八年级上数学综合练习题及答案

合集下载

初二数学综合练习题及答案

初二数学综合练习题及答案

初二数学综合练习题及答案1. 以分数的形式写出下列小数:a. 0.6b. 0.25c. 0.75d. 0.125答案:a. 6/10b. 25/100c. 75/100d. 125/10002. 两数的和是30,差是14,求这两个数。

答案:设其中一个数为x,根据题意可得:x + (x - 14) = 302x - 14 = 302x = 30 + 142x = 44x = 22所以这两个数分别为22和8。

3. 甲、乙两人一起修一段铁轨,甲单独修完需要4天,乙单独修完需要6天。

如果两人一起修,他们需要多少天才能完成?答案:甲单独修完的工作效率是1/4,乙单独修完的工作效率是1/6,设两人一起修完的时间为x天,则他们一起的工作效率是1/x。

根据题意可得:1/4 + 1/6 = 1/x3/12 + 2/12 = 1/x5/12 = 1/x将等式两边取倒数,得:12/5 = x/1x = 12/5x = 2.4所以,甲乙两人一起修完需要2.4天。

4. 小明有5张红色的卡片,6张黄色的卡片,他从两堆卡片中分别取出一张,那么取出的两张卡片中至少有一张红色卡的概率是多少?共有5 + 6 = 11张卡片,从中任意取出两张的情况总数为C(11, 2) = 55。

取出的两张卡片中,至少有一张红色卡的情况总数为:只有一张红色卡的情况:5 * 6 = 30两张卡片都是红色卡的情况:5 * 4 = 20所以,取出的两张卡片中至少有一张红色卡的概率为(30 + 20)/55 = 50/55 = 10/11。

5. 甲、乙两数之和是65,差是15,求甲、乙两数分别是多少。

答案:设甲、乙两数分别为x和y,根据题意可得:x + y = 65x - y = 15将第二个等式两边同时加上y,得:x = y + 15将上面的表达式代入第一个等式中,得:(y + 15) + y = 652y + 15 = 652y = 65 - 152y = 50y = 50/2y = 25将y的值代入第一个等式中,得:x + 25 = 65x = 65 - 25x = 40所以,甲、乙两数分别为40和25。

八年级数学上册期末综合练习题及答案3(中考题)

八年级数学上册期末综合练习题及答案3(中考题)

八年级上期末综合练习3考号____________姓名____________总分_________________一.选择题(共12小题;每题4分;共48分)00025米;此数据用科学记数法表示为()米.A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣62.代数式中;分式的个数是()A.1 B.2C.3D.43.下列方程中分式方程有()个.(1)x2﹣x+;(2)﹣3=a+4;(3);(4)=1.A.1 B.2C.3D.以上都不对4.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线5.用五根木棒钉成如下四个图形;具有稳定性的有()A.1个B.2个C.3个D.4个6.(2011•宜宾)分式方程的解是()A.3 B.4C.5D.无解7.(2013•贵港)关于x的分式方程的解是负数;则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠08.下列各式由左边到右边的变形中;是分解因式的是()A.m(x+y)=mx+my B.x2﹣4x+4=x(x﹣4)+4C.15x2﹣3x=3x(5x﹣1)D.x2﹣9+3x=(x+3)(x﹣3)+3x9.(2004•聊城)方程的解是()A.﹣2;B.3;C.﹣2;D.1;10.(2006•日照)已知在正方形网格中;每个小方格都是边长为1的正方形;A;B两点在小方格的顶点上;位置如图所示;点C也在小方格的顶点上;且以A;B;C为顶点的三角形面积为1;则点C的个数为()A.3个B.4个C.5个D.6个11.(2010•荆门)给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点;这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点(4)三角形的重心是它的中线的一个三等分点那么以上判断中正确的有()A.一个B.两个C.三个D.四个12.(2007•玉溪)如图;AE⊥AB且AE=AB;BC⊥CD且BC=CD;请按照图中所标注的数据;计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题;每题4分;共24分)13.在代数式a;π;ab;a﹣b;;x2+x+1;5;2a;中;整式有_________个;单项式有_________个;次数为2的单项式是_________;系数为1的单项式是_________.14.要使关于x的方程有唯一的解;那么m≠_________.15.如图;在△ABC中;∠ACB=60°;∠BAC=75°;AD⊥BC于D;BE⊥AC于E;AD与BE交于H;则∠CHD= _________.16.(2014•盐都区二模)PM2.5是指大气中直径小于或等于2.5微米的颗粒物;也称为可入肺颗粒物.2.5微米等于0.0000025米;把0.000 002 5用科学记数法表示为_________.17.若关于x的分式方程无解;则m=_________.18.(2014•句容市一模)如图;在等边△ABC中;AC=3;点O在AC上;且AO=1.点P是AB上一点;连接OP;以线段OP为一边作正△OPD;且O、P、D三点依次呈逆时针方向;当点D恰好落在边BC上时;则AP 的长是_________.三.解答题(共8小题;19-20每题7分;21-24每题10分;25-26每题12分。

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。

下列各题,每小题只有一个选项符合题意。

)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案 (2)

