Oxidative DNA demethylation mediated by Tet enzymes

合集下载

靶向哺乳动物细胞线粒体的核酸转运

靶向哺乳动物细胞线粒体的核酸转运

靶向哺乳动物细胞线粒体的核酸转运付爱玲【摘要】Mitochondrial DNA (mtDNA)genome mutations and defects are the essential mechanism of a various of mitochondrial dysfunction associated with diseases. The studies of targeting de-livery nucleic acid into mammalian mitochondria can thoroughly correct mtDNA mutation, rescue mtDNA impairment and then reverse the progress of diseases. There’s obvious differences be-tween nucleic acid import pathway of mammalian mitochondria and gene transfection of nuclei. In this paper, the effective strat-egies of delivering DNA and RNA(tRNA,rRNA,mRNA and an-tisense RNA)into mitochondria have been reviewed, as well as the challenges and development.%线粒体 DNA(mitochondrial DNA, mtDNA)的遗传性突变和缺陷是多种线粒体功能失调相关疾病的根本原因。

靶向线粒体递送核酸,可从根本上纠正 mtDNA 突变、挽救 mtD-NA 损伤、阻断疾病进程。

哺乳细胞内线粒体的核酸转运途径与细胞核的基因转染大不相同。

该文综述了向哺乳动物细胞线粒体递送 DNA 和 RNA(tRNA、rRNA、mRNA 和反义RNA)的有效策略,并对其存在问题和发展趋势做一阐述。

提名人简介

提名人简介

提名人简介仇子龙博士,男,1976年12月出生。

2009年回国后担任中国科学院上海生命科学研究院神经科学研究所研究员至今,主要从事自闭症、瑞特综合征等神经发育疾病的生物学研究,研究成果阐述了神经发育疾病的遗传、分子与神经环路机制,并建立了自闭症的非人灵长类动物模型。

在Nature, Developmental Cell, Molecular Psychiatry, Current Opinion in Neurobiology等国际生物学权威期刊上发表研究论文与应邀综述十余篇,引用逾两千余次。

自闭症的非人灵长类动物模型工作入选科技部2016年“中国科学十大进展”,中国科协2016年“中国生命科学十大进展”。

仇子龙研究员的工作围绕MECP2基因,从非人灵长类动物模型到分子细胞机制,获得了一系列原创性成果,代表性工作包括:1、自闭症相关基因MeCP2调控microRNA核内剪切加工与神经系统发育仇子龙研究员的工作发现MeCP2蛋白直接参与小RNA (microRNA)的核内剪切加工过程,而与其传统的转录调控功能无关。

此工作为自闭症相关蛋白MeCP2的功能研究提供了崭新的角度,进而提出神经发育性疾病的致病机理很可能与大脑中microRNA表达失调密切相关,为DNA甲基化与microRNA两种表观遗传学调控建立联系的同时,也为开展转化医学研究提供了理论依据。

2、自闭症的非人灵长类动物模型仇子龙研究员与神经所非人灵长类转基因平台合作,开展了自闭症的非人灵长类动物模型构建工作。

通过构建携带人类自闭症基因MECP2的转基因猴及对转基因猴进行分子遗传学与行为学分析,历时5年的工作发现MECP2转基因猴表现出类人类自闭症病人的重复运动模式、焦虑水平上升、刻板行为与社交障碍等行为表型。

研究团队还通过精巢异体移植与体外受精等方法,成功的得到了携带人类MECP2基因的第二代转基因猴,且发现其在社交行为方面也表现出了严重障碍。

纸业专业英语词汇翻译(D2)

纸业专业英语词汇翻译(D2)

纸业专业英语词汇翻译(D2)degradation 降解acid degradation 酸性降解alkaline degradation 碱性降解bacterriological degradation 细菌降解cellulose degradation 纤维素降解chemical degradation 化学降解enzymatic degradation 酶催降解fermentative degradation 发酵降解hyduolytic degradation 水解降解light degradation 光降解mechanicaldegradation 机械降解microbiological degradation 微生物降解oxidative degradation 氧化降解physical degradation 物理降解thermal degradation 热降解ultrasonic wave degradation 超声波降解degradation product 降解产物degradation reaction 降解反应degradative 降解的degradative reduction 降解还原(作用)degraded cellulose 降解纤维素degraded rags 低级破布degree of beating 打浆度degree of bleaching 漂白度degree of cooking 蒸煮度degree of crook 弯曲程度degree of curing 熟化程度degree of curling 卷曲度degree of dispersion 分散程度degree of fermentation 发酵程度degree of hydration 水化度degree of non-combustibility 不可燃烧度degree fo non-flammability 不可燃烧度degree of orientation 定向(程)度,取向度degree of polymerization 聚合度degree of redution 还原率degree of saturation 饱合度degree of sizing 施胶度degree of slippiness 滑脱度degree of substitution 取代度degree of wetness 湿润度degree of whiteness 白度degum 脱胶dehumidifier 减湿器dehmidify 减湿dehydrate 脱水dehydrater 脱水器;脱水剂dehydrating agent 脱水剂dehydration 脱水(作用)dehydro-abietic acid 脱氢松香酸dehydrogenation 脱氢(作用)deink 脱墨deinded newspuint 脱墨新闻纸deinded stock 脱墨浆料deinked waste 脱墨废纸deinking 脱墨deionization 消除电离作用delaminate 脱层delaminated clay 涂布粘土delamination 脱层(作用)delamination resistance 抗脱层性能delay time 延迟时间delignification 脱木素(作用)dilignify 脱木素delimbing 砍伐枝桠deliquescence 潮解delivery 输送delivery gate 分送闸板delivery pipe 输送管delivery roll 输送辊,传递辊deita former 三角形长网成形器dcita wood 多层木dclthirna size 冷法松香胶deluge nozzle 压力喷嘴deluge tower 烟道气洗涤器deluge tower fume collector 塔式集尘器dilustering 褪光泽deluxe refiner 圆筒形精浆机demarcation 分界demethylation 脱甲基(作用)demy 英国纸张尺寸标准demy scale 象限秤den (打浆机)底刀座denaturant 变性剂denatured alcohol 变性酒精denaturing agent 变性剂dendrology 树木学denim cuttings 裁切布边dennison wax cennison 蜡棒dennison wax test dennison 蜡棒起毛试验dense timber 紧密木材dense wood 紧密木材densification 增浓(作用)densified laminated wood 硬化层秋材densimeter 密度计density 密度density measurement 测量密度density meter 密度计densometer 密度计;透气度测定仪denude 去污;溶蚀deodar ceder (cedrus deodara loud.) 雪松deodorization 除臭(作用)deodorize 除臭deodorizer 除臭器deoxidize 脱氧department 部门;车间depickling 脱酸depither 除髓机depithing 除髓depithing maching 除髓机deplete water 废水depolarization 去极(化)作用;消磁(作用);消偏振(作用)depolymerize 解聚depolymerizing agent 解聚剂deposit 沉积;沉积物deposition 沉积(作用)depot 储存;基地depreciation 折旧depth 深度depth of burring 刻石深度deragger (水力碎浆机)绞绳装置derivative 衍生物dermatogen 表皮原质dermatosomen 原皮质descabing 去除瑕疵descending chromatography 下行色谱法desensitization 减敏感作用desert gum(eucalytus rudis) 野桉desiccant 干燥的;干燥剂desiccate 干燥desiccate wood 烘干木材deseccating agent 干燥剂desiccation 干燥(作用)desiccative 干燥的desiccator 干燥器design 设计;计算;计划;装置design data 设计数据;设计资料design roll 水印辊design speed 设计速度designation number 标志数;标准指数desk calculator 台式计算器desorption 解吸destrutive distillation 干馏,分解蒸馏desuperheater 过热(蒸汽)降温器details 细节;零件;元件detection 检测;检验;探测detergent 去垢剂;去污剂deteriorate 降低;退化;损坏;消耗;变质deterioration 降低;退化;损坏;消耗;变质detoxicate 解毒;去除污染detoxication 解毒;去除污染detoxification 解毒;去除污染detoxify 解毒;去除污染developer 显影剂development of strength propcrties 纸张强度发展特性,纸张强度增特性devil 除尘机devillicate 帚化纤维,分裂纤维dew point 露点dewater 脱水dewatering 脱水,去水dewatering cylinder 脱水圆网dewatering drum 脱水转鼓dewaxing 脱蜡dextrin(e)(gum) 糊精dextrose 右旋糖;葡萄糖diagnosis 判断;诊断diagonal cutter 斜向裁切机diagonal grain 直纹dial 刻度盘;调节控制盘;拨号盘;二醛dial micrometer 测微仪,千分刻度盘;厚度千分仪dialdehyde cellulose 双醛纤维素dialdehyde starch 双醛淀粉dialysis 渗析diameter accretion 直径增长diameter class 径级diameter increment 直径增量diamond 金刚石,菱形diamond cut burr 菱形刻石刀diaphanometer 不透明度测定diaphragm 隔膜;薄膜diaphragm pump 隔膜泵diaphragm screen 平板筛浆机,平筛diatom 硅藻diatomaceous earth 硅藻土diatomaceous silica 硅藻土datomite 硅藻土diazo compound 重氮化合物diazo coupling 重氮偶合diazotization 重氮化(作用)diazotized compound 重氮化合物dibasic aluminum monorosinate 单松香酸铝二代盐dichloroethane 二氯乙烷dichloromethane 二氯甲烷dicotyledon 双子叶植物dicotyledonous 双子叶木材dicyandiamide 双氰胺,二聚氨基氰die 模;塑模die casting 模铸die cut 打孔;模切,冲动die cut box 打孔纸箱die cut card 打孔卡die cut liner 打孔衬里纸die cut ragchine 模压切割机die cutter 模压切割机die cutting 打孔;模切,冲切die embossing 模压印花die stamping 模压印花dielectric 介电dielectric constant 介电常数dielectric drying 介电干燥dielectric heating 介电加热dielectric loss 介电损失dielectric properties 介电性质dielectric strength 介电强度dielectrical properties 介电性质dielectric strength 介电强度dielectrical properties 介电性质diethyl ether 二乙醚difference spectrum 差异光谱differential draw indicater 差动牵引指示计differential drive 差速传动differential flowmeter 差示流量计differential gear 差动齿轮differential manometer 差示压力计differential pressure regulator 差动压力调节器differential valve 差动阀differential winder 差动复卷机diffraction 绕射,衍射diffuse 扩射;漫射diffuse blue reflectance fator 蓝光扩散反射系数(即iso亮度)diffuse (in aggregates)parenchyma 星散薄壁细胞diffuse porous wood 散孔木diffuse 扩张器;浸渍器;扩散洗涤器diffuse washer 扩散洗涤器diffuse washing 扩散洗涤diffusion 扩散作用diffusion-extraction method of blowing 扩散抽液法喷放diffusion washer 扩散洗涤器diffusion washing 扩散洗涤diffusion zone 扩散区digest 蒸煮digester 蒸煮器digester acid 蒸煮酸digester blow test 蒸煮终点测定digester brick 耐酸砖digester capacity 蒸煮锅容积digester charge 蒸煮锅装料digester charging 蒸煮锅装料digester charging floor 蒸煮锅装料楼面digester circulating system 蒸煮药液循环系统digester circulating 蒸煮药液循环digester controller 蒸煮(程序)控制装置digester cycle 蒸煮周期digester filling 蒸煮锅装料digester fittings 蒸煮锅管件digester head 蒸煮锅锅口digester house 蒸煮车间digester (inside) test 放气前蒸煮液分析digester lining 蒸煮锅衬里digester liquor 蒸煮液digester neck 蒸煮锅锅颈digester operater 蒸煮锅生产能力digester relief (蒸煮锅)放气;放气管路digester room 蒸煮车间digester shell 蒸煮锅锅壳,锅壁digester side relief 蒸煮锅侧面放气管路digester silo 蒸煮锅顶料仓digester steaming 蒸煮锅通汽digester tile 耐酸砖digester top relief 蒸煮锅锅顶放气digester yield 蒸煮得率,粗浆得率digesterman 蒸煮工digesting 蒸煮digestion 蒸煮digestion liquor 蒸煮液digestion operating curve 蒸煮曲线digestion time 蒸煮时间digger 挖浆机digging machine 挖浆机digging of pulp 挖浆digital computer 数字计算机digital speed/draw system 车速和牵引力的数字控制系统digital system 数字系统digitrac 数字控制器dihydro-abietic acid 二氢化松香酸di-isocyanate 二异氰酸盐dilatancy 膨胀性能dilatant 膨胀剂diluent 稀释剂dilute 稀释dilute acid 稀酸dilute solution 稀溶液dilution 稀释dilution factor 稀释因子dilution water 稀释(用)水dilution well 稀释槽。

