高三上学期第二次月考试卷 数学 含答案

合集下载

三明一中2022-2023学年上学期月考二高三数学科试卷含答案

三明一中2022-2023学年上学期月考二高三数学科试卷含答案

三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。

湖南省长沙市2025届高三上学期第二次月考数学试卷含答案

湖南省长沙市2025届高三上学期第二次月考数学试卷含答案

湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。

湖南省雅礼中学2023-2024学年高三上学期月考(二)数学试题(含答案)

湖南省雅礼中学2023-2024学年高三上学期月考(二)数学试题(含答案)

大联考雅礼中学2024届高三月考试卷(二)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若12z i =+,则()1z z +⋅=()A.24i --B.24i-+ C.62i- D.62i+【答案】C 【解析】【分析】根据复数的乘法运算和共轭复数的定义求解.【详解】()()()122i 12i 244i 2i 62i z z +⋅=+-=+-+=-.故选:C .2.全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是()A.{2,3,5,7,9}B.{2,3,4,5,6,7,8,9}C.{4,6,8}D.{5}【答案】C 【解析】【分析】根据给定的条件利用韦恩图反应的集合运算直接计算作答.【详解】韦恩图的阴影部分表示的集合为()U A B ð,而全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,所以(){4,6,8}U A B ⋂=ð.故选:C 3.函数()2log 22xxx x f x -=+的部分图象大致是()A. B.C. D.【答案】A 【解析】【分析】利用函数的奇偶性和特殊点即得.【详解】易知()2log 22xxx x f x -=+的定义域为{}0x x ≠,因为()()22log log 2222xxxxx x x f x x f x -----==-=-++,所以()f x 为奇函数,排除答案B ,D ;又()2202222f -=>+,排除选项C .故选:A .4.在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=()A.3 B.3- C.4- D.4【答案】A 【解析】【分析】建立直角坐标系,写出相关点的坐标,得到AC ,DE,利用数量积的坐标运算计算即可.【详解】以B 为原点,BC ,BA 所在直线分别为x ,y 轴,建立如图所示直角坐标系,由题意得()()()()0,3,1,0,3,0,3,3A E C D ,所以()3,3AC =- ,()2,3DE =--,所以()()()32333AC DE ⋅=⨯-+-⨯-=.故选:A.5.某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为()(1.5 4.7π≈)A.3045.6gB.1565.1gC.972.9gD.296.1g【答案】C 【解析】【分析】由题意可知所需要材料的体积即为半球体积与圆台体积之和,先求出圆台的体积,再利用组合体的体积乘以打印所用原料密度可得结果.【详解】设半球的半径为R ,因为332π144πcm 3V R ==半球,所以6R =,由题意圆台的上底面半径及高均是3,下底面半径为6,所以((223113π6π363πcm 33V S S h =+=⋅+⋅+⨯=下上圆台,所以该实心模型的体积为3144π63π207πcm V V V =+=+=半球圆台,所以制作该模型所需原料的质量为207π 1.5207 4.7972.9g ⨯≈⨯=故选:C6.已知数列{} n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据等比数列的通项公式以及前n 项和公式,分别验证充分性以及必要性即可得到结果.【详解】若10a >,且公比0q >,则110n n a a q -=>,所以对于任意*n ∈N ,0n S >成立,故充分性成立;若10a >,且12q =-,则()111112212111101323212n n nn n a S a a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=--⨯>⎢⎥⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- ⎪⎝⎭,所以由对于任意*n ∈N ,0n S >,推不出0q >,故必要性不成立;所以“公比0q >”是“对于任意*n ∈N ,0n S >”的充分不必要条件.故选:A7.若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为()A.4πB.2πC.34π D.54π【答案】C 【解析】【分析】根据已知不等式得到,要求y =sin x 和y =cos x 的图象不在y =a=2的同一侧,利用正弦函数、余弦函数图象的性质进行解答即可.【详解】在同一坐标系中,作出y =sin x 和y =cos x的图象,当m =4π时,要使不等式恒成立,只有a=2,当m >4π时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a=2的同一侧.∴由图可知m 的最大值是34π.故选:C.8.已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为()A.()()2,04,∞-⋃+ B.()(),15,∞∞--⋃+C.()(),24,-∞-+∞ D.()()1,05,∞-⋃+【答案】D 【解析】【分析】根据()()2f x f x +=-可得()f x 关于直线1x =对称,根据()()24f f -=-可得()()240f f -==,结合函数()f x 的单调性可得函数图象,根据图象列不等式求解集即可.【详解】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称,所以()()()244f f f -==-,即()()240f f -==,又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减,则可得函数()f x 的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()()1,05,∞-⋃+.故选:D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.对于实数a ,b ,c ,下列选项正确的是()A.若a b >,则2a ba b +>> B.若0a b >>,则a b>>C.若11a b>,则0a >,0b < D.若0a b >>,0c >,则b c ba c a+>+【答案】ABD 【解析】【分析】利用比较法、特例法逐一判断即可.【详解】对选项A ,因为a b >,所以022a b a b a +--=>,022a b a bb +--=>,所以2a ba b +>>,故A 正确;对选项B ,0a b >>1=>,所以a >因为1b =>b >,即a b >>,故B 正确;对选项C ,令2a =,3b =,满足11a b>,不满足0a >,0b <,故C 错误;对选项D ,因为0a b >>,0c >,所以()()()()()0a b c b a c c a b b c b a c a a a c a a c +-+-+-==>+++,故D 正确.故选:ABD .10.已知函数()2sin cos 2f x x x x =-+,则下列说法正确的是()A.()πsin 23f x x ⎛⎫=- ⎪⎝⎭B.函数()f x 的最小正周期为πC.函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D.函数()f x 的图象可由sin 2y x =的图象向右平移π3个单位长度得到【答案】AB 【解析】【分析】利用二倍角公式及辅助角公式化简函数,再结合正弦函数的图像性质逐项判断.【详解】()211cos 21πsin cos sin 2sin 2cos 2sin 22222223x f x x x x x x x x +⎛⎫=-+=--=- ⎪⎝⎭,所以A 正确;对于B ,函数()f x 的最小正周期为2ππ2=,所以B 正确;对于C ,由ππ2π32x k -=+,k ∈Z ,得5ππ122k x =+,Z k ∈,所以函数()f x 的对称轴方程为5ππ122k x =+,Z k ∈,所以C 不正确;对于D ,sin 2y x =的图象向右平移π6个单位长度,得ππsin 2sin 263y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到,所以D 不正确.故选:AB .11.设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是()A.若0d <,则1S 是数列{}n S 的最大项B.若数列{}n S 有最小项,则0d >C.若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0nS <D.若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列【答案】BD 【解析】【分析】取特殊数列判断A ;由等差数列前n 项和的函数特性判断B ;取特殊数列结合数列的单调性判断C ;讨论数列{}n S 是递减数列的情况,从而证明D.【详解】对于A :取数列{}n a 为首项为4,公差为2-的等差数列,2146S S =<=,故A 错误;对于B :等差数列{}n a 中,公差0d ≠,211(1)(222n n n d dS na d n a n -=+=+-,n S 是关于n 的二次函数.当数列{}n S 有最小项,即n S 有最小值,n S 对应的二次函数有最小值,对应的函数图象开口向上,0d >,B 正确;对于C :取数列{}n a 为首项为1,公差为2-的等差数列,22n S n n =-+,122(1)2(1)(2)210n n S n n n n S n =-+++-+---=+<+,即1n n S S <+恒成立,此时数列{}n S 是递减数列,而110S =>,故C 错误;对于D :若数列{}n S 是递减数列,则10(2)n n n a S S n -=-<≥,一定存在实数k ,当n k >时,之后所有项都为负数,不能保证对任意*N n ∈,均有0n S >.故若对任意*N n ∈,均有0n S >,有数列{}n S 是递增数列,故D 正确.故选:BD12.如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是()A.四面体11A D MN 的体积为定值B.当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C.直线MN 与平面ABCD 所成角的正切值的最小值为2D.当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形【答案】ACD 【解析】【分析】求出四面体的体积判断A ;把正方体的棱分成3类,再判断各类中的一条即可判断B ;作出线面角,并求出其正切表达式判断C ;利用线线、线面平行的性质作出截面判断D.【详解】点M ,N 在棱11B C ,CD 上运动时,M 到11A D 距离始终为2,N 到平面11A D M 的距离始终为2,所以四面体11A D MN 的体积11114222323N A MD V -=⨯⨯⨯⨯=恒为定值,A 正确;在正方体1111ABCD A B C D -中,棱可分为三类,分别是1111,,A A A B A D ,及分别与它们平行的棱,又1111,,A A A B A D 不与平面1A MN 平行,则在正方体1111ABCD A B C D -中,不存在棱与平面1A MN 平行,B 错误;正方体棱长为2,如图1,过M 作1MM BC ⊥于1M ,则有1MM ⊥平面ABCD ,于是MN 与平面ABCD 所成角即为1MNM ∠,于是11112tan MM MNM M N M N∠==,又1M N长度的最大值为MN 与平面ABCD所成角的正切值的最小值为2,C正确;如图2,取BC 中点M ',连接,AM MM '',有11////MM BB AA ',且11MM BB AA '==,则四边形1AA MM '是平行四边形,有1//AM A M ',过N 作AM '的平行线交AD 于点E ,此时14DE DA =,则1//EN A M ,即EN 为过1A ,M ,N 三点的平面与平面ABCD 的交线,连接1A E ,在BC 上取点F ,使得14CF CB =,同证1//AM A M '的方法得11//A E B F ,在棱1CC 上取点G ,使113CG CC =,连接MG 并延长交直线BC 于H ,则112CH C M CF ==,即11FH C M B M ==,而1//FH B M ,于是四边形1FHMB 是平行四边形,有11////MG B F A E ,则MG 为过1A ,M ,N 三点的平面与平面11BCC B 的交线,连接NG ,则可得五边形1A MGNE 即为正方体中过1A ,M ,N 三点的截面,D 正确.故选:ABD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.【答案】2-【解析】【分析】求导,利用()13f '=求解即可.【详解】解:因为()ln f x x a x =-,所以()1a f x x'=-,又函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则()1131af '=-=,所以2a =-.故答案为:2-14.在平面直角坐标系xOy 中,圆O 与x 轴的正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分AOC ∠,34,55B ⎛⎫⎪⎝⎭,则点C 的坐标为__________.【答案】724,2525⎛⎫- ⎪⎝⎭【解析】【详解】由题意可知圆O 1=,设AOB BOC α∠=∠=,由题意可知4sin 5α=,3cos 5α=,则点C 的横坐标为271cos 212sin 25αα⨯=-=-,点C 的纵坐标为241sin 22sin cos 25ααα⨯==.故答案为:724,2525⎛⎫-⎪⎝⎭.15.已知函数()f x 的定义域为R ,()e xy f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.【答案】【解析】【分析】由题意可得()e 2e xxf x -=+,再结合基本不等式即可得答案.【详解】解:因为函数()e xy f x =+为偶函数,则()()e e x x f x f x --+=+,即()()ee xx f x f x ---=-,①又因为函数()3e xy f x =-为奇函数,则()()3e3e xx f x f x ---=-+,即()()3e 3ex xf x f x -+-=+,②联立①②可得()e 2e xxf x -=+,由基本不等式可得()e 2e x x f x -=+≥=,当且仅当e 2e x x -=时,即当1ln 22x =时,等号成立,故函数()f x 的最小值为故答案为:16.已知菱形ABCD 中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.【答案】28π【解析】【分析】将 ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,得到120AEC ∠=︒,在AEC △中由余弦定理求出AE 的长,进一步求出AB 的长,分别记三角形ABD △与BCD △的重心为G 、F ,记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,证明Rt OGE △与Rt OFE 全等,求出OE ,再推出BD OE ⊥,连接OB ,由勾股定理求出OB ,即可得出外接球的表面积.【详解】将 ABD 沿BD 折起后,取BD 中点为E ,连接AE ,CE ,则AE BD ⊥,CE BD ⊥,所以AEC ∠即为二面角A BD C --的平面角,所以120AEC ∠=︒;设AE a =,则AE CE a ==,在AEC △中2222cos120AC AE EC AE CE =+-⋅⋅︒,即2127222a a a ⎛⎫=-⨯⨯⨯- ⎪⎝⎭解得3a =,即3AE =,所以AB ==所以ABD △与BCD △是边长为的等边三角形.分别记三角形ABD △与BCD △的重心为G 、F ,则113EG AE ==,113EF CE ==;即EF EG =;因为ABD △与BCD △都是边长为所以点G 是ABD △的外心,点F 是BCD △的外心;记该几何体ABCD 的外接球球心为O ,连接OF ,OG ,根据球的性质,可得OF ⊥平面BCD ,OG ⊥平面ABD ,所以 OGE 与OFE △都是直角三角形,且OE 为公共边,所以Rt OGE △与Rt OFE 全等,因此1602OEG OEF AEC ∠=∠=∠=︒,所以2cos 60EFOE ==︒;因为AE BD ⊥,CE BD ⊥,AE CE E =I ,且AE ⊂平面AEC ,CE ⊂平面AEC ,所以BD ⊥平面AEC ;又OE ⊂平面AEC ,所以BD OE ⊥,连接OB,则外接球半径为OB ==所以外接球表面积为2428S ππ=⨯=.故答案为:28π【点睛】思路点睛:求解几何体外接球体积或表面积问题时,一般需要结合几何体结构特征,确定球心位置,求出球的半径,即可求解;在确定球心位置时,通常需要先确定底面外接圆的圆心,根据球心和截面外接圆的圆心连线垂直于截面,即可确定球心位置;有时也可将几何体补型成特殊的几何体(如长方体),根据特殊几何体的外接球,求出球的半径.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.【答案】(1)n a n =;(2)证明见解析.【解析】【分析】(1)利用,n n a S 的关系,结合已知条件以及等差数列的通项公式即可求得结果;(2)根据(1)中所求,利用裂项求和法求得n T ,即可证明.【小问1详解】依题意可得,当1n =时,2111122S a a a ==+,0n a >,则11a =;当2n ≥时,22n n n S a a =+,21112n n n S a a ---=+,两式相减,整理可得()()1110n n n n a a a a --+--=,又{}n a 为正项数列,故可得11n n a a --=,所以数列{}n a 是以11a =为首项,1d =为公差的等差数列,所以n a n =.【小问2详解】证明:由(1)可知n a n =,所以()42222n b n n n n ==-++,()44441324352n T n n =+++⋅⋅⋅+⨯⨯⨯+22222222222222132435462112n n n n n n =-+-+-+-⋅⋅⋅+-+-+---++2221312n n =+--<++,所以3n T <成立.18.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c )sin a C C =-.(1)求A ;(2)若8a =,ABC ABC 的周长.【答案】(1)2π3(2)18【解析】【分析】(1)由正弦定理结合两角和的正弦公式化简可得出tan A 的值,结合角A 的取值范围可求得角A 的值;(2)利用三角形的面积公式可得出182b c bc ++=,结合余弦定理可求得b c +的值,即可求得ABC 的周长.【小问1详解】解:因为)sin aC C =-,)sin sin B AC C =-,①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+,sin sin sin A C A C =-,又因为A 、()0,πC ∈,sin 0C ≠sin 0A A =-<,所以tan A =,又因为()0,πA ∈,解得2π3A =.【小问2详解】解:由(1)知,2π3A =,因为ABC 内切圆半径为所以()11sin 22ABC S a b c A =++⋅△,即()82b c ++=,所以,182b c bc ++=②,由余弦定理2222π2cos3a b c bc =+-⋅得2264b c bc ++=,所以()264b c bc +-=③,联立②③,得()()22864b c b c +-++=,解得10b c +=,所以ABC 的周长为18a b c ++=.19.如图,在三棱柱111ABC A B C -中,11BC B C O = ,12BC BB ==,1AO =,160B BC ∠=︒,且AO ⊥平面11BB C C .(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.【答案】(1)证明见解析(2)7【解析】【分析】(1)根据线面垂直的性质和判断定理可得1B C ⊥平面1ABC ,从而即可证明1AB B C ⊥;(2)建立以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴的空间坐标系,利用空间向量求解即可.【小问1详解】证明:因为AO ⊥平面11BB C C ,1B C ⊂平面11BB C C ,所以1AO B C ⊥,因为1BC BB =,四边形11BB C C 是平行四边形,所以四边形11BB C C 是菱形,所以11BC B C ⊥.又因为1AO BC O ⋂=,AO ⊂平面1ABC ,1BC ⊂平面1ABC ,所以1B C ⊥平面1ABC ,因为AB ⊂平面1ABC ,所以1AB B C ⊥.【小问2详解】解:以O 为原点,分别以OB ,1OB ,OA 所在直线为x ,y ,z 轴建立如图所示的空间直角坐标系,如图所示,则)B,()10,1,0B ,()0,0,1A,()1C ,所以()10,1,1AB =-,)11C B =,)110,1A B AB ==-,设平面11AB C 的一个法向量为()1111,,n x y z =,则11111111100n AB y z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11x =,可得1y =1z =,所以(11,n =u r,设平面111B C A 的一个法向量为()2222,,n x y z =,则211221112200n A B z n C B y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取21x =,可得2y =,2z =所以(21,n =,设二面角111A B C A --的大小为θ,因为1212121,1,1cos ,7n n n n n n ⋅⋅〈〉===⋅,所以sin 7θ==,所以二面角111A B C A --的正弦值为7.20.如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF 交椭圆于B点,且满足||2||AF FB =,||2AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.【答案】(1)22132x y+=;(2)【解析】【分析】(1)由已知得b =,由||2||AF FB =且||2AB =,知||AF a ==,即可求出椭圆C 的标准方程;(2)直线AF的方程为0y +-=,与椭圆联立求出3(,22B -,求出点,A B 到直线(0)y kx k =>的距离为1d =,2d =y kx =与椭圆方程结合弦长公式求出CD ,求出四边形ACBD 的面积121()2S CD d d =+,整理化简利用二次函数求出最值.【详解】(1)A Q 为椭圆C上一点,b ∴=又||2||AF FB =,||2AB =可得,||AF =,即a =所以椭圆C 的标准方程是22132x y +=.(2)由(1)知(1,0)F,A ,∴直线AF的方程为0y +-=,联立221320x y y ⎧+=⎪+-=,整理得:22462(3)0x x x x -=-=,解得:1230,2x x ==,∴3(,22B -设点A,3(,22B -到直线(0)y kx k =>的距离为1d 和2d ,则1d =,2d =直线(0)y kx k =>与椭圆相交于,C D 两点,联立22132x y y kx⎧+=⎪⎨⎪=⎩,整理得:22(32)6k x +=,解得:34x x ==34CD x ∴=-=∴设四边形ACBD 面积为S ,则121()2S CD d d =+=(0)2k =>.设)t k =++∞,则k t =-363636222S ∴==⋅⋅362=当18t =,即3t k ===+3k =时,四边形ACBD面积有最大值.【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -的体积大于14,求三棱锥A MPC -体积的取值范围.【答案】(1)34(2)3,1212⎛ ⎝⎦【解析】【分析】(1)取OB 的中点N ,连接MN ,证明出//NP OC ,可得出3ONP π∠=,OPN θ∠=,然后在ONP △中利用正弦定理可求得sin θ的值;(2)计算得出四边形OCPB的面积3sin 264S πθ⎛⎫=+> ⎪⎝⎭,结合20,3πθ⎛⎫∈ ⎪⎝⎭可求得θ的取值范围,设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V ,计算得出2361133sin 2324V V πθ⎛⎫==+-⎢ ⎪⎝⎭⎣⎦,结合正弦型函数的基本性质可求得结果.【小问1详解】解:取OB 的中点N ,连接MN ,M 为AB 的中点,则//MN OA ,MN ⊄ 平面AOC ,AO ⊂平面AOC ,则//MN 平面AOC ,由题设,当//MP 平面AOC 时,因为MP MN M ⋂=,所以,平面//MNP 平面AOC ,NP ⊂ 平面MNP ,则//NP 平面AOC ,因为NP ⊂平面OBPC ,平面OBPC 平面AOC OC =,则//NP OC ,所以,3ONP BOC ππ∠=-∠=,OPN COP θ∠=∠=,在OPN 中,由正弦定理可得sin sin3ON OP πθ=,故sin3sin 4ON OP πθ==.【小问2详解】解:四棱锥M OCPB -的体积1111323V OA S S =⋅⋅=,其中S 表示四边形OCPB 的面积,则112111sin sin sin cos sin 2232222S OP OC OP OB πθθθθθ⎛⎫⎛⎫=⋅+⋅-=++ ⎪⎪ ⎪⎝⎭⎝⎭333sin 4426πθθθ⎛⎫=+=+ ⎪⎝⎭,所以,1131sin 3664V S πθ⎛⎫==+> ⎪⎝⎭,可得3sin 62πθ⎛⎫+> ⎪⎝⎭,203πθ<<,则5666πππθ<+<,故2363πππθ<+<,解得,62ππθ⎛⎫∈ ⎪⎝⎭.设三棱锥A MPC -的体积为2V ,三棱锥A BPC -的体积为3V ,由于M 是AB 的中点,则231112sin 2623V V OA S OB OC π⎛⎫==⋅-⋅ ⎪⎝⎭133333sin ,32412126πθ⎛⎛⎫=+-∈ ⎢ ⎪ ⎝⎭⎣⎦⎝⎦.22.混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()Nf X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.公众号:高中试卷君【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由均值的性质及基本不等式即可证明.(2)由二项分布的概率及条件概率化简即可证明.【小问1详解】由题意可得X 满足二项分布(),X B N p ,由()()E aX b aE X b +=+知,()()N N E f X K X E pN N K K K =+=+⋅≥⎡⎤⎣⋅⎦,当且仅当1Kp K=时取等号;【小问2详解】记P P =(混管中恰有1例阳性|混管检测结果为阳性),i P P =(混管中恰有i 例阳性)=()C 1K i i i K p p --,0,1,,i K = ,令()e 1xh x x =--,33210210x ---⨯<<⨯,则()e 1xh x '=-,当()3021,0x -⨯∈-时,()0h x '<,()h x 为单调递减,当()300,21x -∈⨯时,()0h x '>,()h x 为单调递增,所以()()00h x h ≥=,且()()332103210e 21010h ---⨯--⨯=--⨯-≈,()()332103210e 21010h --⨯-⨯=-⨯-≈,所以当33210210x ---⨯<<⨯,e 10x x --≈即e 1x x ≈+,两边取自然对数可得()ln 1x x ≈+,所以当4010p -<<,1020K ≤≤时,所以()()ln 11e e 1K K p Kp p Kp ---=≈≈-,则()()()()110111111111K K Kp K p Kp p P P K p P Kp p ---⎡⎤-⎣⎦==≈=--≈---.故某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.。