人教版八年级数学上册期末综合检测试卷带答案一、选择题1.下列四个图形中,轴对称图形有( )个.A .1B .2C .3D .42.6月15日,莉莉在网络上查到了小区PM 2.5的平均浓度为0.000038克/立方米,0.000038用科学记数法表示为( ) A .43.810-⨯B .43.810⨯C .53.810-⨯D .53.810⨯3.已知4=m x ,6n x =,则2-m n x 的值为( ) A .10 B .83C .32D .234.若分式12x x +-有意义,则x 的取值范围是( ) A .x ≥2B .x ≠2且x ≠-1C .x ≠2D .x ≠-15.下列因式分解正确的是( ) A .22(1)2x x x x -+=-+ B .329(9)x x x x -=- C .22324(1)a a a -=-++D .2222(1)(1)-=+-x x x6.下列变形中,正确的是( ) A .1-=--a bb aB .0.330.5252a b a ba b a b++=--C .21111a a a -=-+ D .22b bc a ac= 7.如图,AC BC =,下列条件不能判定....△ACD 与△BCD 全等的是( )A .AD BD =B .ACD BCD ∠=∠C .ADC BDC ∠=∠D .点O 是AB 的中点8.若关于x 的方程4233x mx x--=--有增根,则m 的值为( ) A .3B .0C .1D .任意实数9.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .10.如图,在等边△ABC 中,AC =3,点O 在AC 上,且AO =1.点P 是AB 上一点(可移动),连接OP ,以线段OP 为一边作等边△OPD ,且O 、P 、D 三点依次呈逆时针方向,当点D 恰好落在边BC 上时,则AP 的长是( )A .1B .2C .3D .4二、填空题11.若242x x -+的值为零,则x 的值为______.12.点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称,则mn =______. 13.已知114ab-=,则aba b-的值是______. 14.已知3m a =,2n a =,则2m n a -的值为______.15.如图,在ABC ∆中,7AB cm =,5BC cm =,AC 的垂直平分线分别交AB ,AC 于点D ,E ,点F 是DE 上的任意一点,则BCF ∆周长的最小值是________cm .16.已知关于x 的二次三项式29x kx ++ 是完全平方式,则常数k 的值为_____. 17.若14x x+=,则221x x ⎛⎫+ ⎪⎝⎭的值是_________.18.如图,直线PQ 经过Rt △ABC 的直角顶点C ,△ABC 的边上有两个动点D 、E ,点D 以1cm /s 的速度从点A 出发,沿AC →CB 移动到点B ,点E 以3cm /s 的速度从点B 出发,沿BC →CA 移动到点A ,两动点中有一个点到达终点后另一个点继续移动到终点.过点D 、E 分别作DM ⊥PQ ,EN ⊥PQ ,垂足分别为点M 、N ,若AC =6cm ,BC =8cm ,设运动时间为t ,则当t =__________ s 时,以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.三、解答题19.分解因式 (1)224x y ;(2)a 2(x -y )+16(y -x ).20.先化简,再求值:2223111x x x x -⎛⎫-÷ ⎪--⎝⎭,其中x =2021. 21.如图,已知△ABC ≌△DEB ,点E 在AB 上,AC 与BD 交于点F ,AB =6,BC =3,∠C =55°,∠D =25°. (1)求AE 的长度; (2)求∠AED 的度数.22.如图,在ABC 中,C B ∠>∠,AD BC ⊥,AE 平分∠BAC .(1)计算:若30B ∠=︒,60C ∠=°,求∠DAE 的度数; (2)猜想:若50C B ∠-∠=︒,则DAE =∠______; (3)探究:请直接写出∠DAE ,∠C ,∠B 之间的数量关系.23.某服装店老板到厂家选购A 、B 两种品牌的夏季服装,每袋A 品牌服装进价比B 品牌服装每袋进价多25元,若用4000元购进A 种服装的数量是用1500元购进B 种服装数量的2倍.(1)求A 、B 两种品牌服装每套进价分别是多少元?(2)若A 品牌服装每套售价为150元,B 品牌服装每套售价为100元,服装店老板决定一次性购进两种服装共100套,两种服装全部售出后,要使总的获利不少于3500元,则最少购进A品牌服装多少套?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释2()++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式a ab b a b分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片(如图C),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223++a ab b23a ab b++,并利用你所画的图形面积对22进行因式分解.25.如图①,在等边△ABC中,点D、E分别是AB、AC上的点,BD=AE,BE与CD交于点O.(1)填空:∠BOC=度;(2)如图②,以CO为边作等边△OCF,AF与BO相等吗?并说明理由;(3)如图③,若点G是BC的中点,连接AO、GO,判断AO与GO有什么数量关系?并说明理由.26.如图1,在平面直角坐标系xOy中,直线AB与x轴交于点A、与y轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于y轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.【参考答案】一、选择题 2.C 解析:C【分析】根据轴对称图形的定义,逐项判断即可求解. 【详解】解∶第一个图形不是轴对称图形, 第二个图形是轴对称图形, 第三个图形是轴对称图形, 第四个图形是轴对称图形, ∴轴对称图形有3个. 故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3.C解析:C【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000038=53.810-⨯. 故选:C .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B解析:B【分析】4=m x 根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:xm =4, 两边平方可得, x 2m =16,∴2-m n x =x 2m ÷xn =16÷683=,故选:B .【点睛】题考查了同底数幂的除法,先利用了幂的乘方得出要求的形式,再利用同底数幂的除法得出答案.5.C解析:C【分析】根据分式有意义的条件:分母不等于0即可得出答案. 【详解】解:∴20x -≠, ∴2x ≠. 故选:C .【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件:分母不等于0是解题的关键.6.D解析:D【分析】根据因式分解的概念以及方法逐项判断即可.【详解】A 、22(1)2x x x x -+-+=没有变为整式的积的形式,故A 选项错误; B 、32()()(9933)x x x x x x x -=-=+-,故B 选项错误;C 、()222413a a a -+=-+没有变为整式的积的形式,故C 选项错误; D 、22222(1)2(1)(1)x x x x -=-=+-,故D 选项正确, 故选:D .【点睛】本题考查了因式分解的概念,把一个多项式在实数范围内化为几个整式的积,这种式子变形叫做多项式的因式分解,掌握因式分解的概念是解答本题的关键.7.A0c 时,等号右边的式子没有意义,选项错误,不符合题意;A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质.8.C解析:C【分析】根据全等三角形的判定定理,逐项判断即可求解. 【详解】解:∵AC BC =,CD =CD ,∴A 、可以利用边边边判定△ACD 与△BCD 全等,故本选项不符合题意;B、可以利用边角边判定△ACD与△BCD全等,故本选项不符合题意;C、不能判定△ACD与△BCD全等,故本选项符合题意;∠=∠,可以利用边角边判定△ACD与△BCD全D、因为点O是AB的中点,所以ACD BCD等,故本选项不符合题意;故选:C【点睛】本题主要考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理,等腰三角形的性质是解题的关键.9.C解题的关键.10.D边正方形面积,∴4×12ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、∵四个小图形面积和=大正方形面积,∴ab+ b2+ a2+ ab=(a+b)2,∴a2+ 2ab +b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.【点睛】本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公式是解题关键.11.B解析:B【分析】如图,通过观察,寻找未知与已知之间的联系.AO=1,则OC=2.证明△AOP≌△COD求解即可.【详解】解:∵△ABC和△ODP都是等边三角形,∴∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP,∴△ODC≌△POA(AAS),∴AP=OC,∴AP=OC=AC﹣AO=2.故选:B.【点睛】此题考查了等边三角形的性质和全等三角形的性质与判定,解决本题的关键是利用全等把所求的线段转移到已知的线段上.二、填空题12.2【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】解:∵分式242xx-+的值为零,∴24x-=0且x+2≠0,即24x-=0且x≠-2,解得:x=2.故答案为:2.【点睛】本题主要考查了分式的值为零的条件,正确掌握相关定义是解题关键. 13.-2【分析】根据关于y 轴对称的点的特点解答即可.【详解】∵点P 1(4,m n -)与P 2(3,2m -)关于y 轴对称, ∴n =-2,m -4=-3m 解得:n =-2,m =1 则mn =-2 故答案为:-2【点睛】此题主要考查了关于y 轴对称的点的特点;用到的知识点为:两点关于y 轴对称,横坐标互为相反数,纵坐标不变. 