DNA甲基转移酶的表达调控及主要生物学功能

DNA甲基转移酶的表达调控及主要生物学功能

DNA甲基转移酶的表达调控及主要生物学功能一、本文概述DNA甲基转移酶是一类重要的酶类,负责在DNA分子上添加甲基基团,从而调控基因表达、DNA复制、DNA修复和染色体结构等多个生物学过程。

本文旨在全面探讨DNA甲基转移酶的表达调控机制及其主要生物学功能,以期深入理解这一关键酶类在生命活动中的重要作用。

我们将首先概述DNA甲基转移酶的基本结构和功能,然后详细阐述其表达调控的分子机制,包括转录水平、翻译水平和翻译后水平的调控。

在此基础上,我们将进一步探讨DNA甲基转移酶在细胞周期、细胞分化、基因印记、染色体失活、癌症发生和发展等生物学过程中的关键作用。

通过本文的阐述,我们期望能够为读者提供一个全面而深入的视角,以理解DNA甲基转移酶在生命科学领域的重要性和应用价值。

二、DNA甲基转移酶的种类与结构DNA甲基转移酶(DNA methyltransferases,DNMTs)是一类能够催化DNA甲基化反应的酶,它们在生物体内发挥着重要的调控作用。

根据它们的结构、功能和底物特异性,可以将DNA甲基转移酶分为多种类型。

DNMT1:这是最早被发现并广泛研究的DNA甲基转移酶。

DNMT1主要维持DNA复制后的甲基化模式,确保新合成的DNA链能够继承母链的甲基化状态。

DNMT1的结构包括一个N端的调节域、一个中间的催化域和一个C端的结合域。

其中,催化域负责催化甲基化反应,而结合域则帮助DNMT1与DNA结合。

DNMT3A和DNMT3B:这两种酶主要负责在DNA复制过程中建立新的甲基化模式。

DNMT3A和DNMT3B的结构与DNMT1相似,但它们在催化域和结合域上存在一些差异,这些差异使得它们能够在没有预先存在的甲基化模式的情况下,对新的DNA链进行甲基化。

DNMT2:这是一种较为特殊的DNA甲基转移酶,它主要对tRNA进行甲基化,而不是对DNA进行甲基化。

DNMT2的结构与其他DNMTs有所不同,它的催化域较小,而且不具有维持或建立DNA甲基化模式的功能。

mediator蛋白植物特异亚基

mediator蛋白植物特异亚基

mediator蛋白植物特异亚基mediator蛋白是一类在生物体内发挥重要调控作用的蛋白质。

它在植物中具有特异亚基,这也是植物体内调控过程中的重要组成部分。

本文将重点介绍mediator蛋白特异亚基在植物中的功能和作用。

mediator蛋白是一种多亚基复合物,参与了转录调控过程中的多个环节。

它通过与转录因子和RNA聚合酶II相互作用,调控基因的转录过程。

mediator蛋白的特异亚基在植物中有着重要的功能,它们能够与不同的转录因子相互作用,从而调控特定基因的表达。

mediator蛋白特异亚基在植物的生长发育过程中起着重要作用。

例如,在根的生长发育中,mediator蛋白的特异亚基能够与根发育相关的转录因子相互作用,调控根的生长和分化。

此外,在花器官的发育中,mediator蛋白的特异亚基也能够与花发育相关的转录因子相互作用,调控花器官的形成和发育。

mediator蛋白特异亚基在植物的应答逆境胁迫过程中发挥重要作用。

植物在面临逆境胁迫时,需要调节一系列与逆境应答相关的基因的表达。

mediator蛋白的特异亚基可以与逆境应答转录因子相互作用,从而调控逆境应答相关基因的表达。

例如,在干旱胁迫下,mediator蛋白的特异亚基与干旱应答转录因子相互作用,调控干旱应答相关基因的表达,从而增强植物的耐旱能力。

mediator蛋白特异亚基还在植物的激素信号传导中扮演重要角色。

激素是植物生长和发育的重要调节因子,而mediator蛋白的特异亚基能够与激素信号转录因子相互作用,调控激素信号相关基因的表达。

例如,auxin是一种重要的植物生长素,mediator蛋白的特异亚基能够与auxin信号转录因子相互作用,调控auxin信号相关基因的表达,从而调节植物的生长和发育过程。

mediator蛋白的特异亚基在植物的生长发育、逆境应答和激素信号传导等过程中发挥着重要作用。

它们通过与特定转录因子相互作用,调控特定基因的表达,从而影响植物的生理过程。

三氯生与三氯卡班的生态毒性研究进展

三氯生与三氯卡班的生态毒性研究进展

广东化工2021年第1期· 62 · 第48卷总第435期三氯生与三氯卡班的生态毒性研究进展陈敏(广东环境保护工程职业学院,广东佛山528216)[摘要]三氯生(TCS)和三氯卡班(TCC)是高效广谱性的抗菌剂,主要用于个人护理品及家庭日常用品中,目前在不同的环境介质中均可检测到,并可通过不同暴露途径作用于生物体,可直接或间接对人体健康产生影响,已引起人们的广泛关注,本文对其可产生的致死效应,内分泌干扰性、生殖毒性、遗传毒性等方面进行了综述,并提出今后应加强水产品安全、土壤农产品安全及人体健康风险评估研究,以期为后续开展三氯生与三氯卡班的污染管理及防控提供科学依据。

[关键词]TCC;TCS;生态毒性[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2021)01-0062-02Progress in the Study of Ecotoxicity of Triclosan and TriclocarbanChen Min(Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China) Abstract: Triclosan and triclocarban are highly effective broad-spectrum antibacterial agents, which are mainly used in personal care products and household daily products. Currently, they can be detected in different environmental media, and It has aroused widespread concern that different exposure pathways can act on organisms and directly or indirectly affect human health. in this paper, they can produce the lethal effect , endocrine disruptors, reproductive toxicity, genetic toxicity, were summarized. It is suggested that the research on aquatic product safety, soil agricultural product safety and human health risk assessment should be strengthened in the future in order to provide scientific basis for the subsequent pollution management and prevention of triclosan and triclosan.Keywords: TCC;TCS;ecological toxicity三氯生(Triclosan,TCS)与三氯卡班(Triclocarban,TCC),是常用的抗菌剂,主要应用在家庭日常洗涤,比如牙膏,香皂,除臭剂,漱口水等,另外在各种医用消毒剂,纺织品,玩具以及建筑材料中也常常使用这种抗菌剂。

生物炭促进针铁矿类芬顿氧化降解氧氟沙星研究

生物炭促进针铁矿类芬顿氧化降解氧氟沙星研究

大连理工大学硕士学位论文摘要氧氟沙星(OFX) 是广泛应用于医疗、养殖和畜牧等行业中的喹诺酮类抗生素,其在生产和使用过程中进入环境会造成潜在的生态风险。

研究表明,以含铁矿物等作为催化剂的非均相类芬顿氧化技术能够用于抗生素的降解。

然而,含铁矿物催化的非均相类芬顿体系中Fe(III)/Fe(II) 循环缓慢,提高Fe(III)/Fe(II) 转化效率成为改善非均相类芬顿体系催化活性的关键。

研究表明,向类芬顿体系中添加某些还原剂和配合剂能够促进Fe(III)/Fe(II) 转化效率,提高类芬顿降解效果。

作为限氧条件下热解生物质的产物,生物炭(biocahr, BC) 来源广泛、成本低廉,且具有良好的吸附及配合金属离子能力和氧化还原活性。

有鉴于此,本研究探索利用BC强化针铁矿(Gt) 催化类芬顿反应降解OFX。

利用小麦秸秆在300 °C或600 °C条件下分别热解制备生物炭样品BC300和BC600。

将上述BC样品加入Gt类芬顿体系可显著促进体系氧化降解OFX。

在4 h内,Gt/H2O2和BC600/H2O2体系中只有38.4%和48.4%的OFX (20 mg/L) 被去除,而在Gt/BC600/H2O2体系中,OFX去除效率大于94.0%。

