1 Shared Memory vs. Message Passing the COMOPS Benchmark Experiment
python多进sharedmemory用法
python多进sharedmemory用法(最新版)目录1.共享内存的概念与作用2.Python 多进程的共享内存实现方法3.使用 sharedmemory 的实例与注意事项正文一、共享内存的概念与作用共享内存是多进程或多线程之间共享数据空间的一种技术。
在多进程或多线程程序中,共享内存可以实现进程或线程之间的数据交换和同步,从而提高程序的运行效率。
Python 提供了 sharedmemory 模块来实现多进程之间的共享内存。
二、Python 多进程的共享内存实现方法在 Python 中,可以使用 multiprocessing 模块创建多进程,并使用 sharedmemory 模块实现进程间的共享内存。
以下是一个简单的示例:```pythonimport multiprocessing as mpimport sharedmemorydef func(shm):shm.write(b"Hello, shared memory!")if __name__ == "__main__":shm = sharedmemory.SharedMemory(name="my_shared_memory", size=1024)p = mp.Process(target=func, args=(shm,))p.start()p.join()print(shm.read(0, 1024))```在这个示例中,我们首先导入 multiprocessing 和 sharedmemory 模块。
然后,定义一个函数 func,该函数接收一个共享内存对象 shm 作为参数,并将字节串"Hello, shared memory!"写入共享内存。
在主进程中,我们创建一个共享内存对象 shm,并启动一个子进程 p,将 func 函数和共享内存对象 shm 作为参数传递给子进程。
操作系统进程通信
进程通信-----消息传递通信的实现方式
通信链路:
第一种方式(主要用于计算机网络中):由发送进程在通信 之前用显式的“建立连接”命令请求系统为之建立一条通 信链路,在链路使用完后拆除链路。
第二种方式(主要用于单机系统中):发送进程无须明确提 出建立链路的请求,只须利用系统提供的发送命令(原 语),系统会自动地为之建立一条链路。
邮箱特点: (1)每一个邮箱有一个唯一的标识符; (2)消息在邮箱中可以安全保存,只允许核准的用户随时
读取; (3)利用邮箱可以实现实时通信,又可以实现非实时通信。
进程通信-----信箱通信
信箱结构:
信箱定义为一种数据结构,在逻辑上可以分为:
• 1,信箱头,用以存放有关信箱的描述信息,如信箱标识符,信箱的 拥有者,信箱口令,信箱的空格数等;
基于共享存储区的通信方式。在存储器中划出了一 块共享存储区,各进程可通过对共享存储区中的 数据的读和写来实现通信。适用于传输大量数据。
进程通信-----消息传递系统
消息传递机制 : 进程间的数据交换以消息为单位,程序员利用系统的通信原语(要
进行消息传递时执行send;当接收者要接收消息时执行receive)实 现通信。这种通信方式属于高级通信 。
b 接 收 区
原语描述
二、实例—消息缓冲队列通信机制
1、通信描述
PCB(B)
进程 A
进程 B
send (B,a)
mq mutex
sm
receive(b)
Emphead
a 发 sender: A 送 size:5 区 text:Hello
sender : A size : 5
i Text:Hello next: 0
Introduction to Advanced Computer Archtecture and Paralel Processing
Most computer scientists agree that there have been four distinct paradigms or eras of computing;
•
• •
1.Batch Era
It was the typical batch processing machine with punched card readers, tapes and disk drives, but no connection beyond the computer room. The IBM System/360 had an operating system, multiple programming languages, and 10 megabytes of disk storage. The System/360 filled a room with metal boxes and people to run them. Its transistor circuits were reasonably fast. This machine was large enough to support many programs in memory at the same time, even though the central processing unit had to switch from one program to another.
By 1965 the IBM System/360 mainframe dominated the corporate computer centers.
• • • •
The mainframes of the batch era were firmly established by the late 1960s when advances in semiconductor technology made the solid-state memory and integrated circuit feasible. These advances in hardware technology spawned the minicomputer era. They were small, fast, and inexpensive enough to be spread throughout the company at the divisional level. However, they were still too expensive and difficult.
重庆大学操作系统 期末考试
重庆大学《操作系统》课程试卷A卷B卷2016—2017学年第一学期开课学院:计算机学院课程号:18012035考试日期:考试方式:开卷闭卷 其他 考试时间:120分钟 题号 一 二 三 四 五 六 七 八 九 十 总分 得分Part I:True / False Questions (12 points )1. ( ) The OS is a kind of application program, it manages all hardwareresources to work together.2. ( ) A relocation register is used to check for invalid memory addressesgenerated by a CPU.3. ( ) Monitors are a theoretical concept and are not practiced in modernprogramming languages.4. ( ) When a user-level thread is created, it cannot be scheduled directly bykernel because the kernel can’t realize it .5. ( ) Most SMP systems try to avoid migration of processes from one processorto another and attempt to keep a process running on the same processor. This is known as processor affinity.6. ( ) Record semaphore may cause the problem of busy waiting.7. ( ) A deadlocked state is an unsafe state, all unsafe states are deadlocks.8. ( ) In segmentation memory management, to access an operand needs accessmemory twice.9. ( ) The system thrashing occurs lots of page-faults. It can result in severeperformance problems.10. ( ) All files in a single-level directory must have unique names.11. ( ) When continuously reading data on the same cylinder and different disksurface, It is not necessary to move the heads.12. ( ) Users can use the computer hardware features without going through theoperating system.Part II: Single Choice (22 points)1、Which one of the following descriptions about command-interpreter (命令解释程序) is correct?( )A. the interface between the user and the OSB. allows users to directly enter commandsC. In the kernel or as a special programD. the program to interpret commands2、Which of the following does not correct for memory sharing and message passing? ( )A. Shared-memory is faster than message passing scheme because data sharing does not need to switch between kernel and user spaceB. Shared-memory scheme does not need kernel support. User can do it by themselves.C. message passing highly replies on the support of kernel.D. message passing scheme is easy to use for users since most of its function is provided by kernel.3、 In five states of a process, ( ) state can convert from the other three states.A. NEWB. RUNC. READYD. WAIT4、A thread is a basic unit of CPU utilization, It shares with other threads belonging to the same process the ( )A. code sectionB. program counterC. register setD. stack命题人:郭平,何静媛,石锐,石亮,但静培,张玉芳组题人:石亮审题人:石亮 命题时间:20161226教务处制学院 _______专业班________年级__________学号_________姓名_________考试教室__________公平竞争、诚实守信、严肃考纪、拒绝作弊封线密5、Assume 3 processes want to enter critical section, S is the mutual exclusion semaphore, the minimum value and maximum value are ( )A. -3, 3B.-3, 0C.-3, 1D.