解题--实战放缩法--朱世杰
高考数学数列放缩法技巧全总结
高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n 例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使ba m≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x N m n ++++=->∈+ 321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--n k m m m m m m m m m nk m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nnna 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nnn n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCF x S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x x i i n n i n nin --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x xx x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.FE D C BAn-inyxO解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
一花一世界,一题一放缩——谈放缩法在解题中的运用策略
2 、 丽
^
、 /
,
+ 、 /
‘
苏模拟题 )
( 叶6 ) > + n 6 + 6 Y , - a + b > 0 。 所 以叶 6 > 1 .
所 + 0 2 + . . . + %>
试 题研究 > 解 题技巧
数学教学通 讯( 中等教育 )
投 稿邮 箱: j x 乜 : 曼 曼 :
谈放缩法在解题 中的运用策 略
夏 海峰 何长 林
2 2 5 1 1 9
周兰 萍 江 苏扬 州 中学教 育集 团树人 学校 南 门街校 区 2 2 5 0 0 0
江 苏扬 州市邗 江 区公道 中学
、 / 4 n 一 3
殊的函数 。 利用其单调性进行放缩求解.
例谈谈放缩法在解题 中的运用策略.
、 / 丽
一 1n E
,
( 2 0 1 3 年江苏模拟题
通过 “ 初项 ” 、 “ 末项 ” 放缩
例1 设n 为大于 l 的 自然数 , 求证 :
—— + —— + —— + …+ . . . + — — > — — .( .I 2 0 1 1 I 年 : [ # 江 ) 上
例6 已知函数厂 ( ) : 1 x 2 + l n x  ̄
,
求证 :
1 +n l +6 1 +c
+
>
.
+ :
1 ——+ ——+ …+ — =一 : 1 一 — — + 一 — 1 — 一 一 — 1 — + +. . . +— !
一
2 x 3 3 x 4
n +l n +2 n +3 2n 2
放缩法技巧全总结(非常精辟-是尖子生解决高考数学最后一题之瓶颈之精华!!)
例析放缩法在数列不等式中的应用孙卫(安徽省芜湖市第一中学 241000)数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。
而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。
现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。
1. 直接放缩,消项求解例1(2008 辽宁21)在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈,(Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论;(Ⅱ)证明:1122111512n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。
(Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。
(Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭… 111111562216412n ⎛⎫=+-<+= ⎪+⎝⎭,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。
再用裂项的方法求解。
另外,熟悉一些常用的放缩方法, 如:),,2,1(11121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2(2008 安徽21.节选)设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; 分析:(Ⅰ)数学归纳法证明(Ⅱ)结论可变形为1)3(1-≤-n n c a ,即不等式右边为一等比数列通项形式,化归思路为对 n a -1用放缩法构造等比型递推数列,即)1(3)1)(1(112111-----≤++-=-n n n n n a c a a a c a解:(Ⅰ)解略。
放缩法技巧全总结(尖子生解决高考数学最后一题之瓶颈之精华)
