2016中考数学模拟试题含答案(精选5套)
2016年中考数学模拟试题精选
24.
25.解:过M作与AC平行的直线,与OA、FC分别相交于H、N,
(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由;
(2)抛物线C1:y=(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.
10.(本题满分9分)如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3 ).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动的面四民﹒数学兴趣小组对捐款情况进行了抽样调查,速度分别为1, ,2 (长度单位/秒)﹒一直尺的上边缘l从x轴的位置开始以(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
(1)求b,k的值;(2)求△BDC的面积;
(3)在反比例函数 的图像上找一点P(异于点C),使△BDP与△BDC的面积相等,求出P点坐标.
7.(本题满分7分)如图①②,图①是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为25cm,设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα= .
最新)2016年中考模拟数学试题(含答案)
最新)2016年中考模拟数学试题(含答案) 2016年中考模拟数学试题(含答案)一.选择题(每小题3分,共24分)1.3的倒数是()。
A。
4/3443 B。
3443/3 C。
-4/3443 D。
-3443/42.右图是某几何体的三视图,该几何体是()。
A。
圆锥 B。
圆柱 C。
正三棱柱 D。
正三棱锥3.下列运算中正确的是()。
A。
π=1 B。
x2=x C。
2-2=-4 D。
--2=24.不等式组{x≤-2,x-2>1}的解集是()。
A。
x≤-2 B。
x>3 C。
3<x≤-2 D。
无解5.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失。
灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手。
截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款万元。
科学计数法表示为()元。
A。
8.01×107 B。
80.1×107 C。
8.01×108 D。
0.801×1096.九年级某班40位同学的年龄如下表所示:则该班40名同学年龄的众数和平均数分别是()。
A。
19,15 B。
15,14.5 C。
19,14.5 D。
15,157.如图:∠B=30°,∠C=110°,∠D的度数为()。
A。
115° B。
120° C。
100° D。
80°二.填空题(每小题3分,共18分)8.一元二次方程6x2-12x=0的解是()。
9.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=()°。
10.在二次函数y=ax2+bx+c的图像如图所示,下列说法中①b2-4ac<0②-2b/a<0③abc>0④a-b-c<0,说法正确的x是(填序号)。
2016中考模拟数学试题及答案
中考数学模拟试题(7)一、 选择题 1、数-中最大的数是()A 、1- B、0 D 、2 2、9的立方根是()A 、3±B 、3 C、3、一无二次方程总有实数根,则m 应满足的条件是()A 、mB 、mC 、D 、4、如图是某几何题的三视图,下列判断正确的是()A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为25、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°主视图左视图俯视图7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点 B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016年中考数学模拟试卷及答案(精选两套)
1. 2. 3. 4. 5. 6. 初中2016届九年级数学第一次模拟第I 卷 选择题(36分)、选择题(本大题共 12个小题,每小题3分,满分36分) 若 m-n=-1,则(m-n ) 2-2m+2n 的值是( ) A. 3 B. 2 C. 1 D. -1 已知点A (a , 2013)与点A (- 2014, b )是关于原点 O 的对称点,贝U a b 的值为A. 1B. 5C. 6D. 47. 8. 9. 等腰三角形的两边长分别为 3和6,则这个等腰三角形的周长为( A . 12, B . 15, C . 12 或 15, 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆 A. 1个 B. 2个C.D. 4个如图,在O / APD=75 A. 15O 中,弦AB , CD 相交于点 P ,若/ A=40 ° , ,则/ B=B. 40C. 75D. 35F 列关于概率知识的说法中,正确的是 A. B. C. D. “明天要降雨的概率是90% ”表示: 18图1明天有 90%的时间都在下雨.1-”表示:每抛掷两次,就有一次正面朝上2“彩票中奖的概率是 1%”表示:每买100张彩票就肯定有一张会中奖. “抛掷一枚硬币,正面朝上的概率是“抛掷一枚质地均匀的正方体骰子,朝上的点数是1”这一事件的频率是 若抛物线y A. 2012 x 2用配方法解方程 A. (x 2)2 ”表示:随着抛掷次数的增加,“抛出朝上点数1与x 轴的交点坐标为(m,0),则代数式 m 2013的值为B. 2013C. 2014D. 20154x 1 B. 0,配方后的方程是 (x 2)2 3 C. (x 2)2D. (x 2)25要使代数式—有意义,则a 的取值范围是 2a 1 1 B. a -210.如图,已知O O 的直径CD 垂直于弦 AB ,/ ACD=22.5 °,若 A. a 0C. D. 一切实数2CD=6 cm ,贝U AB 的长为A. 4 cmB. 3 2 cmC. 2 3 cmD. 2 - 6 cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生 450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是12.如图,已知二次函数 y=ax 2+ bx + c (0)的图象如图所示,有下列5个结论:①abc v 0;② b v a + c ;③4a + 2b+c>0 :④ 2c v 3b ;⑤a + b v m (am + b) ( m ^ 1 的实数). 其中正确结论的有 A.①②③ B.①③④ C.③④⑤D.②③⑤第H 卷 非选择题(84 分)二、填空题(本大题共 6个小题,每小题 3分,满分18分)只要求填写最后结果.13.若方程x 3x 11 10的两根分别为x 2,贝U的值疋x 1x 214. 已知O 01与O 02的半径分别是方程x 2— 4x+3=0的两根,且 O 1O 2=t+2,若这两个圆相切,则 t=15. 如图,在△ ABC 中,AB=2 , BC=3.6,/ B=60。
最新2016 年中考模拟数学试题(含答案)
2016年中考模拟数学试题时间120分钟满分120分 2016.2.4一、选择题(共10 小题,每小题3分,满分30分)1.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=153.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.4.已知k、b是一元二次方程(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD 的面积不变D.四边形ABCD的周长不变6.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为 x,则 x 满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=7.正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限8.如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A、B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①S△ADB=S△ADC;②当0<x<3时,y1<y2;③如图,当x=3时,EF=;④当x>0 时,y1随x 的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.48题图 9题图 10题图9.如图,在网格中,小正方形的边长均为 1,点 A,B,C 都在格点上,则∠ABC 的正切值是()A.2B.C.D.10.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1 个 B.2 个 C.3 个 D.4个二、填空题(每小题3分,共24分)11.若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是.12.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.13.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为.13题图 14题图 15题图14.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).15.如图,矩形EFGH 内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF= EH,那么EH的长为.16.将一副三角板按图叠放,则△AOB 与△DOC的面积之比等于.16题图 17题图 18题图17.如图,港口A 在观测站O 的正东方向,OA=4km,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即 AB的长)为.18.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x 轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为.三、解答题(共66分)19.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.20.已知关于 x 的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中 a、b、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.21.如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;若四边形AFCE是菱形,求菱形AFCE的周长.22.如图,在平面直角坐标系中,O为原点,直线AB分别与x 轴、y轴交于B和A,与反比例函数的图象交于 C、D,CE⊥x 轴于点E,tan∠ABO=,OB=4,OE=2.(1)求直线AB和反比例函数的解析式;求△OCD的面积.23.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)24.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2 米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5 米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;试计算出电线杆的高度,并写出计算的过程.25.如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N 处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A 在同一平面内,E、C、N 在同一条直线上,求条幅的长度(结果精确到 1米)(参考数据:≈1.73,≈1.41)26.如图1,在正方形ABCD 中,P是对角线BD 上的一点,点E在AD 的延长线上,且PA=PE,PE交CD 于F.(1)证明:PC=PE;求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案一、选择题1.故选D.2.故选C3.故选:C.4.故选B.5.故选C.6.故选B.7.故选:D.8.故选C9.故选:D.10.故选B.二、填空题11.m<.12.1.4.13.2.14 故答案为:③.15.1.516故答案为:1:3.17. 2km .18.三、解答题19.解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4∴另一边为8米或50米.答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米.20.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;∵方程有两个相等的实数根,∴2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.21.解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,解得:x= ,则菱形的边长为:8﹣=,周长为:4×=25,故菱形AFCE的周长为25.22.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===.∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=﹣x+2.设反比例函数的解析式为y=(m≠0),将点C的坐标代入,得3= ,∴m=﹣6.∴该反比例函数的解析式为y=﹣.联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC 的面积=4×3÷2=6,故△OCD 的面积为2+6=8.23.解:(1)甲同学的方案不公平.理由如下:列表法,5 (5,2)(5,3)(5,4)8种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;不公平.理由如下:所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:=,则小刚获胜的概率为:,故此游戏两人获胜的概率不相同,即他们的游戏规则不公平.24.解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以 AM=10﹣2=8,由平行投影可知,=,即=,解得CD=7,即电线杆的高度为7米.25.解:过点D作DH⊥AN于H,过点E作FE⊥于DH于F,∵坡面DE=20米,山坡的坡度i=1:,∴EF=10米,DF=10米,DH=DF+EC+CN=(10+30)米,∠ADH=30°,∴AH=×DH=(10+10 )米,∴AN=AH+EF=米,∵∠BCN=45°,∴CN=BN=20米,∴AB=AN﹣BN=10 ≈17米,答:条幅的长度是17米.26.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP 和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
2016年中考数学模拟试卷(含答案解析) (3)