-2, 16、In virtual memory, what kind of addresses is used by CPU ( ) .A. physical addressB. linear addressC. logical addressD. relative address7、In paging system, the size of a page is 1K bytes, ifa process has a page table as right, the logical addressof an instruction is 463, its corresponding physicaladdress is ( )A. 2660.B.7583C.7168D.45598、In order to better use memory space, which of the following methods can be used? ( )A. cachingB. swappingC. SPOOLingD. absolute loading9、The Belady’s anomal (异常现象) probably occurs in ( ) page-replacement algorithm.A .OPT B.FIFO C.LRU D.none10、which of the following CPU scheduling is non-preemptive? ( )A .FCFS B. SJF C. Priority D. round robin11、Magnetic tapes was used as an early secondary-storage medium. The file stored in it can be accessed in ( )A. direct access.B. sequential accessC. indexedD. none of the abovePart I and II Answer1 2 3 4 5 6 7 8 9 10 11 12IIIPart III : Fill in the blanks(10 points)1.For an operating systems can be designed in different structure, includingsimple structure, layered,______ and _______.2.____ is the important structure for a process. It includes much informationabout a specific process.3.There are three types of operations can be used for semaphore,including , _____ and ______.4.We can classify page-replacement algorithms into two broad categories:__________allows a process to select a replacement frame from the set of all frames, ___________ requires that each process select from only its own set of allocated frames.5.The time to move disk arm to desired cylinder is called _.6.controller can control the device to directly access the mainmemory.Part IV: Short Answer Questions (32 points)1.Please list all types of processor scheduling in a computer and explain the maintasks for each type.Page ID Frame ID0 41 62 73 92.Why are two modes (user and kernel) needed?3.Please list as many as possible deadlock recovery schemes (at least 2) andexplains their advantages and disadvantages.4.Please e xplain the difference between internal and external fragmentation.5.Please explain why we need to use TLB for memory accesses. What is theprinciple of TLB. 6.Please explain the role of file directory and the organization structures of filedirectory.7.Briefly describe the steps taken to read a block of data from the disk to thememory using DMA controlled I/O.8.Please explain what are cache and buffer. What are their difference?Part V: Integrated Exercises (24 points)1.The OS allocated 4 page frames to each active process. Initially, no page inthe main memory. If a process demand pages as follows:3,4,5,6,1,0,2,3,6,3,2,1Please use OPT, LRU, and CLOCK policies separately to replace the page in memory, and calculate the total page fault.2.Consider the following snapshot of a system with five processes (p1, (5)and four resources (r1, ... r4). There are no current outstanding queued unsatisfied requests.a)what is the content of the matrix Need?b)Is this system currently deadlocked, or will any process become deadlocked?Why or why not? If not, give an execution order.c)If a request from p3 arrives for (0, 1, 0, 0), can that request be safely grantedimmediately? And why?Processes Allocation Max AvailableR1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 P1 0 0 1 2 0 0 1 2 2 1 0 0 P2 2 0 0 0 2 7 5 0P3 0 0 3 4 6 6 5 6P4 2 3 5 4 4 3 5 6P5 0 3 3 2 0 6 5 23.Assuming there are 5000 cylinders (No.0-4999) in a disk. Read-write head is at cylinder No. 143 right now, and the previous position is No.125. The coming request queue is86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130.Starting from the current head position, please list the access sequences for the following disk-scheduling algorithms?a)FCFS, SSTF and SCANb)Considering the state-of-the-art storage media, there are some storage mediahas no arm without seeking latency. In this case, which one of the above scheduler would be the best? Describe your reason。
并行计算体系结构
8
最新的TOP500计算机
12:12
9
最新的TOP500计算机
12:12
10
来自Cray的美洲豹“Jaguar”,凭借1.75 PFlop/s(每秒1750万亿 次)的计算能力傲视群雄。“Jaguar”采用了224162个处理器核 心
12:12
2
结构模型
共享内存/对称多处理机系统(SMP)
PVP:并行向量机
单地址空间 共享存ess) SMP:共享内存并行机( Shared Memory Processors )。多个处理器通过交叉开关 (Crossbar)或总线与共享内存互连。
来自中国的曙光“星云”系统以1271万亿次/s的峰值速度名列 第二
• 采用了自主设计的HPP体系结构、高效异构协同计算技术
• 处理器是32nm工艺的六核至强X5650,并且采用了Nvidia Tesla C2050 GPU做协处理的用户编程环境;
异构体系结构 专用 通用
TOP500中85%的系统采用了四核处理器,而有5%的系统已经使
12:12
6
Cluster:机群系统
Cluster(Now,Cow): 群集系统。将单个节点,用商业网 络 :Ethernet,Myrinet,Quadrics, Infiniband,Switch等连结起来形成群 集系统。
• 每个节点都是一个完整的计算机 (SMP或DSM),有自己磁盘和操 作系统
系统在物理上分布、逻辑上共享。各结点有
自己独立的寻址空间。
• 单地址空间 、分布共享
• NUMA( Nonuniform Memory Access )
QNX中的进程间通信
QNX中的进程间通信(IPC)在QNX Neutrino中消息传递(Message passing)是IPC的主要形式,其他形式也都是基于消息传递来实现的。
QNX中提供了如下一个形式的IPC:Serive: Implemented in:・Message-passing Kernel・Signals Kernel・POSIX message queues External process・Shared memory Process manager・Pipes External process・FIFOs External process一、Synchronous message passing[同步消息传递]如果一个线程执行了MsgSend()方法向另一个线程(可以属于不同进程)发送消息,它会就被阻塞,直到目标线程执行了MsgReceive(),并处理消息,然后执行了MsgReply()。
如果一个线程在其他线程执行MsgSend()之前执行了MsgReceive(),它会被阻塞直到另一个线程执行了MsgSend()。
消息传递是通过直接的内存copy来实现的。
需要巨大消息传递的时候建议通过Shared Message[共享内存]或其他方式来实现。
1、消息传递中的状态迁移客户程序的状态迁移・SEND blocked:调用MsgSend()后,服务程序没有调用MsgReceive()的状态。
・REPLY blocked:调用MsgSend()后,并且服务程序调用了MsgReceive(),但是没有调用MsgReply()/MsgError()的状态。
当服务程序已经调用了MsgReceive()方法是,客户程序一旦调用MsgSend()就直接迁移如REPLY blocked状态。
・READY:调用MsgSend()后,并且服务程序调用了MsgReceive()和MsgReply()的状态。
服务程序的状态迁移:・RECEIVE blocked;调用MsgReceive()后,客户程序没有调用MsgSend()时的状态。