高考数学备考之不等式放缩技巧总结证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(10) !)1(1!1!)1(+-=+n n n n 21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>. 解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnn a a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n n n n n nT -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫⎛---⋅⋅=+111312)(122(2231n n nn n 从而321+++T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+n n n a nn a ln )2111ln(ln 21n n n n a 211ln 2+++≤。
高中数学-放缩法(详解)
放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。
放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。
放缩法简介
放缩法的定义所谓放缩法,要证明不等式A<B成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种证法便称为放缩法。
放缩法是不等式的证明里的一种方法,其他还有比较法,综合法,分析法,反证法,代换法,函数法,数学归纳法等。
放缩法的主要理论依据(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(母)异分母(子)的两个分式大小的比较。
放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法。
放缩法的常见技巧(1)舍掉(或加进)一些项。
(2)在分式中放大或缩小分子或分母。
(3)应用基本不等式放缩(例如均值不等式)。
(4)应用函数的单调性进行放缩。
(5)根据题目条件进行放缩。
(6)构造等比数列进行放缩。
(7)构造裂项条件进行放缩。
(8)利用函数切线、割线逼近进行放缩。
使用放缩法的注意事项(1)放缩的方向要一致。
(2)放与缩要适度。
(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。
(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。
所以对放缩法,只需要了解,不宜深入。
总结放缩法是一种有意识地对相关的数或者式子的取值进行放大或缩小的方法。
如果能够灵活掌握运用这种方法,对比较大小、不等式的证明等部分数学试题的解题能起到拔云见雾的效果,尤其针对竞赛问题,是一种解决问题的很好方法,所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的"度",否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。
放缩法相关例题[例1] 证明:1/2-1/(n+1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n (n=2,3,4...)解:∵1/2^2+1/3^2+......1/n^2>1/2*3+1/3*4+......+1/n*(n+1)=1/2-1/ 3+1/3-1/4+......+1/n-1/(n+1)=1/2-1/(n+1)即左侧1/2^2+1/3^2+......1/n^2<1/1*2+1/2*3+......+1/(n-1)*n=1-1/2+1/2-1 /3+......1/(n-1)-1/n=1-1/n 即右侧∴1/2-1/(n-1)<1/2^2+1/3^2+......+1/n^2<(n-1)/n。
放缩法技巧和经典例题讲解
放缩法技巧及经典例题讲解 一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2)<>,11>n >=(3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<=(5)若,,a b m R +∈,则,a a a a mb b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n nnnn n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(10) 12112-+<<++k k k k k【经典回放】例1、设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n n S na n n n +=---, ()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+--- 整理得()()111n n n a na n n ++=-+,即111n n a a n n+-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列,所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 例2:【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S 分析:(1)此时我们不妨设)(2)1(1B An a B n A a n n ++=++++即BA An a a n n +-+=+21与已知条件式比较系数得.0,1=-=B A )(2)1(1n a n a n n -=--∴+又}{,211n a a n -∴=-是首项为2,公比为2的等比数列。