2016年中考模拟试卷(二)数 学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|-2|的值是( ▲ )A .2B .﹣2C .12D .-122.已知某种纸一张的厚度约为0.0089cm ,用科学计数法表示这个数为( ▲ )A .8.9×10-5B .8.9×10-4C .8.9×10-3D .8.9×10-23.计算a 3·(-a )2的结果是( ▲ )A .a 5B .-a 5C .a 6D .-a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则点E 表示的实数是( ▲ ) A . 5 +1 B . 5 -1C . 5D . 1- 55.已知一次函数y =ax -x -a +1(a 为常数),则其函数图象一定过象限 ( ▲ )A .一、二B .二、三C .三、四D .一、四6. 在△ABC 中, AB =3,AC =2.当∠B 最大时,BC 的长是 ( ▲ ) A .1B .5C .13D .5二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应....位置..上) 7.计算: ( 13 )﹣2+(3+1)0= ▲ .8.因式分解:a 3-4a = ▲ . 9.计算:3-33= ▲ .10.函数y =x -12中,自变量x 的取值范围是 ▲ . 11.某商场统计了去年1~5月A ,B 两种品牌冰箱的销售情况.A 品牌(台) 15 17 16 13 14B 品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是 ▲ (填“A ”或“B ”).-3 -2 -1 2 1 0 AB ECD 3(第4题)12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为 ▲ °.13.已知m 、n 是一元二次方程ax 2–2x +3=0的两个根,若m +n =2,则mn = ▲ .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x 个中国结,可列方程 ▲ .15. 如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为23,则图中阴影部分的面积为▲ .16.已知二次函数y =ax 2+bx +c 与自变量x 的部分对应值如下表:现给出下列说法:①该函数开口向下. ②该函数图象的对称轴为过点(1,0)且平行于y 轴的直线. ③当x =2时,y =3. ④方程ax 2+bx +c =﹣2的正根在3与4之间. 其中正确的说法为 ▲ .(只需写出序号)三、解答题(本大题共12小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17. (6分)解不等式:1-2x -13 ≥ 1-x2,并写出它的所有正整数解..... 18.(6分)化简:x -3x -2 ÷( x +2-5x -2).19.(8分)(1)解方程组 ⎩⎨⎧y =x +1,3x -2y =-1;(2)请运用解二元一次方程组的思想方法解方程组⎩⎨⎧x +y =1,x +y 2=3.x … 1- 0 1 3 … y … 3- 1 3 1 …(第11题)12(第15题)20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了 ▲ 人,并请补全条形统计图; (2)扇形统计图中18﹣23岁部分的圆心角的度数是 ▲ 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙; (2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF . (1)求证:ABE AD F '△≌△;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.全国12-35岁的网瘾人群分布条形统计图年龄人数12-17岁30-35岁24-29岁18-23岁500400300200100330420450O30-35岁22%12-17岁24-29岁18-23岁全国12-35岁的网瘾人群分布扇形统计图ADBE CD 'F(第22题)23.(8分)如图,两棵大树AB 、CD ,它们根部的距离AC =4m ,小强沿着正对这两棵树的方向前进. 如果小强的眼睛与地面的距离为1.6m ,小强在P 处时测得B 的仰角为20.3°,当小强前进5m 达到Q 处时,视线恰好经过两棵树的顶端B和D ,此时仰角为36.42°. (1) 求大树AB 的高度; (2) 求大树CD 的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm 的铁丝分成两个部分,分别围成两个正方形. (1)能否使所围的两个正方形的面积和为250cm 2,并说明理由; (2)能否使所围的两个正方形的面积和为180cm 2,并说明理由; (3)怎么分,使围成两个正方形的面积和最小?25. (9分)如图,正比例函数y =2x 的图象与反比例函数y =kx 的图象交于点A 、B ,AB =2 5 , (1)求k 的值;(2)若反比例函数y =kx 的图象上存在一点C ,则当△ABC 为直角三角形,请直接写出点C 的坐标.26.(9分)如图,在⊙O 的内接四边形ACDB 中,AB 为直径,AC :BC =1:2,点D 为弧AB 的中点,BE ⊥CD 垂足为E.(1)求∠BCE 的度数;(2)求证:D 为CE 的中点;(第23题)ABPE DCQFHGxyO AB(第25题)(3)连接OE 交BC 于点F ,若AB =10 ,求OE 的长度.27.(88分)在△ABC 中,用直尺和圆规.....作图(保留作图痕迹). (1)如图①,在AC 上作点D ,使DB +DC =AC .(2)如图②,作△BCE ,使∠BEC =∠BAC ,CE =BE ;(3)如图③,已知线段a ,作△BCF ,使∠BFC =∠A ,BF +CF =a .(图1) A C B(图2) A C B图ACBa(第26题)OEDCBA2016年中考模拟试卷(二) 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)题号 1 2 3 4 5 6 答案ACABDD二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.10 8.a (a +2)(a -2) 9.3-1 10.x ≥ 1 11.A12. 35° 13. 3 14.x +96 = x —7415.123 16.①③④ 三、解答题(本大题共12小题,共计88分) 17. (6分)解:去分母,得:6-2(2x +1)≥3(1-x )……………………………2分去括号,得:6-4x +2≥3-3 x ……………………………3分移项,合并同类项得:-x ≥-5 ……………………………4分 系数化成1得:x ≤5. ……………………………5分 它的所有正整数解1,2,3,4,5. ……………………………6分18.(6分)解:原式=x -3x -2 ÷( x 2-4x -2-5x -2 )……………………………………………………2分=x -3x -2 ÷ x 2-9x -2……………………………………………3分=x -3x -2 × x -2x 2-9 ……………………………………………4分 =x -3x -2 × x -2(x -3)(x +3) ……………………………………………5分 =1x +3……………………………………………6分 19.(8分)解:(1)将①代入②,得 3x -2(x +1)=-1.解这个方程,得x =1. ………………………………………………………1分 将x =1代入①,得y =2 . ……………………………………………………2分所以原方程组的解是⎩⎨⎧x =1,y =2.…………………………………………………3分(2)由①,得x =1-y .③…………………………………………………1分 将③代入②,得1-y +y 2=3. ……………………………………………2分 解这个方程,得y 1=2,y 2=-1. …………………………………………4分 将y 1=2,y 2=-1分别代入③,得x 1=-1,x 2=2.所以原方程组的解是⎩⎨⎧x 1=-1,y 1=2,⎩⎨⎧x 2=2,y 2=-1.……………………………5分20.(8分)解:(1)1500,(图略);(每个2分)) ……………………………4分(2)108° ……………………………6分 (3)万人1000%502000=⨯ ……………………………8分 21.(8分)解:(1)另外1人恰好选中副班长的概率是13;………………………………………3分(2)恰好选中班长和副班长的概率是16.……………………………………………8分(树状图或列表或枚举列出所有等可能结果3分,强调等可能1分,得出概率1分) 22. (8分)(1)三角形全等的条件一个1分,结论1分 …………………4分 (2)四边形AECF 是菱形 …………………5分证明: …………………8分 (证出平行四边形1分,证出邻边相等1分,结论1分 ) 23. (8分)(1)解:在Rt △BEG 中,BG =EG ×tan ∠BEG ……………………1分在Rt △BFG 中,BG =FG ×tan ∠BFG ……………………2分 设FG =x 米,(x +5)0.37=0.74x ,解得x =5, ……………………3分 BG =FG ×tan ∠BFG =0.74×5=3.7 ……………………4分 AB =AG +BG =3.7+1.6=5.3米 ……………………5分 答:大树AB 的高度为5.3米.(2)在Rt △DFG 中,DH =FH ×tan ∠DFG =(5+4)×0.74=6.66米 ………………7分 CD =DH +HC =6.66+1.6=8.26米 ……………………8分 答:大树CD 的高度为8.26米.24. (10分)解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(20-x )cm ,由题意得: x 2+(20-x )2=250 ………2分 解得x 1=5,x 2=15. ………3分 当x =5时,4x =20,4(20-x )=60;当x =15时,4x =60,4(20-x )=20.答:能,长度分别为20cm 与60cm. ………4分(2)x 2+(20-x )2=180整理:x 2-20x +110=0, ………5分 ∵b 2-4ac =400-440=﹣40<0, ………6分 ∴此方程无解,即不能围成两个正方形的面积和为180cm 2 ………7分 (3)设所围面积和为y cm 2,y =x 2+(20-x )2 ………8分=2 x 2-40x +400=2( x -10)2+200 …………………9分 当x =10时,y 最小为200. 4x =40,4(20-x )=40.答:分成40cm 与40cm ,使围成两个正方形的面积和最小为200 cm 2. …10分 25. (9分)解:(1)过点A 作AD ⊥x 轴,垂足为D ,由题意可知点A 与点B 关于点O 中心对称,且AB =2 5 …………………1分 ∴OA =OB = 5 , ………………2分 设点A 的坐标为(a ,2a ),在Rt △OAD 中,∠ADO =90°,由勾股定理得:a 2+(2a )2=( 5 )2………………3分解得a =1 ………………4分∴点A 的坐标为(1,2),把A (1,2)代入y =kx ,解得k =2,………………5分(2) (2,1)(﹣2,﹣1)(4,12)(﹣4,﹣12)………………9分(每个1分)(反比例函数对称性、用相似或勾股定理)26. (9分)(1)连接AD ,∵D 为弧AB 的中点,∴AD =BD , .…………………1分 ∵AB 为直径, ∴∠ADB =90°.…………………2分 ∴∠DAB =∠DBA =45°,∴∠DCB =∠DAB =45°.…………………3分(2)∵BE ⊥CD ,又∵∠ECB =45° ∴∠CBE =45°,∴CE =BE ,∵四边形ACDB 是圆O 的内接四边形,∴∠A +∠BDC =180°,又∵∠BDE +∠B D C =180° ∴∠A =∠BD …………………4分又∵∠ACB =∠BED =90°, ∴△ABC ∽△DBE , …………………5分 ∴DE :AC =BE :BC ,∴D E:B E =AC :BC =1:2,又∵CE =BE ,∴DE :CE =1:2,∴D 为CE 的中点. …………………6分(3)连接CO ,∵CO =BO ,CE =BE , ∴OE 垂直平分BC ,∴F 为OE 中点, 又∵O 为BC 中点,∴OF 为△ABC 的中位线,∴OF =12AC , …………………7分∵∠BEC =90°,EF 为中线,∴EF =12BC , …………………8分在Rt △ACB 中,AC 2+BC 2=AB 2,∵AC :BC =1:2,AB =10 ,∴AC = 2 ,BC =2 2 ,OEDC BAF (第26题)∴OE =OF +EF =1.5 2 …………………9分 27.(8分)(1)作图正确 …………………3分(2)作图正确…………………6分说明:(即△ABC 的外接圆和线段BC 的中垂线的交点)(3)作图正确 (只要做出一个即可)…………………8分 说明:(按照(1)(2)的方法找到点E ,再以点E 为圆心,以EC 或EB 长为半径做圆,再以点B 为圆心,a长为半径作圆,两圆的交点为点H ,再连接BH ,交△ABC 的外接圆于点F,则点F 为所求。
2016年中考数学模拟试卷及参考答案
2016年中考数学模拟试卷及参考答案蒯海峰【期刊名称】《中学数学月刊》【年(卷),期】2016(000)004【总页数】5页(P57-61)【作者】蒯海峰【作者单位】江苏省苏州市振华中学 215006【正文语种】中文一、填空题(本大题共12小题,每小题3分,共36分)的平方根是2.因式分解:x3-4x2+4x=3.函数中,自变量x的取值范围是4.小明从前面的镜子里看到后面墙上挂钟的时间为2:30,则实际时间是5.若不等式组的解集是-1<x<1,则(a+b)2 016=6.如图1,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是7.若,则8.将△ABC绕点B逆时针旋转到△A′BC′使A,B,C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4 cm,则图2中阴影部分面积为cm2.9.甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是(填“甲”或“乙”)10.如图3,在平行四边形ABCD中,E是边CD上的点,BE与AC交于点F,如果,那么11.要给长、宽、高分别为x, y, z的箱子打包,其打包方式如图4所示,则打包带的长至少要(单位:mm)(用含x, y, z的代数式表示)12.如图5,根据下面的运算程序,若输入时,输出的结果y=二、选择题(本大题共6小题,每小题3分,共18分)13.下列根式中,与为同类二次根式的是( )14.在函数中,自变量x的取值范围是( )A.x≥2 B.x>2 C.x≤2 D.x< 215.一种灭虫药粉30千克,含药率15%,现要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%而小于35%,则所用药粉的含药率x 的范围是( )A.15%<x<23% B.15%<x<35% C.23%<x<47% D.23%<x<50% 16.一个正方体的平面展开图如图6所示,将它折成正方体后“建”字对面是( ) A.和 B.谐C.苏 D.州17.一组数据3, 2, 1, 2, 2的众数、中位数和方差分别是( )A.2, 1, 0.4 B.2, 2, 0.4C.3, 1, 2 D.2, 1, 0.218.如图7,已知⊙O的两条弦AC, BD相交于点E,∠A = 70°,∠C = 50°,那么sin∠AEB的值为( )三、解答题(本大题共11小题,共76分)19.(本题5分)计算20.(本题5分)先化简,再求值,其中a满足a2-4a+3=0.21.(本题5分)解不等式组并在所给的数轴(图8)上表示出其解集.22.(本题6分)小明的书包里只放了A4大小的试卷共5张,其中语文3张、数学2张.若随机地从书包中抽出2张,求抽出的试卷恰好都是数学试卷的概率.23.(本题6分)如图9,在正方形ABCD中,E是AB边上任一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G.(1)证明:BE=AG;(2)当点E是AB边中点时,试比较∠AEF和∠CEB的大小,并说明理由.24.(本题6分)已知电视发射塔BC,为稳固塔身,周围拉有钢丝地锚线(图10中线段AB),若AB=60 m,并且AB与地面成45°角,欲升高发射塔的高度到CB′,同时原地锚线仍使用,若塔升高后使地锚线与地面成60°角,求电视发射塔升高了多少米?(即BB′的高度)25.(本题8分)通常情况居民一周时间可以分为常规工作日(周一至周五)和常规休息日(周六和周日).居民一天的时间可以划分为工作时间、个人生活必须时间、家务劳动时间和可以自由支配时间等四部分.北京市统计局在全市居民家庭中开展了时间利用调查,并绘制了统计图.(1)由图11,调查表明,北京市居民人均常规工作日工作时间占一天时间的百分比为(2)调查显示,看电视、上网、健身游戏、读书看报是居民在可自由支配时间中的主要活动方式,其中平均每天上网占可自由支配时间的12%,比读书看报的时间多8分钟,请根据以上信息补全图12;(3)由图12,调查表明,北京市居民在可自由支配时间中看电视的时间最长,根据这一信息,请你在可自由支配时间的利用方面提出一条建议:26.(本题8分)某商场将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台.为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4 800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?27.(本题9分)已知抛物线y=ax2-x+c经过点,且它的顶点P的横坐标为-1.设抛物线与x轴相交于A, B两点,如图13.(1)求抛物线的解析式;(2)求A, B两点的坐标;(3)设PB与y轴交于点C,求△ABC的面积.28.(本题9分)如图14,在平面直角坐标系中,矩形ABOC的边BO在x轴的负半轴上,边OC在y轴的正半轴上,且,矩形ABOC绕点O按顺时针方向旋转60°后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C的对应点为点D,抛物线y=ax2+bx+c过点A, E, D.(1)判断点E是否在y轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x轴的上方是否存在点P和点Q,使以点O, B, P, Q为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上?若存在,请求出点P和点Q 的坐标;若不存在,请说明理由.29.(本题9分)如图15,在等腰梯形ABCD中,AB∥CD,AD=BC=4,CD=6,AB=10.点P从点B匀速向点A运动,速度为2个单位/秒.过点P作直线BC的垂线PE,E为垂足,直线PE将梯形ABCD分成两部分.(1)∠A=°;(2)将左下部分以PE为对称轴向上翻折.