C#.Net多进程同步通信共享内存内存映射文件MemoryMapped转
C#.Net多进程同步通信共享内存内存映射⽂件MemoryMapped转节点通信存在两种模型:共享内存(Shared memory)和消息传递(Messages passing)。
内存映射⽂件对于托管世界的开发⼈员来说似乎很陌⽣,但它确实已经是很远古的技术了,⽽且在操作系统中地位相当。
实际上,任何想要共享数据的通信模型都会在幕后使⽤它。
内存映射⽂件究竟是个什么?内存映射⽂件允许你保留⼀块地址空间,然后将该物理存储映射到这块内存空间中进⾏操作。
物理存储是⽂件管理,⽽内存映射⽂件是操作系统级内存管理。
优势:1.访问磁盘⽂件上的数据不需执⾏I/O操作和缓存操作(当访问⽂件数据时,作⽤尤其显著);2.让运⾏在同⼀台机器上的多个进程共享数据(单机多进程间数据通信效率最⾼);利⽤⽂件与内存空间之间的映射,应⽤程序(包括多个进程)可以通过直接在内存中进⾏读写来修改⽂件。
.NET Framework 4 ⽤托管代码按照本机Windows函数访问内存映射⽂件的⽅式来访问内存映射⽂件,。
有两种类型的内存映射⽂件:持久内存映射⽂件持久⽂件是与磁盘上的源⽂件关联的内存映射⽂件。
在最后⼀个进程使⽤完此⽂件后,数据将保存到磁盘上的源⽂件中。
这些内存映射⽂件适合⽤来处理⾮常⼤的源⽂件。
⾮持久内存映射⽂件⾮持久⽂件是未与磁盘上的源⽂件关联的内存映射⽂件。
当最后⼀个进程使⽤完此⽂件后,数据将丢失,并且垃圾回收功能将回收此⽂件。
这些⽂件适⽤于为进程间通信 (IPC) 创建共享内存。
1)在多个进程之间进⾏共享(进程可通过使⽤由创建同⼀内存映射⽂件的进程所指派的公⽤名来映射到此⽂件)。
2)若要使⽤⼀个内存映射⽂件,则必须创建该内存映射⽂件的完整视图或部分视图。
还可以创建内存映射⽂件的同⼀部分的多个视图,进⽽创建并发内存。
为了使两个视图能够并发,必须基于同⼀内存映射⽂件创建这两个视图。
3)如果⽂件⼤于应⽤程序⽤于内存映射的逻辑内存空间(在 32 位计算机上为2GB),则还需要使⽤多个视图。
操作系统课程英文词汇
操作系统课程英文词汇 ____郭冀生1. 操作系统 Operating System 42. 管道 Pipe2. 计算机 Computer 43. 临界区 Critical Section3. 内核映像 Core Image 44. 忙等候 Busy Waiting4. 超级用户 Super-user 45. 原子操作 Atomic Action5. 进度 Process 46. 同步 Synchronization6. 线程 Threads 47. 调动算法 Scheduling Algorithm7. 输入 /输出 I/O (Input/Output) 48. 剥夺调动 Preemptive Scheduling8. 多办理器操作系统Multiprocessor Operating 49. 非剥夺调动Nonpreemptive SchedulingSystems 50. 硬及时 Hard Real Time9. 个人计算机操作系统 Personal Computer 51. 软及时 Soft Real TimeOperating Systems 52. 调动体制 Scheduling Mechanism10. 及时操作系统 Real-Time Operating Systems 53. 调动策略 Scheduling Policy11. 办理机 Processor 54. 任务 Task12. 内存 Memory 55. 设施驱动程序Device Driver13. 进度间通讯 Interprocess Communication 56. 内存管理器Memory Manager14. 输入 /输出设施 I/O Devices 57. 指引程序 Bootstrap15. 总线 Buses 58. 时间片 Quantum16. 死锁 Deadlock 59. 进度切换 Process Switch17. 内存管理 Memory Management 60. 上下文切换Context Switch18. 输入 /输出 Input/Output 61. 重定位 Relocation19. 文件 Files 62. 位示图 Bitmaps20. 文件系统 File System 63. 链表 Linked List21. 文件扩展名 File Extension 64. 虚构储存器 Virtual Memory22. 次序存取 Sequential Access 65. 页 Page23. 随机存取文件 Random Access File 66. 页面 Page Frame24. 文件属性 Attribute 67. 页面 Page Frame25. 绝对路径 Absolute Path 68. 改正 Modify26. 相对路径 Relative Path 69. 接见 Reference27. 安全 Security 70. 联想储存器Associative Memory28. 系统调用 System Calls 71. 命中率 Hit Ration29. 操作系统构造 Operating System Structure 72. 信息传达 Message Passing30. 层次系统 Layered Systems 73. 目录 Directory31. 虚构机 Virtual Machines 74. 设施文件 Special File32. 客户 /服务器模式 Client/Server Mode 75. 块设施文件Block Special File33. 线程 Threads 76. 字符设施文件Character Special File34. 调动激活 Scheduler Activations 77. 字符设施 Character Device35. 信号量 Semaphores 78. 块设施 Block Device36. 二进制信号量 Binary Semaphore 79. 纠错码 Error-Correcting Code37. 互斥 Mutexes 80. 直接内存存取Direct Memory Access38. 互斥 Mutual Exclusion 81. 一致命名法Uniform Naming39. 优先级 Priority 82. 可剥夺资源Preemptable Resource40. 监控程序 Monitors 83. 不行剥夺资源Nonpreemptable Resource41. 管程 Monitor 84. 先来先服务First-Come First-Served85.最短寻道算法 Shortest Seek First86.电梯算法 Elevator Algorithm87.指引参数 Boot Parameter88.时钟滴答 Clock Tick89.内核调用 Kernel Call90.客户进度 Client Process91.服务器进度 Server Process92.条件变量 Condition Variable93.信箱 Mailbox94.应答 Acknowledgement95.饥饿 Starvation96.空指针 Null Pointer97.规范模式 Canonical Mode98.非规范模式 Uncanonical Mode99.代码页 Code Page100.虚构控制台 Virtual Console101.高速缓存 Cache102.基地点 Base103.界线 Limit104.互换 Swapping105.内存压缩 Memory Compaction 106.最正确适配 Best Fit107.最坏适配 Worst Fit108.虚地点 Virtual Address109.页表 Page Table110.缺页故障 Page Fault111.近来未使用 Not Recently Used 112.最久未使用 Least Recently Used 113.工作集 Working Set114.请调 Demand Paging115.预调 Prepaging116.接见的局部性 Locality of Reference 117.颠簸 Thrashing118.内零头 Internal Fragmentation 119.外零头 External Fragmentation 120.共享正文 Shared Text121.增量转储 Incremental Dump122.权限表 Capability List123.接见控制表 Access Control List。
android共享内存(ShareMemory)的实现
android共享内存(ShareMemory)的实现Android 几种进程通信方式跨进程通信要求把方法调用及其数据分解至操作系统可以识别的程度,并将其从本地进程和地址空间传输至远程进程和地址空间,然后在远程进程中重新组装并执行该调用。
然后,返回值将沿相反方向传输回来。
Android 为我们提供了以下几种进程通信机制(供开发者使用的进程通信 API)对应的文章链接如下:•文件•AIDL (基于 Binder)•Binder•Messenger (基于 Binder)•ContentProvider (基于 Binder)•Socket在上述通信机制的基础上,我们只需集中精力定义和实现 RPC 编程接口即可。
如何选择这几种通信方式这里再对比总结一下:•只有允许不同应用的客户端用 IPC 方式调用远程方法,并且想要在服务中处理多线程时,才有必要使用 AIDL•如果需要调用远程方法,但不需要处理并发 IPC,就应该通过实现一个Binder 创建接口•如果您想执行 IPC,但只是传递数据,不涉及方法调用,也不需要高并发,就使用 Messenger 来实现接口•如果需要处理一对多的进程间数据共享(主要是数据的 CRUD),就使用ContentProvider•如果要实现一对多的并发实时通信,就使用 Socketimage.pngIPC分析:android IPC的核心方式是binder,但是android binder的传输限制1M(被很多进程共享),在较大数据交换一般通过文件,但是效率很低,因此介绍下新的内存共享方式: ShareMemory具体实现:通过binder把MemoryFile的ParcelFileDescriptor 传到Service;在服务端通过ParcelFileDescriptor 读取共享内存数据;•客户端 LocalClient.java 通过MemoryFile获取ParcelFileDescriptor,通过Binder把ParcelFileDescriptor(int类型)传递到服务端•服务端 RemoteService 获取到ParcelFileDescriptor 之后,有两种方式第一种:通过FileInputStream 读取ParcelFileDescriptor 的FD,此种方式的问题在于,每次读取之后FD的游标都在文件最后(也就是说第二次读取结果是不低的,必须重置FD的游标) 第二种:就是通过反射,直接ParcelFileDescriptor构建MemoryFile,然后读取,此种方式问题在于26和27实现的不同,代码如下:Android P(9.0)反射限制: 上述反射的方式在android P上被限制(android 9.0禁止通过放射调用系统的的非公开方法),此路不同(If they cut off one head, two more shall take it's place... Hail Hydra.),还有千万条路•ShareMemory android O(8.0)之后增加新的共享内存方式,SharedMemory.java 此类继承Parcelable,可以作为IPC通讯传输的数据;•ClassLoader 多态:此方式并非真正的多态,而是根据ClassLoader类的加载顺序,在应用中构建一个和系统类同样包名的类(方法也同名,可以不做实现),编译时使用的应用中的类,运行时加载的是系统中的类,从而实现伪多态;GitHub:ShareMemory优点:binder 限制(binder的android上的限制1M,而且是被多个进程共享的); binder 在android进程中经过一次内存copy,内存共享通过mmap,0次copy效率更高;。
android sharedmemory用法
android sharedmemory用法全文共四篇示例,供读者参考第一篇示例:Android SharedMemory是一种用于在多个进程之间共享数据的机制。
它允许不同应用程序之间共享大块内存,这对于需要高性能数据交换的应用程序非常有用,比如多媒体应用程序或游戏。
在Android系统中,每个进程都有自己的独立地址空间,因此默认情况下进程之间不能直接共享内存。