华南师范大学附属中学2022-2023学年高三上学期月考(二)数学含答案

华南师范大学附属中学2022-2023学年高三上学期月考(二)数学含答案

华南师大附中2023届高三月考(二)数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考号等填写在答题卡上,并用铅笔在答题卡上的相应位置填涂.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号. 3.回答第Ⅱ卷时,必须用黑色字迹的钢笔或签字笔作答,答案必须写在答卷各题目指定区域内,不准使用铅笔和涂改液.不按以上要求作答的答案无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}=0A x R x ∈≤,{}=11B x R x −∈≤≤,则()()RR A B =( )A .(,0)−∞B .[1,0]−C .[0,1]D .(1,)+∞2.如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则12z z 对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.函数()sin tan f x x x =⋅的图象大致为( )A .B .C .D .4.赤岗塔是广州市级文物保护单位,是广州市明代建筑中较具特色的古塔之一,与琶洲塔、莲花塔并称为广州明代三塔,如图,在A 点测得塔底位于北偏东60°方向上的点D 处,塔顶C 的仰角为30°,在A 的正东方向且距D 点61m 的B 点测得塔底位于北偏西45°方向上(A ,B ,D 在同一水平面),则塔的高度CD 约为( )2.45≈)A .40mB .45mC .50mD .55m5.在ABC ∆中,D 为BC 边上的点,当2ABD ADC S S =△△,AB xAD y AC =+,则( ) A .3x =,2y =− B .32x =,12y =− C .2x =−,3y =D .12x =−,32y =6.在ABC ∆中,2cos cos cos c bc A ac B ab C =++,则此三角形必是( ) A .等边三角形 B .直角三角形 C .等腰三角形D .钝角三角形7.设实数,a b 满足0b >,且2a b +=,则18a a b+的最小值是( ) A .98B .916 C .716D .148.已知函数()2ln f x x x x =−的图象上有且仅有两个不同的点关于直线1y =的对称点在10kx y +−=的图象上,则实数k 的取值范围是( )A .(),1−∞B .[)0+∞,C .[)0,1D .(),1−∞−二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分. 9.设,m n 为不同的直线,αβ,为不同的平面,则下列结论中正确的是( ) A .若//m α,//n α,则//m n B .若,,m n αα⊥⊥则//m n C .若//m α,m β⊂,则//αβ D .若,,m n m n αβ⊥⊥⊥则αβ⊥ 10.函数()()sin f x x ωϕ=+(0,20,A πωϕ><>)的部分图象如图所示,下列结论中正确的是( )A .直线6x π=−是函数()f x 图象的一条对称轴B .函数()f x 的图象关于点(),062k k Z ππ⎛⎫−+∈ ⎪⎝⎭对称 C .函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤−++∈⎢⎥⎣⎦D .将函数()f x 的图象向由右平移12π个单位得到函数()sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象11. 分形几何学是数学家伯努瓦·曼德尔布罗在20世纪70年代创立的一门新的数学学科,分形几何学不仅让人们感悟到数学与艺术审美的统一,而且还有其深刻的科学方法论意义.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第n 行白圈的个数为n a ,黑圈的个数为n b ,则下列结论中正确的是( ) A .1239a a a +=+B .12n n n a b b +=+C .当1k =±时,{}n n a kb +均为等比数列D .1236179b b b b ++++=12.曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,表明曲线偏离直线的程度,曲率越大,表示曲线的弯曲程度越大.曲线()y f x =在点(,())x f x 处的曲率()()() 1.52''()1f x K x f x '=⎡⎤+⎣⎦,其中()''f x 是()f x '的导函数.下面说法正确的是( )A .若函数3()f x x =,则曲线()y f x =在点3(,)a a −−与点3(,)a a 处的弯曲程度相同B .若()f x 是二次函数,则曲线()y f x =的曲率在顶点处取得最小值C .若函数()sin f x x =,则函数()K x 的值域为[0,1]D .若函数1()(0)f x x x =>,则曲线()y fx =第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,a b 夹角为4π,且||1a =,||2b =,则2a b +=______. 14.已知1sin 83πα⎛⎫−= ⎪⎝⎭,则sin2cos2αα+=__________.15.某学生在研究函数()3f x x x =−时,发现该函数的两条性质:①是奇函数;②单调性是先增后减再增.该学生继续深入研究后发现将该函数乘以一个函数()g x 后得到一个新函数()()()h x g x f x =,此时()h x 除具备上述两条性质之外,还具备另一条性质:③()'00h =.写出一个符合条件的函数解析式()g x =__________.16.已知数列{}n a 的通项公式为n a n t =+,数列{}n b 为公比小于1的等比数列,且满足148b b ⋅=,236b b +=,设22n n n n n a b a b c −+=+,在数列{}n c 中,若4()n c c n N *≤∈,则实数t 的取值范围为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知ABC ∆的内角,,A B C 的对边分别为a ,b ,c ,且2cos cos tan 2sin sin B AB A+=−A .(1)求C ;(2)若6a =,ABC S ∆=c 的值.设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式; (2)若23n n a b n =,求数列{}n b 的前n 项和n T .19.(本小题满分12分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A 组,从年龄在40岁及以上的客户中抽取10位归为B 组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A 组的客户,“⊙”表示B 组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.(1)记A ,B 两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m ,n ,根据图中数据,试比较m ,n 的大小(直接写结论);(2)从抽取的20位客户中随机抽取2位,求其中至少有1位是A 组的客户的概率;(3)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”,现从该市使用这种电动汽车的所有客户中,随机抽取年龄40岁以下和40岁以上的客户各1位,记“驾驶达人”的人数为X ,求随机变量X 的分布列和数学期望. 20. (本小题满分12分)在斜三棱柱111ABC A B C −中,1AA BC ⊥,11AB AC AA AC ====,1B C = (1)证明:1A 在底面ABC 上的射影是线段BC 中点; (2)求平面11A B C 与平面111A B C 夹角的余弦值.已知()2,0A ,()0,1B 是椭圆()2222:10x y E a b a b+=>>的两个顶点.(1)求椭圆E 的标准方程;(2)过点()2,1P 的直线l 与椭圆E 交于C ,D 两点,与直线AB 交于点M ,求PM PMPC PD+的值.22.(本小题满分12分)设函数1()e ,()ln x f x m g x x n −==+,m n 、为实数,()()g x F x x=有最大值为21e .(1)求n 的值; (2)若2()()e f x xg x >,求实数m 的最小整数值.华南师大附中2023届高三月考(二)数学参考答案一、单项选择题:1.D 2.C 3.A 4.C 5.A 6.B 7.C 8.A 二、多项选择题:9.BD 10.BCD 11.BCD 12.ACD 11. 【答案】BCD【详解】易得-1113,2,2n n n n n n n n n a b a a b b b a +++==+=+,且有111,0a b ==,故有11113()n n n n n n n n a b a b a b a b +++++=+⎧⎨−=−⎩,故131n n n n na b a b −⎧+=⎪⎨−=⎪⎩ 故11312312n n n n a b −−⎧+=⎪⎪⎨−⎪=⎪⎩,进而易判断BCD 正确,A 错误.故选:BCD. 12.【答案】ACD【详解】对于A ,2()3f x x '=,()6f x x ''=,则22 1.56()[1(3)]x K x x =+,又()()K x K x =−,所以()K x 为偶函数,曲线在两点的弯曲长度相同,故A 正确;对于B ,设2()(0)f x ax bx c a =++≠,()2()2f x ax b f x a '''=+=,,则 1.52|2|()1(2)a K x ax b =⎡⎤++⎣⎦,当且仅当20ax b +=,即2bx a=−时,曲率取得最大值,故B 错误; 对于C ,()cos ()sin f x x f x x '''==−,,()()1.51.522|sin |()(|sin |[0,1])1cos 2x tK x t x x t −===∈+−,当0t =时,()0K x =;当01t <≤时,函数()1.52()2tp t t =−为增函数,所以()p t 的最大值为(1)1p =,故C 正确; 对于D ,2312()()f x f x x x '''=−=,,3 1.542()11x K x x =≤⎛⎫+ ⎪⎝⎭, 当且仅当1x =时,等号成立,故D 正确.故选ACD .三、填空题:13.14.915. 2x (答案不唯一) 16. []4,2−− 16.【详解】在等比数列{}n b 中,由142388b b b b ⋅=⇒⋅=,又236b b +=,且公比小于1,323214,2,2b b b q b ∴==∴==,因此242211422n n n n b b q −−−⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, 由22n nn n n a b a b c +=+-,得到()(){},n n n n n n nn b a b c c a a b ⎧≤⎪=∴⎨>⎪⎩是取,n n a b 中最大值. 4()n c c n N *≤∈,4c ∴是数列{}n c 中的最小项,又412n n b −⎛⎫= ⎪⎝⎭单调递减,n a n t =+单调递增,∴当44c a =时,4n c c ≤,即44,n a c a ≤∴是数列{}n c 中的最小项,则必须满足443b a b <≤,即得44341143222t t −−⎛⎫⎛⎫<+≤⇒−<≤− ⎪⎪⎝⎭⎝⎭,当44c b =时,4n c c ≤,即4n b c ≤,4b ∴是数列{}n c 中的最小项,则必须满足445a b a ≤≤,即得44145432t t t −⎛⎫+≤≤+⇒−≤≤− ⎪⎝⎭,综上所述,实数t 的取值范围是[]4,2−−,故答案为[]4,2−−.四、解答题: 17.(1)由2cos cos tan 2sin sin B A A B A +=−得2cos cos sin 2sin sin cos B A AB A A+=−,(1分)即222cos cos cos 2sin sin sin B A A B A A +=−,()222cos cos sin sin cos sin B A B A A A ∴−=−−, ()1cos 2B A ∴+=−,(3分)()0A B π+∈,,2π3A B ∴+=,(4分) π3C =∴.(5分) (2)由6a =,π3C =,1sin 2ABC S ab C ∆== 解得2b =,(7分)22212cos 364262282c a b ab C ∴=+−=+−⨯⨯⨯=,c ∴=.(10分) 18.解: (1)122n n a S +=+,① 当2n ≥时,122n n a S −=+,②(1分) ①-②得()1122n n n n n a a S S a +−−=−=,(2分) ∴13(2)n n a a n +=≥,∴13n na a +=,(3分)∵12a =,∴21226a S =+=,∴21632a a ==也满足上式,(4分) ∴数列{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a −−=⋅=⋅.即{}n a 的通项公式为123n n a −=⨯.(5分)(2)由(1)知123n n a −=⨯,所以233n n n n nb a ==,(6分) 令211213333n n n n nT −−=++++,①(7分)得231112133333n n n n nT +−=++++,②(8分) ①-②得23121111333333n n n nT +=++++−(9分)1111331313n n n +⎛⎫− ⎪⎝⎭=−− (10分)1111233n n n +⎛⎫=−− ⎪⎝⎭ (11分) 所以323443n nn T +=−⨯.(12分) 19.解:(1)m n <;(1分)(2)设“从抽取的20位客户中随机抽取2位,至少有1位是A 组的客户”为事件M ,则()112101010220C C C 29C 38P M +==,所以从抽取的20位客户中随机抽取2位,至少有1位是A 组的客户的概率是2938;(4分) (3)题图,知A 组“驾驶达人”的人数为1人,B 组“驾驶达人”的人数为2人,(5分) 则可估计该市使用这种电动汽车的所有客户中,在年龄40岁以下的客户中随机抽取1位,该客户为“驾驶达人”的概率为110,在年龄40岁以上的客户中随机抽取1位,该客户为“驾驶达人”的概率为21105=;(6分) 依题意,X 所有可能取值为0,1,2.(7分)则()111801110525P X ⎛⎫⎛⎫==−⨯−= ⎪ ⎪⎝⎭⎝⎭,(8分)()11111311110510550P X ⎛⎫⎛⎫==−⨯+⨯−= ⎪ ⎪⎝⎭⎝⎭,(9分)()111210550P X ==⨯=,(10分) 所以随机变量X 的分布列为故X 数学期望为181313()01225505010E X =⨯+⨯+⨯=.(12分)20. 解:(1)法一:取BC AC 、的中点M N 、,连接11,,,AM MN A M A N ∵AB AC =且M 为BC 的中点,则AM BC ⊥(1分) 又∵1AA BC ⊥,1AMAA A =,且1,AM AA ⊂平面1AA M∴BC ⊥平面1AA M (2分)1A M ⊂平面1AA M ,1A M ∴⊥BC (3分)由题意可得1BB BC ⊥,则2BC == ∴222BC AC AB =+,则AB AC ⊥ ∵MN AB ∥,则MN AC ⊥(4分)又∵1AAC △为等边三角形且N 为AC 的中点,则1A N AC ⊥ 1MNA N N =,且1,MN A N ⊂平面1A MN∴AC ⊥平面1A MN1A M ⊂平面1A MN ,则1A M ⊥AC (5分)又ACBC C =,且,AC BC ⊂平面ABC∴1A M ⊥平面ABC 即1A 在底面ABC 上的射影是线段BC 中点M (6分) 法二:取BC 的中点M ,连接1,M 由=AB AC 得AM BC ⊥(1分) 又由A A BC A AAM A ⊥11,=得BC A AM⊥1平面(2分) 因为A M A AM ⊂11平面,所以BC A M ⊥1(3分) 由于11//BB AA ,1AA BC ⊥得1BB BC ⊥在1Rt BB C ∆中,2BC ===,112MC BC ==在1Rt A MC ∆中,11A M ===,(4分)同理1AM =在1A AM ∆中,22211+2A M AM A A ==,因此1A M AM ⊥(5分)又由于AM BC M =,所以1A M ⊥平面ABC 即1A 在底面ABC 上的射影是线段BC 中点M (6分)(2)如图,以M 为坐标原点,以1MC MA MA ,,所在的直线为,,x y z 轴建立空间直角坐标系,(7分)则()()()()10,0,1,0,1,0,1,0,0,1,0,0A A B C −,∴()()1111,1,0,1,0,1B A BA CA ===−(8分)设平面11A B C 的法向量(),,m x y z =,则11100m B A m CA ⎧⋅=⎪⎨⋅=⎪⎩即00x y x z +=⎧⎨−+=⎩ 令1x =,则1,1y z =−=,即()1,1,1m =−(9分) 平面111A B C 的法向量()0,0,1n =(10分) ∴13cos 33m n m n m n⋅⋅===(11分)即平面11A B C 与平面111A B C .(12分)21.解:(1)由()2,0A ,()0,1B 是椭圆()2222:10x y E a b a b+=>>的两个顶点, 得2a =,1b =,即22:14x E y +=;(3分) (2)当直线l 的斜率不存在时,直线l 与椭圆有且只有一个公共点,不成立,(4分) 所以设()11,C x y ,()22,D x y ,()33,M x y ,直线l 的斜率为k ,则(12P x x P C x =−=− 同理(22x PD =−(32x PM =−, 则33122222x x x x PMPMPC PD −−=+−−+ (5分) 设l :()12y k x −=−,而AB :12x y +=,联立解得3421k x k =+, 所以342222121k x k k −=−=++ (6分) 联立直线l 与椭圆E 方程,消去y 得:()()2224182116160k x k k x k k +−−+−=,(7分) ()()()222=82144116160k k k k k ∆⎡−⎤−+−>⎣⎦解得0k > 所以()12282141k k x x k −+=+,2122161641k k x x k −=+,(8分) 所以()()()1212121212124411222224x x x x x x x x x x x x +−+−+=−=−−−−−−++(9分) ()()2222821441218211616244141k k k k k k k k k k −−+=−=+−−−⨯+++,(11分) 所以()33122222122221x x k x x k −−+=⨯+=−−+,即2PM PM PC PD+=.(12分) 22.解:(1)()ln ()g x x n F x x x +==,定义域为()0,∞+, 21ln ()x n F x x −−=',(1分) 当10e n x −<<时,()0F x '>,当1e n x −>时,()0F x '<,所以()F x 在1e n x −=处取得极大值,也是最大值,(2分) 所以1211()e en n n F x −−+==,解得:1n =−;(3分) (2)()12e ln 1e x m x x −>−,即()3e ln 1x m x x −>−,()3ln 1e x x x m −−>,(4分) 令()()3ln 1e x x x h x −−=,定义域为()0,+∞,()3ln ln e x x x x x h x −'−+=,(5分) 令()ln ln x x x x x ϕ=−+,0x >,则()11ln 11ln x x x x x ϕ=−−+=−', 可以看出()1ln x x xϕ=−'在()0,+∞单调递减,(6分) 又()110ϕ'=>,()12ln 202ϕ=−<', 由零点存在性定理可知:()01,2x ∃∈,使得()00x ϕ'=,即001ln x x =,(7分) 当()00,x x ∈时,()0x ϕ'>,当()0,x x ∈+∞时,()0x ϕ'<, ()x ϕ在0x x =处取得极大值,也是最大值, ()()000000max 01ln ln 111x x x x x x x x ϕϕ==−+=−+>=,(8分) 1112110e e e e ϕ⎛⎫=−++=−< ⎪⎝⎭,7777775717ln ln ln 75ln 022********ϕ⎛⎫⎛⎫=−+=−=−> ⎪ ⎪⎝⎭⎝⎭, ()446ln 20ϕ=−<, 故存在101,e x x ⎛⎫∈ ⎪⎝⎭,27,42x ⎛⎫∈ ⎪⎝⎭,使得()()120,0x x ϕϕ==,(9分) 所以当()12,x x x ∈时,()0x ϕ>,当()()120,,x x x ∞∈⋃+时,()0x ϕ<,所以()3ln ln ex x x x x h x −'−+=在()12,x x x ∈上大于0,在()()120,,x x x ∞∈⋃+上小于0, 所以()()3ln 1e x x x h x −−=在()12,x x x ∈单调递增,在()()120,,,x x +∞上单调递减, 且当e x <时,()()3ln 10e x x x h x −−=<恒成立,(10分) 所以()()3ln 1ex x x h x −−=在2x x =处取得极大值,也是最大值,其中2222ln ln 0x x x x −+=, ()()22222233ln 1ln e ex x x x x h x −−−==,27,42x ⎛⎫∈ ⎪⎝⎭(11分) 令()3ln e x x x φ−=,7,42x ⎛⎫∈ ⎪⎝⎭, ()31ln e x x x x φ−'−=,当7,42x ⎛⎫∈ ⎪⎝⎭时,()31ln 0ex x x x φ−−=<', 故()7327ln 21ex φ−<<,所以实数m 的最小整数值为1. (12分)。