Gt/H2O2、BC600/H2O2和Gt/BC600/H2O2体系的准一级动力学速率常数分别为0.12、0.16和0.72 h-1,表明Gt-BC 共存类芬顿体系中发生了协同催化降解。

与BC300相比,在较高的热解温度下产生的BC600可以更好地促进OFX的降解。

在Gt-BC共存类芬顿体系中,当Gt浓度为0.2 g/L,BC600浓度为0.3 g/L,H2O2浓度为2 mM,pH为3时,OFX的降解效果最佳,4 h内可达94.2%。

在连续四次重复使用过程中,Gt/BC600/H2O2体系对OFX的去除效率分别为94.2%,87.8%,82.4%和75.5%,表明其具有较好的催化降解稳定性。

《2024年苜蓿DREB类转录因子基因的研究》范文

《2024年苜蓿DREB类转录因子基因的研究》范文

《苜蓿DREB类转录因子基因的研究》篇一一、引言近年来,植物生物学领域中,转录因子在基因表达调控中的作用越来越受到重视。

DREB(脱氧核糖核酸结合蛋白)类转录因子是植物响应逆境胁迫的重要调控因子之一。

苜蓿作为一种重要的豆科植物,其在环境适应性及抗逆性方面具有独特的生物学特性。

因此,研究苜蓿DREB类转录因子基因对于了解其逆境响应机制及改良作物抗逆性具有重要意义。

本文将围绕苜蓿DREB 类转录因子基因的克隆、表达模式及功能等方面展开研究。

二、苜蓿DREB类转录因子基因的克隆在研究过程中,我们首先从苜蓿基因组中克隆了DREB类转录因子基因。

通过生物信息学分析,我们确定了该基因的开放阅读框、编码区及启动子等关键区域。

通过PCR扩增及DNA测序等手段,成功获得了该基因的全长序列。

同时,我们还对序列进行了比对分析,发现该基因与其他植物DREB类转录因子基因具有较高的相似性,表明其在植物逆境响应中具有保守的生物学功能。

三、苜蓿DREB类转录因子基因的表达模式为了研究苜蓿DREB类转录因子基因的表达模式,我们采用了实时荧光定量PCR技术对不同逆境条件下的基因表达水平进行了分析。

实验结果表明,在干旱、低温等逆境条件下,该基因的表达水平显著上升,表明其参与了苜蓿对逆境的响应过程。

此外,我们还发现该基因在不同组织中的表达水平也存在差异,这可能与苜蓿在不同生长阶段的适应性有关。

四、苜蓿DREB类转录因子基因的功能分析为了进一步研究苜蓿DREB类转录因子基因的功能,我们采用了基因编辑技术构建了该基因的过表达及敲除转基因植物。

通过对转基因植物的表型分析,我们发现过表达该基因的植物在干旱、低温等逆境条件下的生存能力及生长速度均有所提高,而敲除该基因的植物则表现出对逆境的敏感性增加。

这表明苜蓿DREB类转录因子基因在植物逆境响应中发挥了重要的调控作用。

五、结论本研究成功克隆了苜蓿DREB类转录因子基因,并对其表达模式及功能进行了分析。

反义抑制鲨烯合酶基因表达对产紫穗槐烯酵母工程菌生物合成的影响的开题报告

反义抑制鲨烯合酶基因表达对产紫穗槐烯酵母工程菌生物合成的影响的开题报告

反义抑制鲨烯合酶基因表达对产紫穗槐烯酵母工程菌生物合成的影响的开题报告摘要:紫穗槐烯是一种重要的二萜类化合物,广泛应用于医药、农药等领域。

然而,其野生产生量极低,无法满足工业需求。

通过基因工程技术进行生物合成是提高紫穗槐烯产量的有效途径。

抑制鲨烯合酶基因表达被证实是促进紫穗槐烯生物合成的方法之一。

本研究旨在探究抑制鲨烯合酶基因表达对紫穗槐烯工程菌生物合成的影响。

一、研究背景紫穗槐烯是一种广泛分布于自然界的二萜化合物,具有较强的生物活性和药用价值。

然而,紫穗槐烯的天然产量较低,难以满足工业需求。

通过基因工程技术进行生物合成已成为提高产量的有效途径。

紫穗槐烯的生物合成途径已经被深入研究。

其中鲨烯合酶是紫穗槐烯合成途径中的关键酶,其在鲨烯与β-谷甾醇之间的转化中扮演重要角色。

抑制鲨烯合酶基因表达被证实是提高紫穗槐烯产量的有效方法之一。

二、研究内容本研究将利用基因工程技术构建抑制鲨烯合酶基因表达的紫穗槐烯生物合成工程菌,通过对工程菌的发酵过程进行分析,探究抑制鲨烯合酶基因表达对紫穗槐烯产量、生长速率、代谢物产生以及细胞生理状态等的影响。

三、研究方法1. 基因工程技术构建抑制鲨烯合酶基因表达的紫穗槐烯生物合成工程菌;2. 对工程菌进行发酵实验,记录发酵过程中的生长速率、代谢产物、细胞状态等信息;3. 对工程菌发酵产物进行分离纯化,通过质谱分析等技术手段分析产物组成及其含量。

四、研究意义本研究的结果将有助于深入理解抑制鲨烯合酶基因表达对生物合成产物的影响,为生物合成技术的优化提供理论支持。

同时,本研究还将为紫穗槐烯生物合成的产业化生产提供实际应用价值。

对羟基诱导的DNA氧化损伤的保护作用的体外筛选法

对羟基诱导的DNA氧化损伤的保护作用的体外筛选法

对羟基诱导的DNA 氧化损伤的保护作用的体外筛选法作为一种最活泼的自由基,羟基自由基(·OH )一经产生会进攻DNA ,造成DNA 的氧化损伤,导致基因突变、癌变、衰老、疾病,乃至死亡[1]。

寻找/筛选合适的药物或天然产物,保护DNA 的氧化损伤具有重要的意义。

本课题组建立的基于羟基自由基清除的体外分析法,可用于筛选药物或天然产物的体外保护DNA 的氧化损伤。

相关论文已发表在Analytical Biochemistry 上[2]。

原理羟基自由基(·OH )进攻DNA 后,会生成MDA (malondialdehyde )和大量的氧化产物(Oxidative lesions )(Equation 1):CH 2COOH OH+HCCH 2CH OOMDA+Oxidative lesions base pairsPPOrganic phosphate=Equation 1在这个反应中,MDA 可以进一步与TBA(2-thiobarbituric acid ,2-硫代巴比妥酸)反应,生成TBARS (thiobarbituric acid reactive substances),由于TBARS 在530nm 处有最大吸收(Equation 2),所以,可以用分光光度法检测A 530nm 值。

N NHSOHHCCH 2CH OON NS OHN N HOSHOHCH CH CH TBA TBARS, λmax 530nm+MDAEquation 2A 530nm 值越大,表明DNA 氧化损伤越严重;反之,A 530nm 值越小,表明DNA 氧化损伤越轻,或被保护。

另一方面,氧化产物(Oxidative lesions )通常没有大的共轭体系(图1),所以,在530nm 处不会产生吸收,不会干扰A 530nm 值。

8-hydroxy-2’-deoxyguanosine(8-OH-dG)HN N NO H 2N OH 8-oxo-7-hydro-2’-deoxyguanosine (8-Oxo-dG)HN N H NOH N O 5-hydroxy-2'-deoxycydidne(5-OH-dC)NN NH 2OOH5-hydroxy-2'-deoxyurldine(5-OH-dU)HNNO OOH2'-deoxyuridine glycol(dUg)HNNOOOH8-hydroxyadenine (8-OH-Ade)NNN HNNH 2OH 8-hydroxyguanine (8-OH-Gua)HNNN HNOOHH 2NFapy-G HN NNH 2H N OH 2N 2,4-diamino-5-formamido-6-hydroxypyrimidineFapy-AHNNNH 2CHOH NNH 24,6-diamino -5-formamidopyrimidine3'-phosphateOP OOO --P 5'-phosphateOPP OO--2-hydroxyadenineNNHN NH 2HO8,5'-cyclo-2'-deoxyguanosine(5'R and 5'S )NHNONH 2O P DNAOOOP DNA O O--erythrose123456123456图1 常见的DNA 的氧化修饰产物的结构[3][4]方法:操作流程图如下:图2操作流程图[2]意义与用途:该体外筛选方法,仅需要一台紫外分光光度检测器和一些廉价的生物化学试剂,简单易行,可靠专属,适用于所有抗氧化剂的体外筛选。

超氧化物歧化酶(SOD)及丙二醛(MDA)在脑缺血中的作用

超氧化物歧化酶(SOD)及丙二醛(MDA)在脑缺血中的作用

超氧化物歧化酶(SOD)及丙二醛(MDA)在脑缺血中的作用丙二醛(MDA)含量是反映机体抗氧化潜在能力的重要参数,可以反应机体脂质过氧化速率和强度,也能间接反映组织过氧化损伤程度。

近些年来,有文献报道,缺氧性心肌损伤大鼠心肌中和克山病患者体内氧自由基(0FR)含量增加。

众所周知,缺氧可使心肌组织生成大量氧自由基(0FR), OFR作用于细胞膜上的不饱和脂肪酸使膜脂质产生过氧化反应.进而导致心肌细胞的损伤,并形成脂质过氧化物, 丙二醛(MDA)是体内重要的OFR的代谢产物,能较好地反应组织过氧化程度。

大量自由基产生及其导致的质膜、细胞器膜脂质过氧化反应是脑缺血再灌注损伤的重要致病机制。

有效的自由基清除对脑缺血再灌注损伤起重要的保护作用。

目前已证实甘露醇、巴比妥类、类固醇类激素具有清除自由基的作用。

实验发现脑缺血再灌注组脑皮质MDA较对照组明显增高,而SOD活力明显降低(P<0.01)。

33℃亚低温能降低脑缺血再灌注损伤鼠脑皮质MDA产生,保护SOD活力(P<0.05),且30℃亚低温作用更为显著,其差异具有高度显著性(P 〈0.01〉。

这一结果提示:亚低温能抑制脑缺血再灌注损伤氧自由基的产生,保护SOD的活力超氧化物歧化酶(SOD)是机体内清除O2-的特异性酶。

有三种SOD亚型存在于机体内,SOD1(CuZnSOD),SOD2(MnSOD),SOD3(EC-SOD).SOD1是哺乳动物胞质中主要的酶,SOD2存在于线粒体。

