正方形网格中,每个小正方形边长均为1个单位.建立坐标系后,△ABC 中点C 坐标为(0,1).(1)把△ABC 绕点C 顺时针旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出A 1坐标. (2)把△ABC 以O 为位似中心放大,使放大前后对应边长为1:2,画出放大后的△A 2B 2C 2,并写出A 2坐标.26.按下列要求在如图格点中作图;(1)作出ABC ∆关于原点成中心对称的图形A B C '''∆;(2)以点B 为位似中心,作出ABC ∆放大2倍的图形BA C ''''∆,并写出C ''的坐标. 27.在如图的正方形网格中,每一个小正方形的边长均为1,已知格点△ABC 的顶点A 、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系.(2)以点(﹣1,2)为位似中心,相似比为2,将△ABC 放大为原来的2倍,得到△A 1B 1C 1,画出△A 1B 1C 1,使它与△ABC 在位似中心的异侧,并写出B 1点坐标为 .(3)线段BC 与线段B 1C 1的关系为 .28.如图,图中小方格都是边长为1的正方形,ABC 与'''A B C 是关于点O 为位似中心的位似图形,它们的顶点都在小正方形顶点上.()1画出位似中心点O ;()2ABC 与'''A B C 的位似比为29.ABC 与'''A B C 位似,且()()()1,22,21,4A B C ---,,,()()0,02,0,A B '',()4,0,C '-画出位似中心,并写出ABC 与'''A B C 的位似比.30.如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移4个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC 的位似比为2:1,并直接写出点B2的坐标.【答案与解析】1.D【解析】由矩形111OA B C 与矩形OABC 关于点O 位似,且矩形111OA B C 的面积等于矩形OABC 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得矩形111OA B C 与矩形OABC 的位似比为1:2,又由点B 的坐标为(-4,6),即可求得答案.∵矩形111OA B C 与矩形OABC 关于点O 位似∴矩形111OA B C ∽矩形OABC∵矩形111OA B C 的面积等于矩形OABC 面积的14 ∴位似比为:12∵点B 的坐标为()4,6-∴点1B 的坐标是:()2,3-或()2,3-故答案为:D .本题考查了位似矩形的问题,掌握位似矩形的性质、相似三角形的性质以及判定定理是解题的关键.2.C【解析】 根据位似变换的性质得:2142PO OD PA AB ===,则PO=OA=2,然后写出P 点坐标. 解:∵点B 的坐标为(2,4),点E 的坐标为(-1,2),∴AB=4,OA=2,OD=2,∵矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,∴ 2142PO OD PA AB ===, ∴PO=OA=2,∴P 点坐标为(-2,0).故选:C .本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.3.C【解析】根据题意,分析可得△ABC 与△A′B′C′的各对应点的位置关系,面积的大小关系等,进而由几何变化的定义可得答案.根据题意,由于△ABC 平行地面放置,且在灯泡的照射下,所以△ABC 与△A′B′C′的各对应点的位置不变,且其连线应交于灯泡的所在的地方,面积大小不一,所以属于位似变换,故选:C .本题考查了常见几何变化的定义与判定,注意结合题意,把握几何变化的定义进行判断. 4.D【解析】利用位似图形的性质得出位似比,进而得出对应点的坐标.解:∵矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴两矩形面积的相似比为:1:2,∵B 的坐标是(6,4),∴点B′的坐标是:(3,2)或(−3,−2).故答案为:D .此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.5.D【解析】直接利用位似图形的性质以及矩形、菱形的判定方法分别分析得出答案.解:A 、四条边相等的平行四边形是菱形,故此选项错误; B 、一条线段有且仅有一个黄金分割点不正确,一条线段有两个黄金分割点,故此选项错误; C 、对角线相等且互相平分的四边形是矩形,故此选项错误; D 、位似图形一定是相似图形,正确.故选:D .此题主要考查了位似图形的性质以及矩形、菱形的判定方法,正确掌握相关性质与判定是解题关键.6.B【解析】 根据13AD AC =,可推出ABD ∆和BCD ∆的面积比,由已知ABD ∆和BCD ∆的面积和是18,可求出ABD ∆的面积,同理,由14AE AB =,可知ADE ∆和BDE ∆的面积比,即可求出BDE ∆的面积.∵13AD AC = ∴12S ABD AD S BDC CD == ∴318S ABC S ABD S BCD S ABD =+== ∴6S ABD = ∵14AE AB = ∴13AE BE ∴13S ADE AE S BDE BE == ∴463S ABC S ADE S BDE S BDE =+== ∴92S BDE =故选:B 本题考查了两个三角形同高时,面积比就等于底边的比,已知两个三角形底边比和面积和,即可分别求出两个三角形面积.7.C【解析】根据位似图形的性质结合图形写出对应坐标即可.∵小“鱼”与大“鱼”的位似比是1:2∴大“鱼”上对应“顶点”的坐标为(-2a ,-2b )故答案为:C .本题考查了位似图形的问题,掌握位似图形的性质是解题的关键.8.D【解析】根据位似三角形的性质画出△A 1B 1C 1,再根据位似的性质求出点B 的对应点B 1的坐标即可. 解:由图可知,点B 的坐标为(2,1),∵以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,∴点B 的对应点B 1的坐标是(2×2,1×2)或(﹣2×2,﹣1×2),即(4,2)或(﹣4,﹣2), 故选:D .本题考查了位似三角形的问题,掌握位似三角形的性质是解题的关键.9.8.【解析】首先确定相似比,然后确定面积的比,根据一个三角形的面积求得另一个三角形的面积即可. 