若两部分重合的面积为S,试求出S与运动时间t之间的函数关系式,并求出S的最大值;(3)在(2)的条件下,若B点的对应点为B′,在整个运动过程中,是否存在以点D, P, B′为顶点的三角形为直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.2016年中考数学模拟试题参考答案一、填空题或甲二、选择题13.C. 14.B. 15.C. 16.D. 17.B. 18.D.三、解答题19.原式20.原式解方程a2-4a+3=0,得x1=1,x2=3.又因为a≠3,且a ≠2,所以a=3不合题意舍去,故a=1,从而原式21.-1≤x<3(图略).22.分别用语1、语2、语3、数1、数2表示这5页试卷.从中任意摸出2页试卷,可能出现的结果有(数1, 数2), (数1, 语1), (数1, 语2), (数1, 语3), (数2, 语1), (数2, 语2), (数2, 语3), (语1, 语2), (语1,语3), (语2, 语3),共10种,它们出现的可能性相同.所有结果中,满足摸到的2页试卷都是数学试卷(记为事件A)的结果有1种,即(数1, 数2),所以,即摸到的2页试卷都是数学试卷的概率为23.(1)如图16,因为四边形ABCD是正方形,所以∠ABC=90°,故∠1+∠3=90°.因为BG⊥CE,∠BOC=90°,所以∠2+∠3=90°,故∠1=∠2.在△GAB和△EBC中,因为∠GAB=∠EBC=90°,AB=BC,∠1=∠2,所以△GAB≌△EBC(ASA),故AG=BE. (2)当点E位于线段AB中点时,∠AEF=∠CEB.理由如下:当点E位于线段AB中点时,AE=BE.由 (1)知AG=BE,故AG=AE.因为四边形ABCD是正方形,所以∠GAF=∠EAF=45°.又因为AF=AF,所以△GAF≌△EAF(SAS),故∠AGF=∠AEF.由(1)知△GAB≌△EBC,所以∠AGF=CEB,故∠AEF=∠CEB.25.(1)31.6%.(2)略.(3)答案不惟一,如适当减少看电视的时间,多做运动,有益健康(合理即给分).26.(1)根据题意,得,即由题意,得,整理得x2-300x+20 000=0.解得x1=100,x2=200.要使百姓得到实惠,取x=200.故每台冰箱应降价200元. (3)对于,当时,因此,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5 000元.27.(1)由题意得解得故抛物线的解析式为令y=0,即,整理得x2+2x-3=0,解得x1=-3,x2=1.因此A(-3, 0), B(1, 0). (3)将x=-1代入中,得y=2,即P(-1, 2).设直线PB的解析式为y=kx+b,于是2=-k+b,且0=k+b.解得k=-1,b=1,即直线PB的解析式为 y=-x+1.令x=0,得y=1,即OC=1.又因为AB=1-(-3)=4,所以,即△ABC的面积为2.28.(1)点E在y轴上,理由如下:连结AO,如图17,在Rt△ABO中,因为,所以AO=2,故,所以∠AOB=30°.由题意可知∠AOE=60°,所以∠BOE=∠AOB+∠AOE=30°+60°=90°.因为点B在x轴上,所以点E在y轴上. (2)过点D作DM⊥x轴于点M,因为OD=1,∠DOM=30°,所以在Rt△DOM中,因为点D在第一象限,所以点D的坐标为由(1)知EO=AO=2,点E在y轴的正半轴上,所以点E的坐标为(0, 2),故点A的坐标为因为抛物线y=ax2+bx+c经过点E,所以c=2.由题意,将代入y=ax2+bx+2中,得解得故所求抛物线的表达式为存在符合条件的点P和点Q.理由如下:由于矩形ABOC 的面积,故以O, B, P, Q为顶点的平行四边形面积为由题意可知OB为此平行四边形一边,因为,所以OB边上的高为2.依题意设点P的坐标为(m,2),因点P在抛物线上,故,解得,所以因为以O,B,P,Q为顶点的四边形是平行四边形,所以PQ∥,故当点P1的坐标为(0, 2)时,点Q的坐标分别为;当点P2的坐标为时,点Q的坐标分别为29.(1)60°.(2)因为∠A=∠B=60°, PB=PB′,所以△PB′B是等边三角形,故当0<t≤2时,;当2<t≤2时,;当4<t≤5时,设PB′, PE分别交DC于G, H,作GK⊥PH于K(图18).因为△PB′B是等边三角形,所以∠B′PB=60° =∠A,故PG∥AD.又。
中考数学五模试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市东平县斑鸠店中学中考数学五模试卷一、选择题:本大题共20小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,填在答题卡中,每小题选对得3分,选错、多选或不选均记零分.1.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号 B.减号 C.乘号 D.除号2.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为,这一直径用科学记数法表示为()×10﹣9米×10﹣8米C.12×10﹣8米×10﹣7米3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3x2﹣5x3=﹣2x B.6x3÷2x2=3xC.( x3)2=x6D.﹣3(2x﹣4)=﹣6x﹣125.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.7.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=()A.55° B.30° C.50° D.60°8.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.关于x的不等式组有四个整数解,则a的取值X围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.有三X正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三X卡片背面朝上洗匀后随机抽取一X,以其正面数字作为a的值,然后再从剩余的两X卡片随机抽一X,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm13.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B.C.D.14.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时) 4 5 6 7 8 10户数 1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,715.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为()A.4km B.2km C.2km D.( +1)km16.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD 的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.19.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个20.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A (﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每小题3分,共12分.21.分解因式:﹣3x3+12x2﹣12x=.22.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为.23.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为.24.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n 在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或演算步骤.25.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.26. 2016年国家提出供给侧制度改革,某电商预测一种皮鞋能畅销市场,就用13200元购进了一批这种皮鞋,面市后果然供不应求,商家又用28800元购进了第二批这种皮鞋,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批皮鞋是多少双?(2)若两批皮鞋按相同的标价销售,最后剩下50双按八折优惠卖出,如果两批皮鞋全部售完后利润率不低于25%(不考虑其它因素),那么每双皮鞋的标价至少是多少元?27.已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG•DF=DB•EF.28.如图,在正方形ABCD与等腰直角三角形BEF中,∠BEF=90°,BE=EF,连接PF,点P是FD的中点,连接PE、PC.(1)如图1,当点E在CB边上时,求证:PE=CE;(2)如图2,当点E在CB的延长线上时,线段PC、CE有怎样的数量关系,写出你的猜想,并给与证明.29.已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.2016年某某省某某市东平县斑鸠店中学中考数学五模试卷参考答案与试题解析一、选择题:本大题共20小题,在每小题给出的选项中,只有一个是正确的,请把正确的选项选出来,填在答题卡中,每小题选对得3分,选错、多选或不选均记零分.1.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A.加号 B.减号 C.乘号 D.除号【考点】有理数的混合运算.【专题】计算题;实数.【分析】将各个运算符号放入算式中计算得到结果,比较即可.【解答】解:(﹣2)+(﹣3)=﹣5;(﹣2)﹣(﹣3)=﹣2+3=1;(﹣2)×(﹣3)=6;(﹣2)÷(﹣3)=,则在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是加号,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为,这一直径用科学记数法表示为()×10﹣9米×10﹣8米C.12×10﹣8米×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.×10﹣7.故选D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.下列运算正确的是()A.3x2﹣5x3=﹣2x B.6x3÷2x2=3xC.( x3)2=x6D.﹣3(2x﹣4)=﹣6x﹣12【考点】整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据单项式除法法则、单项式与多项式的乘法法则,以及幂的乘方法则即可作出判断.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、(x3)2=x6,选项错误;D、﹣3(2x﹣4)=﹣6x+12,选项错误.故选B.【点评】本题考查了单项式的乘法、除法以及幂的乘方,合并同类项法则,正确理解指数的计算是关键.5.如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【专题】几何图形问题.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解;从正面看是矩形,看不见的棱用虚线表示,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的棱用虚线表示.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.【考点】切线的性质;圆周角定理;特殊角的三角函数值.【分析】首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.【解答】解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.【点评】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=()A.55° B.30° C.50° D.60°【考点】平行线的性质.【分析】先根据三角形的外角性质求得∠4的度数,再根据平行线的性质即可求解.【解答】解:由三角形的外角性质可得∠4=∠1+∠3=50°,∵∠2和∠4是两平行线间的内错角,∴∠2=∠4=50°.故选C.【点评】本题综合考查了三角形的外角性质和平行线的性质,得到∠4的度数是解题的关键.8.某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲车间生产2300件所用的时间+甲乙两车间生产2300件所用的时间=33天,根据等量关系可列出方程.【解答】解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B.【点评】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位【考点】平移的性质.【专题】常规题型.【分析】根据网格图形的特点,结合图形找出对应点的平移变换规律,然后即可选择答案.【解答】解:根据图形,△DEF向左平移4个单位,向下平移2个单位,即可得到△ABC.故选A.【点评】本题考查了平移变换的性质以及网格图形,准确识别图形是解题的关键.10.关于x的不等式组有四个整数解,则a的取值X围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣【考点】一元一次不等式组的整数解.【专题】计算题;压轴题.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值X围即可.【解答】解:由(1)得x>8;由(2)得x<2﹣4a;其解集为8<x<2﹣4a,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a<﹣.故选B.【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.有三X正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三X卡片背面朝上洗匀后随机抽取一X,以其正面数字作为a的值,然后再从剩余的两X卡片随机抽一X,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.B.C.D.【考点】列表法与树状图法;点的坐标.【专题】图表型.【分析】画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.【解答】解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.【点评】本题考查了列表法与树状图法,第二象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为()A.8cm B.16cm C.8cm D.16cm【考点】垂径定理的应用.【分析】连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE 的长,从而再根据垂径定理即可求得AB的长.【解答】解:如图所示,连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.∵OF⊥CD,∴CG=CD=10cm.在直角三角形COG中,根据勾股定理,得R2=102+(R﹣2)2,解,得R=26.在直角三角形AOE中,根据勾股定理,得AE==8cm.根据垂径定理,得AB=16(cm),故选B.【点评】本题考查了勾股定理,垂径定理的应用,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分弦.13.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A.B.C.D.【考点】翻折变换(折叠问题);矩形的性质.【分析】首先设AE与CD相交于F,根据折叠的性质可得△ACF、△DEF是等腰三角形,继而证得△ACF∽△EDF,然后由相似三角形的对应边成比例,求得DF:FC=3:5,再设DF=3x,FC=5x,即可求得AB,继而求得答案.【解答】解:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE﹣AF=CD﹣CF,即DF=EF,∴=,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴==,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD===4x,又∵AB=CD=DF+FC=3x+5x=8x,∴==.故选A.【点评】此题考查了折叠的性质、矩形的性质、相似三角形的判定与性质以及等腰三角形的判定与性质.注意掌握折叠前后图形的对应关系是解此题的关键.14.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时) 4 5 6 7 8 10户数 1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是()A.6,6.5 B.6,7【考点】众数;中位数.【专题】计算题.【分析】根据众数和中位数的定义求解即可,众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:这20户家庭日用电量的众数是6,中位数是(6+7)÷2=6.5,故选A.