SOD3存在于细胞外。

这三种SOD亚型均可歧化O2-生成H2O2,继而被过氧化物酶(peroxisomal),过氧化氢酶(catalase),或谷胱甘肽过氧化物酶(glutathione peroxidase)清除。

近年发展的转基因和基因敲除技术,对在不表达或过表达过氧化物酶动物的进一步研究,证明了自由基和氧化应激在缺血性神经细胞损伤中的作用。

在大鼠全脑缺血及局灶性脑缺血模型中,Chan等[14]发现在SOD1过表达后海马CA1区的神经元死亡比对照组减少50%,SOD1还可以保护氧化应激所导致的血脑屏障损伤和皮质栓塞的形成[15]。

原核生物中生物素代谢调控因子研究进展

原核生物中生物素代谢调控因子研究进展

控因子进行总结,并着重介绍其调控功能的研究进展,为进一步揭示这些调控因子的分子机制提供理论指导。
关键词 原核生物;生物素;代谢调控;调控因子
中图分类号 Q569;Q7
文献标识码 A
文章编号 2095-1736(2021)03-0094-05
Research progress of biotin metabolism regulators in Prokaryotes
95
第 38 卷第 3 期 2021 年 6 月
生物学杂志 JOURNAL OF BIOLOGY
ቤተ መጻሕፍቲ ባይዱ
Vol. 38 No. 3 Jun. 2021
2 生物素代谢调控因子的功能 2. 1 BirA 的双功能
A
#JPUJOZM’".1 )PMP#JS"
BirA 催化蛋白质生物素化是通过两步反应实现 的[9] ,BPL 含有 两 个 保 守 的 结 构 催 化 核 心, 负 责 生 物 素-5′-AMP 的合成和蛋白质生物素化[28] 。 在第一部分 反应中,生物素和 ATP 形成生物 素-5′-AMP ( Holo-BirA) 。 在含有Ⅱ型 BirA 的原核生物中,Holo-BirA 具有 两种不同的命运[29-30] ( 图 3) 。 一方面,Holo-BirA 可以
化噻吩杂环的闭合,形成生物素( Biotin) 。 最 近 也 有 报 道 BioU 代 替 BioA 发挥功能的情况[19] 。 生物素的生物合 成不仅需要上述 4 种酶的参与,还需消
(b)
( a) 不同微生物中生物素合成基因分布示意图;( b) 微生物中生物素合成的过程 图 1 原核生物中生物素代谢基因及合成途径
微生 物 进 化 出 BioV[17] 、 BioZ[18] 等, 可

姜黄素通过下调HO-1

姜黄素通过下调HO-1

姜黄素通过下调HO -1/NQO1保护肝癌模型小鼠*牟海军, 陈幸幸, 刘安安, 张丽, 朱加兴, 金海△(遵义医科大学附属医院消化病医院,遵义医科大学附属医院消化内科,贵州 遵义 563000)[摘要] 目的:观察姜黄素对N -亚硝基二乙胺(DEN )联合四氯化碳(CCl 4)诱导的C57BL/6J 小鼠肝癌模型的作用并探索其机制。

方法:取14日龄雄性C57BL/6J 小鼠腹腔注射DEN (25 mg/kg ),随机分成模型组和姜黄素(100、200和400 mg/kg )给药组,另取同龄雄性小鼠10只作为正常对照组。

模型组和姜黄素给药组从第8周开始灌胃给予10% CCl 4(5 mL/kg ),每周2次;同时,给药组开始灌胃姜黄素,正常对照组灌胃等体积的蒸馏水,每天1次,连续14周。

给药结束后处死小鼠,检测小鼠血清丙氨酸转氨酶(ALT )和天冬氨酸转氨酶(AST )活性,观察肝组织病理学变化,检测血红素加氧酶1(HO -1)和NAD (P )H -醌氧化还原酶1(NQO1)的mRNA 表达水平,以及HO -1、NQO1和Ki67蛋白表达水平。

结果:与正常对照组比较,模型组小鼠体重显著降低(P <0.01),肝脏指数显著增加(P <0.01),血清ALT 和AST 活性显著升高(P <0.01),HO -1和NQO1的mRNA 表达水平无显著差异(P >0.05),HO -1和NQO1蛋白表达水平显著升高(P <0.05),Ki67阳性表达率显著增加(P <0.05)。

姜黄素治疗后,小鼠体重显著升高(P <0.01),肝脏指数无明显变化(P >0.05),癌结节数量显著减少(P <0.05或P <0.01),血清AST 活性显著降低(P <0.01),HO -1和NQO1的mRNA 及蛋白表达水平显著降低(P <0.05),Ki67阳性表达率显著降低(P <0.05)。

遗传代谢病的实验室检查(全文)

遗传代谢病的实验室检查(全文)

遗传代谢病的实验室检查(全文)摘要遗传代谢病是由于基因变异导致机体生化代谢紊乱,引起一系列临床症状的一组疾病。

多数遗传代谢病临床上缺乏特异性症状和体征,实验室检查是其诊断的重要依据。

本文简要介绍了遗传代谢病实验室检查思路,包括检查步骤、检查方法与指征、检查注意事项等,以加强儿科医师对遗传代谢病的认识。

遗传代谢病(inherited metabolic disorders,IMD),也称先天性代谢缺陷病(inborn errors of metabolism,IEM),是指由于基因变异引起酶缺陷、细胞膜功能异常或受体缺陷,导致中间或旁路代谢产物蓄积或终末代谢产物缺乏,引起一系列临床症状的一组疾病。

IEM虽单一病种发生率较低,但总体发病率高达1/5 000~1/1 400。

IEM通常累及多系统多器官,可表现为神经系统损伤、消化系统症状、代谢紊乱、器官功能障碍等。

IEM可分为氨基酸病、有机酸血症、过氧化酶体病、溶酶体病等。

按异常代谢物的分子大小,IEM可分为小分子病(如氨基酸病、有机酸代谢异常)和细胞器病(如溶酶体病、过氧化物酶体病等)。

细胞器病常有特殊面容、骨骼畸形或特征性病理学改变,相对容易识别。

但小分子IEM种类繁多,临床表现复杂多样、轻重不等,临床诊断较为困难,需依靠各项辅助检查,应首先利用常规实验室检查进行初步评估,然后对可疑患儿进行IEM相关的生化及影像学检查,继而通过基因检测明确患儿的致病基因并进行遗传咨询。

一、小分子IEM的实验室检查(一)常规实验室检查小分子IEM常表现为代谢性酸中毒、高血氨、低血糖及酮症等代谢紊乱。

通过血气分析、阴离子间隙、血乳酸、血丙酮酸、血糖、酮体、血氨等常规实验室检查可对病情进行评估。

1. 血气分析:血气分析可反映体内酸碱平衡状况,多种小分子IEM 均可表现为代谢性酸中毒。

儿童代谢性酸中毒多可见于感染、缺氧、重度脱水、饥饿或中毒等,但以下情况高度提示IEM的可能:酸中毒伴高乳酸血症和阴离子间隙(anion gap,AG)升高;严重的酸中毒;常规治疗难以纠正的代谢性酸中毒;正常组织灌注下持续的代谢性酸中毒。

N-甲基-D-门冬氨酸受体2B 亚基在抑郁症形成机制中作用的研究进展

N-甲基-D-门冬氨酸受体2B 亚基在抑郁症形成机制中作用的研究进展

N-甲基-D-门冬氨酸受体2B 亚基在抑郁症形成机制中作用的研究进展柴潇潇;王秀丽【期刊名称】《河北医药》【年(卷),期】2014(000)021【摘要】抑郁症是一种精神科常见的疾病。

它的临床特征以心境低落,快感缺失,负性思维和精力减退为核心,严重的可使患者的社会功能、职业功能下降,并给患者家庭、社会带来沉重的经济负担。

目前抑郁症的确切发病机制尚不明确,但大部分学者认为边缘系统异常可能是抑郁症发病的主要原因,其中海马作为边缘系统的重要组成部分,在抑郁形成中发挥重要作用。

NMDA受体是广泛分布于中枢神经系统的离子型谷氨酸受体,主要由NR1、NR2(A、B、C和D)和NR3(A和B)3种亚型组成,在神经元可塑性,情绪调节过程中发挥着重要作用[1],其NR2B亚基主要分布于前脑区如海马和纹状体,与情绪调节密切相关[2]。

在强迫游泳实验制备的抑郁模型中,大鼠海马中含有NR2 B亚基的NMDA受体( NR2 B )表达水平明显升高,而NR2 A水平未见明显改变,而给予NMDA受体拮抗剂氯胺酮可以降低NR2 B水平改善抑郁症状;同样在大鼠抑郁模型中,有研究发现在给予氯胺酮以及NR2 B受体特异性拮抗剂后,大鼠抑郁症状明显改善[3]。

这些研究均提示NR2 B尤其是海马NR2 B的表达变化在抑郁形成过程中发挥重要作用,因此本文拟对NR2 B在抑郁形成中的作用研究进展作一综述。

【总页数】3页(P3323-3325)【作者】柴潇潇;王秀丽【作者单位】050051 石家庄市,河北医科大学第三医院麻醉科;050051 石家庄市,河北医科大学第三医院麻醉科【正文语种】中文【中图分类】R749.42【相关文献】1.雷公藤内酯醇对阿尔茨海默病模型大鼠突触后致密物蛋白N-甲基-D-天门冬氨酸受体亚基2B和突触后致密物质95的影响 [J], 桂婷;胡小令;吕诚;黄涛波2.N-甲基-D-天门冬氨酸和非N-甲基-D-天门冬氨酸类受体在新生大鼠延髓脑片呼吸节律性放电中的作用 [J], 潘秉兴;吴中海;王宁黔3.N-甲基D-天门冬氨酸受体2B亚型反义寡核苷酸鞘内注射对骨癌痛模型大鼠痛行为的改善作用 [J], 花柱明;林世清;孙怡;李真4.血管性痴呆大鼠海马N-甲基-D-天冬氨酸-2B亚基受体水平和钙/钙调蛋白依赖性蛋白激酶Ⅱ活性以及美金刚干预作用的研究 [J], 何雨;赵珩;张昱5.神经病理性疼痛大鼠脊髓中N-甲基-D-天门冬氨酸受体1亚基与γ-氨基丁酸B受体2亚基表达的变化 [J], 杨美蓉;杜冬萍因版权原因,仅展示原文概要,查看原文内容请购买。