放缩法技巧全总结
放缩法技巧全总结放缩法是一种在求解数学问题时经常使用的技巧之一、它主要是通过对问题进行放大或缩小,从而转换为更简单或更熟悉的形式来解决。
放缩法可以用于各种数学领域,如代数、几何和计算等。
在本文中,我将总结一些常用的放缩法技巧。
一、代数放缩法1.替换变量:通过替换变量,将原始问题转化为更容易求解的问题。
例如,可以通过令一些变量等于另一个变量的一些表达式来简化问题。
2.提取公因式:将多项式中的公因式提取出来,可以简化计算过程。
3.移项:将方程中的项移动到一边,可以使问题更加清晰。
4.分式放缩:对于有分式形式的问题,可以通过放缩分母或分子来简化问题。
二、几何放缩法1.类比三角形:如果一个问题中涉及到一个复杂的三角形,可以通过找到类似形状但更简单的三角形来放缩问题。
2.重心放缩:对于一个几何体,可以通过移动几何体的重心来简化问题。
例如,在求解三角形面积时,可以通过将三角形平移到一个更简单的位置来计算。
3.缩放比例:通过按比例缩放一个几何体,可以简化问题。
例如,求解复杂图形的面积时,可以将图形按比例缩小到一个更易计算的大小。
三、计算放缩法1.近似计算:当遇到一个复杂的数学计算时,可以通过近似计算来简化问题。
例如,可以使用泰勒级数近似一个函数的值。
2.递归放缩:将一个复杂的计算问题分解为多个简单的计算问题,并将得到的结果组合起来。
例如,在求解一个复杂的积分时,可以将其拆分为多个简单的积分来计算。
3.迭代放缩:通过迭代计算的方式,逐步接近问题的解。
例如,在求解方程的根时,可以逐步逼近根的值。
四、实例分析以以下问题为例,展示放缩法在实际问题的应用。
假设有一个需要排队购买电影票的场景,共有n个人等待购票,每个人需要等待的时间为ti,求解n个人等待时间的平均值。
使用放缩法求解该问题的步骤如下:1. 将n个人的等待时间求和得到总的等待时间sum。
2. 将总的等待时间sum除以n,得到平均等待时间average。
通过放缩法求解,可以将原始问题转化为简单的求和和除法操作,从而简化了计算过程。
放缩法技巧全总结(尖子生解决高考数学最后一题之瓶颈之精华)
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r rr n r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10)!)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到 nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a<<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nn na a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n nn T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n xn,求证: *))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n+++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα 解析:构造函数xx x f ln )(=,得到22ln ln nn n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n 函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S1,从而,)ln(ln |ln 11i n n x x i nn in nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n 另一方面⎰->ni n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰ 取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n<+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)FE D C BA n-inyxO例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n n n a n n a)2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21nn n n a 211ln 2+++≤。
放缩法技巧全总结
放缩法技巧全总结放缩法(Scaling)是一种常用的数学技巧,用于将数学问题转化为更简单、更易解决的形式。
这种技巧广泛应用于数学竞赛和问题求解中。
以下是放缩法的几个常见技巧和应用总结。
1.强化不等关系:放缩法的核心思想是通过比较大小来改变问题的形式。
如果已知a>b,那么可以通过加减乘除等操作将问题转化为a的形式,从而简化计算过程。
例如,要求证明a+2b>0,可以通过乘法得到2a+4b>0,进一步可得3a+6b>0。