解:∵点D ,E ,F 分别是OA ,OB ,OC 的中点, ∴12DF AC =, ∴△DEF 与△ABC 的相似比是1:2, ∴2()DEF ABC S DF S AC ∆∆=,即214ABC S ∆=, 解得:S △ABC =8,故答案为:8.本题主要考查了三角形中位线定理、位似的定义及性质,掌握面积的比等于相似比的平方是解题的关键.10.(1,-1)【解析】连接BC ,由三角形OAB 与三角形OCD 为位似图形且相似比为1:2,根据B 的坐标确定出D 坐标,进而得到B 为OD 中点,利用直角三角形中斜边上的中线等于斜边的一半,确定出BC 与OB 的长,再利用三线合一性质得到CB 垂直于OD ,即可确定出C 坐标.连接BC ,∵△OAB 与△OCD 是以点O 为位似中心的位似图形,相似比为1:2,且B(1,0),∴OB=1,OD=2,即B 为OD 中点,∵OC=CD ,∴CB ⊥OD ,在Rt △OCD 中,CB 为斜边上的中线,∴CB=OB=BD=1,则C 坐标为(1,-1),故答案为:(1,-1).本题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.11.(2.5,5)【解析】直接利用位似图形的性质得出位似比进而得出答案.∵将OBC ∆各顶点的横、纵坐标都乘以一个相同的数得到OED ∆,(2,0)C ,(5,0)D .∴对应点坐标同乘以2.5即可故(1,2)B ,对称点E 的坐标为:(2.5,5).故答案为:(2.5,5).本题考查了位似图形的其中一个性质,位似图形上任意一对对应点到位似中心的距离之比等于位似比.12.()2,1或()2,1--【解析】首先根据题意可知矩形OABC 缩小为原来的12,则点B 的横坐标及纵坐标都将进行相应的变化,据此进一步求解即可.由题意得:矩形OABC 缩小为原来的12, ∴缩小后的矩形与最初的矩形OABC 的位似比为12, ∵位似变换是以原点为位似中心,∴位似图形对应点的坐标比为12±, 又∵点B 的坐标为(4,2),∴点B '的坐标为(2,1)或(2-,1-),故答案为:(2,1)或(2-,1-). 本题主要考查了位似图形的性质,熟练掌握相关概念是解题关键.13.()20192,0-【解析】根据∠A n OB n =60°得出该旋转过程是6次一循环,根据2019÷6的余数判定点2019A 和点3A 方向相同,再根据数值变化规律得出2019A 的坐标.解:由题意可知:A 1(1,A 2(-2,,A 3(-8,0),A 4(-8,,∵∠A n OB n =60°,直线OA 在旋转过程中是每6次一个循环,201963363÷=⋅⋅⋅⋅⋅⋅,∴点2019A 和点3A 方向相同,由题意,得231232,2,2OA OA OA ===,20192019OA 2∴=,∴点2019A 的坐标是()20192,0-. 故答案为:()20192,0-.本题考查了点的坐标以及直角三角形的性质,解题的关键是归纳出点A 的坐标变化规律. 14.(8,0)【解析】连接任意两对对应点,看连线的交点为那一点即为位似中心.解:连接BB 1,A 1A ,易得交点为(8,0).故答案为:(8,0).用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.15.(3,2)或(﹣3,﹣2)【解析】根据以原点O 为位似中心的位似变换的性质计算,得到答案.∵以原点O 为位似中心,将△ABC 缩小得到△DEF ,△DEF 与△ABC 对应边的比为1:2, ∴△DEF 与△ABC 的相似比为1:2,∵C (6,4).∴点C 的对应点F 的坐标为(6×12,4×12)或(﹣6×12,﹣4×12).即(3,2)或(﹣3,﹣2), 故答案为:(3,2)或(﹣3,﹣2).本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .16.(1)图形见详解;(2)图形见详解,【解析】(1)根据位似中心和位似比找到A,B,C 的对应点111,,,A B C ,顺次连接111,,A B C 即可得出答案;(2)先找到111,,A B C 的对应点222,,A B C ,顺次连接222,,A B C 即可得到222A B C ∆,然后利用弧长公式即可求出1A 绕着点1C 旋转到点2A 所经过的路径的长.(1)如图,(2)如图,∵11AC == ,∴1A 绕着点1C 旋转到点2A 所经过的路径的长为:l ==. 本题主要考查画位似图形和旋转图形,掌握位似图形和旋转图形的画法及弧长公式是解题的关键.17.(1)见解析,1(3,3)B -;(2)见解析.【解析】(1)根据绕原点O 按逆时针方向旋转90的性质画出△111A B C ,再写出点1B 的坐标即可; (2)由(3,1)C 和2(6,2)C --可知位似比为-2,直接利用位似图形的性质得出对应点位置. 解:(1)如图所示:1(3,3)B -(2)如图所示:此题主要考查了位似变换以及旋转变换,理解旋转变换及位似变换的性质、正确得出对应点位置是解题关键.18.见解析【解析】由OA B ''△与OAB 的相似比为2可知图形是放大,延长BO 至'B ,使'2OB OB =,按同样的方法确定'A 即可.解:延长BO 至'B ,使'2OB OB =,得到B 的对应点'B ,按同样的方法确定A 的对应 'A ,如图OA B ''△即为所求.本题考查的是位似作图,掌握相似三角形的性质是作图的关键.19.(1))△A1B1C1见解析,A1(-1,2),B1(1,4),C1(3,3);(2)见解析【解析】(1)点A1与点A重合,然后分别画出点B,点C绕点A顺时针旋转90°后的对应点B1,C1即可;(2)延长OA1到A2,使得OA2=2OA1即可,同法可得B2、C2.解:(1)△A1B1C1如图所示,A1(-1,2),B1(1,4),C1(3,3);(2)△A2B2C2如图所示.本题考查旋转变换、位似变换等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考基础题.20.(1)见解析;(2)A B''的长为4cm【解析】(1)根据位似图形的性质直接得出位似中心即可;(2)利用位似比得出对应边的比进而得出答案.解:(1)如图所示:连接BB′、CC′,它们的交点即为位似中心O;(2)∵△ABC 与△A′B′C′是位似图形,且位似比是1:2,AB=2cm ,∴A′B′的长为4 cm .此题主要考查了位似图形的性质,利用位似比等于对应边的比得出是解题关键.21.(1)画图见解析;点C 1的坐标是(1,0);(2)10.【解析】(1)利用位似图形的性质得出对应点位置,连线即可;(2)利用等腰直角三角形的性质得出△A 1B 1C 1的面积即可.