氧化修饰低密度脂蛋白诱导内皮细胞表达血管内皮生长因子及迷迭香酸的抑制作用

氧化修饰低密度脂蛋白诱导内皮细胞表达血管内皮生长因子及迷迭香酸的抑制作用

氧化修饰低密度脂蛋白诱导内皮细胞表达血管内皮生长因子及迷迭香酸的抑制作用【摘要】研究氧化修饰低密度脂蛋白对内皮细胞中血管内皮生长因子表达的影响以及迷迭香酸的保护作用。

在人脐静脉内皮细胞株HUVEC培养基中加入ox-LDL或ox-LDL+迷迭香酸,培养24h,用酶联免疫吸附试验检测各组内皮细胞培养上清液中VEGF蛋白含量;用原位杂交检测VEGF mRNA的表达。

原位杂交结果显示,培养的HUVEC中未见VEGF mRNA的表达,当ox-LDL刺激后可见VEGF mRNA的高表达,加入迷迭香酸后阳性反应明显低于ox-LDL组。

酶联免疫吸附试验结果显示,ox-LDL可使HUVEC细胞条件培养基中VEGF蛋白表达明显增加,迷迭香酸可明显降低其含量。

以上结果显示,ox-LDL能诱导HUVEC表达高水平的VEGF,迷迭香酸可明显降低其含量。

AimTo study the effect of oxidized low density lipoprotein (ox-LDL) on the expression of vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cell line (HUVEC) and the inhibitory effect of rosmarinic acid (RAD) in vitro. MethodsExposured to 50 mg.L-1 ox-LDL or ox-LDL +RAD for 24 hours, VEGF protein in HUVEC cells conditioned media of each group were determined by enzyme-linked Immunosorbent Assay (ELISA).Meanwhile, VEGF mRNA expression in HUVEC was examined by in situ hybridization.Results ox-LDL upregulated VEGF protein and VEGF mRNA expression in the HUVEC cells.RAD could markedly inhibit the ox-LDL-induced increasing of VEGF(P2孵箱中孵育48h后,可汇合成单层细胞,换以无血清培养基,静息24h,以消除血清的影响。

碧云天Casapase 3活性检测试剂盒说明书

碧云天Casapase 3活性检测试剂盒说明书

碧云天生物技术/Beyotime Biotechnology订货热线:400-168-3301或800-8283301订货e-mail:******************技术咨询:*****************碧云天网站微信公众号网址:Caspase 3活性检测试剂盒产品编号产品名称包装C1115 Caspase 3活性检测试剂盒20次产品简介:Caspase 3活性检测试剂盒(Caspase 3 Activity Assay Kit)是采用分光光度法检测细胞或组织裂解液中caspase 3酶活性或纯化的caspase 3酶活性的试剂盒。

Caspase (Cysteine-requiring Aspartate Protease)是一个在细胞凋亡过程中起重要作用的蛋白酶家族。

Caspase 3也称CPP32、Yama或apopain,有时被写作caspase-3或caspase 3,属于caspase家族的CED-3亚家族(CED-3 subfamily),是细胞凋亡过程中的一个关键酶。

Caspase 3是哺乳动物细胞中研究最多的一个caspase。

Caspase 3可以剪切procaspase 2、6、7和9,并可以直接特异性剪切许多caspase底物,包括PARP (poly(ADP-ribose) polymerase),ICAD (Inhibitor of caspase-activated deoxyribonuclease),gelsolin和fodrin等。

这些由caspase 3介导的蛋白剪切是细胞凋亡分子机制的重要组成部分。

另外,caspase 3在细胞核凋亡过程中也起到了关键作用,包括染色质固缩(chromatin condensation),DNA片段化(DNA fragmentation)等。

同时caspase 3对细胞起泡(cell blebbing)也起到关键作用。

反义寡核苷酸化学修饰酶类药物的研究进展

反义寡核苷酸化学修饰酶类药物的研究进展

[关键词]:化学修饰,靶向技术,序列选择,靶向转运摘要:反义寡核苷酸()类药物是人工合成并经化学修饰地寡核苷酸()片段,能通过自身设计地特定序列与靶结合,在基因水平干扰致病蛋白地产生.由于其高度地选择性和较低地副作用,-类药物已成为近年来药物研究和开发地热点.最近,类药物福米韦生()通过美国批准为第一个进入市场地反义药物.其他类药物,/和等在临床试验中也表现出良好地疗效. 文档收集自网络,仅用于个人学习-作为基因表达地反向抑制剂,首先必须具备三个主要条件:即它应有足够地稳定性、对目地基因地选择性以及对细胞地通透性和靶向性.满足三个首要条件地方法主要是针对在化学修饰、序列选择、靶向转运等方面加以改善. 文档收集自网络,仅用于个人学习反义寡核苷酸地化学修饰不经修饰地不论在体液内还是细胞中都极易被降解,不能发挥其反义作用.因而采用经化学修饰地,以减少核酸酶对地降解.对化学修饰地方法主要针对三方面,即碱基修饰、核糖修饰和磷酸二酯键修饰.碱基修饰主要为杂环修饰、甲基胞嘧啶和二氨基嘌呤;核糖修饰主要为己糖.’-甲基取代核糖、环戊烷、α构象核糖;磷酸二酯键修饰主要为硫代和甲基代修饰等. 文档收集自网络,仅用于个人学习其中硫代寡核苷酸(,-)、混合骨架寡核苷酸(,)和多肽核酸(,)应用广泛,成为具有代表性地第一、二、三代. 文档收集自网络,仅用于个人学习硫代寡核苷酸由于磷酸二酯键是核酶地主要靶点,因此采用硫化试剂将磷酸二酯键硫化成为类结构,是增强稳定性地有效途忡. 是迄今研究最深入、应用最广泛地一类 .作为第一代药物,-只有良好地水溶性、稳定性及易于大量合成,基本能满足临床治疗地需要.与天然相比,-通过细胞内吞作用进入细胞内平衡所需时间更长,最终细胞内浓度也更高;其一般都大于,极大地提高了对核酸酶地耐受能力.-抑制基因地表达通过两种方式,即诱导以降解目地或与目地形成杂交体而干扰地加工和翻译.其副作用主要来自其携带地负电荷和免疫原性:由于-带有大量地负电佝,能与多种因子结合从而导致非特异效应.体外实验表明,-及其核酸降解物能与血清蛋白、细胞表向受体结合,或者进入细胞内与某些碱性蛋白质或酶结合,产生非特异效应.另外研究还发现,及其核酸降解物中含有多个连续地胞苷磷酸鸟苷()序列,会产生非序列特异性地抑制作用. 文档收集自网络,仅用于个人学习混合骨架寡核苷酸是人们根据不同修饰地特性而加以各种组合设计而成.与相比,通过不同化学修饰地组合降低了硫代磷酸二酯键地数量,减少了自身携带地负电荷,降低了体内降解速度并改变了核酸降解物地种类,从而减少了由硫代导致地副反应;提高了与靶地结合能力并提高诱导降解地能力. 等在大鼠试验中,静脉给药后在多种组织中均有分布,给药后主要仍以完整地形式存在;比对照地在体内地稳定性、体内各组织地分布、代谢等方面均有提高;仍观察到一些轻微副作用,如部分酶原凝血时间延长、淋巴细胞增殖、有浓度依赖地补体溶血作用等,但程度要小于相同剂量地. 文档收集自网络,仅用于个人学习多肽核酸结构上是以氨基乙基甘氨酸为基本单元,碱基通过一个甲基联基与类肽链骨架相连.由于结构与类似,其两相邻碱基间距及碱基与类肽链骨架间地距离均相近,与以及与之间均可形成配对.体外试验证明,与结合可抑制逆转录过程,与双链发生链侵入反应后,可有效阻断限制性内切酶对酶切位点地识别和切割,从而阻断蛋白地表达.与前两代相比,具有更强地亲和力及更好地特异性,往往更短地片段即可获得相同地反义效果;具有良好地蛋白酶和核酸酶抗性,在细胞培养液及体内不易降解,半衰期更长;经修饰后具有良好地细胞膜穿透性,其应用前景广阔. 文档收集自网络,仅用于个人学习反义寡核苷酸地序列选择必须与靶互相结合形成杂交分子才能发挥对目地基因地反向抑制作用,因而与其靶结合地亲和力成为其发挥反义效力地首要因素.从理论上讲,与互补地序列越长,其结合能力越强.但事实上,较长地难以通透细胞膜并极易被降解,无法发挥反义作用.而且,体内地分子结构上具有高度地分子折叠,并含有大量结合地偶联蛋白,人们很难预测那些未理藏起来易于接近地序列. 文档收集自网络,仅用于个人学习对于体内结构地复杂性,人们在靶序列地选择上通常选择一些优先序列:例如选择启动子编码区附近或翻译起始区作为靶序列;在原核生物中,针对()序列及其附近区域地阶更有效;在真核生物中,针对’端非编码区可能比针对编码区地更有效. 文档收集自网络,仅用于个人学习如果在优先区域选择靶序列不能成功,或者其他区域地选择更有价值,则需采用其他地方法确定靶序列:例如等采用""法确定敏感序列,从’端到’端合成一系列,然后检验其反义能力,这种方法是有效地,但是人力物力投资巨大;等在合成系列基础上,检测它们与兔β球蛋白形成异二聚体地能力,方法简单,但由于地折叠在体内和体外有很大不同,其实用价值还有待于进一步地体内验证;等采用半随机化文库,探索具有作用部位地候选靶序列,对序列进行有效预计,结果与体内试验有很好地相关性. 文档收集自网络,仅用于个人学习反义寡核苷酸地靶向转运发挥其反义作用,必须在细胞内靶结合部位达到有效浓度.而一般是多阴离子化合物,大多经过多种吞噬方式进入细胞发挥其反义作用.由于这是一种耗能过程,并且转运具有饱和性,要用很高地浓度才能在细胞水平观察到对目地基因地明显抑制作用.较低地细胞通透性使很难在靶细胞内达到治疗所需浓度.许多研究者针对研制出多种良好地靶向转运系统以提高地摄取速率和转运特异性,极大地改善了地细胞通透性和靶向性. 文档收集自网络,仅用于个人学习脂质体介导地靶向转运将包埋于脂质体中是提高其细胞通透性地有效方法.目前,采用较多地为阳离子脂质体.当被包裹于双层结构地脂质体中时,首先减少了机体对药物地生物转化以及核酶地攻击,增加到达靶细胞地有效浓度.脂质体自身带有地正电荷使其更容易粘附于带有负电荷地动物细胞表面,脂质尾则使其易于通过细胞膜地脂质双层. 文档收集自网络,仅用于个人学习应用这种转运系统应用地最大问题是脂质体对地包裹效率极低,一般只有%~%.如果增加脂质体地体积以提高包封率,反而会降低靶细胞对脂质体地摄取,并会降低复合物在血液中被动转运地效率.增加脂质体包裹效率地方法包括在脂质体复合物内引入融合基因蛋白或其他轭合物(如胆固醇等.等将地′端通过二硫键与胆固醇连接后,发现修饰地与脂质体地结合能力提高了倍,并且不影响其本身地反义效力,研究表明,与胆固醇偶联是提高脂质体包封率地有效途径. 文档收集自网络,仅用于个人学习免疫介导地靶向转运免疫介导主要包括受体配体介导和抗体抗原介导.这种靶向转运系统是指当作用地靶细胞或组织含有一些专一性受体或抗原时,将其配体或抗体与分子连接,经过特定地免疫识别作用使得在靶细胞膜上某些特定区域富集,再通过细胞地胞吞作用实现药物向细胞内地转运.因此,免疫介导不仅大大增强了对靶细胞地专一性,而且通过免疫结合使进入细胞地转移效率也大为提高. 文档收集自网络,仅用于个人学习免疫介导地靶向转运大致可分为两种类型:()针对靶向地机体组织器官所特有地受体或抗原进行免疫介导,如哺乳动物肝细胞存在特有地无唾液酸糖蛋白受体,通过此受体地免疫介导可将特异导向肝脏以治疗肝炎等疾病;()针对靶向地致病细胞表达地大量受体或抗原进行地免疫介导,如上皮细胞瘤表达过量地上皮生长因于受体,可以用来导入治疗剂进入肿瘤细胞发挥作用. 文档收集自网络,仅用于个人学习实际研究中常将免疫介导与脂质体介导两种方法结合使用,利用免疫脂质体为载体以特异转运 .等研究了作用于细胞受体分子地免疫脂质体包埋地对增殖地影响.结果发现,免疫脂质体包埋地可有效抑制地增殖,而仅用脂质体包埋或游离地对没有活性.以免疫脂质体为载体地靶向给药方式可能是将来对病毒、肿瘤实施靶向治疗地理想方法之一. 文档收集自网络,仅用于个人学习毫微粒技术地应用毫微粒是一种极小地颗粒,能携带药物分布全身,直至到达太狭窄地不能通过地部位为止.毫微粒技术利用机体内毛细血管直径随器官不同和特异部位不同而异地特点,通过部位特异地毛细血管诱捕毫微粒而实现特异性转运.等合成了~地毫微粒以吸附一段作用于点突变基因-地,研究结果表明,这种毫微粒可有效地抑制基因地表达,所需浓度仅为游离地%,进一步地体内试验还证明该化合物可以抑制裸鼠身上-基因依赖性肿瘤地生长. 文档收集自网络,仅用于个人学习结语作为一种新型地基因治疗药物,在心血管疾病、肿瘤、感染和炎症等多种疾病地治疗上均可得到广泛应用.随着研究地深入,在稳定性、选择性以及对细胞地通透性和靶向性等方面不断完善.地各种化学修饰包括第二代、第三代明显增强其反义作用和对核酸酶地稳定性;对结构研究地深入、计算机辅助药物设计及生物芯片技术地发展有望进一步优化靶向序列地选择;多种药物靶向转运系统地应用大为改善了类药物地生物利用度及其对作用部位地通透性和靶向性.这些方面地研究进展必将使类药物具有更为广阔地应用前景.文档收集自网络,仅用于个人学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