14.14-##-0.25【点睛】本题主要考查了分式的加减法,解题的关键是通分,得出4ab=,是解题关键. 【详解】a 法法则是解题的关键.16.12【分析】当点于重合时,的周长最小,根据垂直平分线的性质,即可求出的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称, ∴当点于重合时,即A 、D 、B 三点在一条直线上时,BF+CF解析:12【分析】当F 点于D 重合时,BCF ∆的周长最小,根据垂直平分线的性质,即可求出BCF ∆的周长.【详解】∵DE 垂直平分AC ,∴点C 与A 关于DE 对称,∴当F 点于D 重合时,即A 、D 、B 三点在一条直线上时,BF +CF=AB 最小,(如图), ∴BCF ∆的周长为:BCF C BD CD BC ∆,∵DE 是垂直平分线, ∴AD CD =, 又∵7AB cm =,∴7cm BD AD BD CD , ∴7512cm BCFC ∆,故答案为:12.【点睛】本题考查最短路径问题以及线段垂直平分线的性质:垂直平分线上的点到线段两端的距离相等,熟练掌握最短路径的求解方法以及垂直平分线的性质是解题的关键.17.±6【分析】利用完全平方公式的结构特征判断即可. 【详解】解:∵关于x 的二次三项式是完全平方式, ∴;,则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握解析:±6【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵关于x 的二次三项式29x kx ++是完全平方式, ∴()22693x x x ++=+;()22693x x x -+=-, 则常数k 的值为±6. 故答案为:±6.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.14【分析】根据即可求得其值.【详解】解:,故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键. 解析:14 【分析】根据222211x x x x ⎛⎫=+- ⎪⎝⎫ ⎝⎭⎛+⎪⎭即可求得其值. 【详解】解:14x x+=, 221x x ⎛⎫∴+ ⎪⎝⎭ 212x x ⎛⎫=+- ⎪⎝⎭ 242=-=14 故答案为:14.【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.19.1或或12【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE=CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在解析:1或72或12 【分析】由以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.可知CE =CD ,而CE ,CD 的表示由E ,D 的位置决定,故需要对E ,D 的位置分当E 在BC 上,D 在AC 上时或当E 在AC 上,D 在AC 上时,或当E 到达A ,D 在BC 上时,分别讨论.【详解】解:当E 在BC 上,D 在AC 上,即0<t ≤83时,CE =(8-3t )cm ,CD =(6-t )cm ,∵以点D 、M 、C 为顶点的三角形与以点E 、N 、C 为顶点的三角形全等.∴CD =CE ,∴8-3t =6-t ,∴t =1s ,当E 在AC 上,D 在AC 上,即83<t <143时,CE =(3t -8)cm ,CD =(6-t )cm ,∴3t -8=6-t ,∴t =72s , 当E 到达A ,D 在BC 上,即143≤t ≤14时,CE =6cm ,CD =(t -6)cm ,∴6=t -6,∴t =12s ,故答案为:1或72或12. 类,分别表示出每种情况下CD 和CE 的长.三、解答题20.(1)(2)(x ﹣y )(a+4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解: =;(2)a2(x ﹣y )+16(解析:(1)(2)(2)x y x y +-(2)(x ﹣y )(a +4)(a ﹣4)【分析】(1)直接利用公式法分解因式即可;(2)先提提取公因式,然后运用公式法分解因式即可.(1)解:224x y =(2)(2)x y x y +-;(2)a 2(x ﹣y )+16(y ﹣x )=a 2(x ﹣y )-16(x ﹣y )=(x ﹣y )(a 2﹣16)=(x ﹣y )(a +4)(a ﹣4).【点睛】题目主要考查利用提公因式法及公式法分解因式,熟练掌握因式分解的方法是解题关键.21.,【分析】先把括号里的通分,再相减,把除法转化为乘法、分解因式,然后约分,最后把x 的值代入化简后的代数式计算即可.【详解】解:当x =2021时,原式.【点睛】本题主要考查了22.(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得; (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,解析:(1)3AE =;(2)80AED ∠=︒.【分析】(1)先根据全等三角形的性质可得3BE BC ==,再根据线段的和差即可得; (2)先根据全等三角形的性质可得55DBE C ∠=∠=︒,再根据三角形的外角性质即可得.【详解】解:(1)∵,3ABC DEB BC ≅=,∴3BE BC ==,∵6AB =,∴633AE AB BE =-=-=;(2)∵ABC DEB ≅△△,∴55DBE C ∠=∠=︒,∵25D ∠=︒,∴552580AED DBE D ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.23.(1)(2)25°(3)【分析】(1)先根据三角形内角和定理可计算出∠BAC=180°-∠B-∠C=60°,再利用角平分线定义得∠CAE=∠BAC=30°,接着由AD ⊥BC 得∠ADC=9殊到一般,(3)中的结论为一般性结论. 24.(1)A 品牌服装每套进价是100元,B 品牌服装每套进价是75元(2)最少购进A 品牌服装40套【分析】(1)设A 品牌服装每套x 元,则B 品牌服装每袋进价为(x ﹣25)元,由题意:用4000元购进准等量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式. 25.(1);(2)【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式解析:(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++【详解】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+(2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++26.(1)120;(2)相等,理由见解析;(3)AO=2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF=BO ,证明△FCA ≌△OCB (SAS ),可得结 解析:(1)120;(2)相等,理由见解析;(3)AO =2OG .理由见解析【分析】(1)证明△EAB ≌△DBC (SAS ),可得结论.(2)结论:AF =BO ,证明△FCA ≌△OCB (SAS ),可得结论.(3)证明△AFO ≌△OBR (SAS ),推出OA =OR ,可得结论.【详解】解:(1)如图①中,∵△ABC 是等边三角形,∴AB =BC ,∠A =∠CBD =60°,在△EAB 和△DBC 中,AE BD A CBD AB BC =⎧⎪∠=∠⎨⎪=⎩, ∴△EAB ≌△DBC (SAS ),∴∠ABE =∠BCD ,∴∠BOD =∠BCD +∠CBE =∠ABE +∠CBE =∠CBA =60°,∴∠BOC =180°-60°=120°.故答案为:120.(2)相等.理由:如图②中,∵△FCO ,△ACB 都是等边三角形,∴CF =CO ,CA =CB ,∠FCO =∠ACB =60°,∴∠FCA =∠OCB ,在△FCA 和△OCB 中,CF CO FCA OCB CA CB =⎧⎪∠=∠⎨⎪=⎩, ∴△FCA ≌△OCB (SAS ),∴AF =BO .(3)如图③中,结论:AO =2OG .理由:延长OG 到R ,使得GR =GO ,连接CR ,BR .在△CGO 和△BGR 中,GC GB CGO BGR GO GR =⎧⎪∠=∠⎨⎪=⎩, ∴△CGO ≌△BGR (SAS ),∴CO =BR =OF ,∠GCO =∠GBR ,AF =BO ,∴CO ∥BR ,∵△FCA ≌△OCB ,∴∠AFC =∠BOC =120°,∵∠CFO =∠COF =60°,∴∠AFO =∠COF =60°,∴AF ∥CO ,∴AF ∥BR ,∴∠AFO =∠RBO ,在△AFO 和△OBR 中,AF OB AFO RBO FO BR =⎧⎪∠=∠⎨⎪=⎩, ∴△AFO ≌△OBR (SAS ),∴OA =OR ,∵OR =2OG ,∴OA =2OG .【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C 的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H ,证△DEF ≌△BDO ,得出EF =OD =AF ,有EAF OAH OAB 45∠∠∠===︒,得出∠BAE =90°.(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离.再由OAE 30∠=︒,在直角三角形AO N '中,OM ON O N +='即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6∴1126362ABC S =⨯⨯= (2)过E 作EF ⊥x 轴于点F ,延长EA 交y 轴于点H,∵△BDE 是等腰直角三角形,∴DE=DB, ∠BDE=90°,∴EDF BDO 90∠∠+=︒∵BOD 90∠=︒∴BDO DBO 90∠∠+=︒∴EDF DBO ∠∠=∵EF x ⊥轴,∴DEF BDO ≅∴DF=BO=AO,EF=OD∴AF=EF∴EAF OAH OAB 45∠∠∠===︒∴∠BAE =90°(3)由已知条件可在线段OA 上任取一点N,再在AE 作关于OF 的对称点N ',当点N 运动时,´ON 最短为点O 到直线AE 的距离,即点O 到直线AE 的垂线段的长,∵OAE 30∠=︒,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.。