【点评】本题考查了众数和中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.15.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为()A.4km B.2km C.2km D.( +1)km【考点】解直角三角形的应用-方向角问题.【专题】几何图形问题.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD 的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】几何图形问题;压轴题.【分析】此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y==.当A从D点运动到E点时,即2<x≤4时,y==∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:A.【点评】本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值X围.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:B.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是本题的关键.18.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.19.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故⑤正确.故选:B.【点评】本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.20.已知Y1,Y2,Y3分别表示二次函数、反比例函数和一次函数的三个函数值,它们的交点分别是A (﹣1,﹣2)、B(2,1)和C(,3),规定M={Y1,Y2,Y3中最小的函数值},则下列结论:①当x<﹣1时,M=Y1;②当﹣1<x<0时,Y2<Y3<Y1;③当0≤x≤2时,M的最大值是1,无最小值;④当x≥2时,M最大值是1,无最小值.其中正确结论的个数为()A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】首先要明确M={Y1,Y2,Y3中最小的函数值},观察图象可以判断四个选项的正误.【解答】解:一次函数Y3过点A(﹣1,﹣2)、B(2,1),则解析式为:Y3=x﹣1;①当x<﹣1时,Y1,Y2,Y3中最小的函数值为Y1,所以M=Y1,故①正确;②当﹣1<x<0时,Y2<Y3<Y1,故②正确;③当0≤x≤2时,Y1,Y2,Y3中最小的函数值为Y3,M的最小值是﹣1,最大值是1;故③错误;④当x≥2时,Y1,Y2,Y3中最小的函数值为Y1,则M最大值是1,无最小值,故④正确.故选C.【点评】本题综合考查了二次函数、一次函数、反比例函数的性质,同时此类题考查了学生能根据图象求最值问题,这在学生中是一个难点,原则是:在一定X围内,最下边是最小,最上边是最大.二、填空题:本大题共4小题,每小题3分,共12分.21.分解因式:﹣3x3+12x2﹣12x= ﹣3x(x﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取公因式后,利用完全平方公式分解即可.【解答】解:原式=﹣3x(x﹣2)2.故答案为:﹣3x(x﹣2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为 2 .【考点】根的判别式.【分析】由方程有实数根,可得出b2﹣4ac≥0,代入数据即可得出关于k的一元一次不等式,解不等式即可得k的取值X围,再找出其内的最大偶数即可.【解答】解:由已知得:△=b2﹣4ac=22﹣4(m﹣2)≥0,即12﹣4m≥0,解得:m≤3,∴偶数m的最大值为2.故答案为:2.【点评】本题考查了根的判别式,解题的关键是找出关于m的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(或不等式)组是关键.23.如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为75π.【考点】垂径定理;扇形面积的计算.【分析】由于四边形ABCD的面积=大圆面积的﹣△COD的面积﹣(大圆面积的﹣△AOB的面积),依此可得(OA2﹣OD2)的值,再根据图中阴影部分的面积为圆环面积的即可求解.【解答】解:四边形ABCD的面积=大圆面积的﹣△COD的面积﹣(大圆面积的﹣△AOB的面积)=△AOB的面积﹣△COD的面积=OA2﹣OD2=50,则OA2﹣OD2=100,图中阴影部分的面积=π×100×=75π.故答案为:75π【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式,以及得到(OA2﹣OD2)的值是解答此题的关键.24.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n 在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2016的长为22014.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】规律型.【分析】根据规律得出OA1=,OA2=1,OA3=2,OA4=4,所以可得OA n=2n﹣2,进而解答即可.【解答】解:因为OA2=1,∴OA1=,OA2=1,OA3=2,OA4=4,由此得出OA n=2n﹣2,所以OA2016=22014,故答案为:22014.【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OA n=2n﹣2进行解答.三、解答题:本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或演算步骤.25.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.【考点】反比例函数与一次函数的交点问题;菱形的判定.(1)由AC=BC结合CO⊥AB可得出OA=OB,由点P的坐标结合三角形的面积公式可得出OA=OB=4,【分析】即得出点A、点P的坐标,由点A、点P的坐标利用待定系数法即可得出一次函数的解析式,由点P 的坐标利用待定系数法即可得出反比例函数的解析式;(2)假设存在,过点C作x轴的平行线与双曲线交于点D,令一次函数解析式中x=0找出点C的坐标,将点C的纵坐标代入反比例函数解析式中即可得出点D的坐标,再结合点P、点B的坐标即可得出BP与CD互相垂直平分,由此可证得四边形BCPD为菱形.【解答】解:(1)∵AC=BC,CO⊥AB,∴O为AB的中点,即OA=OB,∵S△PBC=4,即OB×PB=4,∵P(n,2),∴PB=2,∴OA=OB=4,∴P(4,2),B(4,0),A(﹣4,0).将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:.∴一次函数解析式为y=x+1;将P(4,2)代入反比例解析式得:2=,解得:m=8,∴反比例解析式为y=.(2)假设存在这样的D点,使四边形BCPD为菱形.过点C作x轴的平行线与双曲线交于点D,如图所示.令一次函数y=x+1中x=0,则有y=1,∴点C的坐标为(0,1),∵CD∥x轴,∴设点D坐标为(x,1).将点D(x,1)代入反比例解析式y=中,得:1=,解得:x=8,∴点D的坐标为(8,1),即CD=8.∵P点横坐标为4,∴BP与CD互相垂直平分,∴四边形BCPD为菱形.故反比例函数图象上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,1).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及菱形的判定定理,解题的关键是:(1)求出点A、点P的坐标;(2)利用“对角线互相垂直平分”证出四边。
2016年初中毕业生学业模拟考试数学试卷
2016年初中毕业生学业模拟考试数学试卷2016年初中毕业生学业考试数学模拟参考答案一、1、D 2、B 3、B 4、A 5、A 6、B 7、C 8、B 9、D 10、B二、11、2)1(+a b 12、21≠≥x x 且 13、2 14、125 15、212 16、π2 三、17、解:①+②:153=x5=x ……………3分把5=x 代入①得:7352=+⨯y1-=y ……………5分∴方程组的解为⎩⎨⎧-==15y x …………………6分18、解法一;2222222b a ab b a b a Q P -+-+=+=))(()(2b a b a b a -++……………4分 =ba b a -+…………………5分 当52323,2,3=-+===原式时b a …………………6分 解法二;2222222b a ab b a b a Q P ---+=-=))(()(2b a b a b a -+-…………………4分 =ba b a +-…………………5分 当512323,2,3=+-===原式时b a …………………6分 解法三;2222222b a b a b a ab P Q -+--=-=))(()(2b a b a b a -+--………………4分 =ba b a +-…………………5分 当512332,2,3-=+-===原式时b a ………………6分 19、(1)作图(略)……………2分(2)方法一:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .…………………4分∵AE=CF .∴AD-AE=BC-CF ,即DE=BF -…………5分∴四边形BFDE 是平行四边形.…………………6分方法二:证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD .在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF ,∴△ABE ≌△CDF(SAS).…………4分∴∠AEB=∠CFD∵四边形ABCD 是平行四边形∴ED ∥BF∴∠AEB=∠CFD=∠EDF∴BE ∥FD ……………………5分∴四边形BFDE 是平行四边形.………………6分四、20、解:(1)P(得到负数)=31 ……………3分 (2)……………6分P(两人“不谋而合”)=3193=………………7分 21、解:(1)设4、5两月平均每月降价的百分率为x ,根据题意,得l4000(1-x )2=12600.……………2分化简,得(1-x )2=O.9,解得1x ≈0.05,2x ≈1.95(不合题意,舍去).…………3分 因此,4、5两月平均每月降低的百分率约为5%.………4分(2)如果房价按此降价的百分率继续回落,预测7月份该市的商品房成交均价为l2600(1-x )2=12600×0.9=11340>10000,…………6分因此可知,7月份该市的商品房成交均价不会跌破l0000元/2m ……7分22、(1)在梯形ABCD 中,AD ∥BC , ∴∠DAF=∠ACE .……………1分∵∠DFC=∠AEB ,∠DFC=∠DAF+∠ADF ,∠AEB=∠ACE+∠CAE .∴∠ADF=∠CAE ,………………2分∴△ADF∽△CAE………………3分(2)∵ AD=8,DC=6,∠ADC=900,∴AC=10.……………4分又∵F 是AC 的中点,∴AF=5.∵△ADF∽△CAE,∴,CE CA AF AD =∴,1058CE =∴425=CE ……………5分E 是BC 的中点,∴ BC=225……………6分 ∴直角梯形ABCD 的面积=21236)8225(21=⨯+⨯………………7分 五、23.(1)根据题意,当0=x 时,5=y ;当1=x 时,2=y ,所以⎩⎨⎧++==c b c 125………………1分 解得⎩⎨⎧=-=54c b …………………2分所以,该二次函数关系式为542+-=x x y ……………3分(2)因为1)2(5422+-=+-=x x x y ,………………4分所以当2=x 时,y 有最小值,最小值是1.…………5分(3)因为A(m ,1y ),B(2,1y m +)两点都在函数542+-=x x y 的图象上,所以,.225)1(4)1(,5422221+-=++-+=+-=m m m m y m m y , .32)54()22(2212-=+--+-=-m m m m m y y …………6分所以,当032<-m ,即23<m 时;;21y y >……………………7分 当,032=-m 即23=m 时,;21y y =……………………8分 当032>-m ,即23>m 时,.21y y <…………………9分 24、(1) ∵AB 是⊙O 的直径,AP 是切线,∴∠BAP=900.…………………………………1分在Rt△PAB 中,AB=2,∠P=300,∴BP=2AB=2×2=4.………………………2分由勾股定理,得AP=32242222=-=-AB BP ………………3分(2)如图,连接OC 、AC .∵AB 是⊙O 的直径,∴∠BCA=900,∠ACP=900.……………4分在Rt△APC 中.D 为AP 的中点,∴CD=21AP=AD .……………5分 ∴∠DAC=∠DCA .……………6分又0C=OA .∴∠OAC=∠OCA .…………………7分∵∠0AC+∠DAC=∠PAB=900,∴∠0CA+∠DCA=∠0CD=900.即OC ⊥CD .…………8分∴直线CD 是⊙O 的切线.……………………9分25、(1)(4,O)、(0,3).………………2分(2)当O<t ≤4时,OM=t . 由△OMN∽△OAC,得OCON OA OM = ∴ON=,43t 28321t ON OM S =⨯⨯=…………………4分 当4<t <8时,如图,直线MN 交x 轴于D 点,∵OD=t ,∴OAD=t -4.由△DAM∽△AOC,可得AM=),4(43-t 而△OND 的高是2,∴S=△0ND 的面积-△OMD 的面积 =.383)4(43213212t t t t t +-=-⨯⨯-⨯⨯……………………6分 (3)有最大值.当0<t ≤4时,∴抛物线S=283t 的开口向上,在对称轴t =0的右边,S 随t 的增大而增大.∴当4=t 时,S 可取到最大值64832=⨯;……………7分 当4<t <8时,∴抛物线S=t t 3832+-的开口向下,它的顶点是(4,6), ∴S<6.…………8分综上所述,当t =4,S 有最大值6.………………9分。
2016年中考数学模拟试卷(含答案解析) (4)
OACDE(第6题)2016年质量调研检测试卷(二)九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.在实数227,0,-2, 2π中,无理数的个数有(▲)A .0个B .1个C .2个D .3个2.下列各式计算正确的是(▲)A .a 6÷a 3 =a 2B .(a 3)2=a 5C .4=±2D .3-8 =-23.某课外兴趣小组为了了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是(▲)A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了100名小区内老年邻居的健康状况D .利用派出所户籍网随机调查了该地区10%的老年人的健康状况4.右图是由3个相同的正方体组成的一个立体图形,它的三视图是(▲)A .B .C .D .5. 某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是(▲)A .10%B .15%C .20%D .30%6.如图,AB 是半圆O 直径,半径OC ⊥AB ,连接AC ,∠CAB 的平分线AD 交OC 于点E ,交BC ︵于点D ,连接CD 、OD ,以下三个结论:①AC ∥OD ;②AC =2CD ;③线段CD 是CE 与CO 的比例中项.其中,所有正确结论的序号是(▲) A .①②B .①③C .②③D .①②③二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直yx OAP(第15题)最高气温(℃) 25 26 27 28 天 数1213ABQCD(第16题)接填写在答题纸相应位置.......上) 7.PM2.5是指大气中直径小于或等于2.5 um (0.0000025m )的颗粒物,含有大量有毒、 有害物质,也称可吸入肺颗粒物,将0.0000025用科学记数法表示为 ▲ . 8.不等式组26,2 1.x x -<⎧⎨-+>⎩的解集是 ▲ .9.小明第一次抛一枚质地均匀的硬币时反面向上,第二次抛此枚硬币时也是反面向上,则 他第三次抛这枚硬币时,正面向上的概率是 ▲ . 10. 函数y =3-x 中,自变量x 的取值范围是 ▲ .11.我市某一周的最高气温统计如下表:则这组数据的中位数是 ▲ .12.如图,在四边形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,S △AOD ∶S △BOC =1∶9,AD =2,则BC 的长是 ▲ .13.如图,MN 是⊙O 的直径,矩形ABCD 的顶点A 、D 在MN 上,顶点B 、C 在⊙O 上,若⊙O 的半径为5,AB =4,则BC 边的长为 ▲ .14.将面积为32π的半圆面围成一个圆锥的侧面,则这个圆锥的底面半径为 ▲ . 15.如图,点P 在函数y =3x(x >0)的图像上运动,O 为坐标 原点,点A 为PO 的中点,以点P 为圆心,P A 为半径作⊙P , 则当⊙P 与坐标轴相切时,点P 的坐标为 ▲ . 16.矩形ABCD 中,AB =10,BC =4,Q 为AB 边的中点,P 为CD 边上的动点,且△AQP 是腰长为5的 等腰三角形,则CP 的长为 ▲ .