但是Android SharedMemory 提供了一种方法让不同进程之间可以共享内存块。
这种共享内存块创建的共享内存区域可以由不同进程映射到自己的地址空间中,从而实现数据共享。
SharedMemory的用法非常简单,首先需要创建一个SharedMemory对象,然后使用该对象创建一个共享内存区域,并将数据写入其中。
接着,其他进程可以通过SharedMemory对象来访问共享内存区域,即可以将这个内存区域映射到自己的地址空间,并读取其中的数据。
在Android中,可以使用SharedMemory API来实现SharedMemory的功能。
下面是一个基本的SharedMemory用法示例:1. 创建SharedMemory对象SharedMemory sharedMemory =SharedMemory.create("shared_memory_name", 1024);这行代码创建了一个名为"shared_memory_name",大小为1024字节的共享内存区域。
2. 写入数据这段代码将"Hello, SharedMemory!"这个字符串写入了共享内存区域中。
3. 读取数据SharedMemory sharedMemory =SharedMemory.create("shared_memory_name", 1024);ByteBuffer byteBuffer = sharedMemory.mapReadOnly();byte[] data = new byte[1024];byteBuffer.get(data);通过上面的示例,我们可以看到SharedMemory的基本用法。
cuda中shared memory 好处
cuda中shared memory 好处CUDA(Compute Unified Device Architecture)是由NVIDIA为其图形处理器(GPU)所创造的并行计算平台和编程模型。
在CUDA中,shared memory(共享内存)是一种特殊的硬件内存,它位于GPU的同步多处理器(SM)上,被多个线程块共享使用。
Shared memory的使用对于提高CUDA程序的性能非常重要。
本文将深入探讨shared memory的好处,并逐步回答关于shared memory的相关问题。
一、Shared memory的工作原理在理解shared memory的好处之前,先来了解一下它的工作原理。
Shared memory是一种高带宽低延迟的硬件内存,位于SM上。
当一个线程块被调度执行时,GPU会将线程块的数据从全局内存(global memory)中加载到shared memory中,然后线程块内的所有线程可以直接读写shared memory中的数据,而不需要通过全局内存。
这样可以大大减少全局内存的访问次数,提高程序的性能。
二、Shared memory的好处1. 减少全局内存的访问:全局内存是GPU上访问最慢的内存,而shared memory是GPU上访问最快的内存之一。
通过将数据加载到shared memory中,线程块内的线程可以直接从shared memory中读写数据,避免了对全局内存的频繁访问,从而降低了访存延迟,提高程序的性能。
2. 提高访存效率:shared memory是位于SM上的硬件内存,它与SM 上的所有线程块共享使用。
当多个线程块访问相同的数据时,它们可以直接从shared memory中读取数据,避免了重复从全局内存加载数据的操作,提高了访存效率。
3. 增加数据重用:shared memory的作用不仅仅是减少对全局内存的访问,还可以增加数据的重用。
当一个线程块需要多次访问相同的数据时,将这些数据加载到shared memory中可以保留数据的副本,并且线程块内的各个线程可以直接从shared memory中读取数据,而不需要再次从全局内存加载数据。
5.4多相流模型5.5分散相模型2
4 α p ρppVol α p ρ ppVol 2t n 1 n 1 n 1 n 1 Anb nb p SU Sp p
n 1 n
3 α p ρppVol
n 1
(5.383)
将上式重写为
App Anbnb S
(2) 体积分数方程
a. 体积分数方程 通过求解一相或多相体积分数的连续性方程,可以追踪各相之间的界面。第 q 相体 积分数的连续性方程为
n 1 pq m qp (5.385) α ρ α ρ v S m q q q q q α q ρq t p 1 qp 为从相q向相p的传质; m pq 为从相 其中,ρq为第q相的物理密度;vq 为第q相的速度; m
在 VOF 模型中,各相流体共享一个方程组,每一相的体积分数在整个计算域内被追踪。 适用 VOF 模型的多相流应用包括分层流、有自由表面流动、液体灌注、容器内液体振 荡、液体中大气泡运动、堰流、喷注破碎的预测和气 - 液界面的稳态与瞬态追踪等。
114
沈阳航空工业学院
(2) 混合模型
混合模型的相可以是流体或颗粒,并被看作互相穿插的连续统一体。混合模型求解 混合物动量方程,以设定的相对速度描述弥散相。适用混合模型的应用包括低载粉率的 带粉气流、含气泡流、沉降过程和旋风分离器等。混合模型还可以用于模拟无相对速度 的匀质弥散多相流。
117
沈阳航空工业学院
则有下列 3 中可能:
αq = 0:单元中没有第q相流体。 αq = 1:单元中充满第q相流体。 0 < αq < 1:单元中有第q相流体与其它一相或多相流体间的界面。
根据局部αq值,计算域内每一控制容积被赋予适当的物性和变量值。
百度面试经验分享
百度面试经验分享百度面试经验分享百度面试经验(一)百度文库:不要求写算法,要求系统设计,画流程图。
比如12306让你设计,你会怎么做。
他们用的主要语眼是php。
对面试者的语音没有要求。
百度图片搜索:一直考算法,对算法要求很高。
一面的人一般会放水让您进二面。
二面的人就比较严格了。
《编程之美》和《编程珠玑》上的东西对面试这个部门比较有帮助。
百度基础平台部:考数据结构较多,也问了12306的问题,还有双11如何设计收款付款的问题。
对应聘者的回答速度有要求,慢了会减分。
CAP原则一定要了解一些,这个部门比较重视这个方面。
CAP定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。
百度地图:不需要在纸上写东西,但是一般考察数据库方面挺多。
高并发访问如何保证数据一致性之类的问题。
根据你的项目经验问的较多,在你项目基础上增加难度,问你怎么办?这个没法准备,平时积累吧!百度面试经验(二)笔试-------群面------二面-----三面-----总监电面-----hr面-------本来我是奔着百度去的,百度的面试很残酷,笔试是海试,我参加的城市有三个学校一起笔试,每个学校的人数就不说了,产品类的工作录取比例是快到千分之一了。
笔试是可以霸笔的,百度的笔试很正规,没有准备的基本上都会被刷的。
笔试下来是群面,群面很残酷,有的群面十个只要一个,有的会要两三个,还有的一个不要,所以很残酷。
我群面的时候六个研究生四个本科生,群面有的时候运气很重要,还要看面试官考察的重点。
群面完了是二面。
也许群面你会侥幸过了,但是二面就是专业面了,百度的二面面试官很好,二面也是可以霸面的,只要面试官有时间,一般都会给你一个机会的。
不过你要真有货,没有货的话几分钟就刷了。
我群面就被刷了。
但是第二天我去霸面了二面,很荣幸,面试官给了我机会,我们聊了半个小时,霸面的重点就是你能在几分钟之内让面试官对你感兴趣。
cuda中shared memory的优点
cuda中shared memory的优点CUDA中的Shared Memory是一种特殊的内存类型,具有以下几个优点:
高带宽:Shared Memory的传输速度非常快,通常比全局内存快一到两个数量级。
这是因为Shared Memory位于SM(Streaming Multiprocessor)内部,通过SM内的高速缓存连接到核心处理器,可以显著减少数据传输的延迟。
低延迟:Shared Memory的读写延迟非常低,可以在同一个块内的线程间快速共享数据。
这是因为Shared Memory位于芯片上的SRAM中,与全局内存相比具有更短的访问延迟。
自定义数据共享:Shared Memory是每个线程块独立使用的,可以用来实现线程间的数据共享。
在共享内存中存储某些数据,可以在同一个线程块中的所有线程之间进行高效共享,并且不涉及全局内存的读写。
数据重用:Shared Memory可以用于缓存频繁访问的数据,减少对全局内存的访问次数。
通过将全局内存中的数据复制到Shared Memory中,并在线程块内重复使用,可以减少对全局内存的访问,从而提高性能。
并发协同:Shared Memory还可以用于协同工作的线程之间传递中间结果,以实现协作计算。
线程可以将计算结果存储在Shared Memory中,然后由其他线程继续使用,从而减少计算重复和冗余。
总体而言,Shared Memory在CUDA编程中是非常重要的一部分,可以提高内存访问效率、降低延迟、方便数据共享和协作计算,从
而提高GPU的整体性能。
共享存储器系统
P(fromnum) 空格数减1
P(mesnum) 消息个数加1
选择空格x
选择满格x
将消息m放入空格x中
把满格x中的消息取出放m中
置格x的标志为满
置格x标志为空
V(mesnum) 向接收进程发送消息 V(mesnum) 空格个数加1
end
12
邮箱头:邮箱名称、邮箱大小、拥有该邮箱的进程名
Deposite(m) 发送进程
A
邮箱头
…邮箱体
Remove(m) 接收进程
B
邮箱通信结构
邮箱体:存放消息
使用邮箱的时候应该满足: 1 发送进程发送消息时,邮箱中至少要有一个空格能存放该消息 2 接收进程接收消息时,邮箱中至少有一个消息存在
13
该发送进程调用过程deposit(m)将消息发送到 邮箱,接收进程调用过程remove(m),将消息m从 邮箱中取出。
❖ 在利用信箱通信时,在发送进程和接收进程之 间,存在着四种关系:
一对一关系:即可以为发送进程和接收进程建 立一条专用的通信链路;
❖多对一关系:允许提供服务的进程与多个用户 进程进行交互,也称客户/服务器交互;
一对多关系:允许一个发送进程与多个接收进 程交互,使发送进程用广播的形式,发送消息;
多对多关系:允许建立一个公用信箱,让多个 进程都能向信箱投递消息,也可取走属于自己 的消息。
Fromnum—发送进程的私用信号量。记录信箱 空格,初值为n
Mesnum—接收进程的私用信号量。记录信箱 有消息的个数 初值为0
14
Fromnum记录信箱空格,初值为n
Mesnum记录信箱有消息的个数 初 值为0
Deposit(m);
Remove (m)
android sharedmemory用法
android sharedmemory用法Android的SharedMemory是一种在多个进程之间共享内存的机制。
它可以用于在不同的进程之间高效地传输大量数据,而无需进行序列化和反序列化的操作,从而提高了系统的性能和效率。
SharedMemory的用法主要涉及以下几个方面:1.创建和销毁SharedMemorySharedMemory的创建和销毁都是通过Native层的方法来完成的。
在Java层,我们可以使用SharedMemory.create方法来创建一个SharedMemory对象,该对象将关联一个指定大小的共享内存区域。
销毁一个SharedMemory对象可以通过调用SharedMemory.close方法来完成。
2.写入和读取数据在创建SharedMemory对象后,我们可以通过将数据写入共享内存区域来共享数据。
写入数据可以通过调用SharedMemory.map方法来获取共享内存区域的内存映射,然后通过读写内存映射来完成。
读取数据可以通过调用SharedMemory.unmap方法来取消内存映射。
3.进程间通信SharedMemory的主要用途之一是实现进程间通信(IPC)。
在一个进程中写入数据后,另一个进程可以通过读取共享内存区域来获取这些数据。
为了确保数据的正确性和一致性,我们可以使用信号量或互斥锁来实现进程间的同步。
4.数据的安全性和一致性由于SharedMemory是多个进程共享的,因此在使用SharedMemory时需要确保数据的安全性和一致性。
我们可以通过使用信号量或互斥锁来控制对共享内存区域的访问,以避免数据竞争和冲突。
5.共享内存的大小限制在Android中,共享内存的大小是有限制的。
具体的限制因系统而异,但通常情况下,共享内存的大小不能超过几百兆字节。
因此,在使用SharedMemory时需要注意数据的大小,以避免超出系统的限制。
总的来说,Android的SharedMemory提供了一种高效的进程间通信的机制,可以用于传输大量数据。
操作系统(第四版)期末复习总结