(1)如图所示,根据位似图形的性质,分别找到点A 、B 、C 的对应点A 1、B 1、C 1连接各点得到△A 1B 1C 1,从图中可知,点C 1的坐标是(1,0);(2)根据图形可知,211A B =40,211A C =20 ,211B C =20,满足勾股定理,211A B =211A C +211B C ,∴△A 1B 1C 1是等腰直角三角形,∴△A 1B 1C 1的面积是:1212×20=10, 答:△A 1B 1C 1的面积是10平方单位,故答案为:10.本题考查了位似图形的作图,勾股定理逆定理的应用,平面直角坐标系中的图形面积,掌握位似图形的作图是解题的关键.22.(1)图详见解析,C1(-3,2);(2)图详见解析,C2(6,4);(3)D2(2a,2b)【解析】(1)依据轴对称的性质,即可得到△ABC关于y轴对称的图形△A1B1C1,进而得出C1点的坐标;(2)依据原点O为位似中心,位似比为1:2,即可得出△ABC放大后的图形△A2B2C2,进而得到C2点的坐标;(3)依据原点O为位似中心,位似比为1:2,即可得出对应点D2的坐标.解:(1)如图所示,△A1B1C1即为所求,C1(-3,2);(2)如图所示,△A2B2C2即为所求,C2(6,4);(3)∵原点O为位似中心,位似比为1:2,∴点D(a,b)的对应点D2的坐标为(2a,2b).此题主要考查了利用位似变换进行作图,正确利用位似的性质得出对应点位置是解题的关键.23.(1)详见解析;(2)详见解析;(3)(0,4),(0,﹣4).【解析】(1)直接利用关于x轴对称点的性质得出对应点坐标进而得出答案;(2)直接利用关于位似图形的性质得出对应点坐标进而得出答案;(3)直接利用三角形面积求法得出答案.(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:当△OB2P的面积为6时,点P的坐标为:(0,4),(0,﹣4).此题主要考查了轴对称变换以及位似变换,正确得出对应点位置是解题关键.24.(1)见解析;(2)见解析;(3)14【解析】(1)根据轴对称的特点确定对应点并顺次连线即可;(2)分别连接MA1、MA2、MA3并延长相等的距离得到对应点并顺次连线即可;(3)利用割补法即可求出.(1)如图,(2)如图,(3) 222A B C ∆面积=11148242628222⨯-⨯⨯-⨯⨯-⨯⨯=14, 故答案为:14. 此题考查作图能力,正确掌握轴对称的性质、位似图形的性质是解题的关键,还应掌握网格中图形面积的计算方法.25.(1)见解析, A 1(2,3);(2)见解析,A 2(4,-6).【解析】(1)根据旋转变换的定义,将三角形的三个顶点分别顺时针旋转90°后得到对应点,顺次连接即可得;(2)根据位似变换的定义得出点的对应点,顺次连接即可得.解:(1)如下图所示:111A B C △即为所求,A 1坐标为(2,3);(2)如下图所示:222A B C △即为所求,A 2坐标为(4,−6).本题考查了旋转作图及图形位似的知识,解答此类题目的关键是就是寻找对应点,要求掌握旋转三要素、位似的特点.26.(1)如图所示A B C '''∆;(2)如图所示BA C ''''∆, C ''的坐标为(1,3).【解析】(1)根据关于原点对称图形的性质作出图形即可;(2)根据位似图形的性质得出对应点位置,然后确定C ''的坐标即可.解:(1)如图所示:A B C '''∆,即为所求;(2)如图所示:BA C ''''∆,即为所求, C ''的坐标为(1,3)本题主要考查了位似变换以及旋转变换,运用位似变换和旋转变换找到对应点位置是解题关键.27.(1)见解析;(2)见解析,B 1(5,4);(3)BC ∥B 1C 1,B 1C 1=2BC【解析】(1)根据点A、C的坐标即可建立坐标系;(2)根据位似变换的概念作图即可得;(3)利用位似图形的性质可得答案.解:(1)建立的平面直角坐标系如图所示:(2)如图所示,△A1B1C1即为所求,其中B1点坐标为(5,4),故答案为:(5,4);(3)由位似图形的性质可得BC∥B1C1,B1C1=2BC,故答案为:BC∥B1C1,B1C1=2BC.本题考查额方格作图的问题,掌握位似变换的概念、位似图形的性质是解题的关键.28.()1详见解析;()21:2.【解析】(1)直接利用位似图形的性质连接对应点,进而得出点O的位置;(2)直接利用位似图形的性质得出位似比.解:(1)如图所示:点O即为所求.(2)∵'1 2OAOA∴ABC与'''A B C的位似比为1∶2.故答案为1∶2.本题主要考查了位似变换. 正确掌握位似图形的性质是解题的关键.29.作图见详解,位似比为1:2【解析】连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.解:如图,点P为位似中心.∵AB=1,A′B′=2,∴△ABC与△A′B′C′的位似比=AB:A′B′=1:2.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.30.(1)详见解析;(2)图详见解析,点B2的坐标为(4,0).【解析】(1)将△ABC向上平移4个单位得到的△A1B1C1即可;(2)画出△A2B2C,并求出B2的坐标即可.解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C为所求三角形,点B2的坐标为(4,0).本题考查了作图-位似变换,平移变换,熟练掌握位似、平移的性质是解本题的关键.。
专题4.6图形的位似变换-重难点题型(举一反三)(北师大版)(原卷版)
专题4.6 图形的位似变换重难点题型【北师大版】【题型1 图形的位似变换(放大与缩小问题)】【例1】(2021•北碚区校级模拟)在平面直角坐标系中,已知点A(1,0),B(2,1),C(﹣1,2),以原点O为位似中心,位似比为2,把四边形OABC放大,则点C对应点C′的坐标为()A.(−12,1)B.(﹣2,4)C.(−12,1)或(12,﹣1)D.(﹣2,4)或(2,﹣4)【变式11】已知△ABC在直角坐标系中的位置如图所示,以O为位似中心,把△ABC放大2倍得到△A′B′C′,那么A′的坐标为.【变式12】(2020•成华区模拟)如图,在平面直角坐标系中,已知点A (4,2),过点A 作AB ⊥x 轴,垂足为点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则OC 的长度是( )A .1B .2C .