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。

高三第二次月考数学试卷(附答案)

高三第二次月考数学试卷(附答案)

高三第二次月考数学试卷(卷面150分,考试时间120分钟)卷Ⅰ一. 选择题:(共12小题,每小题5分共60分,每小题只有一个正确选项)1. 定义{}A B x x A x B -=∈∉且,若{}1,2,3,4,5M =,{}2,3,6N =,则N M -等于 A. M B. N C. {}1,4,5 D.{}62. 非空数集{}1,2,3,4,5S ⊆ ,且S 还满足条件:若,a S ∈则 6a S -∈ ,则符合上述条件的S 集合的个数为A. 4B. 5C. 6D. 73. 设集合{}22,A x x x R =-≤∈,{}2,12B y y x x ==--≤≤, 则()R C A B ⋂等于 A. R B. {}0x x R x ∈≠且 C. {}0 D. ∅4. 已知函数()2f x x bx c =++ 对任意实数x 都有()()1f x f x +=- ,则下面不等式成立的是 A. ()()()202f f f - B. ()()()220f f f - C. ()()()022f f f - D. ()()()202f f f -5. 函数()3,f x x x x R =+∈,当02πθ≤≤时,()()sin 10f m f m θ+-恒成立,则实数m 的取值范围是A. ()0,1B. (),0-∞C. 1,2⎛⎫-∞ ⎪⎝⎭ D. (),1-∞6. 数列{}n a 为等差数列,n S 为其n 前项的和,147a a a ++=21 ,3699a a a ++=,则9S 等于A. 15B. 40C. 45D. 50 7. 在等比数列{}n a 中,7114146,5a a a a ⋅=+=,则2010a a = A.2332或 B. 23 C. 32 D. 131或-2 8. 化简()11111121231234123n N n*+++++∈+++++++++的结果是 A. 1n n + B.21n n + C. 221n n + D. 21nn +9.已知[)1sin cos ,,tan 5αααπα+=∈且0,则的值为A. 43-B. 34-C. 34D. 4310. 函数()()sin 0y x ωω=在区间[]0,1上存在对称轴,则ω的最小值为A.4π B. 2πC. πD. 2π 11. 如果4x π≤ , ,那么函数()2cos sinf x x x =+的最小值是A.12 B. 12- C. 1- D. 12. 函数()f x 在R 上是增函数, ()0,2A ,()4,2B 是其图象上的两个点,则不等式()22f x +的解集是A. ()(),22,-∞-⋃+∞B.()2,2-C. ()(),04,-∞+∞D.()0,4二.填空题:(共4小题,每小题5分,共20分,请将答案直接填在题中的横线上)13.若y = 的定义域为R ,则a 的取值范围 . 14.已知()()l o g 2a fx a x =-在[]0,1上是减函数,则a 的取值范围是 .15. 设数列{}n a 的通项为()27n a n n N *=-∈,则1215a a a +++=16. 在ABC ∆3中,已知sinB=5,5cos 13A =,则cos C = .三.解答题:(共6小题,共70分,解答应写出文字说明,推导过程或演算步骤)17.(本题满分10分)已知向量()()sin ,0,cos ,1a x b x →→==,其中203xπ,求12a →的取值范围。

广东省深圳外国语学校2024-2025学年高三上学期第二次月考数学试题(含答案)

广东省深圳外国语学校2024-2025学年高三上学期第二次月考数学试题(含答案)

深圳外国语学校2024-2025学年度高三第一学期第二次月考数学试题试卷共4页,卷面满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,则( )A.B.C.D.2.已知命题,则命题的否定为( )A. B.C. D.3.设函数在区间上单调递减,则实数的取值范围是( )A. B. C.D.4.函数的图象大致为()A. B.C. D.5.设正实数满足,则当取得最小值时,的最大值为( )A.1B.2C.3D.46.已知函数的定义域为是偶函数,是奇函数,则的值为{{},21x A xy B y y ====+∣∣A B ⋂=(]1,2(]0,1[]1,2[]0,2:1,1p x x ∀>>p 1,1x x ∀><1,1x x ∀≤>1,1x x ∃>≤1,1x x ∃≤≤()()3x x a f x -=30,2⎛⎫⎪⎝⎭a (),1∞--[)3,0-(]0,1[)3,∞+()1cos ex x xf x -=a b c 、、2240a ab b c -+-=c ab 236a b c+-()f x (),e xy f x =+R ()3e xy f x =-()ln3f( )A.B.3C.D.7.已知三倍角公式,则的值所在的区间是( )A. B. C. D.8.已知函数,若对于任意的实数与至少有一个为正数,则实数的取值范围是( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是()A.若函数定义域为,则函数的定义域为B.若定义域为的函数值域为,则函数的值域为C.函数与的图象关于直线对称D.成立的一个必要条件是10.若,则下列不等式一定成立的是( )A. B.C. D.11.已知定义在上的偶函数和奇函数满足,则( )A.的图象关于点对称B.是以8为周期的周期函数C.D.三、填空题:本题共3小题,每小题5分,共15分.731031133sin33sin 4sin ααα=-sin10 11,43⎛⎫⎪⎝⎭11,54⎛⎫ ⎪⎝⎭11,65⎛⎫ ⎪⎝⎭11,76⎛⎫ ⎪⎝⎭()()()22241,f x mx m x g x mx =--+=(),x f x ()g x m ()0,2()0,8[)2,8(),0∞-()f x []1,3()21f x +[]0,1R ()f x []1,5()21f x +[]0,215xy ⎛⎫= ⎪⎝⎭5log y x =-y x =a b >1a b ->log 1a b >a b <1ab a b+>+11a b a b ->-11a b a b+<+R ()f x ()g x ()()21f x g x ++-=()f x ()2,1()f x ()()8g x g x +=20241(42)2025k f k =-=∑12.已知函数,则__________.13.已知函数且,若函数的值域是,则实数的取值范围是__________.14.若,则的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设函数(1)求曲线在点处的切线方程;(2)设,若函数有三个不同零点,求c 的取值范围.16.(本小题满分15分)记的角的对边分别为,已知.(1)求;(2)若点是边上一点,且,求的值.17.(本小题满分15分)如图,四棱锥中,底面是边长为2的菱形,,已知为棱的中点,在底面的投影为线段的中点,是棱上一点.(1)若,求证:平面;(2)若,确定点的位置,并求二面角的余弦值.18.(本小题满分17分)已知函数.(1)函数与的图像关于对称,求的解析式;()cos2f x x =066lim x f x f xππ∆→⎛⎫⎛⎫+∆-⎪ ⎪⎝⎭⎝⎭=∆()223,2(06log ,2a x x x f x a x x ⎧-++≤=>⎨+>⎩1)a ≠()f x (],4∞-a ()e 1xa xb ≥++()1a b +()32.f x x ax bx c =+++().y f x =()()0,0f 4a b ==()f x ABC V ,,A B C ,,a b c sin sin sin A B Cb c a b-=++A D BC ,2AB AD CD BD ⊥=sin ADB ∠P ABCD -ABCD π3ABC ∠=E AD P H EC M PC 2CM MP =PE ∥MBD ,PB EM PC EC ⊥=M B EM C --()()()2ln 1cos 2g x x x =--+--()f x ()g x 1x =-()f x(2)在定义域内恒成立,求a 的值;(3)求证:,.19.(本小题满分17分)设集合,其中.若集合的任意两个不同的非空子集,都满足集合的所有元素之和与集合的元素之和不相等,则称集合具有性质.(1)试分别判断在集合与是否具有性质P ,不必说明理由;(2)已知集合具有性质P .①记,求证:对于任意正整数,都有;②令,,求证:;(3)在(2)的条件下,求的最大值.()1f x ax -≤2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*n ∈N {}()12,,,3n S a a a n =≥ *,1,2,,i a i n ∈=N S A B 、A B S P {}11,2,3,4S ={}21,2,4,8S ={}12,,,n S a a a = 121kik i aa a a ==+++∑L k n ≤121kk i i a =≥-∑12i i i d a -=-1kk ii D d==∑0k D ≥12111na a a +++深圳外国语学校2025届高三第二次月考数学答案一、选择题:题号1234567891011答案ACDADDCBACBDABC二、填空题12. 13.14.三、解答题15.解:(1)由,得.因为,,所以曲线在点处的切线方程为.(2)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,⎫⎪⎪⎭e2()32f x x ax bx c =+++()232f x x ax b =++'()0f c =()0f b '=()y f x =()()0,0f y bx c =+4a b ==()3244f x x x x c =+++()2384f x x x =++'()0f x '=23840x x ++=2x =-23x =-()f x ()f x '(),-∞+∞x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x '+0-0+()f x Zc]3227c -Z0c >32027c -<存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.16.(1)由及正弦定理得,整理得,所以由余弦定理得:因为,所以.(2),记,则.在中,.①在中,由正弦定理得.②由①②及得,解得.由,解得.17.(1)设,因为底面是边长为2的菱形,所以,对角线BD 平分,又为棱的中点,所以,在中,根据角平分线性质定理得,又,所以,所以,,平面,且平面平面.()14,2x ∈--222,3x ⎛⎫∈--⎪⎝⎭32,03x ⎛⎫∈- ⎪⎝⎭()()()1230f x f x f x ===()f x 320,27c ⎛⎫∈ ⎪⎝⎭()3244f x x x x c =+++sin sin sin A B C b c a b -=++a b cb c a b-=++222a b c bc =++2221cos ,22b c a A bc +-==-()0,πA ∈2π3A =π6DAC BAC BAD ∠=∠-∠=ADB α∠=π6C DAC αα∠=-∠=-Rt ABD V cos AD BD α=ADC V ππsinsin 66AD CDα=⎛⎫- ⎪⎝⎭2CD BD =cos 2ππsin sin 66αα=⎛⎫- ⎪⎝⎭4=tan α=22πtan cos 1,0,2αααα⎛⎫=+=∈ ⎪⎝⎭sin α=sin ADB ∠=BD CE N ⋂=ABCD CD AB =ADC ∠E AD 2CD AB DE ==ADC V 2CN CDNE DE==2CM MP =2CM MP =2CN CMNE MP==MN ∴∥PE PE ⊄MBD MN ⊂,MBD PE ∴∥MBD(2)平面,且平面,,因为,所以,在中,,,所以是等边三角形,又为棱的中点,所以,平面,平面,所以平面平面,又平面平面,平面ABCD ,平面,又平面,,又,平面,平面,且平面,.因为P 在底面的投影H 为线段的中点,所以,又所以为等边三角形,故为中点,所以在底面上的投影为的中点.在中,,,以为原点,分别以为轴,以过点且与平面垂直的直线为轴建立空间直角坐标系,所以,,设是平面的一个法向量,则,令,则,即,平面,是平面的一个法向量,PH ⊥ ABCD BC ⊂ABCD PHBC ∴⊥π3ABC∠=2π3BCD ∠=ACD V CD AB =π3ABC ∠=ACD V E AD BC CE ⊥PH ⊥ ABCD PH⊂PCE PCE ⊥ABCD PCE ⋂ABCD =CE BC ⊂BC ∴⊥PEC EM ⊂PEC BC EM ∴⊥PB EM ⊥ ,,PB BC B PB BC ⋂=⊂PBC EM ∴⊥PBC PC ⊂PBC EM PC ∴⊥EC PC PE =PC CE =PCE V MPC M ABCD CH CDE V CE ===3,2CEAD PH ⊥== C ,CB CE ,x y C ABCD z ()()()30,0,0,2,0,0,,4C B E M ⎛⎫⎪ ⎪⎝⎭()32,,4EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭(),,n x y z = EBM 0203004n EB x n ME y z ⎧⋅=⇒=⎪⎨⋅=⇒-=⎪⎩ 2y =x z ==2,n =BC ⊥ PEC ()2,0,0CB ∴=PEC因为二面角是一个锐角,所以二面角18.(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,则,则,故,;(2)令,,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,,下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,cos ,n CB n CB n CB⋅∴===⋅B EMC --B EM C --()f x ()00,x y 1x =-()002,x y --()g x 000()(2)y f x g x ==--0000()(2)2ln(1)cos f x g x x x =--=++0(1)x >-()()2ln 1cos f x x x =++()1x >-()()()12ln 1cos 1h x f x ax x x ax =--=++--()1x >-()0h x ≤(1,)x ∈-+∞()00h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111x x x x ϕ'=-=-++()1,0x ∈-()0x ϕ'>()x ϕ()1,0-(0,)x ∈+∞()0x ϕ'<()x ϕ()0,∞+()()00x ϕϕ≤=()ln 1x x ≤+(1,)-+∞cos 1x ≤2a =()()()()12ln 1cos 10h x f x ax x x x ⎡⎤=--=+-+-⎦≤⎣2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤-⎪ ⎪⎝⎭⎝⎭1122f k k⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ()ln 1x x ≤+()1,-+∞ln 1x x ≤-()0,∞+1x =(0,1)1nx n =∈+*N n ∈1ln1111n n n n n -<-=+++即,则,综上,,即证19.(1)对于集合,因为,故集合的元素和相等,故不具有性质.对于,其共有15个非空子集:,,各集合的和分别为:,,它们彼此相异,故具有性质.(2)①因为具有性质,故对于任意的,也具有性质,否则有两个非空子集,它们的元素和相等,而也是的子集,故不具有性质,矛盾.注意到共有个非空子集,每个子集的元素和相异,且子集的和最大为,最小为,故.②因为,故,由①可得,故.(3)不妨设,设,则,由(2)可得,且.而11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑{}11,2,3,4S =1423+=+{}{}1,4,2,31S P {}21,2,4,8S ={}{}{}{}{}{}{}{}{}{}8,,,,,,1,2481,21,41,82,42,,,84,{}{}{}{}{}1,2,41,2,81,4,82,4,81,2,4,8,,,,59610121,2,4,8,3,,,,,7,11,13,14,152S P {}12,,,n a a a P k {}12,,,k a a a P {}12,,,k a a a ,A B ,A B {}12,,,n a a a {}12,,,n a a a P {}12,,,k a a a 21k -12k a a a +++ 1a 1221kk a a a +++≥- 12i i i d a -=-()112122k k k D a a a -=+++-+++ ()1221k k a aa =+++-- ()12210kk a a a +++--> 0k D ≥12n a a a <<< 1121112122111112112222n n n n n n a a a a a a a a a ---⎛⎫+++-+++=+++ ⎪--⎝⎭- 112i i ic a -=10i i c c +->12i i i d a -=-10kk ii D d==≥∑112112211222122n n n n n n a a a c d c d c d a a a ---+++=+++-- ()()()112213321n n n c D c D D c D D c D D -=+-+-++-,故,当且仅当时等号成立,即此时任意的正整数,即故此时时等号成立,故的最大值为.()()()121232110n n n n n c c D c c D c c D c D --=-+-++-+≥ 111211*********n n n a a a --+++≤+++=- 120n D D D ==== k 1221kk a a a ++=-1111,222kk k k a a --==-=12k k a -=12111n a a a +++ 1122n --。