三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(8分)计算:(1)()212cos 4523π-⎛⎫︒+-- ⎪⎝⎭; (2)(1x +1-1x 2-1)÷x -2x 2-2 x +1 .18.(6分)已知关于x 的一元二次方程x 2-ax +2=0的两实数根x 1 、x 2满足x 1x 2=x 1+x 2-2. (1)求a 的值; (2)求出该一元二次方程的两实数根.A BCDO(第12题)AB CDOMN(第13题)第20题图噪声声级/dB测量点数610412108642(第20题)12 3 ①567②CEF19.(7分)为了增强环境保护意识,在“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,随机抽查了全市40个噪声测量点在某时刻的噪声声级(单位:dB )根据表中提供的信息解答下列问题:(1)频数分布表中的a = ▲ ,b = ▲ ,c = ▲ ; (2)补充完整频数分布直方图;(3)如果全市共有400个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?20.(8分)(1)甲、乙两人用如图所示的①、②两个转盘做游戏,规则是:转动两个转盘各1次,若两个转盘停止转动后,指针所在区域的两个数字之积为奇数,则甲获胜, 否则乙胜.试求出甲获胜的概率.(2)若利用除颜色外其余都相同的红、黄、白色乒乓球各一个设计一个摸球试验,试写 出一个与(1)中甲获胜概率相同的事件.(友情提醒:要说明试验的方案,不需说明理由)21.(8分)如图,D 是线段AB 的中点,C 是线段AB 的垂直平分线上的一点,DE ⊥AC于点E ,DF ⊥BC 于点F . (1)求证:DE =DF ;(2)当CD与AB满足怎样的数量关系时,四边形CEDF为正方形?请说明理由.22.(8分)某玩具经销商用1.6万元购进了一批玩具,上市后一周全部售完.该经销商又用3.4万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该经销商两次共购进这种玩具多少套?(2)若第一批玩具销售完后总利润率为25%,购进的第二批玩具仍以第一批的相同售价出售,则第二批玩具全部售完后,这二批玩具经销商共可获利多少元?(第24题)yM NOt82a b ②① D 45° 北东(第23题) BC60°23.(7分)如图,大海中某岛C 的周围25km 范围内有暗礁.一艘海轮沿正东方向航行,在A 处望见C 在北偏东60°处,前进20 km 后到达点B ,测得C 在北偏东45°处.如果该海轮继续沿正东方向航行,有无触礁危险?请说明理由.(参考数据: 2 ≈1.41, 3 ≈1.73)24.(8分)如图①,在矩形ABCD 中,动点P 从A 点出发沿折线AD –DC –CB 运动,当点P 运动到点B 时停止.已知动点P 在AD 、BC 上的运动速度为1cm /s ,在DC 上的运动速度为2 cm /s .△P AB 的面积y (cm 2)与动点P 的运动时间t (s )的函数关系图像如图②.(1)a = ▲ ,b = ▲; (2)用文字说明点N 坐标的实际意义; (3)当t 为何值时,y 的值为2 cm 2.25.(8分)如图,在△ABC 中,AB =AC .以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .过E 点作⊙O的切线,交AB 于点F . (1)求证:EF ⊥AB ;(2)若BD =2,BE =3,求AC 的长.26.(8分)给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为 ▲ .(填写序号即可)① 矩形; ②有一个角为直角的任意凸四边形; ③有一个角为60°的菱形. (2)如图,将△ABC 绕顶点B 按顺时针方向旋转60°得到△DBE ,∠DCB =30°,连接AD ,DC ,CE .DC (第25题) ABC DF O①求证:△BCE 是等边三角形; ②求证:四边形ABCD 是勾股四边形.27.(12分)如图,已知二次函数y =ax 2+b x -5(a ,b 是常数,a >0)的图象与x 轴交于点A (-1,0)和点B ,与y 轴交于点C .动直线y =t (t 为常数)与抛物线交于不同 的两点P 、Q .(1)若a <5,试证明抛物线的对称轴一定在y 轴的右侧. (2)若点B 的坐标为(5,0).①求a 、b 的值及t 的取值范围. ②求当t 为何值时,∠PCQ =90 °.九年级数学参考答案及评分标准一、选择题(每小题2分,共12分,将正确答案的题号填在下面的表格中)题号 1 2 3 4 5 6 答案CDDACB二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 7.2.5×10-6 8.x >3 9.12 10.x ≤3 11.27℃12.6 13.6 14.4 15.(3,1) 或(1,3) 16. 2、7或8三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解:(1)原式=2×22+1-9 ……………………3分 (第27题) 备用图yCOAxB=2-8 ……………………4分(2) 原式=(1x +1-1x 2-1)÷x -2 (x -1)2……………………1分=x -2(x +1)(x -1)×(x -1)2x -2 ……………………3分 =x -1x +1……………………4分 18.(6分)解:(1)∵x 1+x 2=a ,x 1x 2=2,……………………1分 又x 1x 2=x 1+x 2-2, ∴a -2=2,a =4 ……………………2分 (2)x 2-4x +2=0.(x -2)2=2 ……………………4分x -2= 2 或x -2=-2 ……………………5分 x 1=2+2, x 2=2- 2 ……………………6分 (其它解法参照给分)19.(7分)解:(1)a =8,b =12,c =0.3.(答对一个给1分)……………………3分(2)略 (画对一个直方图给1分)…………………………………………………5分 (3)样本中噪声声级小于75dB 的测量点的频率是0.3 ………………………6分由0.3×400=120∴在这一时刻噪声声级小于75dB 的测量点约有120个. ……………7分20.(8分) (1)转动两个转盘各1次,所有可能出现的结果有(1,5)、(1,6)、(1,7)、 (2,5)、(2,6)、(2,7)、(3,5)、(3,6)、(3,7),共有9种可能. …………3分 它们出现的可能性相同,所有结果中,满足“积为奇数”的结果有4种, ……4分 所以转动两个转盘各1次,转出的两个数字之积为奇数的概率为49. …………5分(2)实验如:在一个不透明的袋子中放入除颜色外其余都相同的红、黄、白色乒乓球各1个,从袋子中取出一个球,记下颜色后放入袋中,再从袋子中取出一个球,记下颜色.事件:两次取出的球中有且只有一个球是红色球. ……………………8分21(2)当AB =2CD 时,四边形CEDF 为正方形.…………5分 理由:∵AD =BD ,AB =2CD , ∴AD =BD =CD . ∴∠ACD =45°,∠DCB =45°, …………6分 ∴∠ACB =∠ACD +∠BCD =90°,B(第21题)45° ABC60°D∴四边形DECF 是矩形.…………7分又∵DE =DF ,∴四边形CEDF 是正方形. …………8分22.(8分)解:(1)设第一次购进了x 套,则第二次购进了2x 套. ………1分依题意,列方程得:16000x +10=340002x ……………………………3分解得:x =100, ……………………………4分 经检验x =100是原方程的根,2x =200答:该经销商两次共购进这种玩具300套. ……………………5分(2)由(1)得第一批每套玩具的进价为16000100=160元,又因为总利润率为25%,∴售价为160(1+25%)=200元, ……………………6分 第二批玩具的进价为170元,售价也为200元.……………………7分 40×100+30×200=10000元. ……………………8分 答:这二批玩具经销商共可获利10000元.23.(7分)解:没有触礁危险.理由:过点C 作CD ⊥AB ,交AB 的延长线于点D . …1分 由题意可知: ∠ACD =60°,∠BCD =45°, 设CD =x . 在Rt △ACD 中,∵ tan ∠ACD =ADCD,∴AD = 3 x . …2分 在Rt △BCD 中,∵ tan ∠BCD =BDCD,∴BD =x ……3分 ∵AD -BD =AB ,∴ 3 x -x =20. …………5分 ∴x =203 -1≈27.4(km ). ……6分 ∵27.4>25,∴该海轮继续沿正东方向航行,没有触礁危险. …7分 24.(8分)(1)a =4,b =6;………………………2分(2)P 运动了4s 时到达点C ,此时△P AB 的面积为8cm 2, ……4分 (3)由题意AB =DC =2×2=4 cm ,要y 的值为2 cm 2,必须点P 在AD 或BC 上,且P A =1cm 或PB =1cm .当P A =1cm 时,点P 的运动时间t =1s ;当PB =1cm 时,点P 的运动时间为t =2+2+1=5s , 即当t 为1s 或5 s 时,y 的值为2 cm 2. ………8分 25.(8分)(1)证明:连结OE .∵AB =AC ,∴∠B =∠ACB .又∵OE =OC ,∴∠OEC =∠ACB ,∴∠OEC =∠ABC .………1分 ∴OE ∥AB .……………………………………2分AO∵EF 与⊙O 相切,∴OE ⊥EF ,∴∠OEF =90°.…………3分 ∵OE ∥AB ,∴∠AFE =90°,∴OE ⊥AB . …………4分 (2)连结DE 、AE .∵四边形ACED 为⊙O 的内接四边形,∴∠DEC +∠BAC =180°. 又∵∠DEB +∠DEC =180°,∴∠BED =∠BAC , ………5分 又∵∠B =∠B ,∴△BED ∽△BAC .∴BCBDAB BE =. ………6分 ∵AC 为⊙O 的直径,∴∠AEC =90°.∵在△ABC 中, AB =AC ,∴BE =CE =3,∴BC =6.………7分 ∴623=AB ,∴AB =9.即AC =AB =9. ………8分 26.(8分)(1)① ② ……………………………2分(2)①∵△ABC 绕点B 顺时针旋转了60°到△DBE ,∴BC =BE ,∠CBE =60° ……4分 ∵在△BCE 中,BC =BE ,∠CBE =60° ∴△BCE 是等边三角形.……5分②∵△BCE 是等边三角形,∴BC =CE ,∠BCE =60°, ∵∠DCB =30°,∴∠DCE =∠DCB +∠BCE = 90°,…6分 在Rt △DCE 中,有DC 2 +CE 2 =DE 2 ,∵DE =AC ,BC =CE ,∴DC 2 +BC 2 =AC 2 ,………7分 ∴四边形ABCD 是勾股四边形.………8分27.(12分)(1)∵A (-1,0)在抛物线上,∴a -b -5=0,b =a -5.………1分 ∴抛物线的对称轴为:x =-b 2a =5-a2a,……………………2分 ∵0<a <5,∴2 a >0,5-a >0,∴5-a2a>0,∴此时抛物线的对称轴一定在y 轴的右侧. ……………………3分 (2)①∵A (-1,0),B (5,0)在抛物线上,∴⎩⎨⎧a -b -5=0,25a +5b -5=0, ……………………4分 解得:⎩⎨⎧a =1,b =-4……………………5分∴二次函数关系式为y =x 2-4 x -5,由⎩⎨⎧y =x 2-4 x -5, y =t得:x 2-4 x -5=t ,即x 2-4 x -5-t =0, ABDCE∵动直线y =t (t 为常数)与抛物线交于不同的两点,∴方程x 2-4 x -5-t =0有两个不相等的实数解,∴△=16+4(5+t )>0, 解得:t >-9. ……………………7分 (也可先求出二次函数的最小值为-9,然后结合图像,得出t 的取值范围为t >-9. 参照上述标准给分)②连接PC 、CQ ,∵y =x 2-4 x -5=(x -2)2-9,∴抛物线的对称轴为直线x =2, ∵当x =0时,y =-5,∴C (0,-5).设PQ 与y 轴交于点D ,点Q 的坐标为(m ,t )(m >0),则由P 、Q 关于直线x =2对称可得:点P 的坐标为(-m +4,t ).………8分 (Ⅰ)当t >-5时,点D 在点C上方,∵Q (m ,t )在抛物线上,∴t =m 2-4m -5,∴ t +5=m 2-4m ,∵t >-5, ∴m >4, ∴CD =t +5,DQ =m ,DP =m -4. …………9分 ∵∠PCQ =∠PCD +∠QCD =90°,∠DPC +∠PCD =90°, ∴∠QCD =∠DPC ,又∠PDC =∠QDC =90°,∴△QCD ∽△CDP , ∴DQ DC =DC PD ,即m t +5=t +5 m -4,整理得(t +5)2=m 2-4m , ∴(t +5)2=t +5,解得t 1=-5(不合,舍去),t 2=-4,………………10分 (Ⅱ)当t =-5时,动直线y =t 经过点C ,由题意,不可能.……………………11分 (Ⅲ)当t <-5时,点D 在C 下方,P 、Q 都在y 轴右则,此时∠PCQ <∠DCQ <90 °,由题意无解.综上所述,当t =-4,∠PCQ =90 °. ……………………12分第27题备用图yC OAxBQPD。
2016中考数学模拟试卷(带答案)
2016年中考数学模拟试卷(带答案)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列运算正确的是()A.B.C.D.2.某种商品标价为1200元,售出价800元,则最接近打()折售出A.6折B.7折C.8折D.9折3.从五个点(-2,6)、(-3,4)、(2,6)、(6,-2)、(4,-2)中任取一点,在双曲线上的概率是()A.B.C.D.4.平行四边形ABCD中,AC平分DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.125.若,则的值为()A.B.C.D.6.若点M(x,y)满足,则点M所在象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.不能确定7.如图,⊙O的直径AB=8,P是圆上任一点(A、B除外),APB 的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是()A.B.C.6D.8.给出四个命题:①正八边形的每个内角都是135②半径为1cm和3cm的两圆内切,则圆心距为4cm③长度等于半径的弦所对的圆周角为30④Rt△ABC中,C=90,两直角边a,b分别是方程x2-7x+12=0的两个根,则它外接圆的半径长为2.5以上命题正确的有()A.1个B.2个C.3个D.4个9.若直角三角形的两条直角边长为、,斜边长为,斜边上的高为,则有()A.B.C.D.10.直角坐标系xoy中,一次函数y=kx+b(kb0)的图象过点(1,kb),且b2,与x轴、y轴分别交于A、B两点.设△ABO的面积为S,则S的最小值是()A.B.1C.D.不存在二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.点(-1,2)变换为(2,1),请描述一种变换过程.12.如图,如果你在南京路和中山路交叉口,想去动物园(环西路与曙光路交叉口),沿街道走的最近距离是m.13.数据11,9,7,10,14,7,6,5的中位数是,众数是.14.在△ABC中,B=45,cosC=,AC=5a,则用含a的代数式表示AB是(第14题)(第15题)(第16题)15.如图,⊙O为△ABC的内切圆,C=90,BO的延长线交AC 于点D,若BC=3,CD=1,则⊙O的半径等于.16.如图①,在梯形ABCD中,AD∥BC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.化简:,若m是任意实数,对化简结果,你发现原式表示的数有什么特点?18.如图是一个圆锥的三视图,求它的母线长和侧面积.(结果保留)19.在平面直角坐标系中,已知点A(6,),B(0,)(1)画一个圆M,使它经过点A、B且与y轴相切(尺规作图,保留作图痕迹);(2)若圆M绕原点O顺时针旋转,旋转角为(0),当圆M与x轴相切时,求圆心M走过的路程.(结果保留)20.观察下列各图,第①个图中有1个三角形,第②个图中有3个三角形,第③个图中有6个三角形,(1)根据这规律可知第④个图中有多少个三角形?第n个图中有多少个三角形?(用含正整数n的式子表示);(2)在(1)中是否存在一个图形,该图形中共有29个三角形?请通过计算说明;21.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的抛物线三角形,[a,b,c]称为抛物线三角形系数.(1)若抛物线三角形系数为[-1,b,0]的抛物线三角形是等腰直角三角形,求的值;(2)若△OAB是抛物线三角形,其中点B为顶点,抛物线三角形系数为[-2,2m,0],其中m且四边形ABCD是以原点O为对称中心的矩形,求出过O、C、D三个点的抛物线的表达式.22.如图,直角梯形ABCD,DAB=90,AB∥CD,AB=AD,ABC=60.以AD为边在直角梯形ABCD外作等边△ADF,点E是直角梯形ABCD内一点,且EAD=EDA=15,连接EB、EF.(1)求证:EB=EF;(2)四边形ABEF是哪一种特殊四边形?(直接写出特殊四边形名称)(2)若EF=6,求直角梯形ABCD的面积;23.如图1,抛物线与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且OB=,(O为坐标原点).(1)求实数k的值;(2)求实数a,b的值;(3)如图2,过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,请直接写出所有满足△EOC∽△AOB的点E的坐标.参考答案一、选择:1-5CBCCD6-10BABCB二、填空:11、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下112、34013、8,714、15、16、三、解答题:17(6分)、化简得.--------------------------4分是一个非负数18(8分)L=13--------------------2分S侧面积=65---------------6分19(8分)(1)画法正确4分(其中无痕迹扣1分)(2)..2分或3..2分20、(1)10个------------------2分-----------------4分(2)不存在..4分(其中过程3分)21、(1)b=2或2..5分(其中点坐标求出适当给分)(2)..5分(其中点坐标求出适当给分)22、(1)证明完整..4分(2)菱形-------4分(写平行四边形3分)(3)S梯形=----------------4分23、(1)k=4..3分(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)(3)提示:发现OCOB,且OC=2OB所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分希望为大家提供的2016年中考数学模拟试卷的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