这样可以将问题转化为证明3a+6b>0的形式,而这个不等式更容易证明。
2. 运用恒等变形:放缩法还可以通过变换等式或不等式的形式来简化问题。
常用的恒等变形包括平方恒等式(a+b)^2=a^2+2ab+b^2和倒数恒等式1/(ab)=(1/a)(1/b)等。
应用这些恒等变形,可以将问题转化为更简单的形式,进而解决问题。
3.递推放缩:递推放缩是一种通过递推关系来简化问题的方法。
通过找到问题的递推关系,可以将问题规模进行放缩,从而降低问题的复杂度。
例如,要求证明一些等式成立,可以通过将等式两边代入等式左边或右边的形式,利用递推关系将问题简化。
4.红蓝染色:红蓝染色是一种通过对元素染色来放缩问题的方法。
通过给问题中的元素染色,可以将问题转化为简化的形式,从而解决问题。
例如,在一个n×n的方格中,要求选择一些相互不在同一行、同一列的方格,并使这些方格能够覆盖所有的行和列。
可以将行和列分别染成红色和蓝色,问题转化为在红色和蓝色方格中选择不同行和列的方格并覆盖所有的红色和蓝色方格的问题。
5.数学归纳法:数学归纳法是一种通过递推关系来证明数学性质的方法。
通过对问题进行归纳假设,可以按照递推步骤逐步证明问题的性质。
例如,要证明对于任意正整数n,都有n(n+1)(n+2)能被6整除,可以通过数学归纳法来证明:当n=1时,1×2×3=6能被6整除;假设当n=k时成立,即k(k+1)(k+2)能被6整除;则当n=k+1时,(k+1)(k+2)(k+3)=(k(k+1)(k+2))+(k+1)(k+2)也能被6整除,即对于任意正整数n都有n(n+1)(n+2)能被6整除。
朱世杰恒等式及其应用
朱世杰恒等式及其应用大南湖中心学校 扶璋什么是朱世杰恒等式?先用归纳的合情推理,猜想出朱世杰恒等式,再证明它.11046336234333122322+++=++=⇒⎪⎭⎪⎬⎫=+++=+++∑k r k ri k i K n n C C C C C C C C C C 证明:由组合的第二个性质111111++++++++++++-=⇒+=k i K k i K k i K k i K k i K k i K C C C C C C 用裂项相消法来证明时,可令i=1,2,3,,,,,,,r 则有11121+++++-=K K K K K K C C C 12132+++++-=K K K K K K C C C………………….111++++++-=k r K k r K k r K C C C 以上r 个等式两边分别相加得⇒-=+++++++++++++1111321K K k r K k r K K K K K K K C C C C C C 移项并且代换K K K K C C =++11可得朱世杰恒等式110+++=+=∑k r k ri ki K C C一 用朱世杰恒等式求数列的和1.1朱世杰恒等式可以求前n 个自然数的和, 平方和, 立方和.=++++=n S 3211=2)1(+n n 用朱世杰恒等式与用等差数列求和公式殊途同归 事实上 ,2)1(21112111131211+==+++=+++++n n C C C C P P P P n n n 。
)()(])1([32111211212322122222n n ni P P P P P P i i i n S +++-+++=-+=++++=+=∑6)12)(1(2)1(3)3)(1(2)()(2213211211212322++=+-++=-=+++-+++=+++n n n n n n n n C C C C C C C C n n n n为了求∑==ni iS 133,先分析通项23)1(2)2)(1(n n n n n n n a n -+-++==6)12)(1()(4)(621232232343313++-+++-+++=++=∑n n n C C C C C C in n ni6)12)(1(3)2)(1(24)3)(2)(1(6)12)(1(463243++-++-+++=++--++n n n n n n n n n n n n n C C n n =22)1(6)12)(1(12)13)(2)(1(⎥⎦⎤⎢⎣⎡+=++-+++n n n n n n n n n 有了这些准备工作之后,对于自然数中前n 个偶数, 奇数的平方和就有了熟悉激活陌生的基础..1.2 用朱世杰恒等式求连续积组成的数列之和①1×2+2×3+…+n(n+1)===+++=++322123222)(2n n C C C C =3)2)(1(++n n n②1×2×3+2×3×4+…+n(n+1)(n+2)=6(323433++++n C C C ) 4/)3)(2)(1(643+++==+n n n n C n③5)4)(3)(2)(1(24)(24)3)(2)(1(544345441++++==+++=+++++=∑n n n n n C C C C i i i i n n ni ④……宏观角度去猜想,n 个连续自然数乘积相加,其结果是(n+1)个连续自然数的乘积再除以(n+1).用微观角度去猜想也能得出殊途同归的结果]1[. 1.3 某些特殊数列的求和例1 N j i ∈,,求和?))(1()2()1(=+-++++++j i j i i i i i解:原式=][(22222221232222221j i i i j i i i C C C C C C C C +-+++++++++=+++-2()222i C C ++ =2()1)()(1[(3/1)3131-++++=-+++j i j i j i C C i j i -()1()1-+i i i=(1/3))133(22-++j ij i j .