福建省龙岩第一中学2022-2023学年高三上学期第二次月考数学试题(解析版)

福建省龙岩第一中学2022-2023学年高三上学期第二次月考数学试题(解析版)

2023届福建省龙岩第一中学高三上学期第二次月考数学试题一、单选题1.已知{}1,0,1,3,5A =-,{}230B x x =-<,则R A B =ð( ) A .{}0,1 B .{}1,1,3-C .{}1,0,1-D .{}3,5【答案】D【分析】由题意求出B ,R B ð,由交集的定义即可得出答案.【详解】因为{}230B x x =-<32x x ⎧⎫=<⎨⎬⎩⎭, 所以R B =ð32x x ⎧⎫≥⎨⎬⎩⎭,所以A R B =ð{}3,5.故选:D. 2.若5:11xp x -≤+,则p 成立的一个充分不必要条件是( ) A .21x -<≤- B .12x -≤≤ C .15x ≤≤ D .25x <<【答案】D【分析】先求出分式不等式的解集,进而结合选项根据充分不必要条件的概念即可求出结果. 【详解】因为511xx -≤+,即51011x x x x -+-≤++,因此4201x x -≤+等价于()()42+10+10x x x -≤≠⎧⎨⎩,解得2x ≥或1x <-,结合选项可知p 成立的一个充分不必要条件是25x <<, 故选:D.3.已知函数()()2ln 16f x x x =++-,则下列区间中含()f x 零点的是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】C【分析】分别求出()0f 、()1f 、()3f 、()4f 的值,即可判断其正负号,利用零点存在定理则可选出答案.【详解】由题意知:()0ln1660f =-=-<,()231ln2+16ln3+462ln 32ln0e f f =-<-==-=<(), ()ln3+96ln3303f =-=+>,()ln4+166ln 40041f =-=+>. 由零点存在定理可知()f x 在区间()2,3一定有零点. 故选:C.4.如图是杭州2022年第19届亚运会会徽,名为“潮涌”,钱塘江和钱江潮头是会徽的形象核心,绿水青山展示了浙江杭州山水城市的自然特征,江潮奔涌表达了浙江儿女勇立潮头的精神气质,整个会徽形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4【答案】C【分析】通过弧长比可以得到OA 与OB 的比,接着再利用扇形面积公式即可求解 【详解】解:设AOD θ∠=,则12,l OA l OB θθ=⋅=⋅,所以122l OAl OB==,即2OA OB =, 所以12221222111222231122OA l OB l OB l OB l S S OB l OB l ⋅-⋅⋅-⋅===⋅⋅, 故选:C5.已知22sin sin ,cos cos 33αβαβ-=--=,且π,0,2αβ⎛⎫∈ ⎪⎝⎭,则ta n()αβ-的值为( )AB.CD.【答案】B【分析】将条件的两个式子平方相加可得()8922cos αβ--=,然后可得()5os 9c αβ-=,再由2sin sin 03αβ-=-<,π,0,2αβ⎛⎫∈ ⎪⎝⎭,可得()π,02αβ⎛⎫-∈- ⎪⎝⎭,从而可求出()in s αβ-=,由商式关系可求得()an t αβ-=【详解】由2sin sin 3αβ-=-,得22sin 2sin sin sin 49ααββ-+=,由2cos cos 3αβ-=,得22cos 2cos cos cos 49ααββ-+=,两式相加得,()8922cos αβ--=,所以可得()5os 9c αβ-=,因为2sin sin 03αβ-=-<,π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以()π,02αβ⎛⎫-∈- ⎪⎝⎭,所以()in s αβ-=()an t αβ-=故选:B6.已知()()2222cos 1ln 4f x x x =-⋅,则函数()f x 的部分图象大致为( )A .B .C .D .【答案】A【分析】利用二倍角余弦公式化简()2f x 的表达式,令()20t x t =≠,可得()f x 的解析式,再判断函数()f x 的奇偶性,可排除选项C 、D ,最后根据0x +→时,()0f x <即可求解.【详解】解:()()()()22222cos 1ln 4cos 2ln 2f x x x x x =-⋅=⋅,令()20t x t =≠,则()2cos ln f t t t =⋅()0t ≠,所以()2cos ln f x x x =⋅()0x ≠,定义域关于原点对称,因为()()()()22cos ln cos ln f x x x x x f x -=-⋅-=⋅=,所以()f x 为偶函数,图象关于y 轴对称,故排除选项C 、D ;又0x +→时,因为2cos 0,ln 0x x ><,所以()2cos ln 0f x x x =⋅<,所以排除选项B ,选项A 正确; 故选:A.7.已知()22231,0log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,函数()()g x f x b =+有四个不同的零点1234,,,x x x x ,且满足:1234x x x x <<<.则下列结论中不正确的是( ) A .10b -<< B .341x x =C .3112x ≤< D .1232x x +=-【答案】A【分析】作出()f x 图象,利用函数有四个不同的交点求出10b -≤<,A 错误; 根据二次函数的对称轴求出1232x x +=-可判断D ;数形结合结合对数运算得到341x x =可判断B ;数形结合求出231log 0x -≤<,解得3112x ≤<,可判断C. 【详解】如图,作出()f x 图象,若y =-b 与()y f x =有四个交点,需01b <-≤,则10b -≤<,故A 错误;这四个交点的横坐标依次为1234,,,x x x x ,因为抛物线2231y x x =++的对称轴为34x =-,所以1232x x +=-,故D 正确;因为2324log log x x -=,即2324log log 0x x +=,所以341x x =,故B 正确;()(]323log 0,1f x x =-∈,即231log 0x -≤<,所以3112x ≤<,故C 正确.故选:A.8.已知13sin 2,ln 2,2a b c -===,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c <<C .b a c <<D .b c a <<【答案】D【分析】判断sin2和2πsin3的大小,比较a 与34、b 与34、c 与34的大小可判断a 与b 大小关系及b 与c 大小关系,判断aca 与c 大小关系,从而可判断a 、b 、c 大小关系.【详解】2π3sin2sin34a =>=>, 4333344443e e 2e 2lne ln24⎛⎫=>⇒>⇒=> ⎪⎝⎭,即b 34<,∴a >b ;∵3131322264-⎛⎫== ⎪⎝⎭,3327464⎛⎫= ⎪⎝⎭,∴13324->,c b ∴>;∵62764=⎝⎭,6131162464-⎛⎫== ⎪⎝⎭,132->,a c ∴>; a cb ∴>>. 故选:D .【点睛】本题关键是利用正弦函数的值域求出sin2的范围,以34两个值作为中间值,比较a 、b 、c 与中间值的大小即可判断a 、b 、c 的大小.二、多选题9)A .2252cos cos 1212ππ⎛⎫- ⎪⎝⎭ B .1tan151tan15+︒-︒C.cos15︒︒ D .16sin10cos20cos30cos40︒︒︒︒【答案】ABD【分析】对于A ,采用降幂公式,结合特殊角三角函数,可得答案; 对于B ,根据特殊角三角函数,结合正切的和角公式,可得答案; 对于C ,根据辅助角公式,结合特殊角三角函数,可得答案; 对于D ,根据积化和差公式,结合特殊角三角函数,可得答案.【详解】对于A ,2251cos 1cos 55662cos cos 2cos cos12122266ππππππ⎛⎫++ ⎪⎛⎫-=-=- ⎪ ⎪⎝⎭⎪⎝⎭=,故A 正确; 对于B ,()1tan15tan 45tan15tan 4515tan 6031tan151tan 45tan15++==+==--,故B 正确;对于C ,13cos153sin152cos15sin1522⎛⎫-=- ⎪ ⎪⎝⎭()()()2sin30cos15cos30sin152sin 30152sin152sin 4530=-=-==-()212sin 45cos30cos 45sin 302222⎛⎫=-== ⎪ ⎪⎝⎭C 错误; 对于D ,16sin10cos 20cos30cos 40 ()116sin 30sin 10cos30cos 402⎡⎤=⨯+-⎣⎦ 8sin30cos30cos 408sin10cos30cos 40=-()18408sin 40sin 20cos 402⎡⎤=-⨯+-⎣⎦404sin 40cos 404sin 20cos 40=-+()1402sin804sin 60sin 202⎡⎤=-+⨯+-⎣⎦402sin8032sin 20=-+-404sin50cos303=-+ )cos 40sin 503=-+)cos 40cos 403=-+=D 正确;故选:ABD.10.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥ C .2216a b +≥ D .228a b +≤【答案】AB【分析】根据基本不等式进行逐一判断即可.【详解】A :因为0a >,0b >,所以4a b ab +≥≤,当且仅当2a b ==时取等号,故本选项正确;B :因为0a >,0b >,所以有11111()(2)(21444a b b a a b a b a b b a ++=+=++≥+=+,当且仅当2a b ==时取等号,故本选项正确;C :因为228a b +≥=,当且仅当2a b ==时取等号,所以本选项不正确;D :因为0a >,0b >,所以有22282a b a b +≤≤+≥,当且仅当2a b ==时取等号,所以本选项不正确,故选:AB11.已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则( )A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,则12x x -的最大值为2π【答案】AC【分析】根据题意得6πϕ=-,()3sin 26f x x π⎛⎫=- ⎪⎝⎭,再结合三角函数的图像性质依次分析各选项即可得答案.【详解】解:因为函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,所以,2,Z 32k k ππϕπ⨯+=+∈,解得,Z 6k k πϕπ=-+∈,因为22ππϕ-<<,所以6πϕ=-,即()3sin 26f x x π⎛⎫=- ⎪⎝⎭,所以,对于A 选项,函数3sin 212f x x π⎛⎫+= ⎪⎝⎭,是奇函数,故正确;对于B 选项,当,32x ππ⎡⎤∈⎢⎥⎣⎦时,25,626x πππ-⎡⎤∈⎢⎥⎣⎦,由于函数sin y x =在5,26ππ⎡⎤⎢⎥⎣⎦上单调递减,所以函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,故错误;对于C 选项,函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像对应的解析式为()3sin 226g x x a π⎛⎫=-- ⎪⎝⎭,若()g x 图像关于6x π=对称,则22,Z 662a k k ππππ⨯--=+∈,解得,Z 62k a k ππ=-+∈, 由于0a >,故a 的最小值是3π,故正确; 对于D 选项,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,672,66x πππ⎡⎤⎢⎥⎣⎦-∈,故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=, 所以,12x x -的最大值为3π,故错误.故选:AC12.已知1a b >>,则( ) A .ln ln a b b a > B .11ea ba b-<C .11e b a ->D .若m b b n =+,则m a a n >+ 【答案】BC【分析】根据各个选项中的不等式,通过构造新函数,利用导数判断其单调性,再结合特例法进行判断即可.【详解】因为1a b >>,所以ln ln ln ln b aa b b a b a>⇔>, 设函数ln ()(1)xf x x x=>,21ln ()x f x x -'=,当(1,e)x ∈时,()0f x '>,函数()f x 单调递增, 当(e,)x ∈+∞时,()0f x '<,函数()f x 单调递减, 所以A 选项错误;因为1a b >>,所以由111111eln ln ln ln a ba ab a b b a b a b -<⇔-<-⇔->-, 设函数1()ln g x x x =-,211()g x x x '=+,当,()0x ∈+∞时,()0g x '>,函数()g x 单调递增,所以B 选项正确;因为111eln 1ba a b->⇔>-,设函数1()ln 1h a a a ⎛⎫=-- ⎪⎝⎭,所以21()a h a a -'=,当()1,a ∞∈+时,()0'>h a ,函数()h a 单调递增, 当()0,1a ∈时,()0h a '<,函数()h a 单调递减,所以()(1)0h a h >=,即11ln 10ln 1a a a a ⎛⎫-->⇒>- ⎪⎝⎭,因为1a b >>,所以111111a b a b <⇒->-,因此11ln 11a a b>->-,所以C 选项正确. 令2,0b m ==,则有1n =-,又令3a =,所以01,2m a a a n ==+=, 显然不成立,所以D 选项错误, 故选:BC【点睛】方法点睛:不等式是否成立可以通过构造函数利用导数的性质来进行判断.三、填空题13.已知角θ的终边经过点(2,1)P -,则22cos 2sin cos 2θθθ-=___________.【答案】23【分析】利用三角函数定义求出tan θ,再利用二倍角公式化简,结合齐次式法计算作答.【详解】因角θ的终边经过点(2,1)P -,则1tan 2θ=-,所以2222222222112()cos 2sin cos 2sin 12tan 221cos 2cos sin 1tan 31()2θθθθθθθθθ-⨯----====----. 故答案为:2314.函数()xe f x x =的单调递减区间是__________.【答案】和(或写成和)【详解】试题分析:由题意得22(1)()x x x xe e e x f x x x-='-=,令()0f x '<,解得0x <或01x <<,所以函数的递减区间为和.【解析】利用导数求解函数的单调区间.15.已知函数(1)y f x =+的图象关于直线3x =-对称,且对R x ∀∈都有()()2f x f x +-=,当2(]0,x ∈时,()2f x x =+.则(2022)f =___________. 【答案】2-【分析】根据给定条件,推理论证出函数()f x 的周期,再利用周期性计算作答. 【详解】因函数(1)y f x =+的图象关于直线3x =-对称,而函数(1)y f x =+的图象右移1个单位得()y f x =的图象,则函数()y f x =的图象关于直线2x =-对称,即(4)()f x f x --=,而对R x ∀∈都有()()2f x f x +-=,则(4)()2f x f x --+-=,即R x ∀∈,(4)()2f x f x +=-+,有(8)(4)2f x f x +=-++[()2]2()f x f x =--++=,因此函数()y f x =是周期函数,周期为8,又当2(]0,x ∈时,()2f x x =+, 所以(2022)(25382)(2)2(2)242f f f f =⨯-=-=-=-=-. 故答案为:2-16.已知函数()sin cos (0,0)f x x a x a ωωω=+>>图像的两条相邻对称轴之间的距离小于,3f ππ⎛⎫= ⎪⎝⎭()6f x f π⎛⎫≤⎪⎝⎭,则ω的最小值为___________. 【答案】13【分析】先由对称轴间的距离确定了1ω>,再利用()6f x f π⎛⎫≤ ⎪⎝⎭得到2,Z 62k k πωπϕπ+=+∈,依次利用诱导公式与基本关系式求得tan 6πω⎛⎫⎪⎝⎭、cos 6πω⎛⎫ ⎪⎝⎭、sin 6πω⎛⎫⎪⎝⎭的a 关于表达式,求出a 的值,进而得到121,Z k k ω=+∈,即可得到结果. 【详解】()()sin cos f x x a x x ωωωϕ=+=+,tan a ϕ=, 因为两条相邻对称轴之间的距离小于π,即2T π<,故22T ππω=<,所以1ω>, 因为()f x 在6x π=处取得最大值,所以2,Z 62k k πωπϕπ+=+∈,即2,Z 26k k ππωϕπ=+-∈,所以1tan tan 2tan 2626tan 6k a ππωππωϕππω⎛⎫⎛⎫=+-=-== ⎪ ⎪⎛⎫⎝⎭⎝⎭ ⎪⎝⎭, 所以1tan 6a πω⎛⎫= ⎪⎝⎭,因为3f π⎛⎫= ⎪⎝⎭3πωϕ⎛⎫+=⎪⎝⎭,即sin 3πωϕ⎛⎫+= ⎪⎝⎭所以sin sin 2sin cos 3326266k πωπωππωππωπωϕπ⎛⎫⎛⎫⎛⎫⎛⎫+=++-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin tan cos 666πωπωπω⎛⎫⎛⎫⎛⎫=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又2222sin cos 166πωπω⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,解得23a =,又0a >,所以a =1sin 62πω⎛⎫= ⎪⎝⎭,又tan 06πω⎛⎫> ⎪⎝⎭,所以2,Z 66k k πωππ=+∈,解得121,Z k k ω=+∈,又1ω>,所以ω的最小值为13.故答案为:13.四、解答题17.已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,且满足2225,sin 2sin 8b c a bc C B +-==. (1)求cos A ;(2)若ABC 的周长为6ABC 的面积.【答案】(1)516;(2【解析】(1)由余弦定理可求得cos A ;(2)根据正弦定理可得2c b =,再由已知和余弦定理可求得2b =,根据三角形的面积可求得答案.【详解】解:(1)因为22258b c a bc +-=,所以2225cos 216b c a A bc +-==;(2)因为sin 2sin C B =,所以2c b =.由余弦定理得2222152cos 4a b c bc A b =+-=,则a =,因为ABC 的周长为636b =2b =,所以ABC 的面积为122b b ⨯⨯【点睛】方法点睛:(1)在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件;(2)如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件;(3)如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.(4)与三角形有关的最值问题,我们可以利用基本不等式来求最值或利用正弦定理把边转化为关于角的三角函数式,再利用三角变换和正弦函数、余弦函数的性质求最值或范围.18.已知函数()2ππ2sin sin cos cos 44f x x x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的对称中心,并求当π0,2x ⎛⎫∈ ⎪⎝⎭时,()f x 的值域;(2)若函数()g x 的图像与函数()f x 的图像关于y 轴对称,求()g x 在区间()0,π上的单调递增区间.【答案】(1)对称中心:π1π,622k ⎛⎫-+ ⎪⎝⎭,k ∈Z ,值域:12⎛⎤- ⎥⎝⎦(2)5π11π,1212⎛⎫ ⎪⎝⎭【分析】(1)根据三角恒等变换,化简函数()f x ,再结合正弦型函数的对称中心公式,即可得到对称中心,结合正弦函数的图像即可求得其值域.(2)由(1)中()f x 的解析式,根据对称变换即可得到函数()g x 的解析式,再结合正弦型函数的单调区间即可求得结果.【详解】(1)因为函数()2ππ2sin sin cos cos 44f x x x x x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos x x x x x x ⎫=+⎪⎪⎝⎭⎝⎭()221cos 2cos sin 22xx x x +=-+π1232x ⎛⎫++ ⎪⎝⎭令π2π,3x k k +=∈Z ,解得ππ62k x =-+,即对称中心π1π,622k k ⎛⎫-+∈ ⎪⎝⎭Z ,当π0,2x ⎛⎫∈ ⎪⎝⎭时,则ππ4π2,333x ⎛⎫+∈ ⎪⎝⎭,再结合三角函数图像可得()12f x ⎛⎤∈- ⎥⎝⎦所以,函数对称中心:π1π,622k ⎛⎫-+ ⎪⎝⎭,k ∈Z ,值域:12⎛⎤- ⎥⎝⎦.(2)因为函数()g x 的图像与函数()f x 的图像关于y 轴对称,则()()π1232g x f x x ⎛⎫=-=-++ ⎪⎝⎭,令ππ3π2π22π232k x k +≤-+≤+,k ∈Z ,解得7ππππ,1212k x k k -+≤≤-+∈Z 当1k =时,即为5π11π,1212⎛⎫ ⎪⎝⎭所以当()0,πx ∈时,()g x 的单调递增区间:5π11π,1212⎛⎫⎪⎝⎭.19.为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,决定近期投放市场,根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表:(1)根据上表数据,从下列函数中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系并说明理由:①(0)y ax b a =+≠,②()20y ax bx c a =++≠,③()log 0,0,1b y a x a b b =≠>≠,④(0)ay b a x=+≠; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(3)利用你选取的函数,若存在()10,x ∈+∞,使得不等式()010f x k x -≤-成立,求实数k 的取值范围.【答案】(1)选择()20y ax bx c a =++≠,理由见解析(2)当该纪念章上市10天时,市场价最低,最低市场价为每枚70元 (3)k ≥【分析】(1)由表格数据分析变量x 与变量y 的关系,由此选择对应的函数关系;(2)由已知数据求出函数解析式,再结合函数性质求其最值;(3)不等式可化为()17010210x k x -+≤-,由条件可得()min 17010210x k x ⎡⎤-+≤⎢⎥-⎣⎦,利用函数的单调性求()17010210y x x =-+-的最小值,由此可得k 的取值范围. 【详解】(1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数(0)y ax b a =+≠,()log 0,0,1b y a x a b b =≠>≠和(0)ay b a x=+≠在(0,)+∞上显然都是单调函数,不满足题意,故选择()20y ax bx c a =++≠.(2)把()2,102,()6,78,()20,120分别代入2y ax bx c =++,得42102,36678,40020120,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得12a =,10b =-,120c = ∴()221110120107022y x x x =-+=-+,,()0x ∈+∞. ∴当10x =时,y 有最小值,且min 70y =.故当该纪念章上市10天时,市场价最低,最低市场价为每枚70元. (3)令()()()1701010210f xg x x x x ==-+--(10,)x ∞∈+, 因为存在()10,x ∈+∞,使得不等式()0g x k -≤成立, 则()min k g x ≥.又()()17010210g x x x =-+-在(10,10+上单调递减,在()10++∞上单调递增,∴ 当10x =+()g x 取得最小值,且最小值为(10g +=∴k ≥20.己知函数21()2ln (21)(0)2f x x ax a x a =-+->.(1)若曲线(=)y f x 在点(1,(1))f 处的切线经过原点,求a 的值;(2)设2()2g x x x =-,若对任意(0,2]s ∈,均存在(0,2]t ∈,使得()()f s g t <,求a 的取值范围.【答案】(1)=4a ; (2)(0,1ln 2)-.【分析】(1)利用导数的几何意义求切线方程(含参数a ),由切线过原点求出a 的值; (2)利用导数研究()f x 的单调性并求出(0,2]上的最大值,由二次函数性质求()g x 在(0,2]上的最大值,根据已知不等式恒(能)成立求参数a 的范围.【详解】(1)由21()2ln (21)(0)2f x x ax a x a =-+->,可得2()21f x ax a x '=-+-.因为(1)2211f a a a '=-+-=+,13(1)21122f a a a =-+-=-,所以切点坐标为3(1,1)2a -,切线方程为:()311(1)2a y a x ⎛⎫--=+- ⎪⎝⎭, 因为切线经过(0,0),所以3112aa -=+,解得=4a . (2)由题知()f x 的定义域为(0,)+∞,21()[(21)2]f x ax a x x'=----,令()f x '=2(21)20ax a x ---=,解得1x a=-或=2x , 因为0,a >所以10a-<,所以12a-<, 令()0f x '>,即2(21)20ax a x ---<,解得:12x a-<<,令()0f x '<,即2(21)20ax a x --->,解得:1x a<-或2x >,所以()f x 增区间为(0,2),减区间为(2,)+∞.因为()22()211g t t t t =-=--,所以函数()g t 在区间(0,2]的最大值为0, 函数()f s 在(0,2)上单调递增,故在区间(0,2]上max ()(2)2ln 222f s f a ==+-, 所以2ln 2220a +-<,即ln 210a +-<,故1ln 2a <-, 所以a 的取值范围是(0,1ln 2)-.21.如图,在三棱柱111ABC A B C -中,1112,,AB AC AA AB AC A AB A AC ===⊥∠=∠,D 是棱11B C 的中点.(1)证明:1AA BC ⊥;(2)若三棱锥11B A BD -1A BD 与平面11CBB C 所成锐二面角的余弦值.【答案】(1)证明见解析【分析】(1)作出辅助线,由三线合一证明线线垂直,进而证明线面垂直,得到BC ⊥平面1AAO ,从而证明1AA BC ⊥;(2)作出辅助线,由三棱锥的体积求出1A H =用空间向量求解二面角;方法二:作出辅助线,找到二面角的平面角,再求解余弦值. 【详解】(1)取BC 中点O ,连接AO ,1AO ,1AC,因为AB AC =,所以AO BC ⊥,因为11A AB A AC ∠=∠,11,AB AC AA AA ==,所以11A AB A AC ≅,所以11A B AC =,所以1AO BC ⊥, 因为1AOAO O =,1,AO AO ⊂平面1AAO , 所以BC ⊥平面1AAO , 因为1AA ⊂平面1AAO , 所以1AA BC ⊥;(2)连接OD ,则平面1AAO 即为平面1AA DO , 由(1)知BC ⊥平面1AA DO ,因为BC ⊂平面ABC ,且BC ⊂平面11BCC B , 故平面1AA DO ⊥平面ABC ,平面1AA DO ⊥平面11BCC B ,过O 作1OM A D ⊥于M ,则OM ⊥平面ABC ,过1A 作1A H OD ⊥于H ,则1A H ⊥平面11BCC B ,因为11DO BB AA ∥∥知DO BC ⊥,在ABC中:2,AB AC BC ===所以1112BDB S DB DO =⋅△所以111111113B A BD A BDB BDB A A V V S h --==⋅==△,所以11A A H h = 法一:设MOD α∠=,则1DA H α∠=,在1Rt A HD △中11cos A H A D α===所以sin cos DM DO OM OD αα=⋅==⋅=又1A D M 为线段1A D 的中点,以O 为原点,分别以,,OA OB OM 分别为x ,y ,z 轴正方向建立空间直角坐标系,1(0,A B C A ⎝⎭,1,2222B D ⎛⎛ ⎝⎭⎝⎭, 设面1A BD 的法向量为()1111,,x n y z =,则有111111*********n BA xn BD x⎧⋅==⎪⎪⎨⎪⋅=-=⎪⎩,两式相减得:10x =,所以110=,令12z =,可得:1y = 所以1(0,7,2)n =,设面11CBB C 的法向量为()2222,,n x y z =,则有221122220202n CB n CB ⎧⋅==⎪⎨⋅=-=⎪⎩, 解得:20y =,令21z =,解得:2x =所以2(7,0,1)n=, 设锐二面角为θ,则有1212cos 4n n n n θ⋅===+⋅. 法二:过H 做HE BD ⊥,连接1A E ,1A H ⊥面11BCC B,1A H DB ∴⊥,则DB ⊥面1AHE ,1A E BD ∴⊥,则1A EH ∠即为所求二面角.在1Rt A DH △中,11A H A D =12DH =,在Rt DOB 中,2,DO OB DB == 由RtRt DEHDOB 可得:HE DHOB DB=,HE ∴=,则1A E =11cos HE A EH A E ∴∠===22.己知函数()e sin 1(0)x f x a x a =-->在区间(0,)π内有唯一极值点1x . (1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)∈+∞a (2)证明见解析【分析】(1)根据极值点的定义,求导,进而求导函数的零点,研究零点左右与零大小关系,可得答案;(2)由(1)明确函数的单调区间,分别在两个单调区间上,利用零点存在性定理,证明零点唯一存在,根据单调性证明不等式成立. 【详解】(1)()e cos x f x a x '=-,①当01a <≤时,因为()0,x π∈,所以cos 1a x <,1e e x π<<,()0f x '>,()f x 在()0,π上单调递增,没有极值点,不合题意,舍去;②当1a >时,令()=()g x f x ',则()e sin x g x a x '=+,因为()0,x π∈,所以()0g x '>,所以()f x '在()0,π上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()f x '在()0,π上有唯一零点1x ,且10,2x π⎛⎫⎪⎝⎭∈,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在()0,π上有唯一极值点,符合题意. 综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10f x <,又因为()e 10f ππ=->, 所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x xf x a x a x x =--=--,由(1)知()10f x '=,所以11e cos x a x =,则()112112e 2e sin 1x x f x x =--,构造2()e 2e sin 1,0,2t tp t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t tp t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e c o s s i n t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】在利用导数证明不等式成立时,一定明确单调区间,在同一单调区间上,由函数值的大小关系,可得自变量的大小关系,探究函数的单调性,可通过研究导数过着导数中部分代数式所构成函数的单调性,求其最值,可得函数的单调性.。