2016年中考数学模拟题(一)(含答案)
2016年中考数学模拟题(一)一、选择题:本大题共12个小题,每小题3分,共36分.1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.2a+3b=5ab B.5a﹣2a=3a C.a2•a3=a6D.(a+b)2=a2+b23.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9 C.3.4×10﹣10 D.3.4×10﹣114.下列四个立体图形中,左视图为矩形的是()A.①③B.①④C.②③D.③④5.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A.B.C.D.7.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是358.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根9.已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()A.B.C.D.10.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°11.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm)那么该圆的半径为()A.8cm B.9cm C.cm D.10cm12.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A.2 B.4 C.2D.4二、填空题:本大题共6个小题,每小题3分,共18分.13.函数y=的自变量x的取值范围是.14.计算:(﹣)×=.15.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.16.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为.17.若a2﹣3b=5,则6b﹣2a2+2015=.18.如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P 在AB边上,连接EF、QE.若AB=6,PB=1,则QE=.三、解答题:本大题共6个小题,共46分.19.(本小题满分6分)计算:.20.(本小题满分6分)化简:﹣÷.21.(本小题满分8分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).22.(本小题满分8分)如图,码头A在码头B的正东方向,两个码头之间的距离为32海里,今有一货船由码头A出发,沿北偏西60°方向航行到达小岛C处,此时测得码头B在南偏东45°方向,求码头A与小岛C的距离.(≈1.732,结果精确到0.01海里)23.(本小题满分9分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.24.(本小题满分9分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.四、解答题:共2个小题,共20分.25.(本小题满分9分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.26.(本小题满分11分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).(1)求抛物线的函数解析式;(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.2016年中考数学模拟题(一)参考答案一.选择题1.A 2.B 3.C 4.B 5.C 6.C 7.B 8.C 9.B 10.C 11.C 12.C 二.填空题13.x≤且x≠014.815.(﹣3,5)16.417.200518.2.三.解答题19.解:原式=﹣1+4×﹣2﹣1+3=+1.20.解:原式=﹣•=﹣=.21.解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),如图下图:连接A1、B1、C1即可得到△A1B1C1.(2)如图:(3)由两点间的距离公式可知:BC=,∴点C旋转到C2点的路径长=.22.解:作CD⊥AB交AB延长线于点D,∠D=90°由题意,得∠DCB=45°,∠CAD=90°﹣60°=30°,AB=32海里,设CD=x海里,在Rt△DCB中,tan∠DCB=,tan45°==1,BD=x,AD=AB+BD=32+x,tan30°==,解得x=16+16,∵∠CAD=30°,∠CDA=90°,∴AC=2CD=32+32≈87.42海里,答:码头A与小岛C的距离约为87.42海里.23.解:(1)D厂的零件比例=1﹣20%﹣20%﹣35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)==.24.解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.四、解答题25.解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.26.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴,解得,故抛物线的函数解析式为y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴点E坐标为(1,﹣4),设点D的坐标为(0,m),作EF⊥y轴于点F,∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴点D的坐标为(0,﹣1);(3)∵点C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①分OC与CD是对应边时,∵△DOC∽△PDC,∴=,即=,解得DP=,过点P作PG⊥y轴于点G,则==,即==,解得DG=1,PG=,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P (﹣,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P (,﹣2);②OC与DP是对应边时,∵△DOC∽△CDP,∴=,即=,解得DP=3,过点P作PG⊥y轴于点G,则==,即==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).第11页(共11页)。
2016年中考数学模拟试卷(含答案解析) (16)
辽宁省丹东市2016年中考数学模拟试卷(四)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣2是2的()A.倒数B.相反数C.绝对值D.平方根2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×1043.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥4.函数y=自变量x的取值范围是()A.x<1B.x>﹣1C.x≤1D.x≤﹣15.下列事件为必然事件的是()A.任意买一张电影票,座位号大于5B.打开电视机,正在播放天气预报C.菱形的对角线的长大于边长D.线段垂直平分线上的点到这条线段的两个端点的距离相等6.已知,在▱ABCD中,BC﹣AB=2cm,BC=4cm,则▱ABCD的周长是()A.6cmB.12cmC.8cmD.10cm7.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是()A.﹣2B.±4C.2D.±28.在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是()A.一定相似B.当E是AC中点时相似C.不一定相似D.无法判断二、填空题(共8小题,每小题3分,满分24分)9.如图,直线a∥b,直线c与a,b相交,∠1=55°,则∠2=.10.分解因式:ba3﹣ab3=.11.一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为.12.如图,在⊙O中,弦AB=4cm,点O到AB的距离OC的长是2cm,则⊙O的半径是.13.某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是.14.如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BC﹣AD=4,则梯形的腰AB=.15.观察下面两组数据:第一组:2,4,8,16…第二组:5,7,11,19…根据你发现的规律,两组数据的第8个数据的和是.16.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是矩形,顶点A、B、C、D的坐标分别为(﹣1,0),(5,0),(5,2),(﹣1,2),点E(3,0)在x轴上,点P在CD边上运动,使△OPE为等腰三角形,则满足条件的P点有个.三、解答题(共10小题,满分102分)17.先化简,再求值:(﹣)÷,其中a=﹣5.18.已知:如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD 的各顶点均在格点上.(1)将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得四边形A1B1C1D1;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(2,3),画出平移后的图形.19.我市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,其中扇形统计图的圆心角α为36°,x表示视力情况,根据上面提供的信息,回答下列问题:(1)此次共调查了人;(2)请将表格补充完整;(3)这组数据的中位数落在组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是.20.数学兴趣小组探究概率实验,桌子上放有质地均匀,反面相同的4张卡片,正面标有1、2、3、4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标有的数字作为十位上的数字,将这张卡片反面朝上放回洗匀;再从中任意抽出一张卡片,用卡片上所标有的数字作为个位上的数字,试用列表法或画树状图的方法分析下列问题:(1)组成的两位数有多少种可能?(2)组成的两位数恰好能被3整除的概率是多少?21.如图,AB是⊙O的直径,OD∥BC,∠A=30°,CD=2.求:(1)弦BC的长;(2)图中阴影部分的面积.22.甲、乙两市之间有两条铁路线,普通快车线长600千米;高速铁路线长450千米.已知高速列车的速度是普通快车速度的3倍,普通快车先出发3小时,而比高速列车晚到2小时,求普通快车与高速列车的速度分别是多少?23.如图,AB、CD分别表示甲、乙两建筑物的高,从A点测得D点的仰角为30°,从B点测得D点的仰角为60°,已知两楼之间的距离为27米.求甲、乙两建筑物的高AB、CD.(结果精确到个位)(参考数据:≈1.4,≈1.7)24.某房地产开发公司计划建甲、乙两种户型的住房共80套,该公司所用建房资金不少于2850万元,甲种户型每套成本和售价分别为45万元和51万元,乙种户型每套成本和售价分别为30万元和35万元.设计划建甲种户型x套.(1)该公司最少建甲种户型多少套?(2)若甲种户型不超过32套,选择哪种建房方案,该公司获利最大?最大利润是多少?(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低a万元(0<a≤1.5),乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案.25.已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角形的顶点P放在斜边AC上.(1)设三角板的两直角边分别交边AB,BC于点M,N.①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB,BC于点M,N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB,BC的延长线于点M,N.①请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;②在①的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是.26.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B 的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.2016年辽宁省丹东市中考数学模拟试卷(四)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣2是2的()A.倒数B.相反数C.绝对值D.平方根【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣2是2的相反数,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300 000=3×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥【分析】如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选:C.【点评】本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.4.函数y=自变量x的取值范围是()A.x<1B.x>﹣1C.x≤1D.x≤﹣1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0可知:1﹣x>0,可求自变量x的取值范围.【解答】解:根据题意得:1﹣x>0,解得x<1.故选A.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.下列事件为必然事件的是()A.任意买一张电影票,座位号大于5B.打开电视机,正在播放天气预报C.菱形的对角线的长大于边长D.线段垂直平分线上的点到这条线段的两个端点的距离相等【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A,B,C选项,是可能发生也可能不发生的事件,属于不确定事件,不符合题意;是必然事件的是:线段垂直平分线上的点到这条线段的两个端点的距离相等,符合题意.故选:D.【点评】此题主要考查了随机事件,解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.已知,在▱ABCD中,BC﹣AB=2cm,BC=4cm,则▱ABCD的周长是()A.6cmB.12cmC.8cmD.10cm【分析】由于平行四边形的对边相等,再根据已知即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∵BC﹣AB=2cm,BC=4cm,∴AB=DC=2cm,∴▱ABCD的周长是=2+2+4+4=12cm.故选B.【点评】此题主要考查平行四边形的对边相等的性质,题型简单.7.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是()A.﹣2B.±4C.2D.±2【分析】先根据反比例函数的图象在一、三象限判断出k的符号,由反比例函数系数k的几何意义得出S△AOD=S△BOE=k,根据反比例函数及正比例函数的特点得出A、B两点关于原点对称,故可得出S矩形OECD=2△AOD=k,再由△ABC的面积是4即可得出k的值.