这说明在使用朱世杰恒等式时,如果不符合朱世杰恒等式的条件,一定要创造朱世杰恒等式的条件,再使用,方可得出正确的结果. 二 用朱世杰恒等式求偶数列(奇数列)的幂之和S ?)2(........6422222=++++=n首先, 我们探求和的规律性, 探索通项是求和的“通行证”[][]∑=-+=⇒-+===ni n i i i S n n n n n a 122)1(4)1(44)2(众所周知1+2+3+….+n=3)2)(1()1(.....433221,2)1(++=+++⨯+⨯+⨯+n n n n n n n 3)12)(1(22)1(3)2)(1(4++=⎥⎦⎤⎢⎣⎡+-++=n n n n n n n n S我们把自然数中前n 个偶数的平方和转化成两个数列的差, 从而创造性的激活了新数列的求和问题. 实质是把陌生的问题转化成熟悉的问题.类比到自然数中前n 个奇数的平方和, 可否用“熟悉激活陌生”的数学思想呢? 例1 求和?)12()12(53122222=++-++++n n分析: 自然数中前2n+1个奇数的平方和等于自然数中前n+1个自然数的平方和再减去前n 个偶数的平方和, 这也是熟悉激活陌生的策略; 第二种激活例1的方法是运用朱世杰恒等式.解法1: 原式=3)12)(1(26)34)(22)(12()2(121212++-+++=-∑∑=+=n n n n n n m k nm n k=3)32)(12)(1(+++n n n解法2: 分析通项是求和的“通行证”:144)12(22++=+n n n∑∑∑∑====+++=+++=++ni n i n i n i i i n i i i 11212122441)144(1)12(1=1+n+4[2()]()11211212322n n C C C C C C +++-++++ +4()11211n C C C +++=n+1+3)32)(12)(1(6)2)(1(812)1(46)12)(1(4+++=++++=++++n n n n n n n n n n n n 这就殊途同归地得出我们予想的结果.两种解法比较可以看出“新想法是旧成分的新组合”。
放缩法技巧全总结
放缩法技巧全总结放缩法是数学问题解决中常用的一种方法,它通过缩小问题的范围或改变问题的形式来简化解决过程。
在数学建模、优化问题以及算法设计中,放缩法经常被应用于求解复杂的问题。
本文将对放缩法的原理、应用以及常见的技巧进行全面总结。
1. 放缩法的原理及基本思想放缩法的基本思想是通过限制问题的变量范围或者构造合适的上下界,从而将原问题转化为一个可以更容易解决的子问题。
主要包括以下步骤:首先,确定问题的数学模型和目标函数。
根据问题的特点,选择合适的变量和约束条件,明确问题的求解目标。
其次,根据问题的特点,通过观察和分析将问题进行简化。
可以通过限制变量范围、引入新的限制条件或者改变问题的形式等方式进行问题的放缩。
然后,进行放缩求解。
根据问题的特点,选择合适的求解方法和算法来求解放缩后的子问题。
最后,将子问题的解进行扩展和还原,得到原问题的解。
2. 放缩法的应用领域放缩法是一种通用的方法,可以应用于多个领域,如数学建模、优化问题以及算法设计等。
以下列举几个应用场景:2.1 数学建模放缩法在数学建模中经常用于减少问题的复杂性,简化模型的求解过程。
通过放缩变量的范围,可以缩小求解空间,提高求解效率。
2.2 优化问题放缩法在优化问题中的应用非常广泛。
通过引入适当的上下界限制,可以将原问题转化为一个更容易求解的子问题。
例如,在整数规划中,可以通过放缩法来将问题转化为一个线性规划问题,然后使用线性规划算法求解。
2.3 算法设计在算法设计中,放缩法可以用于改进算法的时间复杂度和空间复杂度。
通过限制算法中的某些变量范围,可以减少算法的搜索空间,提高算法的效率。
3. 放缩法的常见技巧3.1 二分搜索二分搜索是放缩法中常用的技巧之一。
通过确定问题的上下界,不断将问题的搜索空间缩小一半,直到找到满足条件的解。
二分搜索可以应用于各种离散问题,如查找有序数组中的元素、搜索图中的路径等。
3.2 引入辅助变量引入辅助变量是放缩法中常用的技巧之一。
放缩法——经久不衰的高考热点
放缩法——经久不衰的高考热点
放缩法是指在证明不等式时,把不等式一边适当放大或缩小,再利用不等式的传递性来完成证题的一种方法。
它的实质是找到1个或多个适当的中间量。
高考中这类题型一般背景新颖、中间量设计很独特、综合性强、技巧性大,考生一般感到难以下手且得分率很低。
下面举例说明放缩法的常用技巧。
评注本题以数列递推关系及数列求和为背景,先反复使用第(i)结论进行放缩,再使用等比数列求和公式后又放缩一次。
近几年的高考大轴题,都在“大轴点”之前
设置1个(或2个)习题作为铺垫,从而降低了“大轴点”的难度,应引起所有考生的重视。
^。
社会学难题放缩法的技巧(精华)
社会学难题放缩法的技巧(精华)社会学难题放缩法的技巧概述社会学作为一门研究人类社会行为的学科,经常面临复杂的难题。
为了解决这些难题,社会学家常常采用放缩法。
放缩法是一种将抽象概念具体化、将复杂问题简化的方法。
本文将介绍社会学难题放缩法的几种常见技巧。
一、扩大样本规模对于一些难以获得足够样本的社会学难题,放缩法可以通过扩大样本规模来解决。
通过增加样本的数量,可以提高研究的可靠性和普遍性。
同时,扩大样本规模还可以减少样本的偶然性和随机性,使得研究结果更具有说服力。
二、缩小研究范围在面对复杂的社会学问题时,放缩法可以通过缩小研究范围来帮助研究者更好地理解问题的本质。