REVIEW National Science Review2:318–328,2015doi:10.1093/nsr/nwv029Advance access publication8June2015 BIOLOGY&BIOCHEMISTRYOxidative DNA demethylation mediated by Tet enzymesGuo-Liang Xu1,∗and Jiemin Wong2,∗1Institute of Biochemistry and Cell Biology,Chinese Academy of Sciences, Shanghai200031, China and2Institute of Biomedical Sciences and School of Life Sciences,East China Normal University, Shanghai200241, China∗Corresponding authors.E-mail:glxu@; jmweng@Received9March 2015;Revised20April2015;Accepted 20April2015ABSTRACTDNA modification,methylation of cytosine(5mC),and oxidation of5mC to5-hydroxymethylcytosine (5hmC),5-formylcytosine(5fC),and5-carboxylcytosine(5caC)can have profound effects on genome function in animals.These modifications are intricately involved in DNA methylation reprograming dynamics during mammalian development.Together,they contribute to cell lineage restriction and maintenance,while also undergoing dynamic changes during cellular transitions and induced reprograming. The last five years have seen an intense research focus on enzymatic DNA demethylation,triggered by the discovery of5hmC and Tet dioxygenases.In this review,we evaluate recent findings that have provided new insights into the mechanisms underlying DNA demethylation and its effect on developmental regulation. Keywords:DNA demethylation,5mC oxidation,Tet dioxygenase,TDG,epigenetic reprograming INTRODUCTIONAlthough a large number of modified nucleosides arepresent in RNA molecules,only5-methylcytosine(5mC;termed DNA methylation hereafter)hasbeen well characterized in mammalian DNA.DNA methylation occurs mainly in symmetric CGdinucleotides,of which∼70–80%is methylatedthroughout the mammalian genome.The remainingunmethylated CG dinucleotides are often foundin dense clusters termed CpG islands,which arefrequently located in or near gene promoters andcoding regions.In mammals,DNA methylationhas a critical role in the heritable silencing of manydifferent classes of repetitive DNA sequences.Theseinclude highly abundant retrotransposons and tan-dem repetitive sequences such as pericentromericminor and major satellite sequences,the methyla-tion of which helps to maintain genome stability bypreventing rearrangements.DNA methylation isalso required for regulation of developmental andtissue-specific gene expression,as well as for parent-of-origin genomic imprinting and X-chromosomeinactivation in females[1].DNA methylation ofpromoters results in transcriptional repressionthrough multiple mechanisms,including inhibitionof transcription factor binding and recruitment oftranscriptional repressor complexes[2].However,recent studies have provided evidence that DNAmethylation in gene bodies correlates positivelywith gene expression[3–7].Aberrant alterationsof genomic methylation patterns are implicated invarious human diseases,including cancers and im-printing syndromes such as Beckwith–Wiedemann,Prader–Willi,and Angelman syndromes[8,9].DNA methylation,one of the best-characterizedepigenetic modifications,is established and main-tained in mammals by three enzymatically activeDNA methyltransferases:DNMT1,DNMT3A,andDNMT3B.DNMT1knockout in mice results inembryonic lethality and a substantial reduction inglobal DNA methylation[10].DNMT1preferen-tially methylates hemimethylated DNA templates;it is the main enzyme responsible for maintainingDNA methylation patterns,following DNA replica-tion[11].Consistent with its maintenance activity,DNMT1localizes to DNA replication forks in theS phase of the cell cycle[12].Recent studies havedemonstrated that the correct targeting of DNMT1to replicating DNA requires an accessary protein,UHRF1,which binds to hemimethylated DNAthrough its unique SRA domain[13,14].The exis-tence of de novo DNA methyltransferase(DNMT)activity was discovered in an analysis of DNMT1-knockout mouse embryonic stem cells(ESCs)[15].Subsequent screening of expressed sequence tag li-braries for DNMT homologs led to the identifica-tion of DNMT3A and DNMT3B[16].Functionaland gene disruption studies have shown that bothC The Author(s)2015.Published by Oxford University Press on behalf of China Science Publishing&Media Ltd.All rights reserved.For Permissions,please email: journals.permissions@REVIEWXu and Wong319Figure 1.Dynamic changes in overall genomic methylation during mouse development.Note that the curves reflect the 5mC content of the whole genome.Individual genomic loci might follow a distinctive pattern of reprograming.enzymes are required for de novo methylation and mouse development [17].Although DNMT3A and DNMT3B are widely viewed as de novo DNA methy-lation enzymes,they also have a critical role in main-tenance methylation,as demonstrated by the fact that knockout of both DNMT3A and DNMT3B in mouse ESCs leads to a progressive reduction in global DNA methylation [18].Thus,in mammalian cells,DNMT1and DNMT3A/3B together are re-sponsible for establishing and maintaining global patterns of DNA methylation that can be faithfully transmitted through mitotic divisions.Given its potentially critical role in transcrip-tional regulation,epigenetic silencing,and other bi-ological processes,DNA methylation must be re-modeled during development.In support of the dy-namic nature of DNA methylation,the global lev-els of 5mC have been observed to undergo dras-tic changes in two developmental stages (Fig.1).In one instance,a global reduction in DNA methy-lation followed by remethylation occurs in primor-dial germ cells (PGCs)during male and female ga-metogenesis.In the other instance,a global reduc-tion in DNA methylation is observed in paternal and maternal DNA shortly after fertilization,long before the genome regains adult levels of methylation dur-ing gastrulation.In theory,DNA demethylation can occur through passive demethylation and/or active demethylation.The passive mode,in which methyla-tion of the newly synthesized DNA strand is blocked during DNA replication,is straightforward.Ge-netic and immunohistochemical evidence also sup-ports the existence of active demethylation.The bestevidence for active demethylation comes from the observation that the global reduction in DNA methylation in the paternal genome of one-cell stage mouse zygotes can occur in the absence of DNA replication [19,20].Although various proteins and molecular mechanisms have been described in an effort to understand the mechanism underlying active DNA demethylation [21],the recent find-ings that Tet family proteins can oxidize 5mC to three different oxidation products (5hmC,5fC,and 5caC)identify a pathway that could underpin ac-tive demethylation in mammals [22–24].In this review,we analyze recent findings that have pro-vided new insights into the mechanism underlying Tet-mediated DNA demethylation and its biological functions.DISTINCTIVE FUNCTIONAL CATEGORIES OF 5mC OXIDATION:METHYLATION ERASURE OR MAINTENANCE OF HYPOMETHYLATION5mC oxidation can decline through passive dilution.The maintenance DNA methyltransferase Dnmt1is unable to methylate an unmodified cytosine in the newly synthesized strand during DNA replication when the corresponding position on the template strand is an oxidized 5mC [25].Alternatively,oxi-dized 5mC bases can be actively removed by base excision repair (BER)or other unidentified path-ways to regenerate cytosine.We discuss these differ-ent mechanisms for the regeneration of unmodified320Natl Sci Rev,2015,Vol.2,No.3REVIEWFigure2.Two scenarios for5mC oxidation in active DNA demethylation.The first sce-nario(upper panel)conforms to the conventional notion that demethylation is a process of5mC erasure involving the conversion of5mCs(filled lollipops)into unmethylated cytosine residues(open lollipops)in a given genomic region.Without Tet-mediated 5mC oxidation(Tet KO),the hypermethylation state would be preserved.In the sec-ond scenario(lower panel),Tet enzymes tend to an unmethylated or hypomethylated region continuously to ensure the timely removal of5mC added by de novo methyl-transferases.In the absence of Tet,a normally unmethylated region becomes hyper-methylated through the activity of de novo methyltransferases(Dnmt).cytosine later in this review;however,it is im-portant to note here that5mC oxidation has twodistinguishable functions,depending on the regionalmethylation status of the particular genomic locusinvolved(Fig.2).The first function of5mC oxidation involveselimination of hypermethylation from a regulatoryregion commonly found in cells undergoing fatetransition.For instance,in early mouse embryostransitioning from gamete to soma,inactive de-velopmental genes silenced by DNA methylationare rapidly demethylated for reactivation.5mCs atpluripotency loci are oxidized by Tet3at as earlyas the pronuclear stage of one-cell embryos[26](Fig.1).In experimental reprograming of fibroblastsinto iPS cells,Tet-catalyzed5mC oxidation facili-tates reprograming,and is essential for demethyla-tion and reactivation of microRNA genes crucial formesenchymal to epithelial transition[27,28].Theseobservations highlight the role of5mC oxidationin removing repressive methylation and eliminatingepigenetic barriers established in an earlier processof lineage determination and commitment.The second function of5mC oxidation involvescounteracting ongoing de novo methylation.ESCs,adult stem cells,zygotes,and neurons express highlevels of de novo methyltransferases.To keep CpG is-lands,transcription start sites(TSS),and enhancersfree of5mC accumulation,constant oxidation byTet appears to be important.Deficiency in Tet leadsto the accretion of methylation and downregula-tion of the genes affected.In Tet1-depleted ESCs, a significant degree of methylation occurs at spe-cific loci such as Ecat1,Esrrb[29],Lefty1[30],and Nanog[31],which are unmethylated in wild-type cells.Conditional knockout of Tet1in the adult mouse brain resulted in hypermethylation and re-pression of neurogenesis-related