(第1—2章)第一次阶段性综合练习题 2024-2025学年北师大版八年级数学上册

(第1—2章)第一次阶段性综合练习题   2024-2025学年北师大版八年级数学上册

2024-2025学年北师大版八年级数学上册(第1—2章)第一次阶段性综合练习题(附答案)一、选择题(共30分)1.下列各数:,﹣,,,0.3030030003,无理数有()A.2个B.3个C.4个D.5个2.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c23.下列说法不正确的是()A.±0.3是0.09的平方根,即±=±0.3B.的平方根是±8C.正数的两个平方根的积为负数D.存在立方根和平方根相等的数4.下列各式计算正确的是()A.+=B.4﹣3=1C.2×2=4D.÷=35.下列二次根式中,化简后能与合并的是()A.B.C.D.6.若△ABC的三边a、b、c满足(﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为()A.2.5B.C.D.﹣18.若一个正数的两个平方根为a+1和2a﹣7,则这个正数是()A.6B.7C.8D.99.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14B.14或4C.8D.4或810.如图是一个长、宽、高分别为4cm,3cm,5cm的长方体,一只蚂蚁从顶点A出发,沿长方体的表面爬行至点B,爬行的最短路程是()cm.A.5B.C.4D.12二、填空题(共15分)11.比较大小:0.5.12.计算:|=.13.已知x、y都是实数,且y=+4,则y x=.14.如图,矩形纸片ABCD中,AB=18cm.把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=13cm,则AD的长为cm.15.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于.三、解答题(75分)16.已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c 的算术平方根.17.计算下列各题:(1)+﹣;(2)+|;(3)﹣﹣(+(4).18.实数a、b、c在数轴上的对应点位置如图所示,化简:+|a﹣b|+﹣|b﹣c|19.如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.20.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为600米,与公路上另一停靠站B的距离为800米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.21.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.22.阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+)(2﹣)=1,(+)(﹣)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:,.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4﹣的有理化因式可以是,分母有理化得.(2)计算:①已知x =,y =,求x 2+y 2的值;②+++...+20222021123.如图1,Rt △ABC 中,AC ⊥CB ,AC =15,AB =25,点D 为斜边上动点.(1)如图2,过点D 作DE ⊥AB 交CB 于点E ,连接AE ,当AE 平分∠CAB 时,求CE ;(2)如图3,在点D 的运动过程中,连接CD ,若△ACD 为等腰三角形,求AD .参考答案一、选择题(共30分)1.解:0.3030030003,是分数,属于有理数;=7,是整数,属于有理数;无理数有:,﹣,共2个.故选:A.2.解:A、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形.D、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;故选:B.3.解:A、∵(±0.3)2=0.09,±0.3是0.09的平方根,故本选项正确;B、∵=8,∴的平方根为±2,故本选项错误;C、正数的平方根有两个,互为相反数,其积为负数,故本选项正确;D、0的立方根和平方根相等,故本选项正确.故选:B.4.解:A、与Z不是同类二次根式,不能合并成一项,故本选项计算错误,不符合题意;B、4﹣3=,故本选项计算错误,不符合题意;C、2×2=12,故本选项计算错误,不符合题意;D、÷==3,故本选项计算正确,符合题意;故选:D.5.解:A、=,能与合并,故本选项正确;B、不能与合并,故本选项错误;C、=2,不能与合并,故本选项错误;D、=,不能与合并,故本选项错误.故选:A.6.解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.7.解:∵四边形ABCD是矩形,∴∠ABC=90°,∵AB=3,AD=BC=1,∴AC===,∵AM=AC=,OA=1,∴OM=﹣1,∴点M表示点数为﹣1.故选:D.8.解:根据题意得:a+1+2a﹣7=0,解得:a=2,则这个正数是(2+1)2=9.故选:D.9.解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选:B.10.解:因为平面展开图不唯一,故分情况分别计算,进行大小比较,再从各个路线中确定最短的路线.(1)展开前面、右面得到长方形的两边为5+4=9cm和3cm,由勾股定理得AB2=(5+4)2+32=90(cm);(2)展开前面、上面得到长方形的两边为4+3=7cm和5cm,由勾股定理得AB2=(3+4)2+52=74(cm);(3)展开左面、上面得到长方形的两边为5+3=8cm和4cm,由勾股定理得AB2=(3+5)2+42=80(cm);所以最短路径长为cm,故选:B.二、填空题(共15分)11.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.12.解:|=2+1﹣=+1,故答案为:+1.13.解:∵y=+4,∴,解得x=3,∴y=4,∴y x=43=64.故答案为:64.14.解:由折叠得:∠EAC=∠BAC,AE=AB=1cm8,∵四边形ABCD为长方形,∴DC∥AB,∴∠DCA=∠BAC,∴∠EAC=∠DCA,∴FC=AF=13cm,∵AB=18cm,AF=13cm,∴EF=18﹣13=5(cm),∵∠E=∠B=90°,∴EC==12(cm),∵AD=BC=EC,∴AD=12cm,故答案为:12.15.解:连接AD,∵△ABC中,AB=AC=13,BC=10,D为BC中点,∴AD⊥BC,BD=BC=5,∴AD==12,又∵DE⊥AB,∴BD•AD=AB•ED,∴ED=,故答案为:三、解答题(75分)16.解:根据题意,可得2a﹣1=9,3a+b﹣9=8;故a=5,b=2;又有7<<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.17.解:(1)+﹣=2=5;(2)+|=3﹣2+﹣1=;(3)﹣﹣(+=3﹣2﹣(3﹣2)=3﹣2+1﹣1=3﹣2;(4)=2+3+2=5+.18.解:原式=|﹣c|+|a﹣b|+a+b﹣|b﹣c|,=c+(﹣a+b)+a+b﹣(﹣b+c=c﹣a+b+a+b+b﹣c,=3b.19.解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.20.解:公路AB不需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,∴∠ACB=90°,因为BC=800米,AC=600米,所以,根据勾股定理有AB==1000(米).=AB•CD=BC•AC因为S△ABC所以CD===480(米).由于400米<480米,故没有危险,因此AB段公路不需要暂时封锁.21.解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC2=BD2+CD2,∴∠BDC=90°,=S△ABD+S△DCB=×2×2+×4×4=4+8.∴S四边形ABCD22.解:(1)4﹣的有理化因式可以是4+,,故答案为:4+,;(2)①当x==,y==时,x2+y2=(x+y)2﹣2xy=(2++2﹣)2﹣2×(2+)×(2﹣)=16﹣2×1=14.②+++...+202220211=﹣1+﹣+﹣+…+2022﹣2021=2022﹣123.解:(1)∵AC ⊥CB ,AC =15,AB =25∴BC =20,∵AE 平分∠CAB ,∴∠EAC =∠EAD ,∵AC ⊥CB ,DE ⊥AB ,∴∠EDA =∠ECA =90°,∵AE =AE ,∴△ACE ≌△ADE (AAS ),∴CE =DE ,AC =AD =15,设CE =x ,则BE =20﹣x ,BD =25﹣15=10在Rt △BED 中∴x 2+102=(20﹣x )2,∴x =7.5,∴CE =7.5.(2)①当AD =AC 时,△ACD 为等腰三角形∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5,③当CD=AC时,△ACD为等腰三角形,如图1中,作CH⊥BA于点H,则•AB•CH=•AC•BC,∵AC=15,BC=20,AB=25,∴CH=12,在Rt△ACH中,AH==9,∵CD=AC,CH⊥BA,∴DH=HA=9,∴AD=18.。