【解答】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,=2△AOD=k,∴S矩形OECD=2k=4,解得k=2.∴S △ABC=S△AOD+S△BOE+S矩形OECD故选C.【点评】本题考查的是反比例函数的性质,熟知反比例函数系数k的几何意义是解答此题的关键.8.在Rt△ACB中,∠C=90°,AC=BC,一直角三角板的直角顶角O在AB边的中点上,这块三角板绕O点旋转,两条直角边始终与AC、BC边分别相交于E、F,连接EF,则在运动过程中,△OEF与△ABC的关系是()A.一定相似B.当E是AC中点时相似C.不一定相似D.无法判断【分析】首先连接OC,由等腰直角三角形的性质,易证得△COE≌△BOF,则可得△OEF是等腰直角三角形,继而可得△OEF与△ABC的关系是相似.【解答】解:连结OC,∵∠C=90°,AC=BC,∴∠B=45°,∵点O为AB的中点,∴OC=OB,∠ACO=∠BCO=45°,∵∠EOC+∠COF=∠COF+∠BOF=90°,∴∠EOC=∠BOF,在△COE和△BOF中,∴△COE≌△BOF(ASA),∴OE=OF,∴△OEF是等腰直角三角形,∴∠OEF=∠OFE=∠A=∠B=45°,∴△OEF∽△△CAB.故选:A.【点评】此题考查了相似三角形的判定、全等三角形的判定与性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(共8小题,每小题3分,满分24分)9.如图,直线a∥b,直线c与a,b相交,∠1=55°,则∠2=125°.【分析】先根据补角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=55°,∴∠3=180°﹣∠1=180°﹣55°=125°.∵直线a∥b,∴∠2=∠3=125°.故答案为:125°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.10.分解因式:ba3﹣ab3=ab(a﹣b)(a+b).【分析】首先提取公因式ab,再利用平方差进行二次分解即可.【解答】解:原式=ab(a2﹣b2),=ab(a﹣b)(a+b).故答案为:ab(a﹣b)(a+b).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为2.【分析】先根据平均数是3,求出x的值,再求出这组数据的方差,然后求出方差的算术平方根即可.【解答】解:∵数据﹣1、x、3、1、﹣3的平均数是10,∴(﹣1+x+3+1﹣3)÷5=0,解得:x=0,∴这组数据的方差是:S2=[(﹣1﹣0)2+(0﹣0)2+(3﹣0)2+(1﹣0)2+(﹣3﹣0)2]=4,∴这组数据的标准差等于2.故答案为:2.【点评】此题考查了标准差,用到的知识点是方差、标准差、平均数,关键是根据平均数求出x的值.12.如图,在⊙O中,弦AB=4cm,点O到AB的距离OC的长是2cm,则⊙O的半径是4cm.【分析】由于点O到AB的距离OC的长是2cm,即OC⊥AB,根据垂径定理得AC=2cm,然后根据勾股定理可计算出OA.【解答】解:连结OA,如图,∵点O到AB的距离OC的长是2cm,∴OC⊥AB,∴AC=BC=AB=×4cm=2cm,在Rt△OCA中,OC=2,AC=2cm,∴OA==4(cm).故答案为4cm.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.13.某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是16(1﹣x)2=14.【分析】设该药品平均每次降价的百分率是x,则第一次降价后的价格是16×(1﹣x),第二次降价后的价格是在第一次降价后的价格的基础上进行降价的为16(1﹣x)(1﹣x)=14,解方程即可.【解答】解:设该药品平均每次降价的百分率是x,根据题意得16×(1﹣x)(1﹣x)=14,整理得:16(1﹣x)2=14.故答案为:16(1﹣x)2=14.【点评】考查了由实际问题抽象出一元二次方程,本题需注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.14.如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BC﹣AD=4,则梯形的腰AB=4.【分析】首先过点D作DE∥AB,交BC于点E,易得四边形ABED是平行四边形,又由在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BC﹣AD=4,易得△DEC是等边三角形,EC=4,继而求得答案.【解答】解:过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABED是平行四边形,∴DE=AB,BE=AD,∵AB=DC,BC﹣AD=4,∴DE=DC,CE=BC﹣BE=BC﹣AD=4,∵∠C=60°,∴△DEC是等边三角形,∴AB=CE=4.故答案为:4.【点评】此题考查了等腰梯形的性质、平行四边形的判定与性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.观察下面两组数据:第一组:2,4,8,16…第二组:5,7,11,19…根据你发现的规律,两组数据的第8个数据的和是515.【分析】观察不难发现,第一组数是2的指数次幂,第二组比第一组相应的数大3,然后写出第8个数相加即可解得.【解答】解:第一组:2=21,4=22,8=23,16=24,…第二组:5=21+3,7=22+3,11=23+3,19=24+3,…所以,两组的第8个数据的和是:28+(28+3)=256+(256+3)=515.故答案为:515.【点评】本题对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键,观察出第二组比第一组相应的数大3也很关键.16.如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是矩形,顶点A、B、C、D的坐标分别为(﹣1,0),(5,0),(5,2),(﹣1,2),点E(3,0)在x轴上,点P在CD边上运动,使△OPE为等腰三角形,则满足条件的P点有3个.【分析】分别以O、E为圆心,以OE的长为半径作圆与CD相交,再作OE的垂直平分线与CD相交,交点即为所求的点P.【解答】解:如图,满足条件的P点有3个.故答案为:3.【点评】本题考查了矩形的性质,坐标与图形性质,等腰三角形的判定,熟练掌握等腰三角形的性质是解题的关键.三、解答题(共10小题,满分102分)17.先化简,再求值:(﹣)÷,其中a=﹣5.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=÷==,当a=﹣5时,原式==﹣.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.已知:如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD 的各顶点均在格点上.(1)将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得四边形A1B1C1D1;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(2,3),画出平移后的图形.【分析】(1)根据网格结构找出点A、B、C、D绕点O顺时针旋转180°后的对应点A1、B1、C1、D1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1、D1平移后A2、B2、C2、D2的位置,然后顺次连接即可.【解答】解:(1)四边形A1B1C1D1如图所示;(2)四边形A2B2C2D2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19.我市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,其中扇形统计图的圆心角α为36°,x表示视力情况,根据上面提供的信息,回答下列问题:(1)此次共调查了200人;(2)请将表格补充完整;(3)这组数据的中位数落在C组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是108°.【分析】(1)根据圆心角α为36°,求出A组所占的百分比,的出频率,再根据频数是20,即可得出总人数;(2)根据频数、频率之间的关系,分别求出B组的频数、C组的频率、D组的频数以及频率,填表即可;(3)根据中位数的定义即可得出这组数据的中位数落在C组内;(4)用360°乘以D组的频率即可得出答案.【解答】解:(1)∵圆心角α为36°,∴A组的频率是:=0.1,∴总人数是20÷0.1=200(人),故答案为:200;(2)B组的频数是200×0.35=70;C组的频率是50÷200=0.25;D组的频数是:200﹣20﹣70﹣50=60,频率是60÷200=0.3;填表如下:(3)∵这组数据共有200个数,∴中位数是第100,101个数的平均数,∴这组数据的中位数落在C组内;故答案为:C.(4)扇形统计图中“D组”的扇形所对的圆心角的度数是360°×0.30=108°;故答案为:108°.【点评】本题考查了扇形统计图和统计表,用到的知识点是中位数的求法以及扇形统计图,给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.20.数学兴趣小组探究概率实验,桌子上放有质地均匀,反面相同的4张卡片,正面标有1、2、3、4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标有的数字作为十位上的数字,将这张卡片反面朝上放回洗匀;再从中任意抽出一张卡片,用卡片上所标有的数字作为个位上的数字,试用列表法或画树状图的方法分析下列问题:(1)组成的两位数有多少种可能?(2)组成的两位数恰好能被3整除的概率是多少?【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可得组成的两位数恰好能被3整除的有5种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有16种等可能的结果.(2)∵组成的两位数恰好能被3整除的有5种情况,∴组成的两位数恰好能被3整除的概率是:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,AB是⊙O的直径,OD∥BC,∠A=30°,CD=2.求:(1)弦BC的长;(2)图中阴影部分的面积.【分析】(1)根据圆周角定理得∠ACB=90°,再由OD∥BC得∠ADO=90°,则根据垂径定理得到AD=DC=2,即AC=4,然后根据含30°的直角三角形三边的关系可计算出BC;(2)先得到OD=BC=,再计算出半径,然后根据扇形面积公式和阴影部分的面积=S﹣S△OAC扇形OAC进行计算即可.【解答】解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠ADO=90°,∴OD⊥AC,∴AD=DC=2,∴AC=4,∵∠A=30°,∴BC=AC=;(2)连结OC,如图,∵OD为△ACB的中位线,∴OD=BC=,在Rt△ACB中,∠A=30°,∴∠B=60°,∴OC=BC=,∠AOC=2∠B=120°,∴阴影部分的面积=S﹣S△OAC扇形OAC=﹣×4×=﹣.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、扇形的面积公式以及含30°的直角三角形三边的关系.22.甲、乙两市之间有两条铁路线,普通快车线长600千米;高速铁路线长450千米.已知高速列车的速度是普通快车速度的3倍,普通快车先出发3小时,而比高速列车晚到2小时,求普通快车与高速列车的速度分别是多少?【分析】设普通快车的速度为x,则高速列车的速度为3x,根据高速列车比普通快车少用5小时,可得出方程,解出即可.【解答】解:设普通快车的速度为x,则高速列车的速度为3x,由题意得:﹣=3+2,解得:x=90.经检验:x=90是原方程的根.3x=270(千米/时).答:普通快车的速度为90千米/小时,高速列车的速度为270千米/小时.【点评】本题考查了分式方程的应用,解答本题的关键是正确的表示出普快及高速列车所用的时间.23.如图,AB、CD分别表示甲、乙两建筑物的高,从A点测得D点的仰角为30°,从B点测得D点的仰角为60°,已知两楼之间的距离为27米.求甲、乙两建筑物的高AB、CD.(结果精确到个位)(参考数据:≈1.4,≈1.7)【分析】先作AE⊥CD于点E,得出AE=BC﹣27,AB=CE,根据tan∠DBC=,求出CD的长,再根据tan∠DAE=,求出DE的长,最后根据CE=CD﹣DE,即可得出答案.【解答】解:作AE ⊥CD 于点E ,则四边形ABCE 为矩形, 则AE=BC ﹣27,AB=CE , 在Rt △BCD 中,∵tan ∠DBC=,∴CD=×27=27≈46(米),在Rt △AED 中,∵tan ∠DAE=,∴DE=×27=9,∴CE=CD ﹣DE=27﹣9=18,∴AB=CE=1831(米);答:甲、乙两建筑物的高AB 、CD 分别为31米和46米.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.24.某房地产开发公司计划建甲、乙两种户型的住房共80套,该公司所用建房资金不少于2850万元,甲种户型每套成本和售价分别为45万元和51万元,乙种户型每套成本和售价分别为30万元和35万元.设计划建甲种户型x 套.(1)该公司最少建甲种户型多少套?(2)若甲种户型不超过32套,选择哪种建房方案,该公司获利最大?最大利润是多少?(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低a 万元(0<a ≤1.5),乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案. 【分析】(1)设公司建甲种户型x 套,则B 种户型(80﹣x )套,根据该公司所用建房资金不少于2850万元,列出不等式,进行求解即可;(2)设所获得利润为W万元,根据一套的利润×总的套数=总利润,列出一次函数,再根据函数的增减性即可得出答案;(3)分两种情况讨论:当0<a<1和1<a<1.5时,分别得出甲住房和乙住房各多少套时,该公司才能获得最大利润.【解答】解:(1)设公司建甲种户型x套,则B种户型(80﹣x)套,45x+30(80﹣x)≥2850解得:x≥30,答:公司最少建甲种户型30套;(2)设所获得利润为W万元,根据题意得:W=(51﹣45)x+(35﹣30)(80﹣x)=x+400,∵k=1>0,∴W随x的增大而增大,∴当x取最大值32时,W有最大值432万元;(3)当0<a<1时,甲住房有32套,乙住房有48套,该公司才能获得最大利润;当1<a<1.5时,甲住房有30套,乙住房有50套,该公司才能获得最大利润;【点评】此题考查了一元一次不等式的应用和一次函数的应用,读懂题意,找出它们之间的数量关系,列出不等式或一次函数,掌握函数的增减性是解题的关键.25.已知:在Rt△ABC中,∠ABC=90°,∠C=60°,现将一个足够大的直角三角形的顶点P放在斜边AC上.(1)设三角板的两直角边分别交边AB,BC于点M,N.①当点P是AC的中点时,分别作PE⊥AB于点E,PF⊥BC于点F,得到图1,写出图中的一对全等三角形;②在①的条件下,写出与△PEM相似的三角形,并直接写出PN与PM的数量关系.(2)移动点P,使AP=2CP,将三角板绕点P旋转,设旋转过程中三角板的两直角边分别交边AB,BC于点M,N(PM不与边AB垂直,PN不与边BC垂直);或者三角板的两直角边分别交边AB,BC的延长线于点M,N.①请在备用图中画出图形,判断PM与PN的数量关系,并选择其中一种图形证明你的结论;②在①的条件下,当△PCN是等腰三角形时,若BC=3cm,则线段BN的长是1cm或5cm.【分析】(1)①求出∠AEP=∠B=∠PFC=90°,∠APE=∠C=60°,根据AAS推出两三角形全等即可;②根据已知条件得到AB=BC,求出PE=BC,PF=AB,根据相似三角形的判定推出△PFN∽△PEM,根据相似三角形的性质得到==,即可得出答案.(2)①根据相似三角形的性质得到=2,设CF=x,则PE=2x,求出PF=x,根据相似三角形的性质即可得到结论;②求出CP=2cm,分为两种情况:第一种情况:当N在线段BC上时,得出△PCN是等边三角形,求出CN=CP=2cm,即可得到结论;第二种情况:当N在线段BC的延长线上时,求出CN=PC=2cm,即可得到结论.【解答】(1)解:①△AEP≌△PFC,理由是:∵P为AC中点,∴AP=PC,∵PE⊥AB,PF⊥BC,∠B=90°,∴∠AEP=∠B=∠PFC=90°,∴PF∥AB,PE∥BC,∴∠APE=∠C=60°,在△AEP和△PFC中∴△AEP≌△PFC(AAS);②△PFN∽△PEM,PN=PM,理由是:∵在Rt△ACB中,∠ABC=90°,∠C=60°,∴AB=BC,∵PE∥BC,PF∥AB,P为AC中点,。
中考数学模拟试题含答案(精选5套)培训资料