操作系统(第四版)期末复习总结第一章操作系统引论1、操作系统是什么?操作系统为用户完成所有“硬件相关,应用无关“的工作,以给用户方便、高效、安全的使用环境1.1、定义:操作系统是一个大型的程序系统,它负责计算机的全部软、硬件资源的分配、调度工作,控制并协调多个任务的活动,实现信息的存取和保护。
它提供用户接口,使用户获得良好的工作环境。
1.2、目标(1)、方便性:配置OS后计算机系统更容易使用(2)、有效性:改善资源利用率;提高系统吞吐量(3)、可扩充性:OSde结构(如层次化的结构:无结构发展->模快化结构->层次化结构->微内核结构)(4)、开放性:OS遵循世界标准范围。
1.3、作用:(1)、OS作为用户与计算机硬件系统之间的接口(API/CUI/GUI)即:OS处于用户与计算机硬件系统之间,用户通过OS来使用计算机系统。
(2)、OS是计算机系统资源的管理者(处理机、存储器、I/O设备、文件)处理机管理是用于分配和控制处理机存储器管理是负责内存的分配与回收I/O设备管理是负责I/O设备的分配(回收)与操纵文件管理是用于实现文件的存取、共享和保护(3)、OS实现了对计算机资源的抽象(OS是扩充机/虚拟机)2、操作系统的发展过程2.1、未配置操作系统的计算机系统(40年代手工操作阶段)(1)、人工操作方式:用户独占全机,资源空闲浪费。
缺点:手工装卸、人工判断、手工修改与调试内存指令等造成CPU空闲;提前完成造成剩余预约时间内的CPU完全空闲;I/O设备的慢速与CPU的速度不匹配造成的CPU空闲等待时间(2)、脱机输入输出(Off-Line I/O)方式。
优点:减少了CPU的空闲时间提高了I/O速度2.2、单道批处理系统(50年代)(1)、解决问题:单道批处理系统是在解决人机矛盾和CPU与I/O设备速度不匹配矛盾的过程中形成的。
批处理系统旨在提高系统资源的利用率和系统的吞吐量。
(但单道批处理系统仍不能充分利用资源,故现在已很少用)单道批处理分为:联机批处理、脱机批处理联机批处理:CPU直接控制作业输入输出脱机批处理:由外围机控制作业输入输出(2)、缺点:系统资源利用率低(因为内存中只存在一道程序,I/O请求成功前CPU都处于空闲状态)(3)、特征自动性。
shared_memory_object shm用法 -回复
shared_memory_object shm用法-回复Shared_memory_object (shm)是一种用于在进程之间共享内存数据的机制。
它通过在不同进程之间创建共享的存储区域,实现了高效的数据交换和通信。
在本文中,我们将详细介绍shm的用法,并逐步回答关于它的一些常见问题。
首先,我们来了解shm的基本概念和原理。
shm可以被看作是一种特殊的文件对象,它存在于文件系统中,并且可以被不同的进程通过引用来访问和操作。
与普通文件不同的是,shm不会被实际地存储在磁盘上,而是存储在计算机的主内存中。
这样设计的目的是为了提供更快速、低延迟的数据传输。
在使用shm之前,我们需要调用相关的系统函数来创建和管理shm对象。
首先,我们需要使用shm_open()函数来创建一个共享内存对象,并指定一个唯一的名称作为标识符。
当一个进程调用shm_open()函数时,系统会将返回一个文件描述符,用于后续的操作。
接下来,我们可以使用ftruncate()函数来指定shm对象的大小,即为这个共享内存对象分配一块特定的内存区域。
这样,其他进程就可以通过该对象的标识符来访问这块内存区域,并向其中写入或读取数据。
一旦shm对象被创建和初始化,我们就可以使用mmap()函数将shm对象映射到当前进程的地址空间中。
这样,我们就可以直接通过指针来访问和操作共享内存区域的数据。
与传统的进程间通信方式相比,这种直接的内存映射方式具有极高的效率和灵活性。
当需要对共享内存区域进行读写操作时,我们只需要简单地访问内存映射的指针即可。
任何对该指针的操作都会直接影响到共享内存区域中的数据。
这种数据的实时共享和更新,使得不同进程之间可以实时地交换信息和进行协作。
在使用完shm对象后,我们需要调用相应的系统函数来释放和销毁这个对象。
首先,我们需要使用munmap()函数解除内存映射,将shm对象从进程的地址空间中移除。
接着,我们可以使用shm_unlink()函数彻底删除shm对象,释放相关的系统资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BibliographyBibliographyCONVEX Computer Corporation. (1994).Exemplar Architecture.2nd Edition, Doc. No.081-023430-001. Richardson, TX: CONVEX Press. Nov. 1994Digital Equipment Corp. (1995).AlphaServer 8000 Series Configuring Guide.DEC WWW home page /info/alphaserver/alphsrv8400/8000.html#spec.Fenwick., D.M., Foley, D.J., Gist, W.B., VanDoren, S.R., & Wissell, D. (1995). The AlphaServer 8000 Series: High-End Server Platform Development.Digital Techni-cal Journal,V ol. 7 No. 1, 43-65.Gropp, W., Doss, N., & Skjellum, A. (1996).A High-Performance, Portable Implemen-tation of the MPI Message Passing Interface Standard(On-line Technical Report) Available at /mpi/mpicharticle/paper.html. Argonne, IL:Mathematics and Computer Science Division, Argonne National Laboratory. Reed, J. (1996).Personal Correspondence About SPP1600.Nov. 1996.Salo, E. (1996).Personal Correspondence About SGI MPI.Nov. 1996.Silicon Graphics Inc. (1996). Power Challenge Technical Report. SGI WWW home page /Products/hardware/servers, 1995.Conclusionssors may not be on the same agent (Figure 2). Therefore, the interaction between these two processors has to go through the crossbar switch.ConclusionsFrom the COMOPS benchmark results measured on three shared memory machines, the following conclusions can be made.1.The MPI implementation on the SGI Power Challenge is generallysuperior to the others, at least for COMOPS operations.2.In general, the communication performance for COMOPS operations isbetter in two customized versions of MPI, the Convex MPI and the SGMPI, than in their corresponding shared memory schemes.3.On the DEC Turbolaser, the communication performance in the sharedmemory scheme is slightly better than that in the MPI because of the MPIoverhead.It is clear that customizing the MPI implementation based on the specific hardware architecture is a good way to achieve high performance for message passing operations on a shared memory platform. Also, using direct memory copy, instead of going through an intermediate shared space, is critical to the improvement of the communication perfor-mance.Performance Data and Analysistions, the slightly higher cost on six processors is probably because two of the six proces-Figure 14. SPP1600 Broadcast TimeFigure 15. SPP1600 Reduction TimePerformance Data and AnalysisThe ping-pong performance on the Convex SPP1600 (Figure 13) is very similar to that on the SGI Power Challenge. From the phenomenon that the MPI takes nearly half time of what the shared memory scheme takes to perform the ping-pong operation, it is reasonable to anticipate that the MPI implementation on the SPP1600 may be also based on the direct memory copy, instead of going through an intermediate shared space (Gropp, et al,1996).The performance of shared memory broadcast and reduction on this SPP1600 (Figure 14 and 15) is similar to the other two machines. The queue length for reading the shared block and the cost from the critical section are the major effects in broadcast and reduction respectively.Since the details of broadcast and reduction implementation in the Convex version of MPI are unclear at this moment, it is anticipated that the MPI broadcast involves regular synchronizations, just like the situation on the DEC AlphaServer. As for reduction opera-Figure 13. SPP1600 ping-pong TimePerformance Data and Analysispong operation is accomplished by directly copying data from the space owned by the source processor to the destination processor, without going through an intermediate shared space (Gropp, Lusk, Doss & Skjellum, 1996). Therefore, the shared memory scheme, which uses an