八年级上册数学答案

八年级上册数学答案

八年级上册数学答案第一章有理数1. 有理数综合练习题答案:(1)-19 (2) 0 (3) 6 (4) -7/3 (5) 26/7 (6) -8/9 (7) 73/49 (8) 2.52. 有理数的加减乘除练习题答案:(1)-5 (2) -1/8 (3) -14/5 (4) 7/15 (5) 1/60 (6) 1 (7) 3/7 (8) -3/43. 有理数的加法乘法公式练习题答案:(1)-54 (2) 29 (3) -119/16 (4) 61/56 (5) -58/7 (6)19/20 (7) 17/10 (8) 14/33第二章整数的加减1. 整数加减法运算练习题答案:(1)-2 (2) 15 (3) -13 (4) 32 (5) -15 (6) 45 (7) 19 (8) -572. 整数运算综合练习题答案:(1)15 (2) -7 (3) 53 (4) -16 (5) -10 (6) 17 (7) 26 (8) -953. 空间坐标系练习题答案:(1)F(-1,-3) (2) E(-4,6) (3) C(-5,-2) (4) B(-1,4) (5) D(3,-1) (6) A(4,5)第三章分数1. 分数的加减法练习题答案:(1)17/18 (2) -11/12 (3) -5/6 (4) -1/3 (5) 19/30 (6) -7/30 (7) 8/15 (8) -7/122. 分数的加减乘除混合运算练习题答案:(1)9/4 (2) 3/8 (3) 6 (4) -7/8 (5) 5/6 (6) -21/4 (7)23/12 (8) -7/153. 分式方程练习题答案:(1)x = -1/2 (2) x = 1 (3) x = -3 (4) y = 2 (5) x = -5 (6) x = -2/5第四章初识代数1. 代数式计算练习题答案:(1)14 (2) -8 (3) -7 (4) 13 (5) -5 (6) 3 (7) -12 (8) 182. 字母代数式计算练习题答案:(1)14 (2) -5 (3) 11 (4) 12 (5) -19 (6) -21 (7) 19 (8) 26 3. 群法律练习题答案:(1)3 (2) -10 (3) -66 (4) 35 (5) -20 (6) -4 (7) 18 (8) -34第五章方程与不等式1. 解一元一次方程练习题答案:(1)x = 2 (2) x = -3 (3) x = 6 (4) x = -8 (5) x = 1 (6) x = -7 (7) x = 4 (8) x = -132. 解一元一次方程混合运算练习题答案:(1)x = -5 (2) x = 2 (3) x = 7 (4) x = -3 (5) x = 3 (6) x = 1/5 (7) x = -1 (8) x = -9/53. 一元一次不等式求解练习题答案:(1)x ≤ 4 (2) x ≥ -3 (3) x > -2 (4) x < 3 (5) x < -2 (6) x > 1 (7) x ≥ 5 (8) x < -1/2以上是八年级上册数学答案的内容,希望对你有所帮助!。

第12章 全等三角形 人教版八年级上册数学 综合练习3份(含答案)

第12章 全等三角形 人教版八年级上册数学 综合练习3份(含答案)