2016中考数学模拟试题含答案(精选5套)2015年中考数学模拟试卷(一)数学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回.....一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B铅笔涂黑)1. 2 sin 60°的值等于A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D.3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的圆弧角扇形菱形等腰梯形A. B. C. D.信息,可估算出该校喜爱体育节目的学生共有A. 1200名B. 450名C. 400名D. 300名 8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为 A. (x + 2)2 = 9 B. (x - 2)2 = 9C. (x + 2)2= 1D. (x - 2)2=1 9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =A. 1∶2B. 1∶4C. 1∶3D. 2∶3 10. 下列各因式分解正确的是A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x+ 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效)13. 计算:│-31│= .14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,(第9题(第11题(第12题再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成的图形的面积为 .三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分) 21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数. 22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;3121--+x x ≤1, ……① 解不等式组: 3(x - 1)<2 x +(第18题(第21题图)°(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2-21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.(第23题(第24题(第26题2016年初三适应性检测参考答案与评分意见说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题13. 31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+= 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分)= 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= n m m +·m n m n m ))((-+ …………3分= m – n …………4分20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 =3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分=10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ),∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2016年中考数学模拟试题(二)一、 选择题1、数2-中最大的数是() A 、1- B、0 D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是()A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是() A 、0a b +> B 、0a b -> C 、0ab > D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=()A 、20°B 、80°C 、60°D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若10x >则一定成立的是()DE左视图俯视图A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2016年中考模拟数学试题(附答案)
2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。
2016年中考第一次模拟考试数学试卷(含部分答案)
∴四边形EBFD是平行四边形.…………………4分(其它方法参照给分.)
(2)GF∥EH,AE∥FC.…………………………9分
24解:(1)证明:如图①,连接OC,则OC⊥EF,且OC=OA,…………1分
∴∠OCA=∠OAC.
∵AD⊥EF,
∴OC∥AD.
∴∠OCA=∠CAD,
∴∠CAD=∠OAC.…………3分
AD∥BC,∠ABC=∠ADC.………………1分
∵BE平分∠ABC,
∴∠ABE=∠EBC=∠ABC.
∵DF平分∠ADC,
∴∠ADF=∠CDF=∠ADC.
∵∠ABC=∠ADC.
∴∠ABE=∠EBC=∠ADF=∠CDF.………2分
∵AD∥BC,
∴∠AEB=∠EBC.
∴∠AEB=∠ADF.
∴EB∥DF.………………………………………3分
即∠CAD=∠BAC.…………4分
(2)与∠CAD相等的角是∠BAG.…………5分
证明如下:如图②,连接BG.
∵四边形ACGB是⊙O的内接四边形,
∴∠ABG+∠ACG=180°.…………6分
∵D,C,G共线,
∴∠ACD+∠ACG=180°.∴∠AC Nhomakorabea=∠ABG.
∵AB是⊙O的直径,
∴∠BAG+∠ABG=90°
画树状图得:
……………………………………4分
∵共有9种等可能的结果,小明顺利通关的只有1种情况,
∴小明顺利通关的概率为:.………………………………………………………6分
(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:.
∴建议小明在第一题使用“求助”.………………9分
2016年中考数学模拟试题(一)及答案
2016年中考数学模拟试题数学试卷(一)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.比-1大1的数是( )A.2 B.1 C.0 D.-22.某外贸企业为参加2012年中国南通港口洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为()A.10.5 B.1.05 C.1.05 D.0.1053.右图是由4个相同的小正方体组成的几何体,其俯视图为()A. B. C. D.4.如图,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是( )A.ab>0B.a+b<C.(b-1)(a+1)>0 D.(b-1)(a-1)>05.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°16.已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是( ) A.B.m≥0C.m≥1D.m≥27.方山镇2012年的蔬菜产量是1200吨,今年的产量达到1452吨,如果平均每年的增长率为x ,那么x 满足的方程是( ) A .1200(1+x )2=1452 B .1200(1+x %)2=1452 C .1200(1+2x )=1452D .1200(1+x %)=14528.同一直角坐标系中,函数xay -=与1+=ax y (a ≠0)的图象可能是( )9.小红制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被3整除的概率是( )A .B .C .D .10.如图,函数y=的图象经过点A (1,﹣3),AB 垂直x 轴于点B ,则下列说法正确的是( )A.k=3B. 函数图象关于y 轴对称C. S △AOB =3D. x <0时, y 随x 增大而增大11如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∠BCD =30°,下列结论:①AE =BE ;②OE =DE ;③AB =BC ;④.其中正确的是( )A .①B .①②③C .①③D .①②③④12. 如图,正方形OABC 边长为2,顶点A 、C 在坐标轴上,点P 在AB 上,CP 交OB 于点Q ,OQ=OC ,则﹣213.如图,在等腰D 是AC 上一点,若那么AD 的长为( )14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0; ②9a+c >3b ; ③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( ) A .1个 B . 2个 C . 3个 D . 4个15.已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具).以下是嘉淇、小刚两同学的作业:【嘉淇】①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1).【小刚】①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2).对于两人的作业,下列说法正确的是( )A .嘉淇对,小刚不对B .嘉淇不对,小刚对C .两人都对D .两人都不对 16.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的进行路线,在BC 的中点M 处放置了一台定位仪器,设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )图2图1BA .A→O→B B .B→A→C C .B→O→CD .C→B→O二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.已知m 、n 是一元二次方程x 2-3x +1=0的两个根,那么代数式2m 2+4n 2-6n +2003的值是__________. 18.已知关于x 的分式方程a +2x +1=1的解是非正数,则a 的取值范围是________. 19.右图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5=___.20.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点P 1、A 1、A 2为顶点的△P 1A 1A 2的面积记为S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+S n =________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)(1(2)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.如图,在菱形ABCD 中,AB =2,∠ABC =60°,对角线AC 、BD 相交于点O ,将对角线AC 所在的直线绕点O 顺时针旋转角()090αα<< 后得直线l ,直线l 与AD 、BC 两边分别相交于点E 和点F . (1)求证:△AOE ≌△COF ;(2)当=30α 时,求线段EF 的长度.DB第23题图甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?直接写出答案.如图,边长为1的正方形ABCD一边AD在x负半轴上,直线lB(x,1)与x轴、y轴分别交于点H、F,抛物线y=-x2+bx+c顶点E在直线l上.⑴求A、D两点的坐标及抛物线经过A、D两点时的解析式.⑵当该抛物线的顶点E(m,n)在直线l上运动时,连接EA、ED,试求△EAD的面积S与m之间的函数解析式.并写出m的取值范围.⑶设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A、C、E、G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.26.如图14-1,矩形ABCD中,AB=8,BC=38,半径为3的⊙P与线段BD相切于点M,圆心P与点C在直线BD的同侧,⊙P沿线段BD从点B向点D滚动.发现:BD=______;∠CBD的度数为_______;拓展:①当切点M与点B重合时,求⊙P与矩形ABCD重叠部分的面积②在滚动过程中如图14-2,求AP的最小值;B(图14-1B图14-2探究:①若⊙P与矩形ABCD的两条对角线都相切,求此时线段BM的长,并直接写出tan∠PBC的值.Array②在滚动过程中如图14-3,点N是AC上任意一点,直接写出BP+PN的最小值.图14-3答案一、选择题1——16 CBBC B BA B DDDB ABCC 二、填空题17 2015 18 a≤-1且a≠-2 19 360°20 (2,1);1 nn-.三、解答题21.(1)2013(2) x=-222.(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;则P==.23.【答案】(1)∵四边形ABCD是菱形,∴OA=OC,AD∥BC.∴∠OAE=∠OCF,∠OEA=∠OFC.∴△AOE≌△COF(AAS).(2)∵AB=AC=2,∠ABC=60°,∴△ABC是等边三角形.∴∠AOAE=∠ACB=60°.又∵=30α =∠AOE,∴EF⊥BC.∵四边形ABCD 是菱形, ∴OA =OC =1.在Rt △OCF 中,由sin ∠OCF =OF OC ,得OF =OC sin60°=1 ∵△AOE ≌△COF , ∴OE =OF .∴EF24.【答案】(1)4.5,60(km/h);(2)y=28x+264.(7x 5.4≤≤)(3)1855小时和32209小时 【解析】解:(1)在途中的货站装货耗时半小时,说明a=4+0.5=4.5. 甲的速度:460÷(7+32)=60(km/h) (2)设直线OD 为y=mx,直线EF 为y=nx+b.由图像可知:⎩⎨⎧+=50m 460=4.5)n -(7+4m n 解得:⎩⎨⎧=28n 78=m 把n=28,(7,460)代入y=nx+b.中得:b=264. ∴y=28x+264.(7x 5.4≤≤) (3)相距15千米,两种:①78x-60(x+32)=15 解得:x=1855②28x+264-60(x+32)=15解得:x=32209答:乙出发1855小时和32209小时时与甲相聚15千米。
2016中考数学模拟试题(有答案)
2016年中考数学模拟试题(有答案)科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了2016年中考数学模拟试题。
A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c 的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图311,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A.abc0B.2a+b0C.a-b+c0D.4ac-b204.(2013年山东聊城)二次函数y=ax2+bx的图象如图312,那么一次函数y=ax+b的图象大致是()5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x-3-2-101y-3-2-3-6-11则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图313,给出下列结论:①2a+b②b③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图314,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图315,已知抛物线y=1a(x-2)(x+a)(a0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x10(1)求证:n+4m=0;(2)求m,n的值;(3)当p0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图316,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=1262=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10OA=-x1,OB=x2,x1+x2=-nm,x1x2=pm.令x=0,得y=p,C(0,p).OC=|p|.由三角函数定义,得tanCAO=OCOA=-|p|x1,tanCBO=OCOB=|p|x2.∵tanCAO-tanCBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1x2=-1|p|.将x1+x2=-nm,x1x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|=1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).希望为大家提供的2016年中考数学模拟试题的内容,能够对大家有用,更多相关内容,请及时关注!精心整理,仅供学习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2016年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2016年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。