√5D .2√5【变式13】(2020秋•龙沙区期末)如图,在平面直角坐标系中,点A (0,8),点B (8,0),点C 在线段AB 上,AC =2√2,若以原点O 为位似中心,把线段AB 缩小为原来的12,得到线段A ′B ′,则点C 的对应点C ′坐标为 .【题型2 图形的位似变换(求点的坐标问题)】【例2】(2021•阳东区模拟)如图,在△AOB 中,A ,B 两点在x 轴的上方,以点O 为位似中心,在x 轴的下方按1:2的相似比作△AOB 的位似图形△A 'OB '.设点B 的对应点B '的坐标是(4,﹣2),则点B 的坐标是( )A .(2,1)B .(2,﹣1)C .(﹣2,1)D .(﹣2,﹣1)【变式21】(2021春•滦州市期末)如图,△ABO 缩小后变为△A 'B 'O ,其中A 、B 的对应点分别为A '、B ',点A 、B 、A '、B '均在格点上,若线段AB 上有点P (m ,n ),则点P 在A 'B '上的对应点P '的坐标为( )A .(m 2,n )B .(m ,n )C .(m ,n 2)D .(m 2,n 2) 【变式22】(2021•渝中区校级三模)如图,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且面积比为1:9,点A 、B 、E 点在x 轴上,若点D 的坐标为(1,2),则点G 的坐标为( )A .(3,6)B .(4,8)C .(6,12)D .(6,10)【变式23】(2021春•苏州期末)如图,在平面直角坐标系中,△ABC 的顶点A 在第二象限,点B 坐标为(﹣2,0),点C 坐标为(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C .若点A 的对应点A ′的坐标为(2,﹣3),点B 的对应点B ′的坐标为(1,0),则点A 坐标为( )A .(﹣3,﹣2)B .(﹣2,32)C .(−52,32)D .(−52,2)【题型3 图形的位似变换(求位似中心问题)】【例3】(2021•河北模拟)如图,正方形OEFG 和正方形ABCD 是位似图形,且点F 与点C 是一对对应点,点F 的坐标是(1,1),点C 的坐标是(4,2);则它们的位似中心的坐标是( )A .(0,0)B .(﹣1,0)C .(﹣2,0)D .(﹣3,0)【变式31】如图,在平面直角坐标系中,正方形OABC 和正方形ADEF 的边OA 、AD 分别在x 轴上,OA =2,AD =3,则正方形OABC 和正方形ADEF 位似中心的坐标是 .【变式32】一个正方形AOBC 各顶点的坐标分别为A (0,3),O (0,0),B (3,0),C (3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的12,则新正方形的中心的坐标为 . 【变式33】(2020秋•滨海县期末)如图,在平面直角坐标系xOy 中,△ABC 与△A ′B ′C ′的顶点的横、纵坐标都是整数.若B (5,2),△ABC 与△A ′B ′C ′是位似图形,则位似中心的坐标是 .【题型4 图形的位似变换(求面积问题)】【例4】(2021•北碚区校级模拟)如图,在△ABC 中,点A 的坐标为(3,6),以原点O 为位似中心,将△ABC 位似缩小后得到△A ′B ′C ′.若点A ′的坐标为(1,2),△A ′B ′C ′的面积为1,则△ABC 的面积为( )A .2B .3C .4D .9【变式41】(2020秋•福鼎市校级月考)如图,四边形ABCD 与四边形EFGH 位似,位似中心点是O ,OE EA =34,则四边形EFGH 与四边形ABCD 的面积比为( )A .34B .37C .916D .949【变式42】(2020秋•广陵区校级期末)如图,△DEF 和△ABC 是位似图形点O 是位似中心,点D ,E ,F ,分别是OA ,OB ,OC 的中点,若△ABC 的面积是8,△DEF 的面积是( )A .2B .4C .6D .8【变式43】如图,点O 为四边形ABCD 与四边形A 1B 1C 1D 1的位似中心,OA 1=3OA ,若四边形ABCD 的面积为5,则四边形A 1B 1C 1D 1的面积为 .【题型5 位似变换作图(求点坐标问题)】【例5】(2021•肇源县开学)如图,O为原点,B,C两点坐标分别为(3,﹣1)(2,1).(1)以O为位似中心在y轴左侧将△OBC放大两倍,并画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)已知M(x,y)为△OBC内部一点,写出M的对应点M′的坐标.【变式51】(2020秋•新田县期末)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(3,3),B(1,2),C(4,1),点E坐标为(1,1).(1)画出将△ABC向左平移5个单位长度的△A1B1C1;(2)画出和△ABC以点E为位似中心的位似图△A2B2C2,△A2B2C2和△ABC位似比为2:1,且位于点E的两侧.(3)直接写出A2、B2、C2三个点的坐标.【变式52】(2021春•垦利区期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(4,1),C(1,1).请解答下列问题:(1)画出△ABC关于x轴成轴对称的△A1B1C1,并直接写出点B1的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△A1B1C1放大后的图形△A2B2C2,并直接写出A2点的坐标.【变式53】(2021•顺城区一模)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(﹣2,3),点B的坐标为(﹣1,2),点C的坐标为(﹣1,1),请解答下列问题:(1)在网格内将△ABC沿x轴方向向右平移3个单位长度,再沿y轴方向向下平移1个单位长度得到△A1B1C1,点A,B,C的对应点分别是A1,B1,C1,请画出△A1B1C1,并直接写出点A1,B1,C1的坐标;(2)以原点O(0,0)为位似中心,在第一象限内将△A1B1C1按相似比1:2放大得到△A2B2C2,请画出△A2B2C2,并直接写出点A2,B2,C2的坐标.【题型6 位似变换作图(求面积问题)】【例6】(2021春•朝阳区校级期末)如图是6×6的网格,每个小正方形的顶点称为格点.△ABC 顶点A 、B 、C 均在格点上,在给定网格中按要求作图,并保留作图痕迹.(1)在图中画出△ABC 中BC 边上的中线AD ;(2)在图中画出△BMN ,使得△BMN 与△BCA 是位似图形,且点B 为位似中心,点M 、N 分别在AB 、BC 边上,位似比为13; (3)连结MD 、ND ,四边形AMND 的面积是 .