第十二章全等三角形综合练习(一)一.选择题1.下列条件中,一定能确定两个等腰三角形全等的是()A.有一腰和底边对应相等的两个等腰三角形B.有一腰和一角相等的两个等腰三角形C.有一角和底边相等的两个等腰三角形D.顶角对应相等的两个等腰三角形2.如图,添加条件不能判断△ACD≌△ABE的是()A.∠AEB=∠ADC,CD=BE B.AC=AB,AD=AEC.AC=AB,∠C=∠B D.∠AEB=∠ADC,∠C=∠B3.如图,将两根钢条AB、CD的中点O连在一起,使AB、CD可以绕点O自由转动,就做成一个测量工件,则AC的长等于内槽宽BD,则判定△OBD≌△OAC的理由是()A.边边边B.角边角C.边角边D.角角边4.如图,△ABC外角∠CBD,∠BCE的平分线BF、CF相交于点F,则下列结论成立的是()A.AF平分BC B.AF⊥BC C.AF平分∠BAC D.AF平分∠BFC 5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.不能唯一确定6.如图,已知△ABC的三条边和三个角六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是()A.只有乙B.只有丙C.甲和乙D.乙和丙7.如图,已知△ABE≌△ACD,下列不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,AB⊥BD,ED⊥BD于D,AB=CD,AC=CE,下列结论:(1)BC=DE;(2)AC⊥CE;(3)∠CAE=45°,其中正确的有()A.0个B.1个C.2个D.3个9.如图,已知△ABC≌△DEF,且AB=5,BC=6,AC=7,则DF的长为()A.5 B.6 C.7 D.不能确定10.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.①②B.①③C.②③D.①②③二.填空题11.如图,△ABC≌△DEF,∠A=80°,∠ABC=60°,则∠F=度.12.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,=.则S四边形ABCD13.已知:如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为.14.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(1,1)的点共有个.15.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.三.解答题16.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列四个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的四个条件(请从其中选择一个):①AB=ED;②∠A=∠D=90°;③∠ACB=∠DFE;④∠A=∠D.17.已知:在△ABD和△ACE中,AD=AB,AC=AE.(1)如图1,若∠DAB=∠CAE=60°,求证:BE=DC;(2)如图2,若∠DAB=∠CAE=n°,求∠DOB的度数.18.如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.19.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)20.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F(1)如图1,若∠ACD=60゜,则∠AFB=;(2)如图2,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.参考答案一.选择题1.解:A、有一腰和底边对应相等的两个等腰三角形,即三边对应相等,也可以判断其全等,正确;B、角与一腰,对应相等,另一腰也相等,两边与一角,不一定证全等,错误;C、底边固定,角为顶角不可证明其全等,错误;D、顶角对应相等,不可证全等,错误;故选:A.2.解:A、根据AAS可判定△ACD≌△ABE,故本选项错误;B、根据SAS可判定△ACD≌△ABE,故本选项错误;C、根据ASA可判定△ACD≌△ABE,故本选项错误;D、判定两个三角形全等时,必须有边的参与,所以添加条件∠AEB=∠ADC,∠C=∠B后,仍然不能判断△ACD≌△ABE,故本选项正确;故选:D.3.解:∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OD=OC,∵∠AOC=∠DOB,∴△OBD≌△OAC′.所以BD的长等于内槽宽AC,用的是SAS的判定定理.故选:C.4.解:作FP⊥AE于P,FG⊥BC于G,FH⊥AD于H,∵CF是∠BCE的平分线,∴FP=FG,∵BF是∠CBD的平分线,∴FH=FG,∴FP=FH,又FP⊥AE,FH⊥AD,∴AF平分∠BAC,故选:C.5.解:设△ABC中,∠A=30°,①若a=2b,则∠B<∠A(大边对大角),∴∠C=180°﹣∠A﹣∠B>180°﹣2∠A=120°,即∠C为钝角,∴△ABC是钝角三角形.②若b=2c,a2=b2+c2﹣2bc cos A=5c2﹣2c2,=5﹣2>1,可得a>c,∴∠C<∠A(大边对大角),∴∠B=180°﹣∠A﹣∠C>180°﹣2∠A=120°,即∠B为钝角,∴△ABC是钝角三角形;③c=2a,在直角三角形中30°所对的边为斜边的一半,可得∠C=90°,即△ABC是直角三角形.综上可得△ABC可为直角三角形、钝角三角形,不能为锐角三角形.故选:D.6.解:甲三角形只知道一条边长、一个内角度数无法判断是否与△ABC全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC全等;丙三角形72°内角及所对边与△ABC对应相等且均有50°内角,可根据AAS判定乙与△ABC全等;则与△ABC全等的有乙和丙,故选:D.7.解:∵△ABE≌△ACD,∴AB=AC,A不合题意;∴∠BAD=∠CAE,∴∠BAE=∠CAD,B不合题意;∴BD=EC,∴BE=CD,C不合题意;∴AD=AE,∴AD=DE不正确,D符合题意;故选:D.8.证明:∵AB⊥BD,ED⊥BD,∴∠B=∠D=90°,在RT△ABC和RT△CDE中,,∴△ABC≌△CDE,∴BC=DE故(1)正确,∠ACB=∠CED,AC=CE,∵∠CED+∠ECD=90°∴∠ACB+∠ECD=90°,∴∠ACE=90°即AC⊥CE故(2)正确,∵CA=CE,∴∠CAE=∠CEA=45°故(3)正确,故选:D.9.解:∵△ABC≌△DEF,∴DF=AC=7,故选:C.10.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD =∠COD =90°,AO =OC ,∴AC ⊥DB ,故①②正确.故选:D .二.填空题(共5小题)11.解:∵△ABC ≌△DEF ,∠A =80°,∠ABC =60°, ∴∠D =∠A =80°,∠DEF =∠ABC =60°,∵∠F +∠D +∠DEF =180°,∴∠F =40°,故答案为:40.12.解:过A 点作AF ⊥CD 交CD 的延长线于F 点,如图, ∵AE ⊥BC ,AF ⊥CF ,∴∠AEC =∠CFA =90°,而∠C =90°,∴四边形AECF 为矩形,∴∠2+∠3=90°,又∵∠BAD =90°,∴∠1=∠2,在△ABE 和△ADF 中∴△ABE ≌△ADF ,∴AE =AF =5,S △ABE =S △ADF ,∴四边形AECF 是边长为5的正方形,∴S 四边形ABCD =S 正方形AECF =52=25.故答案为25.13.解:∵∠1=∠2,∴∠BAC=∠DAE,又∵AC=AE,AB=AD,∴△ABC≌△ADE,∴∠B=∠D=25°.故答案为25°.14.解:到l1的距离是1的点,在与l1平行且与l1的距离是1的两条直线上;到l2的距离是1的点,在与l2平行且与l2的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(1,1)的点共有4个.故答案为:4.15.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.三.解答题(共5小题)16.解:不能;选择条件①AE=BE.∵FB=CE,∴FB+FC=CE+FC,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠B=∠E,∴AB∥ED.17.证明:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE,∴DC=BE,(2)同理得:△ADC≌△ABE,∴∠ADC=∠ABE,又∵∠DOB=180°﹣∠ODB﹣∠OBD,=180°﹣∠ODB﹣∠ABD﹣∠ABE,∴∠DOB=180°﹣∠ODB﹣∠ABD﹣∠ADC,=180°﹣∠ADB﹣∠ABD,∴∠DOB=∠DAB=n°.18.(1)证明:由BD=CD,再延长AD至E,使DE=AD,∵D为BC的中点,∴DB=CD,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BE=AC,在△ABE中,∵AB+BE>AE,∴AB+AC>2AD;(2)∵AB=5,AC=3,∴5﹣3<2AD<5+3,∴1<AD<4.19.解:(1)△ACB≌△ADB,理由如下:如图1,∵在△ACB与△ADB中,,∴△ACB≌△ADB(SSS);(2)如图2,∵由(1)知,△ACB≌△ADB,则∠CAE=∠DAE.∴在△CAE与△DAE中,,∴△CAE≌△DAE(SAS),∴CE=DE;(3)如图3,PC=PD.理由同(2),△APC≌△APD(SAS),则PC=PD.20.解:(1)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE =∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°﹣60°=120°,故答案为:120°.(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE =∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°﹣∠ACD=180°﹣α,故答案为:180°﹣α(3)∠AFB=180﹣α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°﹣∠ECB=180°﹣α,即∠AFB=180°﹣α第十二章全等三角形综合练习(二)一.选择题1.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 2.如图,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=EC,∠A=∠D3.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A.SSS B.SAS C.ASA D.AAS4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确5.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB6.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件①∠ADB=∠ADC,②∠B =∠C,③DB=DC,④AB=AC中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE8.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个9.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°10.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD交BE于点F,若BF=AC,则∠ABC 等于()A.45°B.48°C.50°D.60°二.填空题11.已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F=.12.如图所示,一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动;将△MNK 的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.猜想此时重叠部分四边形CEMF的面积为;简述证明主要思路.13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.14.在平面直角坐标系中,点A(x,y)的坐标满足方程3x﹣y=4,(1)当点A到两条坐标轴的距离相等时,点A的坐标为.(2)当点A在x轴上方时,点A的横坐标x满足条件.15.如图1,已知AB=AC,D为∠BAC的平分线上面﹣点.连接BD,CD;全等三角形的对数是.如图2.已知AB=AC,D,E为∠BAC的平分线上面两点.连接BD,CD,BE,CE;全等三角形的对数是.如图3.已知AB=AC,D,E,F为∠BAC的平分线上面三点,连接BD,CD,BE,CE,BF,CF;全等三角形的对数是.…依此规律,第n个图形中有全等三角形的对数是.三.解答题16.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.17.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB=CD.(1)△ABF与△CDE全等吗?为什么?(2)求证:EG=FG.18.“综合与实践”学习活动准备制作一组三角形记这些三角形的三边分别为a,b,c,用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,4,4)表示边长分别为2,4,4个单位长度的一个三角形(1)若这些三角形三边的长度为大于0且小于3的整数个单位长度,请用记号写出所有满足条件的三角形;(2)如图,AD是△ABC的中线,线段AB,AC的长度分别为2个,6个单位长度,且线段AD的长度为整数个单位长度,过点C作CE∥AB交AD的延长线于点E①求AD的长度;②请直接用记号表示△ACE.19.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.20.如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.(1)当∠BDA=128°时,∠EDC=,∠AED=;(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.参考答案一.选择题1.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.2.解:A、添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B、添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B选项正确;C、添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C选项正确;D、添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D选项错误.故选:D.3.解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.4.解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.5.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.6.解:∵∠1=∠2,AD公共,①如添加∠ADB=∠ADC,利用ASA即可证明△ABD≌△ACD;②如添加∠B=∠C,利用AAS即可证明△ABD≌△ACD;③如添加DB=DC,因为SSA,不能证明△ABD≌△ACD,所以此选项不能作为添加的条件;④如添加AB=AC,利用SAS即可证明△ABD≌△ACD;故选:C.7.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.8.