genes[32].The methylation-antagonizing function is thus impor-tant for the maintenance of transcriptional activity to stabilize cellular identity.While the first function in principle requires a one-time reaction,persistent oxidation is necessary for the second function.Interestingly,genome-wide mapping of the genomic binding sites for Tet1and Tet2in mouse ESCs indicates that the enzymes are positioned in hypomethylated regions[33–35], consistent with their role in removing stochasti-cally added5mC to keep the binding targets free of methylation.Accordingly,5hmC is mostly asso-ciated with gene promoters(or TSSs)and CpG is-lands where5mC is underrepresented[29,33,36]. The antagonism of cytosine methylation provided by Tet-mediated oxidation preserves the genomic methylation landscape of ESCs.This model recon-ciles well with the counterintuitive associations of Tet proteins and5hmC with the5mC-depleted ge-nomic regions observed in ESCs.A sustained hy-pomethylated state maintains the expression of tran-scriptionally active genes as well as the repression of Polycomb target genes.Given that combined dele-tion of Tet1and Tet2had a subtle effect on embry-onic development in vivo[37]and that Tet triple knockout had a minor effect on ESC proliferation in vitro[27],it is unclear to what extent the mainte-nance of appropriate hypomethylation is linked with cell pluripotency or plasticity.5mC OXIDATION PROMOTES DEMETHYLATION THROUGHPASSIVE DILUTIONWhile Tet-mediated oxidation has been impli-cated in active demethylation,the inhibition of maintenance methylation by oxidized bases during DNA synthesis provides a mechanism for passive demethylation through dilution[38].The passive dilution mode is compatible with the chromosomal banding patterns of5hmC,5fC,and5caC,which are asymmetric in sister chromatids in pre-implantation mouse embryos[39,40].However,oxidation of5mC is,in principle,not essential for passive demethylation because5mC by itself can undergo progressive dilution when the newly synthesized strand in DNA replication is not methylated by a maintenance methyltransferase.In fact,passiveREVIEW Xu and Wong321dilution of5mC was suggested based on the ob-servation of asymmetric5mC banding patterns in sister chromatids during metaphase in early embryos[41].The locus-specific loss of5mC from one sister chromatid can occur when methylation by Dnmt1is actively blocked at specific loci during pronuclear DNA replication in one-cell embryos. However,prior oxidation of5mC can accelerate the loss of5mC at genomic regions that are accessible to maintenance methylation because Dnmt1cannot recognize oxidized5mC bases during DNA repli-cation.While5hmC-mediated passive dilution has been observed at the genomic level in both zygotes and PGCs[39,42],the genomic context that allows for a mixed mode of demethylation has yet to be determined.TDG-MEDIATED BER FOLLOWING5mC OXIDATIONRestoration of unmodified cytosine upon Tet-mediated oxidation of5mC cannot occur sponta-neously.This is in contrast to histone demethylation, in which single-step hydroxylation of the methyl group leads to its release as formaldehyde from the attached nitrogen atom of a lysine residue. The carboxyl group of5caC,the final oxidation product of5mC,is stably attached to a carbon atom of the pyrimidine ring,and a decarboxylase is needed to catalyze its release as CO2.An analo-gous biochemical reaction exists in the thymidine salvage pathway of some fungi,in which thymine is converted into uridine through oxidation of the methyl group.A carboxyl group is formed by thymine-7-hydroxylase;the final oxidation product isoorotate is then decarboxylated by a decarboxylase [43].The original methyl group of thymine is thus released as CO2.A mammalian5caC decarboxylase and the fungal isoorotate decarboxylase(IDCase) might use conserved biochemical mechanisms. To facilitate homology-based searches for a5caC decarboxylase in mammals,Xu et al.solved the crystal structures of two fungal IDCases[44]. IDCases possess decarboxylase activity against 5-carboxylcytosine,although their activity towards the cognate substrate isoorotate is much stronger. However,no enzyme capable of decarboxylating 5caC in DNA has been identified.While the existence of a5caC DNA decarboxy-lase remains uncertain,BER has been shown to par-ticipate in Tet-initiated demethylation.In plants, active DNA demethylation depends on BER[45]. While several plant glycosylases recognize and excise 5mC directly to initiate BER,no glycosylase enzyme that processes5mC has been identified in mammals. Instead,thymine DNA glycosylase(TDG)recog-nizes5fC and5caC,the higher oxidation products of5mC,to initiate BER[23,46](Fig.3).The5caC glycosylase activity of TDG was confirmed by the observation that Tdg knockout in iPS cells led to the accumulation of5caC but not of5hmC[23]. TDG was originally identified based on its ability to excise T from G/T mismatches,presumably gen-erated by spontaneous deamination of5mC[47]. However,TDG knockout in mouse did not produce a genome instability phenotype but surprisingly re-sulted in embryonic lethality that correlated with DNA hypermethylation and misregulation of devel-opmental genes[48,49].In the cocrystal structure of TDG and5caC-DNA,the two carboxyl oxygen atoms of5caC form distinctive hydrogen bonds with critical residues of the active site of TDG[50].These observations establish TDG as an enzyme with a prominent role in oxidative demethylation,in addi-tion to possible roles in mismatch repair.Several recent studies have confirmed TDG’s role in oxidative demethylation.Genome-wide map-ping of increased5fC and5caC in TDG-depleted mouse ESCs indicated that these two modified bases appeared as intermediates in genomic regions sub-jected to active demethylation and that these regions were different from those enriched in5hmC[51–53].5fC and5caC were also reported to accumulate in differentiating neural stem cells depleted of TDG [54].Furthermore,cell reprograming assays have in-dicated that TDG is directly involved in demethy-lation of microRNA genes crucial for the conver-sion of fibroblasts into iPS cells[27].By contrast, active demethylation in mouse zygotes is unaffected by TDG deletion[55](Fig.3).This surprising re-sult suggests the existence of an as-yet-unknown demethylation mechanism downstream of5mC ox-idation.Alternatively,a glycosylase other than TDG might process oxidized bases as a backup mecha-nism.Previous studies have detected signs of BER in male pronuclear DNA undergoing demethylation [56,57];however,it is unclear whether BER is a bystander occurrence of massive epigenetic repro-graming or a major step central to active demethy-lation.Given that BER threatens genomic integrity by generating strand breaks,especially when it is op-erating at numerous cytosine positions at once,a decarboxylase-based mechanism for resolving oxi-dation products during active DNA demethylation in zygotes seems more plausible. IMPORTANCE OF TET FUNCTIONIN MOUSE DEVELOPEMENTInitial attempts to gauge the functional signifi-cance of Tet-mediated5mC oxidation used mouse ESCs,in which Tet1and Tet2are highly expressed322Natl Sci Rev ,2015,Vol.2,No.3REVIEWOO O5mC5hmCROS1, DME, DML2 or DML3OOO NH 2N NO CH 35mCTetNH 2OCO ON NO In plantsIn mammalsAbasic siteBERReplicative dilution TDG-independant active removal?NH 2N NO CH 3OOO NH 2NN OCH 2OHOO ONH 2N NO CHO OOO NH 2N NO COOHOO OorTDGOOOOH BERNH 2NNOOOOC(In ESCs & neurons)(In zygotes)NH 2N NO OOO C Figure 3.Active demethylation in plants and mammals.Active demethylation in mammals relies on Tet-catalyzed 5mC ox-idation to trigger TDG-mediated BER in ESCs and neurons or an unidentified process in zygotes.In plants,5mC is directly recognized and processed by glycosylases to initiate BER.and 5hmC is readily detectable.Phenotypic alter-ations have been described in numerous studies.For example,knockdown of Tet1,but not of Tet2or Tet3,impaired ESC self-renewal and maintenance,partially because of increased promoter methyla-tion and downregulation of Nanog [31].However,knockout of one or even all three Tet genes in com-bination did not affect mouse ESCs self-renewal and maintenance in general [27,37,58].While double knockout of Tet1and Tet2in mouse is compatible with embryogenesis,triple knockout of Tet1/2/3in ESCs affects proper cell differentiation without abolishing the overall capacity to form three germ layers [27,59].The inconsistency among different studies suggests that due caution needs to be exer-cised when drawing conclusions about the in vivo relevance of observations made in ESCs.The vari-ous Tet-associated ESCs phenotypes might be in-fluenced by the culture conditions,passage number,and method of Tet depletion.For example,the 5mC and 5hmC contents in genomic DNA vary greatly when Erk1/2and Gsk3βinhibitors (2i)and vitamin C are included in the medium [60–62].ESCs are characterized by distinct functional states under dy-namic equilibrium and by the heterogeneous expres-sion of critical pluripotency factors and reversible epigenetic modifications.In vitro culture conditions might not maintain this equilibrium and balanced developmental plasticity.Nonetheless,ESC studies have been useful in elucidating the molecular pro-cess of 5mC oxidation and its role in gene regulation.Tet-knockout animal models have established the relationship between 5hmC and 5mC and the role of Tet proteins in their regulation.Mutant mice exhibit a general lack of overt developmental defects.Mice deficient in any individual Tet or Tet1/Tet2in combination develop to term [27,37,58].This is somewhat surprising because knockout of a single methyltransferase,in particular Dnmt1or Dnmt3b,causes embryonic lethality [63].The birth of live pups has nevertheless provided an opportunity to observe a wide spectrum of post-natal phenotypes,yielding insights into the physiological role of Tet proteins.Tet1regulates