【变式61】(2020秋•连南县期末)已知,△ABC 三个顶点的坐标分别为A (﹣2,﹣2),B (﹣5,﹣4),C (﹣1,﹣5).(1)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格纸中画出△A 2B 2C 2,并写出点C 2的坐标.(2)若图中每个小方格的面积为1,请直接写出△A 2B 2C 2的面积.【变式62】(2020秋•三水区期末)如图,在平面直角坐标系中,以原点O为位似中心,将△OAB放大到原来的2倍后得到△OA'B',其中A、B在图中格点上,点A、B的对应点分别为A'、B'.(1)在第一象限内画出△OA'B';(2)求△OA'B'的面积.【变式63】(2021•青神县模拟)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(﹣3,1),B(﹣1,1),C(0,3).(1)画出△ABC关于y轴对称的△A1B1C1;(2)在第四象限画出△ABC以点O为位似中心的位似图形△A2B2C2,△ABC与△A2B2C2的位似比为1:2;(3)求以B1、B2、A1、A2四个点为顶点构成的四边形的面积.。
图形的位似(五大类型)(题型专练)(原卷版)
专题04 图形的位似(五大类型)【题型1位似图形性质】【题型2 位似图形的点坐标】【题型3 判定位似中心】【题型4 位似图形-作图】【题型5 平移、轴对称、旋转和位似综合】【题型1位似图形性质】1.(2023春•乳山市期末)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=3,AC=5,则=()A.B.C.D.2.(2023•开州区校级模拟)如图,△ABC与△DEF位似,点O是位似中心,且OD=2AD,则S△ABC :S△DEF=()A.3:2B.9:4C.9:1D.4:1 3.(2023•衡南县三模)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则()A.B.C.D.4.(2023•宿豫区三模)如图,△ABC与△DEF是位似图形,位似中心为O,OA:AD=3:4,S△ABC=9,则△DEF的面积为()A.12B.16C.21D.49 5.(2023•大理州模拟)如图,△ABC与△DEF位似,点O为位似中心,位似比为2:3,若△ABC的面积为4,则△DEF的面积是()A.6B.9C.12D.16 6.(2023春•石景山区期中)如图,四边形ABCD与四边形EFGH是位似图形,点O是位似中心.若,四边形ABCD的面积是100,则四边形EFGH 的面积是()A.4B.16C.36D.7.(2023•汇川区模拟)如图,△ABC和△DEF是位似三角形,点O是位似中心,且AC=9,DF=3,OA=6,则OD=()A.2B.4C.6D.8 8.(2023春•太仓市期末)如图,在平面直角坐标系中,将△OAB以原点O为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD 的面积比是()A.1:2B.1:3C.1:4D.1:9 9.(2023•岳麓区校级模拟)如图所示,△ABC与△DEF是位似图形,点O为位似中心.若AD=3OA,△ABC的周长为5,则△DEF的周长为()A.10B.15C.25D.125【题型2 位似图形的点坐标】9.(2022秋•江北区校级期末)如图,在平面直角坐标系中△ABC与△A'B'C'位似,且原点O为位似中心,其位似比1:2,若点B(﹣2,﹣1),则其对应点B'的坐标为()A.(2,4)B.(4,2)C.(2,1)D.(1,2)10.(2023•舟山三模)在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(2,﹣1)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)11.(2023•市南区校级二模)如图,在平面直角坐标系中,等边三角形OAB的顶点O(0,0),B(2,0),已知△OA'B′与△OAB位似,位似中心是原点O,且△OA'B′的面积是△OAB面积的4倍,则点A对应点A′的坐标为()A.B.或C.D.或12.(2023春•岱岳区期末)如图,△OAB和△OCD是以点O为位似中心的位似图形,已知A(﹣4,2),△OAB与△OCD的相似比为2:1,则点C的坐标为()A.(2,﹣1)B.(﹣2,1)C.(1,﹣2)D.(﹣1,2)13.(2023春•肥城市期末)如图,矩形OABC与矩形ODEF是位似图形,点P 是位似中心.若点B的坐标为(2,3),点E的横坐标为﹣1,则点P的坐标为()A.(﹣2,0)B.(0,﹣2)C.D.14.(2023春•长寿区校级期中)如图,线段AB两个端点坐标分别为A(6,9),B(9,3),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1 )D.(﹣2,﹣1)15.(2023•杜集区校级模拟)如图,在平面直角坐标系中,△A'B'C'与△ABC 位似,位似中心为原点O,已知点A(﹣1,﹣1),C(﹣4,﹣1),A'C'=6,则点C'的坐标为()A.(2,2)B.(4,2)C.(6,2)D.(8,2)【题型3 判定位似中心】16.(2022秋•泉州期末)如图,在8×8网格中,△ABC和△A'B'C'位似,则位似中心为()A.点O B.点P C.点Q D.点R 17.(2023•长安区模拟)图中的两个三角板是位似图形,则位似中心可能是()A.点A B.点B C.点C D.点D 18.(2022秋•青县期末)如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )19.(2023春•烟台期末)如图,点A的坐标为(﹣3,1),点B的坐标为(﹣1,1),点C的坐标为(0,﹣1).(1)求出△ABC的面积;(2)请以点O为位似中心作一个与△ABC位似的△A1B1C1,使得△A1B1C1的面积为18.20.(2022秋•未央区期末)如图,在平面直角坐标系中,△ABO的顶点都在正方形网格顶点上.以原点O为位似中心,相似比为1:2,在y轴的右侧,画出将△ABO放大后得到的△A1B1O.【题型4 位似图形-作图】21.(2023春•福山区期末)已知,△ABC在平面直角坐标系的位置如图所示,点A,B,C的坐标分别为(1,0),(4,﹣1),(3,2).△A1B1C1与△ABC是以点P为位似中心的位似图形.