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.9.解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.10.解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠BEC=90°,∴∠FBD=∠CAD,在△FDB和△CAD中,,∴△FDB≌△CDA,∴DA=DB,∴∠ABC=∠BAD=45°,故选:A.二.填空题(共5小题)11.解:∵∠A=50°,∠B=60°,又∵∠A+∠B+C=180°,∴∠C=70°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=70°.故答案为:70°.12.解:重叠部分四边形CEMF的面积为a2.证明如下:连CM,如图,∵点M为等腰直角△ABC的斜边AB的中点,∴CM=MB=MA,∴∠A=∠ACM=∠MCB=45°,∠CMA=90°,又∵△MNK为直角三角形,∴∠EMF=90°,∴∠AMF=∠EMC=90°﹣∠CMF,在△AFM和△CEM中,∴△AFM≌△CEM,∴S△AFM=S△CEM,∴重叠部分四边形CEMF的面积=S△ACM=S△ACB=××a×a=a2.故答案为:a2.13.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.14.解:(1)∵点A(x,y)的坐标满足方程3x﹣y=4,点A到两条坐标轴的距离相等,∴x=±y,∴3y﹣y=4或﹣3y﹣y=4,解得:y=2或y=﹣1,∴点A的坐标为(2,2)或(1,﹣1),故答案为:(2,2)或(1,﹣1);(2)∵3x﹣y=4,∴y=3x﹣4,∵点A在x轴上方,∴y>0,即3x﹣4>0,∴x>,故答案为:x>.15.解:如图1中,∵AD是∠BAC的平分线,∴∠BAD=∠CAD.在△ABD与△ACD中,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,在△BDE和△CDE中,∴△BDE≌△CDE(SSS),∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是.故答案为:1,3,6,.三.解答题(共5小题)16.解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°.17.(1)解:△ABF与△CDE全等,理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL);(2)证明:∵Rt△ABF≌Rt△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.18.解:(1)由三角形的三边关系得:所有满足条件的三角形为(1,1,1),(1,2,2),(2,2,2);(2)①∵CE∥AB,∴∠ABD=∠ECD,∠BAD=∠CED,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(AAS),∴AD=ED,AB=CE=2,∴AE=2AD,在△ACE中,AC﹣CE<AE<AC+CE,∴6﹣2<2AD<6+2,∴2<AD<4,∵线段AD的长度为整数个单位长度,∴AD=3;②AE=2AD=6,用记号表示△ACE为(2,6,6).19.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.20.解:(1)∵AB=AC,∴∠C=∠B=36°,∵∠ADE=36°,∠BDA=128°,∵∠EDC=180°﹣∠ADB﹣∠ADE=16°,∴∠AED=∠EDC+∠C=16°+36°=52°,故答案为:16°;52°;(2)当DC=2时,△ABD≌△DCE,理由:∵AB=2,DC=2,∴AB=DC,∵∠C=36°,∴∠DEC+∠EDC=144°,∵∠ADE=36°,∴∠ADB+∠EDC=144°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形,①当DA=DE时,∠DAE=∠DEA=72°,∴∠BDA=∠DAE+∠C=72°+36°=108°;②当AD=AE时,∠AED=∠ADE=36°,∴∠DAE=108°,此时,点D与点B重合,不合题意;③当EA=ED时,∠EAD=∠ADE=36°,∴∠BDA=∠EAD+∠C=36°+36°=72°;综上所述,当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.第十二章全等三角形综合练习(三)一.选择题1.OP是∠AOB的平分线,则下列说法正确的是()A.射线OP上的点与OA,OB上任意一点的距离相等B.射线OP上的点与边OA,OB的距离相等C.射线OP上的点与OA各点的距离相等D.射线OP上的点与OB上各的距离相等2.如图,E、B、F、C四点在一条直线上,ED=AB,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.ED∥AB B.EB=FC C.DF=AC D.∠DFE=∠C 3.有两个三角形,下列条件能判定两个三角形全等的是()A.有两条边对应相等B.有两边及一角对应相等C.有三角对应相等D.有两边及其夹角对应相等4.某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去,这样做根据的三角形全等判定方法为()A.S.A.S.B.A.S.A.C.A.A.S.D.S.S.S.5.如图给出了四组三角形,其中全等的三角形有()组.A.1 B.2 C.3 D.46.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=28,DE=4,AC=△ABC6,则AB的长是()A.8 B.10 C.12 D.不能确定7.两个等腰三角形,若顶角和底边对应相等,则两个等腰三角形全等,其理由是()A.SAS B.SSS C.ASA D.ASA或AAS 8.如图,在△ABC中,∠C=90°,AD平分∠CAB,已知CD=3,BD=5,则下列结论中错误的是()A.AC=6 B.AD=7 C.BC=8 D.AB=109.如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有()处.A.1 B.2 C.3 D.410.如图,已知EC=BF,∠A=∠D,现从下列6个条件:①AC=DF;②∠B=∠E;③∠ACB=∠DFE;④AB∥ED;⑤AB=ED;⑥DF∥AC;从中选取一个条件,以保证△ABC≌△DEF,则可选择的是()A.②③④⑥B.③④⑤⑥C.①③④⑥D.①②③④二.填空题11.如图,已知∠1=∠2,AC=AD,如果要使△ABC≌△AED,请你添加一个条件.(只添加一个条件)12.如图,在△ABC中,∠B=∠C=70°,BE=DC,BD=CF,则∠EDF的度数为.13.一个加油站点M恰好在两条公路m、n的夹角平分线上,若MN⊥m于N,MN=50m,则点M到公路n的距离是.14.如图,如果要测量池塘两端A、B间的距离,可先在地上取一个可以直接到达A、B两点的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB;连接DE,可得△ABC≌△DEC,依据的基本事实是,那么AB=.15.已知,如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD垂直BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10cm,BC=8cm,CA=6cm,则OF=.三.解答题16.如图,在四边形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.(1)求∠ADC的度数;(2)若AB=10cm,CD=12cm,求四边形ABCD的面积.17.如图,AB⊥AD,AE⊥AC,∠E=∠C,DE=BC.求证:AD=AB.18.在数学实践课上,老师在黑板上画出如图的图形,(其中点B,F,C,E在同一条直线上).并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.①请你写出所有的真命题;②选一个给予证明.你选择的题设:;结论:.(均填写序号)19.如图1,我们定义:在四边形ABCD中,若AD=BC,且∠ADB+∠BCA=180°,则把四边形ABCD叫做互补等对边四边形.(1)如图2,在等腰△ABE中,AE=BE,四边形ABCD是互补等对边四边形,求证:∠ABD=∠BAC=∠AEB.(2)如图3,在非等腰△ABE中,若四边形ABCD仍是互补等对边四边形,试问∠ABD =∠BAC=∠AEB是否仍然成立?若成立,请加以证明;若不成立,请说明理由.20.如图(1),在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A (n,m),且(m﹣4)2+n2﹣8n=﹣16,过C点作∠ECF分别交线段AB、OB于E、F两点.(1)求A点的坐标;(2)若OF+BE=AB,求证:CF=CE;(3)如图(2),若∠ECF=45°,给出两个结论:OF+AE﹣EF的值不变;OF+AE+EF 的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.参考答案一.选择题1.解:OP是∠AOB的平分线,射线OP上的点与OA,OB上任意一点的距离不一定相等,A错误;射线OP上的点与边OA,OB的距离相等,B正确;射线OP上的点与OA各点的距离不一定相等,C错误;射线OP上的点与OA上各点的距离不一定相等,D错误,故选:B.2.解:A、添加ED∥AB可得∠E=∠ABC,可利用ASA判定△ABC≌△DEF,故此选项不合题意;B、由EB=FC可得EF=BC,不能判定△ABC≌△DEF,故此选项符合题意;C、添加DF=AC可利用SAS判定△ABC≌△DEF,故此选项不合题意;D、添加∠DFE=∠C可利用AAS判定△ABC≌△DEF,故此选项不合题意;故选:B.3.解:∵三角形全等的判定方法有:SSS、SAS、ASA、AAS;A、B、C不能满足某一个判定方法,∴A、B、C不能判定两个三角形全等;D能判定两个三角形全等;∵D满足三角形全等的判定方法SAS,∴D能判定.故选:D.4.解:第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:B.5.解:图1可以利用AAS证明全等,图2可以利用SAS证明全等,图3可以利用SAS证明全等,图4可以利用ASA证明全等.故选:D.6.解:如图:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DE=4,∴DF=DE=4,=28,∵S△ABC∴AB×DE+AC×DF=28,∴×AB×4+6×4=28,∴AB=8,故选:A.7.解:一个等腰三角形,若顶角对应相等,则它们的两个底角也相等,所以根据AAS或者ASA都可以判定这两个三角形全等.故选:D.8.解:∵CD=3,BD=5,∴BC=CD+BD=3+5=8,故C正确;过点D作DE⊥AB于点E,∵AD平分∠CAB,∴CD=DE=3.在Rt△BDE中,∵BD=5,DE=3,∴BE===4.∵∠B=∠B,∠DEB=∠C,∴△BED∽△BCA,∴==,即==,解得AB=10,AC=6,故A,D正确;在Rt△ACD中,∵AC=6,CD=3,∴AD===3,故B错误.故选:B.9.解:∵有三条公路相交如图,现计划修建一个油库,要求到三条公路的距离相等,∴在角平分线的交点处.如图.故选:D.10.解:∵EC=BF,∴BC=EF;∵∠A=∠D,∠B=∠E,∴△ABC≌△DEF(AAS),故②可以;∵∠ACB=∠DFE,∴△ABC≌△DEF,故③可以;∵AB∥ED,∴∠B=∠E,∴△ABC≌△DEF,故④可以;∵DF∥AC,∴∠BCA=∠DFE,∴△ABC≌△DEF,故⑥可以;而①⑤是利用AAS,则不可以.故选:A.二.填空题(共5小题)11.解:∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE,而AC=AD,∴当AB=AE时,在△ABC和△AED中,∴△ABC≌△AED(SAS).故答案为:AB=AE.(答案不唯一)12.解:∵AB=AC,∴∠B=∠C,在△BDE和△CFD中,,∴△BDE≌△CFD(SAS);∴∠BED=∠CDF,∴∠BDE+∠CDF=∠BDE+∠BED=180°﹣∠B=110°,∴∠EDF=180°﹣110°=70°.故答案为70°13.解:因为加油站恰好位于两条公路m,n所夹角的平分线上,所以加油站到公路m和公路n的距离是相等的,即为50m,故答案为:50m14.解:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE,故答案为SAS,DE.15.解:连接OA、OB、OC,如图,∵点O为△ABC的三条角平分线的交点,OD垂直BC,OE⊥AC,OF⊥AB,∴OD=OE=OF,设OF =x ,则OD =OE =x ,∵S △AOC +S △BOC +S △AOB =S △ACB , ∴•x •6+•x •8+•x •10=•6•8,解得x =2, 即OF 的长为2cm .故答案为2cm .三.解答题(共5小题)16.解:(1)作CE ⊥AB 交AB 于点E ,则∠AEC =90°, ∵AC =BC ,∴CE 是AB 的垂直平分线,∴AE =BE =AB ,∵AB =2AD ,∴AE =AD =AB ,∵∠AC 平分∠BAD ,∴∠EAC =∠DAC ,在△ADC 和△AEC 中,,∴△ADC ≌△AEC ,∴∠ADC =∠AEC =90°;(2)∵CE 是AB 的垂直平分线,∴S △ACD =S △AEC ,∵AB =2AD ,CD =CE ,∴S △ACB =2S △ADC ,∴四边形ABCD 的面积=3S △ADC =3××5×12=90cm 2.17.证明:∵AB⊥AD,AE⊥AC,∴∠EAC=∠DAB=90°,即∠EAD+∠DAC=∠CAB+∠DAC.∴∠EAD=∠CAB,在△ADE和△ABC中,,∴△ADE≌△ABC(AAS),∴AD=AB.18.解:①情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:①.②选择的题设:①③④;结论:②;理由:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;故答案为:①③④;②.19.解:(1)∵AE=BE,∴∠EAB=∠EBA,∵四边形ABCD是互补等对边四边形,∴AD=BC,在△ABD和△BAC中,,∴△ABD≌△BAC(SAS),∴∠ADB=∠BCA,又∵∠ADB+∠BCA=180°,∴∠ADB=∠BCA=90°,在△ABE中,∵∠EAB=∠EBA==90°﹣∠AEB,∴∠ABD=90°﹣∠EAB=90°﹣(90°﹣∠AEB)=∠AEB,同理:∠BAC=∠AEB,∴∠ABD=∠BAC=∠AEB;(2)仍然成立;理由如下:如图③所示:过点A、B分别作BD的延长线与AC的垂线,垂足分别为G、F,∵四边形ABCD是互补等对边四边形,∴AD=BC,∠ADB+∠BCA=180°,又∠ADB+ADG=180°,∴∠BCA=∠ADC,又∵AG⊥BD,BF⊥AC,∴∠AGD=∠BFC=90°,在△AGD和△BFC中,∴△AGD≌△BFC,∴AG=BF,在△ABG和△BAF中,∴△ABG≌△BAF,∴∠ABD=∠BAC,∵∠ADB+∠BCA=180°,∴∠EDB+∠ECA=180°,∴∠AEB+∠DHC=180°,∵∠DHC+∠BHC=180°,∴∠AEB=∠BHC.∵∠BHC=∠BAC+∠ABD,∠ABD=∠BAC,∴∠ABD=∠BAC=∠AEB.20.解:(1)(m﹣4)2+n2﹣8n=﹣16,即(m﹣4)2+(n﹣4)2=0,则m﹣4=0,n﹣4=0,解得:m=4,n=4.则A的坐标是(4,4);(2)∵AB⊥x轴,AC⊥y轴,A(4,4),∴AB=AC=OC=OB,∠ACO=∠COB=∠ABO=90°,又∵四边形的内角和是360°,∴∠A=90°,∵OF+BE=AB=BE+AE,∴AE=OF,∴在△COF和△CAE中,,∴△COF≌△CAE,得∴CF=CE;(3)结论正确,值为0.证明:在x轴负半轴上取点H,使OH=AE,∵在△ACE和△OCH中,,∴△ACE≌△OCH,∴∠1=∠2,CH=CE,又∵∠EOF=45°,∴∠HCF=45°,∴在△HCF和△ECF中,,∴△HCF≌△ECF,∴HF=EF,∴OF+AE﹣EF=0.。