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。

2022-2023学年福建省福州格致中学高三上学期第二次月考(10月)数学试卷带讲解

2022-2023学年福建省福州格致中学高三上学期第二次月考(10月)数学试卷带讲解
故选:ACD.
11.已知 是平面向量, 是单位向量,非零向量 与 的夹角为 ,向量 满足 ,则 可能取到的值为()
A. B. C. D.
【答案】ABD
【解析】
【分析】建立平面直角坐标系,由给定条件,确定 , 的终点的轨迹即可求解作答.
【详解】将向量 平移到共起点O,以点O为原点,单位向量 的方向为x轴的正方向建立平面直角坐标系,如图,
又因为C选项 ,
所以 ,故 ,D正确.
故选:ACD.
【点睛】注意将问题化为 在 上有两个变号零点求参数范围问题,由此得到的 的单调性和零点情况判断 的单调性和零点,根据零点得到 ,利用对数均值不等式求证不等式.
三、填空题
13.若 为纯虚数( 为虚数单位),则实数 ___________;
【答案】-1
12.已知函数 有两个极值点 , ,则下列选项正确的有()
A. B.函数 有两个零点
C. D.
【答案】ACD
【解析】
【分析】问题化为 在 上有两个变号零点,讨论参数a研究 的单调性,结合零点存在性定理判断区间零点情况,进而求出a的范围,再研究 的单调性,结合零点存在性定理判断 零点个数,且可得 ,最后应用对数均值不等式 判断C、D.
夜晚天气
日落云里走
下雨
未下雨
出现
25
5
未出现
25
45
附: ,其中 .
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
A.夜晚下雨的概率约为
B.未出现“日落云里走”,夜晚下雨的概率约为
C.依据 的独立性检验,认为“日落云里走”是否出现与夜晚天气有关