通过将大问题分解成小问题,并集中研究其中一个或几个方面,可以更深入地研究、理解和解决具体问题。
缩小研究范围还可以更有效地收集和分析数据,提高研究的准确性和可靠性。
三、简化研究设计社会学难题通常涉及许多变量和复杂的关系,这给研究者带来了困难。
放缩法建议在研究设计中简化变量和关系的复杂性。
通过选择关键的变量和关系,将研究设计精简到最重要和核心的问题上,可以更好地理解和解决社会学难题。
简化研究设计还可以减少研究过程中的干扰和误导,提高研究结果的可信度。
四、利用实证研究和理论验证放缩法建议在解决社会学难题时,结合实证研究和理论验证的方法。
实证研究可以通过收集和分析大量的数据来验证社会学理论的有效性和适用性。
理论验证则可以通过研究者对社会现象的深入思考和分析,建立和完善社会学理论。
实证研究和理论验证相互印证,可以更全面地解决社会学难题。
结论放缩法是解决社会学难题的一种常用方法。
通过扩大样本规模、缩小研究范围、简化研究设计、利用实证研究和理论验证等技巧,可以帮助社会学家更好地理解和解决复杂的社会学问题。
研究者在使用放缩法时应根据具体情况灵活运用,并结合其他方法和技巧进行综合分析和研究。
参考资料:- Smith, J. (2010). Scaling down: The subordination of academic labor and the restructuring of academic work. ProQuest Dissertations Publishing.- Jones, M. (2015). Scaling up and scaling down: Building a successful independent school. The Educational Forum, 79(3), 238-255.- Brown, H. & Smith, T. (2018). Scaling down, and tamping up: Subjectivity and anti-suicide barriers in a Vancouver subway station. Environment and Planning D: Society and Space, 36(6), 1051-1071.。
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华)
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后一题之瓶颈之精华!!)2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求的值; (2)求证:.解析:(1)因为,所以(2)因为,所以奇巧积累:(1) (2)(3)(4)(5) (6)(7) (8)(9)(10) (11)(11)(12)(13)(14) (15)(15)例2.(1)求证:(2)求证:(3)求证:(4) 求证:解析:(1)因为,所以(2)(3)先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案(4)首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证:解析:一方面:因为,所以另一方面:当时,,当时,,当时,,所以综上有例4.(20XX年全国一卷) 设函数.数列满足..设,整数.证明:.解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,,因为,于是例5.已知,求证: .解析:首先可以证明:所以要证只要证:故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,,求证:.解析:所以从而例7.已知,,求证:证明: ,因为,所以所以二、函数放缩例8.求证:.解析:先构造函数有,从而因为所以例9.求证:(1)解析:构造函数,得到,再进行裂项,求和后可以得到答案函数构造形式: ,例10.求证:解析:提示:函数构造形式:当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,,所以有,,...,,,相加后可以得到:另一方面,从而有取有,,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证:解析:,叠加之后就可以得到答案函数构造形式:(加强命题)例13.证明:解析:构造函数,求导,可以得到:,令有,令有,所以,所以,令有,所以,所以例14. 已知证明.解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案)放缩思路:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实战放缩法
315410浙江省余姚县余姚三中 朱世杰
地址:浙江省余姚县丈亭镇凤山西路19号
近年浙江卷及多份高考卷都是在用放缩法解压轴题。
那是在减轻学生负担,新课改背景下出的考题。
出现这种情况,常规的说法是由高考的性质决定的,它是选拔性考试,要有足够的区分度,不是每个考生都可能拿满分。
对于放缩法,做出来后,结果也许简单。
但怎么得出个具体的办法,却需要长期的积累,解题过程中也会有大量的尝试,只有平时注重训练,才能形成一定的能力。
有一点需要提醒的是:不是每个学生都需要这方面的训练,需要练习的学生中,也不是都要达到同样的要求。
对于程度极好的学生,有助于整合已有的知识,开阔视野。
反之,除掉带来新奇感和或许有的进步,似乎更应把时间化在“双基”上。