(1)请画出点P的位置,并写出点P的坐标;(2)以点O为位似中心,在y轴左侧画出△ABC的位似图形△A2B2C2,使相似比为1:1,若点M(a,b)为△ABC内一点,则点M在△A2B2C2内的对应点的坐标为.【题型5 平移、轴对称、旋转和位似综合】22.(2023•碑林区校级模拟)如图,在平面直角坐标系中,△AOB的顶点均在网格格点上,且点A、B的坐标分别为A(3,1),B(2,﹣1).(1)在y轴的左侧以原点O为位似中心作△OAB的位似图形△OA1B1(点A、B的对应点分别为A1,B1)使△OA1B1与△OAB的相似比为2:1;(2)在(1)的条件下,计算△OA1B1的面积为.23.(2023•南山区校级一模)在平面直角坐标系内,△ABC的位置如图所示.(1)将△ABC绕点O顺时针旋转90°得到△A1B1C1,作出△A1B1C1.(2)以原点O为位似中心,在第四象限内作出△ABC的位似图形△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.24.(2023春•荣成市期末)如图,在边长为1的小正方形组成的网格中,△ABC 的顶点在格点(网格线的交点)上,以点O为原点建立平面直角坐标系,点B的坐标为(1,0).(1)将△ABC向左平移5个单位长度,得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,将△A1B1C1放大到两倍(即新图与原图的相似比为2),得到△A2B2C2,在所给的方格纸中画出△A2B2C2;(3)若点M是AB的中点,经过(1)、(2)两次变换,M的对应点M2的坐标是.25.(2023•碑林区校级模拟)如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于x轴对称的△A1B1C1.(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.26.(2022秋•青羊区期中)已知O是坐标原点,A、B的坐标分别为(3,1)、(2,﹣1).(1)画出△OAB绕点O顺时针旋转90°后得到的△OA1B1;(2)在y轴的左侧以O为位似中心作△OAB的位似图形△OA2B2,使新图与原图相似比为2:1;(3)求出△OA2B2的面积.。
图形的位似(能力提升)(原卷版)
专题4.3 图形的位似(能力提升)(原卷版)一、选择题。
1.(2021秋•石鼓区期末)如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()A.3B.4C.6D.9 2.(2021•大渡口区自主招生)如图,线段CD两个端点的坐标分别为C(1,2),D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(6,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)3.(2021•滦州市一模)如图,以点O为位似中心,把△ABC放大到原来的2倍得到△A'B'C'.以下说法中错误的是()A.△ABC∽△A'B'C'B.点C,O,C'三点在同一条直线上C.AO:AA'=1:2D.AB∥A'B'4.(2021秋•沙坪坝区校级期末)如图,在平面直角坐标系中,△ABC与△ADE是以点A 为位似中心的位似图形,且相似比为1:2,点A在x轴上,若点A的坐标是(1,0),点B的坐标是(2,1),则点D的坐标是()A.(2,1)B.(2,2)C.(3,2)D.(3,3)5.(2022•南浔区一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.6.(2021秋•宝安区校级期中)如图,已知△ABC与△DEF位似,位似中心为点O,△ABC 的面积与△DEF面积之比为16:9,则CO:CF的值为()A.3:4B.4:7C.4:3D.7:4 7.(2021•南山区校级二模)已知△ABC与△A1B1C1是以原点为中心的位似图形,且A(3,1),△ABC与△A1B1C1的相似比为,则A的对应点A1的坐标是()A.(6,2)B.(﹣6,﹣2)C.(6,2)或(﹣6,﹣2)D.(2,6)8.(2021•昌平区二模)如图,在平面直角坐标系xOy中,正方形ABCD和正方形BEFG 是以原点O为位似中心的位似图形,且相似比是,点A,B,E在x轴上,若正方形BEFG的边长为12,则点C的坐标为()A.(6,2)B.(6,4)C.(4,4)D.(8,4)9.(2022春•北碚区校级期中)如图,在平面直角坐标系中,将△OAB以原点为位似中心放大后得到△OCD,若A(1,0),C(3,0),则△OAB与△OCD的面积比为()A.1:2B.1:3C.1:4D.1:9 10.(2021秋•西峡县期中)如图,四边形ABCD与四边形A'B'C'D'是位似图形,点O是位似中心,若OA:AA′=2:1,则四边形ABCD与四边形A'B'C'D'的面积之比等于()A.1:2B.1:4C.2:3D.4:9二、填空题。
第2课时位似图形的坐标变化规律
课时作业(十五)[27.3 第2课时 位似图形的坐标变化规律]一、选择题1.将平面直角坐标系中某个图案各点的坐标作如下变化,其中属于位似变换的是( ) A .将各点的纵坐标乘2,横坐标不变 B .将各点的横坐标除以2,纵坐标不变 C .将各点的横坐标、纵坐标都乘2D .将各点的纵坐标减去2,横坐标加上22.如图K -15-1,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点O 为位似中心,A′B′与AB 的相似比为12,得到线段A′B′,正确的画法是( )A BC D图K -15-13.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形,如图K -15-2,则小鱼上的点(a ,b)对应大鱼上的点( )图K -15-2A .(-2a ,-2b)B .(-a ,-2b)C .(-2b ,-2a)D .(-2a ,-b) 4.2018·滨州在平面直角坐标系中,线段AB 两个端点的坐标分别为A(6,8),B(10,2).若以原点O 为位似中心,在第一象限内将线段AB 缩短为原来的12后得到线段CD ,则点A 的对应点C 的坐标为( )A .(5,1)B .(4,3)C .(3,4)D .(1,5)5.如图K -15-3,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上.