2025届赤峰市红山区高三数学上学期10月第二次月考试卷附答案解析

2025届赤峰市红山区高三数学上学期10月第二次月考试卷附答案解析

赤峰二中 2022级高三上学期第二次月考数学试题一、单项选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U =R ,集合{}50,2x A x B x x x ⎧⎫-=<=>⎨⎬⎩⎭,则图中阴影部分表示的集合为( )A. {}25x x << B. {}25x x ≤<C. {}02x x << D. {}02x x <≤【答案】D 【解析】【分析】确定集合A ,然后根据文氏图的概念及集合的运算求解.【详解】由题意5{|0}{|05}x A x x x x-=<=<<,{|2}U B x x =≤ð阴影部分为{|02}U A B x x =<≤ ð.故选:D .2. 命题“3[0,),0x x x ∀∈+∞+≥”的否定是 ( )A. 3(,0),0x x x ∀∈-∞+< B. 3(,0),0x x x ∀∈-∞+≥C. [)30,,0x x x ∞∃∈++< D. 3[0,0x x x ∃∈+∞+≥),【答案】C 【解析】【分析】利用全称量词命题的否定判断即可.【详解】命题“3[0,),0x x x ∀∈+∞+≥”是全称量词命题,其否定是存在量词命题,所以命题“3[0,),0x x x ∀∈+∞+≥”的否定是[)30,,0x x x ∞∃∈++<.故选:C3. 已知0a b c >>>,则下列不等式正确的是( )A 2a c b+> B. 2b ac> C. ()()110a b --> D. ()()a c a b c b->-【答案】D 【解析】【分析】运用特殊值判断A,B,C,运用不等式性质推断D.【详解】取4a =,3b =,1c =,则2a c b +<,故A 错误;取5a =,2b =,1c =,则2b ac <,故B 错误;取2a =,12b =,则()()110a b --<,故C 错误;因为0a b c >>>,所以a c b c ->-,所以()()a c a b c b ->-,故D 正确.故选:D4. 设0.13592,lg ,log 210a b c ===,则( ).A. b c a >> B. b a c>> C. a c b>> D. a b c>>【答案】D 【解析】【分析】依题意可得1a >,01b <<,0c <,进而可得结果.【详解】因为0.10221a =>=,50lg lg1012b <=<=,339log log 1010c =<=,所以a b c >>.故选:D.5. 数列{}n a 满足11a =,且对于任意的n *∈N 都满足 131nn n a a a +=+,则数列{}1n n a a +的前n 项和为( )A.131n + B.31+n n C.132n - D.32n n -【答案】B 【解析】【分析】根据给定条件,利用构造法求出数列{}n a 的通项,再利用裂项相消法求和即可.【详解】依题意,由131n n n a a a +=+,得1113n n a a +=+,故数列1{}na 是首项为1,公差为3的等差数列,所以113(1)32n n n a =+-=-,则111111((32)(31)33231n n a a n n n n +==--+-+,.所以数列{}1n n a a +的前n 项和为11111111111[((()((1)31447710323133131n n n n n -+-+-++-=-=-+++ .故选:B6. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经研究可知:在室温25C 下,某种绿茶用85C 的水泡制,经过min x 后茶水的温度为C y ,且()0.9227250,R xy k x k =⋅+≥∈.当茶水温度降至60C 时饮用口感最佳,此时茶水泡制时间大约为( )(参考数据:ln20.69,ln3 1.10,ln7 1.95,ln0.92270.08≈≈≈≈-)A. 6min B. 7minC. 8minD. 9min【答案】B 【解析】【分析】根据初始条件求得参数k ,然后利用已知函数关系求得口感最佳时泡制的时间x .【详解】由题意可知,当0x =时,85y =,则8525k =+,解得60k =,所以600.922725x y =⨯+,当60y =时,60600.922725x =⨯+,即70.922712x=,则0.92277ln7ln 7ln1212log 12ln 0.9227ln 0.9227x -===ln 72ln 2ln 3 1.9520.69 1.107ln 0.92270.08---⨯-=≈≈-,所以茶水泡制时间大的为7 min.故选:B.7.函数||()1x f x e =--的大致图象为A.B.C. D.【答案】C 【解析】分析】先研究函数的奇偶性,得到()f x 是偶函数,研究当0x ≥时函数的单调性,又(0)0f =,即得解.【详解】||||()2||12||1()x x f x e x e x f x --=---=--= 故()f x 是偶函数,当0x ≥时,()21x f x e x =--,()2x f x e '=-,令()0f x '>,解得ln 2x >;令()0f x '<,解得ln 2x <即()f x 在(0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,又(0)0f =,故选:C【点睛】本题考查了通过函数的奇偶性,单调性研究函数的图像和性质,考查了学生综合分析,数形结合的能力,属于中档题.8. 若定义在R 上的函数()f x 满足()()4()2f x x f f ++=,()21f x +是奇函数,11()22f =则( )A.17111(22k f k =-=-∑B. 1711()02k f k =-=∑C. 171117()22k kf k =-=-∑ D.171117()22k kf k =-=∑【答案】D 【解析】【分析】根据给定条件,求出函数()f x 的周期,及(1)(1)0f x f x -+++=和(2)()0f x f x ++=,再逐项计算判断得解.【详解】由()4(()2)f f f x x ++=,得()4((24))f x x f f +++=,则(4)()f x f x +=,即函数()f x 的周期为4,【由(21)f x +是R 上的奇函数,得(21)(21)f x f x -+=-+,即(1)(1)0f x f x -+++=,于是13()()022f f +=,5751()()(()02222f f f f +=+-=,即1357(()()()02222f f f f +++=,因此17113571()()(2()](1622222111()4[()22k f k f f f f f f =-==++++=+∑,AB 错误;由()4((24))f x x f f +++=,取0x =,得(2)0f =,则(4)(0)(2)0f f f ==-=,因此(2)()0f x f x ++=,取32x =,得37((022f f +=,于是1357135737(2(3()4()[(()]3[()()](()022********f f f f f f f f f f +++=+++++=,则17113571()2(3()4(17(162222117()4[222k k f f f f f f k =++=+-=++∑,C 错误,D 正确.故选:D【点睛】思路点睛:涉及抽象函数等式问题,利用赋值法探讨函数的性质,再借助性质即可求解.二、多项选择题(本大题共3小题,每小题6分,共18分. 在每小题给出的四个选项中,有多个选项是符合题求的,全部选对的得6分,有选错的得0分)9. 已知p :260x x +-=;q :10ax +=.若p 是q 的必要不充分条件,则实数a 的值可以是( )A. ﹣2B. 12-C.13D. 13-【答案】BC 【解析】【分析】根据集合关系将条件进行化简,利用充分条件和必要条件的定义即可得到结论.【详解】由题意得{: 3 2}p A =-,,当0a =时,q B =∅:,当0a ≠时,1q B a ⎧⎫=-⎨⎬⎩⎭:,因为p 是q 的必要不充分条件,所以B ￿ A ,所以0a =时满足题意,当13a -=-或12a -=时,也满足题意,解得13a =或12a =-,故选:BC【点睛】本题考查利用集合间的关系判断命题间充分必要条件,属于中档题.10. 已知0,0a b >>且2a b +=, 则下列不等式恒成立的是( ).A. ²²a b +的最小值为2B. 12a b+的最小值为3+C. ab 的最大值为 1D.的最大值为2【答案】ACD 【解析】【分析】配方后使用基本不等式可判断A ;利用常数代换可判断B ;直接使用基本不等式可判断C ;先利用基本不等式求2的最大值,然后可判断D .【详解】对A ,()22²²24222a b a b a b ab +⎛⎫+=+-≥-= ⎪⎝⎭,当且仅当1a b ==时等号成立,A 正确;对B ,()(1211212133222b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当21b a a b a b ⎧=⎪⎨⎪+=⎩,即1,2a b =-=-时等号成立,B 错误;对C ,212a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当1a b ==时等号成立,C 正确;对D,()224a b a b =++≤+=,当且仅当1a b ==时等号成立,2≤,D 正确故选:ACD11. 设正项等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,则下列选项正确的是( )A. 4945S S q S =+B. 若20252020T T =,则20231a =C. 若194a a =,则当2246a a +取得最小值时,1a =D. 若21()n n n a T +>,则11a <【答案】AB 【解析】【分析】由前n 项和的定义以及等比数列性质分析判断A ;由题意结合等比数列性质分析判断B ;根据题意.结合基本不等式知:当且仅当462a a ==时,2246a a +取得最小值,进而可得结果判断C ;举反例说明即可D.【详解】由数列{}n a 为正项等比数列,得10,0,0n a q T >>>,对于A ,9123456789S a a a a a a a a a =++++++++()4441234545S q a a a a a S q S =+++++=+,即4945S S q S =+,A 正确;对于B ,由20252020T T =,得5202520212022202320242025202320201T a a a a a a T =⋅⋅⋅⋅==,则20231a =,B 正确;对于C ,由19464a a a a ==,得22446628a a a a +≥=,当且仅当462a a ==时取等号,若2246a a+取得最小值,则462a a ==,即34156122a a q a a q ⎧==⎨==⎩,解得121a q =⎧⎨=⎩,C 错误;对于D ,例如11,2a q ==,则12n n a -=,()101112121222222n n n n n nT a a a --++⋅⋅⋅+-=⋅⋅⋅=⨯⨯⋅⋅⋅⨯==,得22(1)2221()(2)2,[2]2n n n n nn nnn naT --+====,而*n ∈N ,22n n n >-,则2222n n n->,即21()n n n a T +>,符合题意,但11a =,D 错误.故选:AB【点睛】关键点点睛:本题判断选项D 的真假,构造符合条件的数列,计算判断是关键.三、填空题(本大题共3小题,每小题5分,共15分. 把答案填在题中横线上)12. 若曲线e x y =在点(0,1)处的切线也是曲线()ln 1y x a =++的切线,则a =_________.【答案】1【解析】【分析】先求出曲线e x y =在(0,1)的切线方程,再设曲线()ln 1y x a =++的切点为0(x ,0ln(1))x a ++,求出y ',利用公切线斜率相等求出0x 表示出切线方程,结合两切线方程相同即可求解【详解】由e x y =,得e x y '=,001|e x y ===',故曲线e x y =在(0,1)处的切线方程为1y x =+;由()ln 1y x a =++,得11y x '=+,设切线与曲线ln(1)y x a =++相切的切点为0(x ,0ln(1))x a ++,由两曲线有公切线得0111y x '==+,解得00x =,则切点为(0,)a ,切线方程为y x a =+,根据两切线重合,解得1a =.故答案为:1.13. 已知[]x 表示不超过x 的最大整数,如[1.3]1=,[ 1.5]2-=-,[3]3=.若1111222x x ++⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则x 的取值范围是_________.【答案】[)1,3【解析】【分析】依题意可得则112x +⎡⎤=⎢⎥⎣⎦且11022x ⎡+⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,从而得到不等式组,解得即可.【详解】解:依题意,因为1111222x x ++⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,若102x +⎡⎤≤⎢⎥⎣⎦,则11022x ⎡+⎤⎡⎤≤⎢⎥⎢⎥⎣⎦⎣⎦,不符题意;若122x +⎡⎤≥⎢⎥⎣⎦,则11122x ⎡+⎤⎡⎤≥⎢⎥⎢⎥⎣⎦⎣⎦,不符题意;若112x +⎡⎤=⎢⎥⎣⎦,则11022x ⎡+⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,满足条件,则1122x +≤<.解得13x ≤<,即[)1,3x ∈.故答案为:[)1,3.【点睛】本题考查新定义运算,不等式的解法,属于中档题.14. 已知实数()()1,0ln 1,0x e x f x x x x -⎧>⎪=⎨⎪-≤⎩,若关于x 的方程()()2340f x f x t -+=有四个不同的实数根,则t 的取值范围为___________.【答案】[)0,1【解析】【分析】画出f(x)的图象,根据图象特点,要想方程()()2340fx f x t -+=有四个不同的实数根,需要令()f x m =,这样2340m m t -+=有两个不同的实数根1m ,2m ,且11m >,201m ≤<,才会有四个交点.【详解】当0x ≤时,()()ln 1f x x =-,单调递减,当0x >时,()1x e f x x -=,()()121x e x f x x --'=,当1x >时,()0f x ¢>,()1x ef x x-=单调递增,当01x <<时,()0f x ¢<,()1x ef x x-=单调递减,在1x =时,f(x)取得最小值,()11f =画出f(x)的图象如图所示:令()f x m =,则方程为2340m m t -+=,要想方程()()2340fx f x t -+=有四个不同的实数根,结合f(x)的图象可知需要满足:2340m m t -+=有两个不同的实数根1m ,2m ,且11m >,201m ≤<,令()234g m m m t =-+,则()()161201000t g g ∆=->⎧⎪<⎨⎪≥⎩ ,解得:01t ≤<t 的取值范围[)0,1故答案为:[)0,1【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.四、解答题(本大题共5小题,共77分.解答时应写出必要的文字说明、证明过程或演算步骤)15.已知()sin cos 0,πθθθ+=∈.(1)求sin cos θθ-的值;(2)求()()cos 22025πtan 2025πθθ+++的值.【答案】(1)sin cos θθ-=(2)115-【解析】【分析】(1)已知式平方后,结合平方关系确定sin ,cos θθ的符号后,再利用平方关系求得sin cos θθ-;(2)(1)小题结论与已知联立方程组解得sin ,cos θθ,由商数关系得tan θ,再利用诱导公式、二倍角公式化简变形后求值.【小问1详解】因为sin cos θθ+=22(sin cos )5θθ+=,所以212sin cos 5θθ+=,即32sin cos 05θθ=-<.因为()0,πθ∈,则sin 0θ>,所以cos 0,sin cos 0θθθ<->,因为28(sin cos )12sin cos 5θθθθ-=-=,所以sin cos θθ-=【小问2详解】由sin cos sin cos θθθθ⎧+=⎪⎪⎨⎪-=⎪⎩解得sin θθ==,所以sin tan 3cos θθθ==-;所以()()229111cos 22025πtan 2025πcos2tan sincos tan 310105θθθθθθθ+++=-+=-+=--=-.16. 已知数列{}n a 的前n 项和为{}n S ,其中11a =,且112n n a S -=.(1)求{}n a 的通项公式.(2)设n n b na =,求{}n b 的前n 项和n T .【答案】(1)21,113,222n n n a n -=⎧⎪=⎨⎛⎫⋅≥ ⎪⎪⎝⎭⎩ (2)132(2)(2n n T n -=+-⋅【解析】【分析】(1)根据题意,得到2n ≥时,132n n a a +=,再由211122a S ==,结合等比数列的通项公式,即可求解;(2)由(1)得到21,113,222n n nb n n -=⎧⎪=⎨⎛⎫⋅⋅≥ ⎪⎪⎝⎭⎩,结合乘公比错位法求和,即可求解.【小问1详解】由112n n a S -=,可得12n n a S -=,则12n n a S +=,两式相减,可得122n n n a a a +-=,即123n n a a +=,又由211111222a S a ===,易知0n a ≠,所以当2n ≥时,132n n a a +=,所以数列{}n a 的通项公式为21,113,222n n n a n -=⎧⎪=⎨⎛⎫⋅≥ ⎪⎪⎝⎭⎩.【小问2详解】因为n n b na =,可得21,113,222n n n b n n -=⎧⎪=⎨⎛⎫⋅⋅≥ ⎪⎪⎝⎭⎩,则01221313131312(3(4(()22222222n n T n -=+⋅⋅+⋅⋅+⋅⋅++⋅⋅ ,所以123133131313132(3(4((2222222222n n T n -=+⋅⋅+⋅⋅+⋅⋅++⋅⋅ ,两式相减得12321111333313[()()()()]()222222222n n n T n ---=+++++-⋅⋅212133[1()]11131331322([1()](322222222212n n n n n n -----=+⨯-⋅⋅=-⋅--⋅⋅-,所以21133313[()1]()2(2)(222n n n n T n n ---=--⋅-+⋅=+-⋅.17. 已知函数31()3x x f x a+=+为奇函数.(1)解不等式()2f x >;(2)设函数33()log log 39x x g x m =⋅+,若对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,求实数m 的取值范围.【答案】(1)(0,1);(2)94m ≥.【解析】【分析】(1)根据奇偶性的定义直接可得参数值,化简不等式,结合指数函数性质解不等式.(2)由(1)可得2()f x 的值域A ,再利用换元法设3log t x =,可得1()g x 的值域B ,根据B A ⊆,列不等式可得解.【小问1详解】函数31()3x x f x a+=+中,30x a +≠,由()f x 是奇函数,得()()0f x f x +-=,即3131033x x x x a a--+++=++,整理得(1)(332)0x x a -+++=,解得1a =-,函数312()13131x x x f x +==+--定义域为(,0)(0,)-∞+∞ ,由()2f x >,得21231x +>-,即2131x >-,整理得0312x <-<,解得01x <<,所以不等式()2f x >的解集为(0,1).【小问2详解】因为函数31x y =-在(]0,1上单调递增,故当01x <≤时,0312x <-≤,由(1)得31()31+=-x x f x 在(0,1]x ∈的值域[2,)A =+∞,又3333g 39()log log (log 1)(lo 2)x x g x m x x m =⋅+=--+,[3,27]x ∈设3log t x =,则[]1,3t ∈,2(1)(2)32y t t m t t m =--+=-++,当32t =时,min 14y m =-+,当3x =时,max 2y m =+,因此函数()g x 在[3,27]x ∈上的值域1[,2]4B m m =-++,由对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,得B A ⊆,于是124m -+≥,解得94m ≥,所以实数m 的取值范围是94m ≥.18. 已知函数()2ln f x x mx =-,()212g x mx x =+,R m ∈,令()()()F x f x g x =+.(1)讨论函数()f x 的单调性;(2)若关于x 的不等式()1F x mx ≤-恒成立,求整数m 的最小值.【答案】(1)答案见解析(2)2【解析】【分析】(1)求导,分0m ≤与0m >分类讨论,然后利用导函数的正负来确定单调性即可;(2)构造函数()()()()211ln 112G x F x mx x mx m x =--=-+-+,利用导数求函数()G x 的最大值,然后将恒成立问题转化为最值问题即可;【小问1详解】因为()()2ln 0f x x mx x =->,所以()21122mx f x mx x x -='=-,当0m ≤时,()0f x '>,所以()f x 在区间(0,+∞)上单调递增;当0m >时,令()0f x '>,即2120mx ->,又0x >,解得0x <<令()0f x '<,即2120mx -<,又0x >,解得x >,综上,当0m ≤时,()f x 的增区间为(0,+∞),无减区间;当0m >时,()f x的增区间为⎛⎝,减区间为∞⎫+⎪⎪⎭【小问2详解】令()()()()211ln 112G x F x mx x mx m x =--=-+-+,所以()()()21111mx m x G x mx m x x-+-+=-+-='.当0m ≤时,因为x >0,所以()0G x '>.所以()G x 在()0,∞+上是单调递增函数,又因为()()2131ln11112022G m m m =-⨯+-+=-+>,所以关于x 不等式()0G x ≤不能恒成立,即关于x 的不等式()1F x mx ≤-不能恒成立.当m >0时,()()()21111m x x mx m x m G x x x ⎛⎫--+ ⎪-+-+⎝⎭=='.令()0G x '=,得1x m =,所以当10,x m ⎛⎫∈ ⎪⎝⎭时,()0G x '>;当1,x m ∞⎛⎫∈+ ⎪⎝⎭时,()0G x '<.因此函数()G x 在10,x m ⎛⎫∈ ⎪⎝⎭是增函数,在1,x m ∞⎛⎫∈+ ⎪⎝⎭是减函数.故函数()G x 的最大值为()2111111ln 11ln 22G m m m m m m m m ⎛⎫⎛⎫=-⨯+-⨯+=- ⎪ ⎪⎝⎭⎝⎭.令()1ln 2h m m m =-,()2112h m m m=-'-,当()0,m ∞∈+时,()0h m '<所以()h m 在()0,m ∞∈+上是减函数,又因为()1102h =>,()12ln204h =-<,所以当2m ≥时,()0h m <,所以()0G x <恒成立,即()1F x mx ≤-恒成立所以整数m 的最小值为2.的【点睛】关键点点睛:第(1)小问的关键是分0m ≤与0m >进行分类讨论,第(2)的关键是通过移项构造函数()()21=ln 112G x x mx m x -+-+,把恒成立问题转化为求函数()G x 的最值问题.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为n a ;若n 为奇数,则对31n +不断地除以2,直到得出一个奇数,记这个奇数为n a .若1n a =,则称正整数n 为“理想数”.(1)求20以内的质数“理想数”;(2)已知9m a m =-.求m 的值;(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列{}n b ,记{}n b 的前n 项和为n S ,证明:()*7N 3n S n <∈.【答案】(1)2和5为两个质数“理想数”(2)m 的值为12或18(3)证明见解析【解析】【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道9m a m =-必为奇数,则m 必为偶数,结合整除知识得解;(3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】20以内的质数为2,3,5,7,11,13,17,19,212=,故21a =,所以2为“理想数”;33110⨯+=,而1052=,故3不是“理想数”;35116⨯+=,而41612=,故5是“理想数”;37122⨯+=,而22112=,故7不是“理想数”;311134⨯+=,而34172=,故11不是“理想数”;313140⨯+=,而4058=,故13不是“理想数”;317152⨯+=,而52134=,故17不是“理想数”;319158⨯+=,而58292=,故19不是“理想数”;2∴和5为两个质数“理想数”;【小问2详解】由题设可知9m a m =-必为奇数,m ∴必为偶数,∴存在正整数p ,使得92p m m =-,即9921p m =+-:921p ∈-Z ,且211p -≥,211p ∴-=,或213p -=,或219p -=,解得1p =,或2p =,1991821m ∴=+=-,或2991221m =+=-,即m 的值为12或18.【小问3详解】显然偶数"理想数"必为形如()*2k k ∈N 的整数,下面探究奇数"理想数",不妨设置如下区间:((((022*******,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦ ,若奇数1m >,不妨设(2222,2k k m -⎤∈⎦,若m 为"理想数",则(*3112s m s +=∈N ,且)2s >,即(*213s m s -=∈N ,且)2s >,①当(*2s t t =∈N ,且)1t >时,41(31)133t t m -+-==∈Z ;②当()*21s t t =+∈N 时,2412(31)133t t m ⨯-⨯+-==∉Z ;(*413t m t -∴=∈N ,且)1t >,又22241223t k k --<<,即1344134k t k -⨯<-≤⨯,易知t k =为上述不等式的唯一整数解,区间(2222,2k k -]存在唯一的奇数"理想数"(*413k m k -=∈N ,且)1k >,显然1为奇数"理想数",所有的奇数"理想数"为()*413k m k -=∈N ,∴所有的奇数"理想数"的倒数为()*341k k ∈-N ,1133134144441k k k ++<=⨯--- 1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭21111171111124431124⎛⎫<⨯++++<+⨯= ⎪⎝⎭-- ,即()*73n S n <∈N .【点睛】知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。