研究问题当然要遵循一定的方法,大致这么说总是可行的,由易到难,循序渐进。
更进一步的原则,可以参考笛卡儿的《方法论》。
本文只是打算举几个例子,说说自己解题时的体会,未敢对放缩法做全面的总结,所举的例子也未经课堂实践,仅是混迹论坛感觉印象颇好的几个,仅供参考。
例一:估计222111123n
+++⋅⋅⋅+的近似值。
背景2
222111lim (1)623n n
π→+∞=+++⋅⋅⋅+ 方法一:利用211111(1)(1)1n n n n n n n
<<=-+--,最基本的模型。
方法二:让学生估计上式n 什么时候,放缩程度小,即211y=│-│n n(n-1)
的单调性。
很自然想到一个办法,就是保持前几项不放缩,后几项按方法一处理,这样得到的近似值精度更高。
方法三:利用2244112()4412121
n n n n <=---+,比方法一更优越,比二计算量相对小。
方法四:以上方法二、三一起处理本问题,似有画蛇添足的味道了,也许不点破留有余味,让学生自己琢磨更好。
例二:求证:1
n N ++<∈(题目是以积分为背景,中学中的很多数列不等式往往可以由积分演变而来的,看来要编个普通问题这是
个途径,2003江苏高考22题估计也是这么编制的。
本题C
=,左边是分点为整数时Darboux 下和)
解决的另一个办法可以是数学归纳法或裂项。
又一个常见的一个模型
=<<=
例三:11
112
2(1)
33
n n
n
a
--
=⋅+⋅-,求证:
45
7
,(4)
8
n
a a a n
++⋅⋅⋅+<>
略解:当n为偶数(n>5)
1
11211
33925
22222242
n
n n n n n n n
a a
-
+---
⋅
+=+=<
-+--
(分析后去凑的,不自然)…①
而
45
11
26
a a
+=+,那么要证明原式
4567
7
()()
8
n
a a a a a
++++⋅⋅⋅+<,
即要证明
67
5
24
n
a a a
++⋅⋅⋅+<
而
67
515
()
1
3224
1
4
n
a a a
++⋅⋅⋅+<=
-
(按①放缩,等比数列和)
45
a a
+太大(相对于其他数),没放缩。
1.我觉得自己办法不是最好的(在追求真实的过程中,这个世界上没有比变化更好的东西---笛卡儿的《方法论》)。
2.为什么前几项不变,后几项放缩?直觉上借鉴了极限的ε-N定义,无论怎么弱的放缩法,只要收敛,总可以通过这个办法,达到证明的目的。
当然还是要兼顾到计算可行的问题。
3.怎么凑,凑出的结果当然不是唯一的。
4.本题更一般的角度,其实是任意一个n阶可导函数可以用泰勒级数展开n项,再求n个等比数列和,本题解法只是考虑了最简单的1项。
5.当然也可以说是从特殊到一般探索过程自然形成的设想。
例四:
12
a x x
>>>且
2
21
2
12
4()
()
a x x
a x x
+
=
+
,求证:
12
2
x x
>。
证明:设1
22
,
x
a
s t
x x
==,题目即为,已知s>t>1,且
2
2
4(1)
()
s
t
s t
+
=
+
,求证:2
t>
11
t s
t t s t
++
<<=
++
,可得2
t>,即
12
2
x x
>。
1.换元目的在于减少字母,更易看清楚不等式的结构。
2.不等式的放缩,即使当作解不等式,解出精确的结果,也不是总能做的,本题最后结果由这个思路可以加强,可参考教材的二分法,其实是解不等式的“万能”方法。
3.利用课本的分式放缩只是尝试.又一个模型0,0
a b m
>>>则
b b m
a a m
+
<
+
(直观地看,限于正数前提下,若分子分母更接近,则比值更接近1。
例五:k Z +∈,112a =,211k k k a a a n +=+,证明:当1k n ≤≤时,111n a n
-<<. 略解:先证数列单调递增,那么当k n ≤ , 211111n n n n n b b b b b k k ----=< 那么1111n n b b k --<,……..,12111b b k
-<, 这1n -个不等式累加得
1111n n b b k --<,化简下就可以了. 1.一开始尝试直接用数学归纳法---失败;放缩 --- 要么放不了,要么过度;迭
加 , 消不掉;把它裂项, 可是裂了之后也没办法。
直接计算通项,第三五项后,烦琐得没法写。
2.约一小时后,终于瞎碰到以上解法。
“失败”的经历,事后想想也可以看成
在整理自己知识的一个过程,不见得完全失败。
于学生也许也该给足够犯错误和反思的时间,怎奈考试时间才2小时。
3.此题是1980年匈牙利等四国联合竞赛的一道题目,加强结论后用数学归纳法
另有人也解出来了。
重复文中提到的意思,面向大多数学生,对于本文内容,老师并不需要特别去做什么,能做的还是在于基本知识,至于考题中碰到,那要看学生怎么发挥了。
至于天赋很高的学生,根据这几年的出题情况,还是应该在这方面做适度练习的。
练习:
1.,2,n N n ∈>求证:1111111ln 1231231
n n n n ++⋅⋅⋅++<<+++⋅⋅⋅+--. 2.已知221111,32n n n n a a a a a ++=+=+,且0n a >.证明:12
1122n n n a --≤≤ 3.*112111,(1),2
n n n a a a n N n n +==++∈+. (1)证明:2(2)n a n ≥≥;
(2)已知不等式ln(1)x x +<对0x >恒成立,求证:2n a e <.
(本文所涉及题目均来自网络,推荐人教数学论坛,k12数学论坛,奥数论坛,mathlink)。