若正方形BEFG 的边长为6,则点C 的坐标为( )图K -15-3A .(3,2)B .(3,1)C .(2,2)D .(4,2) 二、填空题 6.2017·长沙如图K -15-4,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A′B′O ,已知点B′的坐标是(3,0),则点A′的坐标是________.图K -15-47.2017·滨州在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__________.8.如图K -15-5,正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为(3,2),(-1,-1),则这两个正方形的位似中心的坐标是________.图K -15-59.如图K -15-6,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B′的坐标为________.图K -15-6三、解答题10.如图K -15-7,在平面直角坐标系中,依次连接点O(0,0),A(2,2),B(5,2),C(3,0)组成一个图形,请你以原点为位似中心在第一象限内把它放大,使放大前后对应线段的比是1∶4.图K-15-711.2017·凉山州如图K-15-8,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 的三个顶点分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且相似比为2,并求出△A2B2C2的面积.图K-15-812.如图K-15-9所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B 的坐标为(-1,-1).(1)把△ABC向下平移5格后得到△A1B1C1,写出点A1,B1,C1的坐标,并画出△A1B1C1;(2)把△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,写出点A2,B2,C2的坐标,并画出△A2B2C2;(3)把△ABC以点O为位似中心放大得到△A3B3C3,使放大前后对应线段的比为1∶2,写出点A3,B3,C3的坐标,并画出△A3B3C3.链接听课例题归纳总结图K-15-9如图K-15-10,矩形OABC的顶点分别为O(0,0),A(6,0),B(6,4),C(0,4).画出矩形OABC以点P(2,0)为位似中心的位似图形O′A′B′C′,且使它的面积等于矩形OABC面积的14,并分别写出O′,A′,B′,C′四点的坐标.图K-15-10详解详析[课堂达标] 1.C2.[解析] D 因为正确的画法有两种情形,故选项D 符合要求. [点评] 注意位似中心、相似比虽然相同,但其位似图形有两种情形. 3.A4.[解析] C 根据题意,得点C 的坐标为(6×12,8×12),即C(3,4).5.[解析] A ∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,∴AD BG =13. ∵BG =6,∴AD =BC =2.∵AD ∥BG ,∴△OAD ∽△OBG ,∴OA OB =13.∴OA 2+OA =13,解得OA =1, ∴OB =3,∴点C 的坐标为(3,2). 6.[答案] (1,2)[解析] 由点B′的坐标可知△A′B′O 在第一象限.∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A′的坐标是⎝⎛⎭⎫2×12,4×12,即(1,2). 故答案为(1,2).7.[答案] (4,6)或(-4,-6)[解析] 由“点B 在x 轴上且OB =2”可知B(2,0)或B(-2,0),所以线段CD 与线段AB 的位似比为1∶2或1∶(-2).根据“点(x ,y)以原点为位似中心的对应点的坐标为(kx ,ky)”可知点A 的对应点的坐标为(4,6)或(-4,-6).8.[答案] (1,0)或(-5,-2)[解析] 位似中心可以在两个正方形的同侧、异侧,也可以在两个正方形之间,连接AG ,与BE 交于一点,该点可为位似中心,其坐标为(1,0);若连接AE ,CG 并延长,两线交于一点,该点也可为位似中心,其坐标为(-5,-2).9.[答案] (-8,-3)或(4,3)[解析] ∵直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,令x =0可得y =1;令y =0可得x =-2,∴点A 和点B 的坐标分别为(-2,0),(0,1), ∴OA =2,OB =1.∵△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1∶3,∴OB O′B′=OA O′A =13,∴O′B′=3,O′A =6,∴点B′的坐标为(-8,-3)或(4,3).10.解:如图,四边形OA′B′C′就是所要求的图形.11.解:(1)如图所示,△A 1B 1C 1就是所要求的三角形. (2)如图所示,△A 2B 2C 2就是所要求的三角形.如图,分别过点A 2,C 2作y 2E ,F , ∵A(-1,2),B(2,1),C(4,5),△A 2B 2C 2与△ABC 位似,且相似比为2, ∴A 2(-2,4),B 2(4,2),C 2(8,10),∴A 2E =2,C 2F =8,EF =10,B 2E =6,B 2F =4,∴S △A 2B 2C 2=12×(2+8)×10-12×2×6-12×4×8=28.12.解:(1)A 1(3,-2),B 1(-1,-6),C 1(5,-6),图略. (2)A 2(-3,-3),B 2(1,1),C 2(-5,1),图略.(3)A 3(6,6),B 3(-2,-2),C 3(10,-2)或A 3(-6,-6),B 3(2,2),C 3(-10,2),图略. [素养提升]解:矩形O′A′B′C′如图所示:点O′,A′,B′,C′的坐标分别为(1,,2)或(3,0),(0,0),(0,-2),(3,-2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(x.y) (x.y)
向右平移a个单位 向左平移a个单位 向上平移a个单位 向下平移a个单位
(x.y)
(x.y)
(x,y+a)
(x,y-a)
问题2 图中,△ABC关于x轴的轴对称 图形是△A’B’C’.对应顶点的坐标有什么变 化? y
当图形关 于x轴对称, 横坐标不 变,纵坐标 乘以(-1).