湖南省湘阴县知源高级中学2022-2023学年高三上学期第二次月考数学试题含答案

湖南省湘阴县知源高级中学2022-2023学年高三上学期第二次月考数学试题含答案

湘阴县知源高级中学2023届高三第二次月考数学科试卷满分:150分 考试时量:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x|x >−1},B ={x|x <2},则A ∪(∁R B)= ( )A. {x|x >−1}B. {x|x ≥−1}C. {x|x <−1}D. {x|−1<x ⩽2} 2.对于实数a ,b ,c ,“a >b ”是“ac 2>bc 2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 3.三个数50.6,0.65,log 0.65的大小顺序是( )A. 0.65<log 0.65<50.6B. 0.65<50.6<log 0.65C. log 0.65<0.65<50.6D. log 0.65<50.6<0.654.若实数x,y 满足:x,y >0,3xy −x −y −1=0,则xy 的最小值为( )A .1B .2C .3D .45.函数f (x )=2xx 2−1的图象大致为( )A. B.C. D.6.设函数f(x)={−x 2+4x −3,x ≤2log 2x,x >2,则满足不等式f (2x −1)<2的解集是( )A .(−∞,32)B .[2,52)C .(32,2]D .(−∞,52)7.当x =1时,函数f(x)=alnx +bx 2+3取得最大值2,则f(3)=( ) A .2ln3+2B .−163C .2ln3−6D .−48.已知函数f (x )={|log 3x |,x >03x,x ≤0,若函数g (x )=[f (x )]2−(m +2)f (x )+2m 恰好有5个不同的零点,则实数m 的取值范围是( ) A .(0,1]B .(0,1)C .[1,+∞)D .(1,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列求导错误的是( )A. (e 3x)′=3ex B.(x 22x+1)′=xC. (2sinx −3)′=2cosxD. (xcosx)′=cosx −xsinx10.已知关于x 的不等式ax 2+bx +c >0的解集为(−∞,−2)∪(3,+∞),则( )A. a >0B. 不等式bx +c >0的解集是{x|x <−6}C. a +b +c >0D. 不等式cx 2−bx +a <0的解集为(−∞,−13)∪(12,+∞)11.牛顿曾提出了物体在常温环境下温度变化的冷却模型:若物体初始温度是θ0(单位:oC ),环境温度是θ1(单位:o C ),其中θ0>θ1则经过t 分钟后物体的温度θ将满足θ=f (t )=θ1+(θ0−θ1)⋅e −kt (k ∈R 且k >0).现有一杯80∘C 的热红茶置于20∘C 的房间里,根据这一模型研究红茶冷却情况,下列结论正确的是( )(参考数值ln 2≈0.7) A .若f (3)=50∘C ,则f (6)=35∘C B .若k =110,则红茶下降到50∘C 所需时间大约为7分钟C .若f ′(3)=−5,则其实际意义是在第3分钟附近,红茶温度大约以每分钟5∘C 的速率下降D .红茶温度从80∘C 下降到60∘C 所需的时间比从60∘C 下降到40∘C 所需的时间多12.函数f(x)及其导函数f ′(x)的定义域均为R ,且f(x)是奇函数,设g(x)=f ′(x),ℎ(x)=f(x −4)+x ,则以下结论正确的有( ) A .函数g(x −2)的图象关于直线x =−2对称B .若g(x)的导函数为g ′(x),定义域为R ,则g ′(0)=0C .ℎ(x)的图象关于点(4,4)中心对称D .设{a n }为等差数列,若a 1+a 2+⋯+a 11=44,则ℎ(a 1)+ℎ(a 2)+⋯+ℎ(a 11)=44三、填空题:本题共4小题,每小题5分,共20分.13.若函数f (x )=(2m −1)x m 是幂函数,则实数m =______.14.求值:2log 214−(827)−23+lg 1100+(√2−1)lg 1= .15.已知点P 为曲线y =lnx 上的动点,则P 到直线y =x +4的最小距离为______.16.设定义域为(0,+∞)的单调函数f(x),对任意的x ∈(0,+∞),都有f [f(x)−log 3x ]=4,若x 0是方程f(x)−2f ′(x)=3的一个解,且x 0∈(a,a +1),a ∈N ∗,则实数a =_____.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin (π4+x)sin (π4−x)+√3sin xcos x .(1)求f(π6)的值;(2)在△ABC中,若f(A2)=1,求sin B+sin C的最大值.18.(本小题满分12分)已知在数列{a n}中,a1=3,且a n+a n+1=3n+1.(1)证明:数列{a n3n −34}是等比数列.(2)求{a n}的前n项和S n.19.(本小题满分12分)如图,已知长方形ABCD中,AB=2√2,AD=√2,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM(1)求证:AD⊥BM(2)若点E是线段DB上的一动点,问点E在何位置时,二面角E−AM−D的余弦值为√55.20.(本小题满分12分)某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格P(x)(元)与时间x(天)的函数关系近似满足P(x)=1+kx(k为正常数).该商品的日销售量Q(x)(个)与时间x(天)的部分数据如下表所示:x/天10202530Q(x)/个110120125120已知第10天该商品的日销售收入为121元.(1)求k的值;(2)给出以下四种函数模型:①Q(x)=ax+b,①Q(x)=a|x−25|+b,①Q(x)=a⋅b x,①Q(x)=a⋅log b x.请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量Q(x)与时间x的关系,并求出该函数的解析式;(3)求该商品的日销售收入f(x)(1≤x≤30,x∈N+)(元)的最小值.21.(本小题满分12分)已知函数f(x)=log141−axx−1的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+log14(x−1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=log14(x+k)在[2,3]上有解,求实数k的取值范围.22.(本小题满分12分)已知函数f(x)=e x−m+ln3x.(1)设x=1是函数f(x)的极值点,求m的值并讨论f(x)的单调性;(2)当m⩽2时,证明:f(x)>ln3.湘阴县知源高级中学2023届高三第二次月考数学科试卷(答案)一、单选题1.【答案】A【详解】已知集合A={x|x>−1},B={x|x<2},则∁R B={x|x≥2},因此A∪(∁R B)= {x|x>−1}.故选A.2.【答案】B【详解】当a>b时,不能推出ac2>bc2,当ac2>bc2,可推出a>b.故“a>b”是“ac2>bc2”的必要不充分条件.故选:B.3.【答案】C【详解】∵50.6>1,1>0.65>0,log0.65<0∴50.6>0.65>log0.65,故选C.4.【答案】A【详解】因为3xy−x−y−1=0,所以3xy−1=x+y,由基本不等式可得3xy−1=x+y≥2√xy,(舍),即xy≥1故3xy−2√xy−1≥0,解得√xy≥1或√xy≤−13当且仅当x=y=1时等号成立,故xy的最小值为1,故选:A.5.【答案】A,定义域为{x|x≠±1},【详解】函数f(x)=2xx2−1由f(−x)=−f(x),故f(x)为奇函数,图象关于原点对称,故排除B,D;当0<x<1时,f(x)<0,排除C.故本题选A.6.【答案】D【详解】函数f(x)的图象如下图所示:由图可知:函数f(x)在R上单调递增,因为f(4)=2,所以f(2x−1)<2等价于f(2x−1)<f(4),故2x−1<4,即x<5,故选:D27.【答案】C【详解】因为f (x )=alnx +bx 2+3,所以f ′(x )=ax +2bx , 又当x =1时,函数f (x )=alnx +bx 2+3取得最大值2,所以f (1)=2,f ′(1)=0,即{b +3=2a +2b =0,解得b =−1,a =2,所以f (x )=2lnx −x 2+3,f ′(x )=2x−2x =2(1−x )(1+x )x ,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,符合题意, 所以f (3)=2ln3−6故选:C . 8.【答案】A【详解】画出函数的大致图象,如下图所示: ∵函数g (x )=[f (x )]2−(m +2)f (x )+2m 恰好有5个不同的零点,∴方程[f (x )]2−(m +2)f (x )+2m =0有5个根,设t =f(x),则方程化为t 2−(m +2)t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f(x)的图象可知,t 1∈(0,1],t 2∈(1,+∞),令ℎ(t)=t 2−(m +2)t +2m ,则由二次函数的根的分布情况得:{Δ=(m +2)2−8m >0ℎ(0)>0ℎ(1)≤0 ,解得:0<m ≤1.故选:A 二、多选题 9.【答案】AB【详解】(e 3x )′=3e 3x ,故A 错误;(x 22x+1)′=2x (2x+1)−2x 2(2x+1)2≠x ,故B 错误;(2sin x −3)′=2cos x ,故C 正确;(xcos x)′=x′cosx +x (cosx )′=cos x −xsin x ,故D 正确.故答案选:AB .10.【答案】ABD【详解】由题意可知,−2和3是方程ax 2+bx +c =0的两根,且a >0, ∴−2+3=−ba ,(−2)×3=ca ,∴b =−a ,c =−6a ,a >0,即选项A 正确; 不等式bx +c >0等价于a(x +6)<0,∴x <−6,即选项B 正确; ∵不等式ax 2+bx +c >0的解集为(−∞,−2)∪(3,+∞), ∴当x =1时,有a +b +c <0,即选项C 错误;不等式cx 2−bx +a <0等价于a(6x 2−x −1)>0,即a(3x +1)(2x −1)>0, ∴x <−13或x >12,即选项D 正确.故选:ABD . 11.【答案】ABC【详解】由题知θ=f (t )=20+60e −kt ,A :若f (3)=50∘C ,即50=20+60e −3k ,所以e −3k =12,则f (6)=20+60e −6k =20+60(e −3k )2=20+60×(12)2=35∘C ,A 正确;B :若k =110,则20+60⋅e −110t =50,则e −110t =12,两边同时取对数得−110t =ln 12=−ln 2,所以t =10ln 2≈7, 所以红茶下降到50∘C 所需时间大约为7分钟,B 正确;C :f ′(3)表示t =3处的函数值的变化情况,若f ′(3)=−5<0,所以实际意义是在第3分钟附近,红茶温度大约以每分钟5∘C 的速率下降,故C 正确;D :f (t )为指数型函数,如图,可得红茶温度从80∘C 下降到60∘C 所需的时间(t 2−t 1)比从60∘C 下降到40∘C 所需的时间(t 3−t 2)少,故D 错误. 故选:ABC .12.【答案】BCD【详解】由导数的几何意义及f (x )的对称性,f (x )在x 和−x 处的切线也关于原点对称,其斜率总相等,故g (x )=g (−x ),g (x )是偶函数,g (x −2)对称轴为x =2,A 错;由g (x )的对称性,g (x )在x 和−x 处的切线关于纵轴对称,其斜率互为相反数,故g ′(−x )=−g ′(x ),g ′(x )为奇函数,又定义域为R,g ′(0)=0,B 对;ℎ(x )=f (x −4)+(x −4)+4,由f (x )为奇函数知u (x )=f (x )+x 为奇函数,图像关于(0,0)对称,ℎ(x )可以看作由u (x )按向量(4,4)平移而得,故C 对; 由C 选项知,当x 1+x 2=8时,ℎ(x 1)+ℎ(x 2)=8,由等差数列性质a 1+a 11=8,∴ℎ(a 1)+ℎ(a 11)=8,以此类推倒序相加,D 正确. 故选:BCD 三、填空题 13.【答案】1【详解】因为f (x )=(2m −1)x m 是幂函数,所以2m −1=1,解得m =1. 故答案为:1 14.【答案】−3【详解】2log 214−(827)−23+lg 1100+(√2−1)lg1=14−[(23)3]−23−lg100+(√2−1)0=14−94−2+1=−3.故答案为−3.15.【答案】5√22【详解】解:设y =x +m (m ≠4)与y =lnx 相切与点Q (x 0,lnx 0),则 y ′=1x 0,令y ′=1x 0=1,得x 0=1,则切点Q (1,0),代入y =x +m (m ≠4),得m =−1,即直线方程为y =x −1, 所以与直线y =x +4间的距离为d =|4+1|√2=5√22, 即为P 到直线y =x +4的最小距离, 故答案为:5√2216.【答案】2【详解】对任意的x ∈(0,+∞),都有f [f(x)−log 3x ]=4,且f(x)是(0,+∞)上的单调函数,因此f (x )−log 3x 为定值,设t =f (x )−log 3x ,则f (x )=t +log 3x ,显然f (t )=4, 即t +log 3t =4,而函数ℎ(t)=t +log 3t 在(0,+∞)上单调递增,且ℎ(3)=4,于是得t =3, 从而f (x )=log 3x +3,求导得f ′(x )=1xln3,方程f(x)−2f ′(x)=3⇔log 3x −2xln3=0, 依题意,x 0是函数g(x)=log 3x −2xln3的零点,而函数g(x)在(0,+∞)上单调递增, 且g(2)=log 32−1ln3=ln2−1ln3<0,g(3)=1−23ln3>0,即函数g(x)的零点x 0∈(2,3),又x 0∈(a,a +1),a ∈N ∗,所以a =2. 故答案为:2 四、解答题17.【答案】(1)∵f(x)=sin (π 4+x)sin (π 4−x)+√3sin x cos x=sin (π4+x)sin [π2−(π4+x)]+√3sinxcosx =sin (π4+x)cos (π4+x)+√3sinxcosx =12cos2x +√32sin2x =sin (2x +π6),∴f (π6)=sin (2×π6+π6)=1. (2)由f (A2)=sin (A +π6)=1,而0<A <π,可得A +π6=π2,即A =π3, ∴sinB +sinC =sinB +sin (2π3−B)=32sinB +√32cosB =√3sin (B +π6),∵0<B <2π3,∴π6<B +π6<5π6,12<sin (B +π6)≤1,则√32<√3sin (B +π6)≤√3,故当B =π3时,sinB +sinC 取最大值,最大值为√3. 18.【答案】(1)因为a n +a n+1=3n+1,所以a n+13n+1−34a n 3n −34=3n+1−a n 3n+1−34a n 3n −34=14−a n 3n+1a n 3n −34=−13.又a13−34=14,所以{an3n−34}是以a13−34=14为首项,−13为公比的等比数列. (2)由(1)可知a n3n −34=14×(−13)n−1,则a n =3n+14+34×(−1)n−1.S n =14×(32+33+⋯+3n+1)+34×[(−1)0+(−1)1+⋯+(−1)n−1] =14×32−3n+21−3+34×1−(−1)n 1−(−1)=3n+2−6+3×(−1)n+18.19.【答案】(Ⅰ)证明:∵长方形ABCD 中,AB =2√2,AD =√2,M 为DC 的中点,∴AM =BM =2,可得AM 2+BM 2=AB 2, ∴BM ⊥AM .∵平面ADM ⊥平面ABCM ,平面ADM ∩平面ABCM =AM ,BM ⊂平面ABCM , ∴BM ⊥平面ADM ,∵AD ⊂平面ADM ,∴AD ⊥BM.(Ⅱ)建立如图所示的直角坐标系,则A(1,0,0),B(−1,2,0),D(0,0,1),M(−1,0,0) 设DE⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ ,则平面AMD 的一个法向量n ⃗ =(0,1,0), ME ⃗⃗⃗⃗⃗⃗ =MD ⃗⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗⃗ =(1−λ,2λ,1−λ),AM ⃗⃗⃗⃗⃗⃗ =(−2,0,0), 设平面AME 的一个法向量为m⃗⃗ =(x,y,z),则{m ⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =−2x =0m ⃗⃗ ·ME⃗⃗⃗⃗⃗⃗ =(1−λ)x +2λy +(1−λ)z =0, 取y =1,得x =0,z =2λλ−1,则m ⃗⃗ =(0,1,2λλ−1),∵|cos <m →,n →>|=|m⃗⃗⃗ ·n ⃗ ||m⃗⃗⃗ ||n ⃗ |=√55, 解得λ=12,故E 为BD 的中点.20.【答案】(1)由题意得P (10)⋅Q (10)=(1+k10)×110=121,解得k =1.(2)由题表中的数据知,当时间变化时,该商品的日销售量有增有减,并不单调,而①,①,①中的函数为单调函数,故只能选①,即Q (x )=a |x −25|+b . 由题表可得Q (10)=110,Q (20)=120,即{15a +b =110,5a +b =120,解得{a =−1,b =125, 故Q (x )=125−|x −25|(1≤x ≤30,x ∈N +).(3)由(2)知Q (x )=125−|x −25|={100+x,1≤x <25,x ∈N +,150−x,25≤x ≤30,x ∈N +,①f (x )=P (x )⋅Q (x )={x +100x+101,1≤x <25,x ∈N +,150x−x +149,25≤x ≤30,x ∈N +.当1≤x <25时,y =x +100x在区间[1,10)上单调递减,在区间[10,25)上单调递增,①当x =10时,f (x )取得最小值,且f (x )min =121; 当25≤x ≤30时,y =150x−x 是单调递减的,①当x =30时,f (x )取得最小值,且f (x )min =124.综上所述,当x =10时,f (x )取得最小值,且f (x )min =121. 故该商品的日销售收入f (x )的最小值为121元. 21.【答案】(1)解:因为函数f (x )=log 141−ax x−1的图象关于原点对称,所以f (x )+f (−x )=0,即log 141−ax x−1+log 141+ax−x−1=0,所以log 14(1−ax x−1×1+ax −x−1)=0恒成立,所以1−ax x−1×1+ax−x−1=1恒成立,即1−a 2x 2=1−x 2恒成立,即(a 2−1)x 2=0恒成立,所以a 2−1=0,解得a =±1又a =1时,f (x )=log 141−ax x−1无意义,故a =−1.(2)因为x ∈(1,+∞)时,f (x )+log 14(x −1)<m 恒成立, 所以log 141+xx−1+log 14(x −1)<m 恒成立,所以log 14(x +1)<m 在x ∈(1,+∞)上恒成立,因为y =log 14(x +1)是减函数, 所以当x ∈(1,+∞)时,log 14(x +1)∈(−∞,−1),所以m ≥−1, 所以实数m 的取值范围是[−1,+∞).(3)因为f (x )=log 141+x x−1=log 14(1+2x−1)在[2,3]上单调递增,g (x )=log 14(x +k )在[2,3]上单调递减,因为关于x 的方程f (x )=log 14(x +k )在[2,3]上有解, 所以{f (2)≤g (2),f (3)≥g (3), 即{log 143≤log 14(2+k ),log 142≥log 14(3+k ),解得−1≤k ≤1,所以实数k 的取值范围是[−1,1]. 22.【答案】(1)∵f(x)=e x−m +ln 3x ,∴x >0,f ′(x)=e x−m −1x ,∵x =1是函数f(x)的极值点, ∴f ′(1)=e 1−m −1=0,解得m =1,∴f ′(x)=e x−1−1x ,设g (x )=e x−1−1x ,则g ′(x )=e x−1+1x 2>0, ∴x =1是f ′(x)=0的唯一零点,∴当x ∈(0,1)时,f ′(x)<0,函数f(x)单调递减;当x ∈(1,+∞)时,f ′(x)>0,函数f(x)单调递增.(2)当m ⩽2,x ∈(0,+∞)时,e x−m ⩾e x−2, 设φ(x )=e x −x −1,则φ′(x )=e x −1, 所以当x ∈(0,+∞)时φ′(x )>0,φ(x )单调递增, 所以φ(x )=e x −x −1>φ(0)=0,即e x >x +1, ∴e x−m ⩾e x−2>x −1,取函数ℎ(x)=x −1+ln 3x (x >0),则ℎ′(x)=1−1x ,当0<x <1时,ℎ′(x)<0,ℎ(x)单调递减,当x >1时,ℎ′(x)>0,ℎ(x)单调递增, 所以函数ℎ(x)在x =1处取得唯一的极小值,即最小值为ℎ(1)=ln3, ∴f(x)=e x−m +ln 3x ⩾e x−2+ln 3x >x −1+ln 3x ⩾ln3,故f(x)>ln3.。