intermediate shared space as an interim, takes about twice as long as MPI does.The performance of shared memory broadcast and reduction on the SGI machine (Figure 11 and 12) is similar to what is observed on the DEC AlphaServer because of the identical architecture and the same version of shared memory code. The time for broad-cast grows up with more processors because of the increasing queue length for reading the shared space. For reduction, the cost from the critical section increases with more proces-sors involved. The MPI performance behaviors for broadcast and reduction on the SGI Power Challenge are interesting. In fact, the MPI performance illustrated in Figure 11 and 12 reflect the underlying implementation of the SGI MPI. The MPI operation for broad-cast is implemented as a fan-out tree on the top of the Bcopy() point-to-point mechanism (Salo, 1996). For reduction operations, it is in the reversed order as a fan-in tree. Both of them have some parallelism as each pair of processors can perform fan-in or fan-out inde-pendently. Since the algorithm of fan-in/fan-out tree requires a synchronization at each tree-fork/join stage, the cost of broadcast/reduction will grow up with more fork/join syn-chronizations as more processors participate into the operation. Therefore, the time for reduction on eight processors is nearly the same as that for six processors because they both involve the same number of join synchronization stages. The big growth in the time for broadcast on eight processors (Figure 11) in fact is caused by the synchronization at the completion of broadcast. With all the processors in the system being synchronized at certain point, the OS overhead can be significant. On the other hand, there is no need for such a synchronization in reduction.Performance Data and AnalysisFigure 11. SGI Broadcast TimeFigure 12. SGI Reduction TimePerformance Data and AnalysisFigure 9. Turbolaser Broadcast TimeFigure 10. Turbolaser Reduction TimePerformance Data and AnalysisThe broadcast performance on the DEC AlphaServer (Figure 9) is easy to under-stand. The increase of the shared memory broadcast time with more processors is caused by the increasing queue length of the slave processors. In MPI, the synchronization cost causes the broadcast time to increase more significantly with more processors. The same situation holds for reduction (Figure 10). However, because the shared memory reduction involves a critical section (as listed in the pseudocode), the reduction time increases more as more processors are waiting to enter the critical section.Similarly, the ping-pong operation has a flat performance on the SGI Power Chal-lenge (Figure 8). The difference from the situation of the DEC AlphaServer is that the MPI ping-pong time does not grow up with more processors. It looks like the MPI pro-cesses are “light” on the SGI Power Challenge because the OS interruption does not steal the effective bandwidth even if all processors are in the run. The SGI implementation of MPI is based on the global memory copy function Bcopy() (Salo, 1996). Thus, the ping-Figure 8. SGI ping-pong TimePerformance Data and Analysisoperations on each platform is presented here. Figure 7 shows the ping-pong time on the DEC AlphaServer for a fixed message size (800KB) with different number of processors involved. On this DEC machine, MPI is built on top of its shared memory communication protocol. Therefore, MPI performance is always slightly worse than shared memory because of the overhead involved in the MPI implementation. Also, MPI processes seem to be “heavy”. Although only two processors participate in the ping-pong operation, the time slightly grows up when the number of MPI processes increases. This is probably due to the interruption from the operating system and the other MPI processes, which are sup-posed to be idle. On the other hand, the time for the shared memory ping-pong operation remains constant, regardless of the number of processors in the run. This is because the cache coherence caused by invalidating the shared cache line on each processor is per-formed by broadcasting the message on the bus, instead of sending it to each processor separately.Figure 7. Turbolaser ping-pong TimePerformance Data and AnalysisMessage Size (Bytes)B a n d w i d t h (M B /s e c )Figure 5. Reduction BandwdithMessage Size (Bytes)T i m e (m i c r o s e c )Figure 6. Small Message ping-pong TimePerformance Data and Analysis10Shared Memory vs. Message PassingNow, based on an understanding of architectures and the underlying MPI imple-mentations, the qualitative performance analysis of ping-pong, broadcast, and reductionMessage Size (Bytes)0.010.020.030.040.050.0B a n d w i d t h (M B /s e c )Message Size (Bytes)B a n d w i d t h (M B /s e c )Figure 3. Ping-pong Rate Figure 4. Broadcast BandwdithPerformance Data and Analysisones and also better than its corresponding shared memory performance on all 3 commu-nication operations (ping-pong, broadcast, and reduction).More specifically, on the SGI Power Challenge, MPI is more than twice as fast as shared memory for the performance ping-pong. The broadcast performance on this SGI shared memory machine is about the same for MPI and shared memory.The DEC AlphaServer 8400/300 has comparable MPI and shared memory perfor-mance for the ping-pong operation. But for all the tested collective operations (broadcast and reduction), its shared memory bandwidth is considerably higher than the MPI band-width.On