复习回顾
3.画位似图形的步骤 步骤: (1)确定位似中心点; (2)将图形各顶点与位似中心连接(或延长); (3)按位似比进行取点; (4)顺次连接各点,所得的图形就是所求的图形. 注意: (1)位似中心可以是任意一点,这个点可以在多边形的内部 或外部或在多边形上,但具体问题一般要考虑画图方便 且符合要求; (2)一般情况下,画已知图形的位似图形的结果不唯一; (3)将一个图形放大或缩小而保持形状不变.
CD=2, HL=4;
OA= 41 , OF=2 41 ;
BE=
5 , GM=2 5 .
回顾
y
4 3 2 1 0 O -1 -2 1 2
思考
A
y
8 7 6 5 4 3
F
C B
3 4 5 6 7 8 9 10
2 1
H
1 2 3 4 5
x
D E
(图1)
O -1
-2 -3 -4
00
x
L
(图2)
(x,-y) (-x,y) (-x,-y)
y
0
x
y
0
x
y
0
x
y
0
x
y
0
x
y
0
x
y
0
x
y
0
x
y
(5,4)
0
x
(x,y)(2x,2y)
问题3 整个图形形状不变,大小扩大2倍后, 对应的坐标又有什么变化呢?
问题4 将图中的鱼横向伸长到原来的2倍,那么它的 坐标将会发生什么变化呢?
y
A’(10,4)
复习回顾
什么叫位似图形?
三个条件:
1、相似 2、对应顶点的连线相交于一点 3、对应点连线互相平行
复习回顾
2.位似图形的性质 性质:位似图形上的任意一对对应点到位似中心 的距离之比等于位似比. 规律: (1)位似图形对应点的连线或延长线 相交于一点; (2)位似图形对应线段平行且成比例; (3)位似图形的对应角相等.
O
0
x
-1 -2
D E
0 O -1 -2 -3 -4
x
L
(图2)
M
4、如果把图(1)中的“鱼”画到同一个直角坐标系中,它 们是位似图形吗?如果是位似图形,位似中心是哪一个点?
是;
原点O.
顺次连接下列各点,你得到什么图形?
(0,0)
(6,0)
(6,4)
(0,4)
(0,0)
(1)把上面各点坐标的横坐标、纵坐标都除2,画出这 个新图形。 y (0,0) 8
A’”(-3,4) B(1,2) B’”(-1,2) C’”(-5,1) C’’’’(-5,-1) B’(1,-2) B’’’’(-1,-2) A’’’’(-3,-4)
A(3,4)
C(5,1) C’(5,-1)
0
x
A’(3,-4)
图2
归纳(二): 图形的对称: (x.y) (x.y) (x.y)
关于x轴对称 关于y轴对称 关于原点O中心对称
(图1)
O -1
-2 -3 -4
0
G
6
7
8
9 10
x
L
(图2)
M
3、在图中,你还能找到比相等的其他线段吗?
如:CD∶HL= OA∶OF.
再如:AB:FG=OE:OM.
回顾
A
y
4 3 2 1
思考
y
8 7 6 5 4 3
F
C B
1 2 3 4 5 6 7 8 9 10
2 1
H G
1 2 3 4 5 6 7 8 9 10
x
原 图 形 被 纵 向 拉 伸 到 原 来 的 2 倍
回顾
y
4 3 2 1 0 O -1 -2 1 2
思考
A
y
8 7 6 5 4 3
F
C B
3 4 5 6 7 8 9 10
2 1
H
1 2 3 4 5
x
D E
(图1)
O -1
-2 -3 -4
0
G
6
7
8
9 10
x
L
(图2)
M
1、线段CD与HL,OA与OF,BE与GM的长度各是多少?
M
2、线段CD与HL,OA与OF,BE与GM的比各是多少? 它们相等吗?
CD∶HL= 1∶2, OA∶OF= 1∶2, BE∶GM=1∶2.
回顾
y
4 3 2 1 0 O -1 -2 1 2
思考
A
y
8 7 6 5 4 3
F
C B
3 4 5 6 7 8 9 10
2 1
H
1 2 3 4 5
x
D E
复习回顾
如何把三角形ABC放大为原来的2倍?
E B O D F E
C
A
F D O
C A B
位似中心 对应点连线都交于____________ 平行或在一条直线上 对应线段_______________________________
下来想一想?
1、如果把位似图形放到直角坐标系中, 又如何去探究位似变换与坐标之间的关系呢?
A(5,4)
C(5,1)
C’
0
B(3,0)
B’ D(5,-1) D' E’(8,-2)
x
E(4,-2)
纵坐标保持不变,横坐标分别变成原来的2倍.
y 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4
x
图形被横向压缩为原来的1/2
8 y
7
6
5
4 3 2 1 0 –1 –2 –3 –4 1 2 3 4 5 6 7 8 9 10
7 6 5
(3,0)
(3,2)
4
3 2 1 0 1 2 3 4 5 6 7 8 9 10 x
(0,2)
(0,0)
-1
-2 -3
顺次连接下列各点,你得到什么图形?
(0,0)
(6,0)
复习回顾
1.什么叫位似图形?
定义:两个多边形不仅相似,而且对应顶点的连线相交于一 点,对应 边互相平行,像这样的两个图形叫做位似图形,这 个点叫做位 似中心. 位似比:两个位似图形的相似比叫做位似比. 注意: (1)位似图形一定是相似图形,而相似图形不一定是位似 图 形,位似图形与它们的位置有关,而相似图形与它们的位 置无关; (2)位似图形是一种特殊的相似图形,它的每一组对应点 所在的直线都经过同一个点; (3)位似是一种重要的图形变换方式,利用位似变换可以 将一个图形进行放大或缩小.
问题1 图1中,△AOB沿x轴向右平移 3个单位之后,得到△A’O’B’.三个顶点的坐 标有什么变化呢?
y
当图形向上 平移时,坐标 又有什么变 化呢
5 O”
A”
A B”
A’
?
0
O’ B 5 图1 B’
x
当图形向右平移三个单位时,各点的 横坐标分别加3,纵坐标不变.
图形的平移: (a>0)
归纳(一):