高三第二次月考(数学)试题含答案

高三第二次月考(数学)试题含答案

高三第二次月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分) 1.(5分)1.如果复数21iz =-+,则 A .z 的共轭复数为1i + B .z 的实部为1 C .2z =D .z 的虚部为1-2.(5分)2.已知集合{}0 1 2A =,,,集合{}|2B x x =>,则A B ⋂= A .{}2B .{}0 1 2,,C .{}|2x x >D .∅3.(5分)3.不等式组220y x y ≤⎧⎨-+≥⎩,表示的平面区域是图中的( )A .B .C .D .4.(5分)4.已知集合{}3,M a =,{}22,3,2N a a =--,若M N ⊆,则实数a 的值是( ) A .±1B .1或2C .2D .±1或25.(5分)5.在一次投篮训练中,某队员连续投篮两次.设命题p 是“第一次投中”,q 是“第二次投中”,则命题“两次都没有投中目标”可表示为 A .()p q ⌝∧ B .()()p q ⌝∧⌝C .p q ∧D .()()p q ⌝∨⌝6.(5分)6.下列说法中正确的是( )A .若0a b <<,则a b >B .若a b >,则11a b< C .若a b >,则22ac bc > D .若ac bc >,则a b >7.(5分)7.关于x 的不等式20ax bx c ++<的解集为()3,1-,则不等式20bx ax c ++<的解集为( ) A .()1,2?B .()1,2-C .3,12⎛⎫- ⎪⎝⎭D .1,12⎛⎫- ⎪⎝⎭8.(5分)8.的一个必要不充分条件是A .-1<<6B .C .D .9.(5分)9.若不等式2(1)(1)20m x m x -+-+>的解集是R ,则m 的范围是A .[1,9)B .(1,9)C .(,1](9,)-∞⋃+∞D .(,1)(9,)-∞⋃+∞10.(5分)10.在下列函数中,最小值是2的函数是( )A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭ C .()223f x x =+D .()42x xf x e e =+- 11.(5分)11.已知命题p :“[]x 0,1∀∈,x a e ≥”,命题q :“x R ∀∈,2x 4x a 0++≠”,若命题p q ∧¬是真命题,则实数a 的取值范围是( )A .[]1,4B .[]e,4C .()4,∞+D .(],1∞-12.(5分)12.以下有关命题的说法错误的是A .“03x <<”是“11x -<”的必要不充分条件B .命题“若2x ≠或3y ≠,则5x y +≠”的否命题为真命题C .若p q ∨是真命题,则p q ∧也是真命题D .对于命题:p x R ∃∈,使得210x x ++<,则:p x R ⌝∀∈,均有210x x ++≥二、 填空题 (本题共计4小题,总分20分)13.(5分)13.若变量x 、y 满足约束条件12x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值为________.14.(5分)14.已知0x >,0y >,且21x y +=,则112x y+的最小值是______.15.(5分)15.当x∈(1,3)时,不等式x 2+mx+4<0恒成立,则m 的取值范围是 .16.(5分)16.已知命题p :24x -≤≤,命题q :实数x 满足()20x m m -≤>,若p⌝是q ⌝的必要不充分条件,则实数m 的取值范围是________.三、 解答题 (本题共计6小题,总分70分) 17.(10分)17.(10分)解下列关于x 的不等式:(1)(2)1(3)x x x x +-≥-;(2)2112x x +≤+ 18.(12分)18.(12分)已知集合{}2|514A x y x x ==--,集合,集合.(1)求∁R (A ∪B); (2)若,求实数m 的取值范围.19.(12分)19.(12分)已知命题p :2,10x R ax ax ∀∈++>,命题:213q a -<.(1)若命题p 是真命题,求实数a 的取值范围;(2)若p ∨q 是真命题,p ∧q 是假命题,求实数a 的取值范围.20.(12分)20.(12分)当0x >时,解关于x 的不等式2(1)0()aax a a R x-++≥∈ 21.(12分)21. (12分)设函数()12f x x m x =+--.(1)若1m =,求函数()f x 的值域; (2)若1m =-,求不等式()3f x x >的解集.22.(12分)22.(12分)在直角坐标系xOy 中,曲线C 的参数方程为3cos 23sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 224πρθ⎛⎫-= ⎪⎝⎭(1)求C 与l 的直角坐标方程;(2)若直线l 与曲线C 交于M ,N 两点,点(2,2)P -,求11||||PM PN +的值答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)D 2.(5分)D 3.(5分)C 4.(5分)B 5.(5分)B 6.(5分)A 7.(5分)C 8.(5分)A 9.(5分)A 10.(5分)D 11.(5分)B 12.(5分)C二、 填空题 (本题共计4小题,总分20分) 13.(5分)13. 3【详解】画出可行域和目标函数,如图所示:2z x y =+,则2y x z =-+,z 表示直线在y 轴的截距, 根据图像知:当1x y ==时,函数有最大值为3. 故答案为:3.14.(5分)14.4【详解】由题意,知0x >,0y >,且21x y +=,则111122()()222422222y x y xx y x y x y x y x y+=+=++≥+⋅=+, 当且仅当22y x x y =,即11,24x y ==时等号成立, 所以112x y +的最小值是4.故答案为:4.15.(5分)15.(﹣∞,﹣5].【详解】利用函数f (x )=x 2+mx+4的图象,∈x∈(1,3)时,不等式x 2+mx+4<0恒成立, ∈,即,解得m≤﹣5.∈m 的取值范围是(﹣∞,﹣5]. 故答案为(﹣∞,﹣5].16.(5分)故答案为:[4,)+∞.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦;(2){}|21x x -<≤【详解】(1)原不等式可化为2210x x --≥,即()()2110x x +-≥, 解得12x ≤-或1≥x ,所以原不等式的解集为[)1,1,2⎛⎤-∞-+∞ ⎥⎝⎦.(2)不等式2112x x +≤+可化为102x x -≤+,等价于(1)(2)020x x x -+≤⎧⎨+≠⎩, 解得212x x -≤≤⎧⎨≠-⎩,所以不等式的解集为{}|21x x -<≤.18.(12分)18.(1)(2,7)-;(2)2m <或6m ≥.(注意书写形式)试题解析:(1)25140x x --≥72x x ∴≥≤-或 ∈又()27120,43,4,3x x x B --->∴-<<-=--(][),27,A B ∴⋃=-∞-⋃+∞ ()()2,7R C A B ∴⋃=-(2) ∈ ∈. ∈,,∈.∈,则或.∈.综上,或19.(12分)19.(1) [)0,4 (2) ()[)1,02,4-【详解】根据复合命题真假,讨论p 真q 假,p 假q 真两种情况下a 的取值范围. (1)命题p 是真命题时,21>0ax ax ++在R 范围内恒成立, ∈∈当0a =时,有10≥恒成立;∈当0a ≠时,有2040a a a >⎧⎨∆=-<⎩,解得:04a <<; ∈a 的取值范围为:[)0,4.(2)∈p q ∨是真命题,p q ∧是假命题,∈p ,q 中一个为真命题,一个为假命题, 由q 为真时得由213a -<,解得1a 2-<<,故:∈p 真q 假时,有041a a ≤<⎧⎨≤-⎩或042a a ≤<⎧⎨≥⎩,解得:24a ≤<;∈p 假q 真时,有012a a <⎧⎨-<<⎩或412a a ≥⎧⎨-<<⎩,解得:10a -<<;∈a 的取值范围为:()[)1,02,4-.20.(12分)20.【详解】∈0x >故原不等式等价于()()()221010ax a x a ax x a -++≥⇔--≥当0a ≤时,10ax 恒成立此时不等式解集为 Φ ; 当0a >时,由()()10ax x a --=,有1x x a a==或,则 当01a <<时,解集为:(]10,,a a ⎡⎫⋃+∞⎪⎢⎣⎭当1a =时,解集为R +;当1a >时,解集为:[)10,,a a ⎛⎤⋃+∞ ⎥⎝⎦21.(12分)21.(1)[3,3]-(2)(),1-∞详解:(1)当1m =时,()12f x x x =+--3,121,123,2x x x x -≤-⎧⎪=--<≤⎨⎪>⎩,当12x -<≤时,3213x -≤-<,∈函数值域为[3,3]-.(2)当1m =-时,不等式()f x 即123x x x +-->.∈当1x <-时,得123x x x ---->,解得15x <,所以1x <-;∈当12x -≤<时,得123x x x +-+>,解得1x <,所以11x -≤<; ∈当2x ≥时,得123x x x ++->,解得1x <-,所以无解; 综上所述,原不等式的解集为(),1-∞.22.(12分)22.(1)22(2)9x y +-=,40x y -+=;(2. 【详解】解:(1)因为曲线C 的参数方程为3cos 23sin x y αα=⎧⎨=+⎩(α为参数),所以其直角坐标方程为22(2)9x y +-=,∈直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭∈sin cos 4ρθρθ-=,∈其直角坐标方程为40x y -+=;(2)直线l 过点(2,2)P -且参数方程可表示为222x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C的方程,得250t --=,则12t t +=125t t =-,∈121211||||t t PM PN t t -+==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玉溪一中高三年级第二次月考数学试卷(文)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2430A x x x =-+<,{}2|,R B y y x x ==∈,则B A ⋂=A .∅B .[)()0,13,+∞UC .0,3)D .(1,3) 2.若(1i)i z =+(i 为虚数单位),则Z 的虚部是( )A .1B .1-C .iD .i -3.设等差数列{}n a 的前n 项和为,n S 2a 、4a 是方程220x x --=的两个根,则5S =A .52-B .5-C .5D .524.已知]3,21[12)(2在x x x x f +-=的最小值为( ) A .21 B .34C .-1D .0 5.已知双曲线C :)0,0(12222>>=-b a by a x 的渐近线方程为x y 43±=,且其右焦点为(5,0),则双曲线C 的方程为( )A .116922=-y x B .191622=-y x C .14322=-y x D .13422=-y x 6.已知命题:0p a b >>,命题:q a b a b +<+,则命题p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.函数2()ln f x x e x =-的零点个数为 ( ) A .0 B .1C .2D .38.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为 ( ) A .34πB .π3C .π23 D .π9.在ABC ∆中,ooB A c 45,75,3===,则ABC ∆的外接圆面积为( ) A .4πB .πC .π2D .π4 10.某公司班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站坐车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .31 B .21 C .32 D .43 11. 若函数y =xa (a >0,且a ≠1)的值域为{y |0<y ≤1},则函数y =log a x 的图像大致是( )12. 已知函数的定义域为)(x f ),2[+∞-,且1)2()4(=-=f f ,)()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示. 则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是( ) A .8 B .5 C .4 D .2二、填空题: 本题共4小题,每小题5分,共20分. 13.函数x y 5.0log =的定义域为___________.14.设等比数列{}n a 满足,1031=+a a ,542=+a a 则n a a a 21的最大值为 .15.在矩形ABCD中,=⋅=⋅=∠AB AC AD 30CAB 0,AC . 16.已知椭圆C :22221(0)y x a b a b+=>>的左焦点为F C ,与过原点的直线相交于A B ,两点,连接AF BF ,,若4106cos 5AB AF ABF ==∠=,,,则C 的离心率e = .三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知函数,cos 2)322cos()(2x x x f ++=π(1)求函数)(x f 的最小正周期和单调减区间; (2)将函数)(x f 图象向右平移3π个单位长度后得到函数)(x g 的图象,求函数)(x g 在区间0,2π]上的最小值。

18.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5), 0.5,1),……4,4.5]分成9组,制成了如图所示的频率分布直方图。

(I )求直方图中的a 值;(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (Ⅲ)估计居民月均用水量的中位数。

19.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,045ADC =∠,AD=AC=1,O 为AC 的中点,PO ⊥平面ABCD ,PO=2,M 为PD 的中点。

(1)证明:PB//平面ACM ;(2)证明:AD ⊥平面PAC; (3)求四面体PACM 的体积.20.已知过抛物线)0(22>=p px y 的焦点,斜率为22的直线交抛物线于A(1x (,)1y ,9AB ))(,(2122=<两点,且x x y x B . (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若的值。

求λλ,+=21.已知函数xax x x f +-=21ln )(,R a ∈. (1)当2=a 时,求曲线)(x f y =在1=x 处的切线方程; (2)当1>x 时,0)(<x f 恒成立,求a 的取值范围.ABCDMPO请考生在22,23,两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为sin 42πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为1cos 1sin x y θθ=-+⎧⎨=-+⎩(θ为参数). (Ⅰ)求1C 的直角坐标方程;(Ⅱ)当1C 与2C 有两个公共点时,求实数a 取值范围. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()()2log 15f x x x a =-+--.(Ⅰ)当5a =时,求函数()f x 的定义域;(Ⅱ)当函数()f x 的定义域为R 时,求实数a 的取值范围.玉溪一中高三年级第二次月考数学试卷答案(文)一、选择题:1.D2.B3.D4.D5.B6.A7.A8.C9.B 10.B 11.A 12.C 二、填空题:13. {}10|≤<x x 14.64 15. 12 16 .75三、解答题:17.解:(1)由已知得,1)32cos()(++=πx x f π=∴T单调减区间Z k k k ∈+-],3,6[ππππ(2)21]2,0[)(,1)32cos()(上的最小值在ππx g x x g +-=。

18. (1)3.0=a (2) 36000 (3) 2.04 19.(1)略;(2)略; (3)61 20.(1)解:设直线AB 的方程为)2(22Px y -=,由⎩⎨⎧0542)2(22222=+-⇒=-=p Px x pxy Px y 4521px x =+ 4,9AB 21==++=p p x x 所以 x y 82=(2)由p=4得24,22,4,104521212=-===⇒=+-y y x x x x).24,4(),22,1(B A -)2422,41()24,4()22,1(λλλ+-+=+-=OC因为C 在抛物线上,所以(-2)41(8)2422λλ+=+,则20==λλ或。

21.解:(Ⅰ)切线0623=-+y x(Ⅱ) 由题意即x x x a ln 22-<对一切),1(+∞∈x 恒成立 令x x x x g ln 2)(2-=,则)1(ln )(,+-=x x x g ,x x g 11)(,,-= 当1>x 时,0)(,,>x g ,故)1(ln )(,+-=x x x g 在),1(+∞上为增函数0)1()(,,=>g x g ,即x x x x g ln 2)(2-=在),1(+∞上为增函数 21)1()(=>g x g ,故21≤a 22.解:(Ⅰ)曲线1C的极坐标方程为222ρθθ⎛⎫+= ⎪ ⎪⎝⎭, ∴曲线1C 的直角坐标方程为0x y a +-=.(Ⅱ)曲线2C 的直角坐标方程为:1)1()122=+++y x (实数a 取值范围:222-2-+-≤≤a23.(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)当5a =时,要使函数()f x 有意义, 有不等式1550x x -+-->①成立,当1x ≤时,不等式①等价于210x -+>,即12x <,12x ∴<;当15x <≤时,不等式①等价于10->,∴无解;当5x >时,不等式①等价于2110x ->,即112x >,112x ∴>; 综上,函数()f x 的定义域为111,,22⎛⎫⎛⎫-∞+∞ ⎪⎪⎝⎭⎝⎭. (Ⅱ)∵函数()f x 的定义域为R ,∴不等式150x x a -+-->恒成立, ∴只要()min15a x x <-++即可,又∵()()1515154x x x x x x -+-=-+-≥-+-=(当且仅当()()150x x --≥时取等号)即()min154,4a x x a <-+-=∴<. a 的取值范围是(),4-∞.。

相关文档
最新文档