the Convex Exemplar SPP1600, the Convex-customized MPI performs twice as fast as its shared memory does for the ping-pong operation. For collective operations, the performance of MPI is just slightly better than that of shared memory method.Figure 6 demonstrates the ping-pong round trip transfer time for small message sizes (8 Bytes to 80 Bytes). This performance typically reflects the communication latency. It is clear that the shared memory method on the DEC AlphaServer8400 has the lowest ping-pong latency. In Figures 7 through 15, the performance behaviors for ping-pong, broadcast, and reduction are respectively shown on each platform for a fixed mes-sage size (800KB) with different number of processors. It should be noted that the band-wdith calculation of ping-pong in COMOPS is what some people called “ ping-pong rate = message_size / round_trip_time”. So, it’s only half of the “one-way” ping-pong band-width as other benchmark reported.Shared Memory vs. Message Passing 9Performance Data and AnalysisAs shown in the pseudocode list, only one pair of processors participate in the operation of ping-pong, regardless of the total number of processors involved. The collec-tive communication operations involves all the processors in the run. The shared memory version accomplishes the same operations performed in the original MPI version of the COMOPS benchmark.Performance Data and AnalysisThe original MPI COMOPS benchmark set and the equivalent multi-thread shared memory version have been run on three platforms outlined in Table 1 (SGI, 1995, DEC, 1995 & Reed, 1996). On both SGI and Convex machines, vendor’s customized version of MPI are used in this experiment. On the DEC Alpha machine, a public-domain MPI implementation (MPICH) is used.TABLE 1.Three Tested Shared Memory System ConfigurationsThe collected performance data are illustrated in Figures 3 through 15. Figures 3 through 5 exhibit the cross-platform bandwidth comparison and the comparison between the shared memory communication protocol as well as the message passing communica-tion protocol. These performance data are all obtained using four processors with differ-ent message sizes. It is clear that the performance of the SGI MPI is superior to the other8Shared Memory vs. Message PassingThe Experimental MethodBroadcast:call timerdo ntimesif (my_thread .eq. 0) thenshared_temp=privated_send !! Thread 0 sends out messageendifbarrier !! synchronizationif (my_thread .ne. 0) then !! Other threads receives theprivate_recv=shared_tmp !! message simultaneouslyendifbarrier !! synchronizationenddocall timerReduction (global max):call timerdo ntimescritical sectionshared_tmp=max(shared_tmp, private_send)end critical sectionbarrier !! synchronizationif (my_thread .eq. 0) then !! Thread 0 collects the finalprivate_recv=shared_tmp !! resultendifenddocall timerThis experiment actually involves two versions of shared memory codes because of the different shared memory programming environments. The shared memory pro-gramming environment on both the DEC AlphaServer and SGI Power Challenge systems is compatible with PCF (Parallel Computing Forum) standard. Therefore, only one ver-sion of code is needed for these two machines. The Convex shared memory programming feature in Fortran is slightly different. In particular, in the operation of ping-pong, a lock-and-wait mechanism, instead of the general synchronization barrier, can be used for the synchronization between Processor 0 and Processor 1.Shared Memory vs. Message Passing 7The Experimental MethodThe COMOPS benchmark set is designed to measure the performance of inter-pro-cessor point-to-point and collective communication in MPI. It measures the communica-tion bandwidth and message transfer time for different message sizes. The set includes ping-pong, broadcast, reduction, and gather/scatter operations. The MPI performance measurement can be directly performed on the three platforms with the corresponding best available MPI implementation. Both SGI and HP-Convex have their own customized MPI implementations on their shared memory platforms. Although the current version of MPI implementation on our DEC AlphaServer 8400/300 Turbolaser is a public-domain MPICH version, according to the information from DEC, this MPICH implementation performs no worse than the DEC customized version MPI within one shared memory multi-processor box. The main effort of this experiment is to write a shared memory ver-sion of the COMOPS benchmark set. The shared memory version of these communica-tion operations is illustrated in the following pseudo-code.6Shared Memory vs. Message PassingThe Experimental MethodNUMA system such as Convex SPP, a processor always has some neighbors electrically closer than the others in the system. As illustrated in Figure 2, even though the memory access is still uniform within one hypernode of the SPP1600, each processor is electrically closer to the one shared with the same agent because it does not need to go through the crossbar switch for the inter-processor communication.In this experiment, none of the three shared memory machines has a physical implementation for CPU-private or thread-private memory. In a bus-connected multi-processor system, such as the SGI Power Challenge and the DEC AlphaServer 8400/300 (nickname Turbolaser), the memory system is purely homogeneous. Therefore, there is no physical distinction between a logically-private memory space and a logically-shared memory space. For the