adult hippocampal neuro-genesis and cognition by controlling the prolifera-tion of neural stem cells [32].It is also implicated in the epigenetic regulation of germ cell develop-ment.Female mutant mice show impaired demethy-lation and activation of meiotic genes in PGCs and produce fewer oocytes [64].Similarly,male mutant mice display failed demethylation in a subset of im-printed genes in PGCs,potentially leading to de-velopmental abnormalities,including the growth re-tardation observed among some pups in the nextREVIEWXu and Wong 323generation [65].Tet2mutant mice are viable with normal fertility but tend to develop myeloid malig-nancies within 1year of age,similar to that observed in leukemia patients carrying TET2mutations [66].Similarly,somatic deletion of Tet3is compatible with embryonic development but leads to post-natal lethality.The mutant pups are born normal but al-most all die within the first day [26],partially owing to a suckling defect (unpublished).While Tet func-tions are clearly essential for mouse development,the factors that control phenotypic severity and in-dividual variation remain unidentified.DNA DEMETHYLATION IN ZYGOTESIn 2000,Mayer et al.reported a striking case of epi-genetic reprograming in mammalian development [20].In one-cell embryos (zygotes),at a few hours after fertilization,the 5mC signal level dropped sig-nificantly in the male pronucleus formed from the sperm but not in the female pronucleus formed from the oocyte.Bisulfite sequencing analysis by Oswald et al.confirmed the partial erasure of 5mC at three representative genomic loci in the paternal genome [19].These observations of 5mC loss specifically in paternal DNA have since been accepted as evidence for the existence of active demethylation because it occurs before the first replication of the paternal genome.806040200806040200R e l a t i v e 5m C l e v e lR e l a t i v e 5h m C l e v e lG1G2SFigure 4.Overall changes in 5mC and 5hmC levels in the pronuclear stage of mouse zygotes.The discovery of Tet1and 5hmC in the ge-nomic DNA of mouse ESCs and neuronal cells [22,67]prompted the hypothesis that conversion of 5mC into 5hmC by Tet might be involved in zygotic ing immunofluorescence staining with 5hmC-specific antibodies,several labs have observed 5hmC formation in the male pronu-cleus,most noticeably from the PN3stage onwards [26,68,69](Fig.4).The gain of 5hmC correlates well with the loss of 5mC.Mouse genetic studies have established that Tet3,the only Tet enzyme inher-ited from oocytes,is responsible for 5mC loss and 5hmC gain in the paternal genome [26,69].In ac-cordance with its responsibility in global demethyla-tion,Tet3is required for the demethylation of pater-nally methylated genomic loci,including some key pluripotency genes such as Oct4and Nanog .Are unmodified cytosines restored in the DNA strand inherited from the gametes via an active demethylation mechanism?The detection of 5hmC,as well as the higher oxidation products 5fC and 5caC,in the male pronucleus supports the active ox-idative demethylation of 5mC.However,it remains unclear whether a complete conversion from 5mC to unmodified cytosine residues takes place in the pronuclear DNA of the one-cell ing an M.SssI-assisted bisulfite sequencing method that in-corporates in vitro methylation of the DNA sam-ple into the conventional bisulfite sequencing anal-ysis [27],Guo et al.demonstrated the generation of unmodified cytosine residues in the examined re-gions of selected genomic loci in late-stage zygotes [55].Thus,in zygotes,DNA regions that were orig-inally hypermethylated in sperm or oocytes can be restored to an unmodified state via a demethylation process that is fully independent of DNA replica-tion.However,it remains to be determined whether demethylation is dependent on the BER pathway.Strong evidence also supports the passive demethylation of zygotic DNA.The evidence includes two early observations:cytoplasmic seg-regation of the maintenance methyltransferase Dnmt1in the zygote [70]and an asymmetric 5mC banding pattern in sister chromatids in the two-cell embryo,indicative of hemimethylation in the replicated zygotic DNA [41].In addition,a recent study has directly demonstrated hemimethylation in early embryos and PGCs by using genome-wide hairpin bisulfite analysis [71].What then are the relative contributions of active and passive demethylation to zygotic demethylation?The time window of oxidative demethylation overlaps with the first round of DNA replication in the embryo (Fig.4).Newly incorporated cytosine residues during pronuclear DNA replication can be left unmethylated if maintenance methylation is324Natl Sci Rev,2015,Vol.2,No.3REVIEWsuppressed,reducing methylation to half the level in gametes.Consistent with the involvement of passive demethylation,Dnmt1exhibits cytoplasmic localization in ing genome-scale single nucleotide-resolution bisulfite sequencing analysis, three labs have compared the contributions made by active removal of5mC and replicative passive dilution in mouse one-cell embryos[55,72,73]. Demethylated CpG sites spread throughout the en-tire genome.While numerous sites depend on Tet3, most depend only on replication for demethylation. Many CpGs undergo both Tet3-mediated active and replication-dependent passive demethylation concurrently,thereby presenting a scenario of Tet3-assisted passive demethylation.It is noteworthy that actively demethylated loci have also been identified in maternal DNA,albeit in smaller numbers than in paternal DNA[55,72,74].Tet3-mediated oxidative demethylation not only erases pre-existing methy-lation but also counteracts de novo methylation to maintain an unmethylated state[73].Thus,the establishment of a zygotic methylome involves both passive and active demethylation,likely in the face of de novo and maintenance methylation.Many factors likely regulate these processes to determine where and when demethylation occurs.One such factor,PGC7/Stella,binds to H3K9-dimethylated chromatin regions and protects them from Tet3-mediated5mC oxidation[75].Future studies will need to identify additional regulatory factors,in-cluding positive regulators similar to PRDM14that stimulate Tet1-and Tet2-mediated demethylation in na¨ıve pluripotent cells and developing PGCs [76],and address how they orchestrate methylation reprograming.A role for zygotic demethylation in establishing totipotency has long been suspected but has not been tested experimentally.Several promoters and enhancers of critical pluripotency genes are methy-lated in sperm but are unmethylated in oocytes and early embryos[77,78].Therefore,prompt demethy-lation is needed to reactivate paternal genes in early embryos.Gu et al.have demonstrated that genetic ablation of oocyte Tet3impairs reactivation of the paternal Oct4gene;over half of the embryos without maternal Tet3degenerate post-implantation[26]. Notably,oocyte Tet3is also required for demethy-lation and reactivation of Oct4in the donor DNA of embryos reconstructed by somatic nuclear trans-fer.Recently,the cullin-ring ffinger ligase-4(CRL4) ubiquitin ligase,which is essential for female fertil-ity,was found to promote Tet3activity[79].Ac-tive demethylation has been observed in human em-bryos as well[80,81].These observations reinforce the importance of zygotic demethylation in mam-malian development.ALTERNATIVE ACTIVE DNA DEMETHYLATION PATHWAYSTet triple knockout ESCs are devoid of5hmC in the genome,indicating an absence of other biochemical pathways for5mC hydroxylation[27,59,82].How-ever,these ESCs show only a mild increase in global 5mC levels when grown in a conventional medium. Such observations cannot be taken as evidence sup-porting the absence of other demethylation mecha-nisms unrelated to Tet.The Tet-TDG axis as a pathway for DNA demethylation is vigorously supported by biochem-ical and genetic analyses(Fig.3);however,sev-eral alternative demethylation routes might exist. Among the candidate proteins discussed elsewhere [83],DNMTs have been proposed to function as demethylases because they can activate the C5-position of the pyrimidine ring through nucleophilic addition of a conserved cysteine residue to the C6-position[84].The C5-activation mechanism involves the transfer of a methyl group from S-adenosylmethionine(SAM)to form5mC during the methylation reaction[85].While Liutkeviciute et al.have reported that bacterial and mammalian methyltransferases generate cytosine from5caC and 5hmC substrates[84,86],Shen and colleagues have observed that human DNMTs can transform5hmC and5mC into unmodified cytosine[87,88].In these studies,methyl removal or decarboxylation by DNMTs required the absence or‘muted presence’of the cofactor and the methyl group donor SAM. While observations of in vitro demethylation,de-hydroxymethylation,and decarboxylation by DN-MTs are interesting because they establish chemi-cal plausibility,evidence of their in vivo relevance is lacking.Given that depletion of SAM is unlikely in living cells,a crucial question that needs to be addressed is the mechanism underlying the poten-tial functional switch of a DNMT from methyla-tion to demethylation mode.In this context,it is worth noting that decarboxylation in vitro can also be achieved by adding high concentrations of mercap-toethanol and imidazole to imitate the active site of methyltransferases[89].Thus,the in vivo relevance of DNMT-based demethylation remains a crucial is-sue for future studies to address.Activation-induced cytidine deaminase(AID) has also been implicated in active demethylation. AID is more commonly known as a DNA-modifying enzyme required to initiate somatic hypermutation and class switch recombination in immunoglobu-lin genes in B cells.In vitro,the enzyme is able to deaminate5mC in DNA and thus convert5mC to thymine,albeit with a much lower efficiency com-pared to that of cytosine deamination[90].The。

相关文档
最新文档