NUMA system SPP1600, although it is a DSM system, its CPU-private or thread-private memory is not physically implemented (HP-Convex, 1994). Instead, the operating system partitions hypernode-private memory (memory modules within one hypernode) used as CPU-private memory for each of the processors in the hypernode. The reason for this is that implementation of a physical CPU-private memory would not result in substantially lower CPU-to-memory latency, and the latency from a processor to hypernode-private memory would be increased (HP-Convex, 1994).The Experimental MethodThe direct objective of this experiment is to clarify the difference in the perfor-mance of inter-processor communication between the shared memory protocol and the message passing protocol on a shared memory platform. T o achieve this goal, the com-mon inter-processor communication operations specified in the LANL COMOPS bench-mark set are used to perform the comparison. The point-to-point communication operation actually used in this experiment is ping-pong. The tested collective operations include broadcast and reduction.Shared Memory vs. Message Passing 5ArchitecturesFigure 2. Convex Exemplar Hypernode StructureThe Exemplar SPP architecture is shown in Figure 2. The Convex machine we have access to (courtesy of Convex) is a one-hypernode 8-processor machine. The inter-hyper-node connection is irrelevant to this experiment and this report focuses on the intra-hyper-node structure only.jdfsjfdasThe memory access pattern and the physical distance between two processors are different in bus-connected and distributed shared memory systems. In a bus-connected shared memory structure, the memory access for each processor is uniform. But in a dis-tributed shared memory structure, the memory access is non-uniform. This structure is called a NUMA (Non-Uniform Memory Access) architecture. Also, the inter-processor communication in bus-connected shared memory systems is homogeneous and every pro-cessor is equi-distant to any other processor in the same system. On the other hand, in a4Shared Memory vs. Message PassingArchitecturesArchitecturesCurrently there are two types of shared memory connections for multi-processor systems. One is the bus-connected shared memory system as illustrated in Figure 1. The DEC AlphaServer 8400/300 and the SGI Power Challenge have this type of architecture. In this type of system every processor has equal access to the entire memory system through the same bus. Another type of shared memory multi-processor connection archi-tecture is the crossbar switch. This crossbar connection is a typical connection mecha-nism within one hypernode of many distributed shared memory (DSM) systems such as HP-Convex Exemplar and NEC SX-4.Figure 1. Bus-connected shared memory multiprocessorsShared Memory vs. Message Passing 3IntroductionIntroductionParallel computing on shared memory multi-processors has become an effective method to solve large scale scientific and engineering computational problems. Both MPI and shared memory are available for data communication between processors on shared memory platforms. Normally, performing inter-processor data communication by copy-ing data into and out of an intermediate shared buffer seems natural on a shared memory platform. However, some vendors have recently claimed that their customized MPI imple-mentations performed better than the corresponding shared memory protocol on their shared memory platforms even though the MPI protocol was originally designed for dis-tributed memory multi-processor systems. This situation makes it hard for users to choose the best tool for inter-processor communication on those shared memory platforms on which both MPI and shared memory protocols are available. In order to clarify this confu-sion, a comparison experiment was conducted to illustrate the communication perfor-mance for the COMOPS operations on major shared memory platforms. This report presents the experimental results and presents some qualitative analyses to interpret the results.This report has four sections. In the first section, the architectures of three shared memory platforms are briefly described. The implementation details of the experiment are described in the second section. The second section also discusses the shared memory simulation of those communication patterns defined in the COMOPS benchmark set. The third section presents the data and analyses. It graphically exhibits the collected commu-nication performance data and qualitatively interprets the performance behavior based on an understanding of underlying architectures. In the final section, some conclusions and recommendations are made regarding the interprocessor communication performance on the three shared memory platforms.2Shared Memory vs. Message PassingApril 15, 1997Shared Memory vs. MessagePassing: the COMOPSBenchmark ExperimentYong LuoCIC-19, Mail Stop B256Email: yongl@Los Alamos National LaboratoryAbstractThis paper presents the comparison of the COMOPS benchmark performance in MPI and shared memory on three different shared memory platforms: the DEC AlphaSer-ver 8400/300 (Turbolaser), the SGI Power Challenge, and the HP-Convex ExemplarSPP1600. The paper also qualitatively analyzes the obtained performance data based on an understanding of the corresponding architecture and the MPI implementations. Some conclusions are made for the inter-processor communication performance on these three shared memory platforms.1。