北京八中2021-2022学年八年级(上)期末数学综合练习试卷及答案解析

北京八中2021-2022学年八年级(上)期末数学综合练习试卷及答案解析

2021-2022学年北京八中八年级(上)期末数学综合练习试卷一、选择(每题3分,共30分)1.(3分)下列几种著名的数学曲线中,不是轴对称图形的是()A.笛卡尔爱心曲线B.蝴蝶曲线C.费马螺线曲线D.科赫曲线2.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×1063.(3分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.94.(3分)下列等式中,从左到右的变形是因式分解的是()A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x2﹣4=(x+2)(x﹣2)D.x+2=x(1+)5.(3分)若a≠b,则下列分式化简正确的是()A.B.C.D.6.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数是()A.75°B.60°C.65°D.55°7.(3分)若x2+mx﹣10=(x﹣5)(x+n),则n m的值为()A.﹣6B.8C.﹣D.8.(3分)在课堂上,张老师布置了一道画图题:画一个Rt△ABC,使∠B=90°,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN=90°之后,后续画图的主要过程分别如图所示.那么小刘和小赵同学作图确定三角形的依据分别是()A.SAS,HL B.HL,SAS C.SAS,AAS D.AAS,HL 9.(3分)如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PC∥OB交OA于点C,若PD=3,则OC的长为()A.3B.4C.5D.610.(3分)如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是()A.6B.8C.10D.4.8二、填空题11.两根长度分别为3,5的木棒,若想钉一个三角形木架,第三根木棒的长度可以是.(写一个值即可)12.如果分式的值为零,那么x的值是.13.分解因式:ax2﹣6ax+9a=.14.如图,在△ABC中,AB=AC,∠A=20°,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE为.15.若a m=2,a n=3,则a2m+n=.16.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=8,AC=3,则BE=.17.方程=2﹣无解,那么k的值为.18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB 于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°﹣∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论有(填写序号).三、解答题19.计算:()﹣1++(π﹣5)0+.20.计算:[(x﹣2y)2﹣(2y﹣x)(x+2y)]÷2x.21.(1)先化简再求值:,其中x=.(2)解方程:.22.如图,在△ABC中,∠C=90°.(1)用圆规和直尺在AC上作点P,使点P到A、B的距离相等.(保留作图痕迹,不写作法和证明)(2)当满足(1)的点P到AB、BC的距离相等时,求∠A的度数.23.如图,已知△ABC,∠B=30°,作图及步骤如下:(1)以点C为圆心,CA为半径画弧;(2)以点B为圆心,BA为半径画弧,两弧交于点D;(3)连接AD,交BC延长线于点H.(4)过点C作CM⊥AB于点M,CN⊥BD于点N.请根据以下推理过程,填写依据:∵BA=BD,CA=CD∴点B、点C在AD的垂直平分线上()∴直线BC是AD的垂直平分线()∵BA=BD,BH⊥AD∴∠ABC=∠DBC(等腰三角形、、相互重合)又∵CM⊥AB,CN⊥BD∴CM=CN()在Rt△BCM中,∠ABC=30°∴CM=BC()24.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC (1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.25.通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.26.给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.(1)关于x的二次多项式3x2+2x﹣1的特征系数对为;(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,﹣4,4)的特征多项式的乘积;(3)若有序实数对(p,q,﹣1)的特征多项式与有序实数对(m,n,﹣2)的特征多项式的乘积的结果为2x4+x3﹣10x2﹣x+2,直接写出(4p﹣2q﹣1)(2m﹣n﹣1)的值为.27.已知,∠MON=90°,点A在边OM上,点P是边ON上一动点,∠OAP=α.以线段AP为边在AP上方作等边△ABP,连接OB、BP,再以线段OB为边作等边△OBC(点C、P在OB的同侧),作CH⊥ON于点H.(1)如图1,α=60°.①依题意补全图形;②求∠BPH的度数;(2)如图2,当点P在射线ON上运动时,用等式表示线段OA与CH之间的数量关系,并证明.28.在平面直角坐标系中,对于点M(a,b),N(c,d),将点M关于直线x=c对称得到点M′,当d≥0时,将点M′向上平移d个单位,当d<0时,将点M′向下平移|d|个单位,得到点P,我们称点P为点M关于点N的对称平移点.例如,如图已知点M(1,2),N(3,5),点M关于点N的对称平移点为P(5,7).(1)已知点A(2,1),B(4,3),①点A关于点B的对称平移点为(直接写出答案).②若点A为点B关于点C的对称平移点,则点C的坐标为.(直接写出答案)(2)已知点D在第一、三象限的角平分线上,点D的横坐标为m,点E的坐标为(1.5m,0).点K为点E关于点D的对称平移点,若以D,E,K为顶点的三角形围成的面积为1,求m的值.2021-2022学年北京八中八年级(上)期末数学综合练习试卷(一)参考答案与试题解析一、选择(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:选项A、B、D均能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;选项C不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000001=1×10﹣6,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.4.【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【解答】解:A、是整式的乘法,不是因式分解,故此选项不符合题意;B、是整式的乘法,不是因式分解,故此选项不符合题意;C、把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.故选:C.【点评】本题考查了因式分解的意义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.5.【分析】利用分式性质依次判断.【解答】解:当a=3,b=4时,=,=,∴A不成立=,∴B不成立.=.∴D不成立.故选:C.【点评】本题考查分式性质,掌握分式性质,正确对分式进行化简是求解本题的关键.6.【分析】根据三角形外角的性质即可得到结论.【解答】解:∠α=30°+45°=75°,故选:A.【点评】本题主要考查三角形外角的性质,直角三角形的性质,运用三角形外角的性质计算角的度数是解题的关键.7.【分析】根据x2+mx﹣10=(x﹣5)(x+n),可得nx﹣5x=mx,﹣5n=﹣10,据此可得m、n的值,再代入计算即可.【解答】解:(x﹣5)(x+n)=x2+nx﹣5x﹣5n,∵x2+mx﹣10=(x﹣5)(x+n),∴nx﹣5x=mx,﹣5n=﹣10,∴n﹣5=m,n=2,解得:m=﹣3,n=2,∴n m=.故选:D.【点评】本题考查了因式分解﹣十字相乘法,掌握多项式乘多项式的运算法则是解答本题的关键.8.【分析】分别根据全等三角形的判定定理进行解答即可.【解答】解:∵小刘同学先确定的是直角三角形的两条直角边,∴确定依据是SAS定理;∵小赵同学先确定的是直角三角形的一条直角边和斜边,∴确定依据是HL定理.故选:A.【点评】本题考查的是作图﹣复杂作图,熟知全等三角形的判定定理是解答此题的关键.9.【分析】根据角平分线的定义和平行线的性质即可得到结论.【解答】解:∵∠AOB=150°,PC∥OB交OA于点C,∴∠PCO=30°,过P作PE⊥OA于E,∵PD⊥OB,OP平分∠AOB∴PE=PD=3,∴∠AOP=∠POD=75°,∴∠CPD=75°,∴OC=PC=6,故选:D.【点评】本题主要考查了角平分线的性质,平行线的性质的应用,注意:角平分线上的点到角的两边距离相等.10.【分析】先作CE垂直AB交BD于点M,再作MN垂直BC,根据角平分线的性质:角分线上的点到角的两边距离相等,即可找到动点M和N,进而求得CM+MN的最小值.【解答】解:如图所示:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于点N,∵BD平分∠ABC,∴ME=MN,∴CM+MN=CM+ME=CE.∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,CE⊥AB,=AB•CE=AC•BC,∴S△ABC∴10CE=6×8,∴CE=4.8.即CM+MN的最小值是4.8,故选:D.【点评】本题考查了轴对称﹣最短路线问题、角分线的性质,解决本题的关键是找到使CM+MN最小时的动点M和N.二、填空题11.【分析】根据三角形中“两边之和大于第三边,两边之差小于第三边”,进行分析得到第三边的取值范围;再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得第三边应大于两边之差,即5﹣3=2;而小于两边之和,即5+3=8,即2<第三边<8,故第三根木棒的长度可以是4.故答案为:4(答案不唯一).【点评】本题主要考查了三角形三边关系,熟练掌握两边之和大于第三边,两边之差小于第三边是解题的关键.12.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意得:x(x+1)=0且x≠0,解得x=﹣1.故答案为:x=﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:ax2﹣6ax+9a=a(x2﹣6x+9)﹣﹣(提取公因式)=a(x﹣3)2.﹣﹣(完全平方公式)故答案为:a(x﹣3)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.【分析】先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.【解答】解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故答案为:60【点评】此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.15.【分析】根据同底数幂的乘法与幂的乘方的性质,即可得a2m+n=a2m•a n=(a m)2•a n,又由a m=2,a n=3,即可求得答案.【解答】解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.【点评】此题考查了同底数幂的乘法与幂的乘方的性质.此题难度适中,注意掌握积的乘方法则:(ab)n=a n b n(n是正整数)与同底数幂的乘法法则:a m•a n=a m+n(m,n是正整数),注意公式的逆用.16.【分析】首先连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【解答】解:连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠DAF=∠DAE,在△ADF和△ADE中,,∴△ADF≌△ADE(AAS),∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=8,AC=3,∴BE=.故答案为:.【点评】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.17.【分析】先解方程得x=6﹣k,再由方程无解,可得6﹣k=3,求出k的值即可.【解答】解:=2﹣,x=2(x﹣3)+k,x=2x﹣6+k,x=6﹣k,∵方程无解,∴x=3,∴6﹣k=3,∴k=3,故答案为:3.【点评】本题考查分式方程的解,熟练掌握分式方程的解法,理解分式方程无解时满足的条件是解题的关键.18.【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②∠BOC=90°﹣∠A错误;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形面积的求=mn,故④正确.解方法,即可求得③设OD=m,AE+AF=n,则S△AEF【解答】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②错误;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④正确;∴S△AEF在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案为:①③④.【点评】此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.三、解答题19.【分析】先根据负整数指数幂、零指数幂、开方计算,再合并即可得到答案.【解答】解:原式=+3+1+3=2+3+1+3=6+3.【点评】此题考查的是实数的运算,掌握负整数指数幂、零指数幂、开方的运算法则是解决此题关键.20.【分析】利用乘法公式先计算小括号内的乘方和乘法,然后去括号,合并同类项进行化简,最后再算括号外面的除法.【解答】解:原式=[x2﹣4xy+4y2﹣(4y2﹣x2)]÷2x=(x2﹣4xy+4y2﹣4y2+x2)÷2x=(2x2﹣4xy)÷2x=x﹣2y.【点评】本题考查整式的混合运算,掌握完全平方公式(a±b)2=a2±2ab+b2和平方差公式(a+b)(a﹣b)=a2﹣b2的结构是解题关键.21.【分析】(1)先根据分式减法法则进行计算,再根据分式的除法法则进行计算,最后代入求出答案即可;(2)方程两边都乘(x+2)(x﹣2)得出(x﹣2)2﹣(x+2)(x﹣2)=16,求出方程的解,再进行检验即可.【解答】解:(1)=[﹣]•=•=•=,当x=时,原式==;(2),方程两边都乘(x+2)(x﹣2),得(x﹣2)2﹣(x+2)(x﹣2)=16,解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,所以x=﹣2是原方程的增根,即原方程无解.【点评】本题考查了分式的混合运算与求值,解分式方程等知识点,能正确根据分式的运算法则进行化简是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.22.【分析】(1)画出线段AB的垂直平分线,交AC于点P,点P即为所求;(2)由点P到AB、BC的距离相等可得出PC=PD,结合BP=BP可证出Rt△BCP≌Rt △BDP(HL),根据全等三角形的性质可得出BC=BD,结合AB=2BD及∠C=90°,即可求出∠A的度数.【解答】解:(1)依照题意,画出图形,如图所示.(2)∵点P到AB、BC的距离相等,∴PC=PD.在Rt△BCP和Rt△BDP中,,∴Rt△BCP≌Rt△BDP(HL),∴BC=BD.又∵PD垂直平分AB,∴AD=2BD=2BC.在Rt△ABC中,∠C=90°,AB=2BC,∴∠A=30°.【点评】本题考查了尺规作图、线段垂直平分线的性质、全等三角形的判定与性质以及解含30°角的直角三角形,解题的关键是:(1)熟练掌握尺规作图;(2)通过证全等三角形找出AB=2BC.23.【分析】根据题中的几何语言画出对应的几何图形,然后利用线段的垂直平分线的性质、角平分线的性质和含30度的直角三角形三边的关系填写依据.【解答】解:如图,∵BA=BD,CA=CD∴点B、点C在AD的垂直平分线上(到线段两端点的距离相等的点在这条线段的垂直平分线上),∴直线BC是AD的垂直平分线(两点确定一直线),∵BA=BD,BH⊥AD,∴∠ABC=∠DBC(等腰三角形顶角的平分线、底边上的高、底边上的中线相互重合),又∵CM⊥AB,CN⊥BD∴CM=CN(角平分线上的点到角的两边的距离相等),在Rt△BCM中,∠ABC=30°∴CM=BC(在直角三角形中,30°所对的直角边等于斜边的一半).故答案为:到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;顶角的平分线、底边上的高、底边上的中线;角平分线上的点到角的两边的距离相等;在直角三角形中,30°所对的直角边等于斜边的一半.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决此类问题的关键.也考查了角平分线的性质和线段的垂直平分线的性质.24.【分析】(1)证明∠ABC=∠ACB=60°;证明∠ODE=∠ABC=60°,∠OED=∠ACB =60°,即可解决问题.(2)证明BD=OD;同理可证CE=OE;即可解决问题.【解答】解:(1)△ODE是等边三角形;理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°;∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,∴△ODE为等边三角形.(2)∵OB平分∠ABC,OD∥AB,∴∠ABO=∠DOB,∠ABO=∠DBO,∴∠DOB=∠DBO,∴BD=OD;同理可证CE=OE;∴△ODE的周长=BC=10.【点评】该题主要考查了等边三角形的判定及其性质的应用问题;解题的关键是灵活运用平行线的性质、等边三角形的性质来分析、判断、解答.25.【分析】设该公园原来平均每分钟接待游客的人数为x人,由“接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟”列出方程可求解.【解答】解:设该公园原来平均每分钟接待游客的人数为x人,由题意可得:,解得:x=20,经检验,x=20是原方程的解,答:该公园原来平均每分钟接待游客的人数为20人.【点评】本题考查了分式方程的应用,找到正确的数量关系是本题的关键.26.【分析】(1)根据特征系数对的定义即可解答;(2)根据特征多项式的定义先写出多项式,然后再根据多项式乘多项式进行计算即可;(3)根据特征多项式的定义先写出多项式,然后再令x=﹣2即可得出答案.【解答】解:(1)关于x的二次多项式3x2+2x﹣1的特征系数对为(3,2,﹣1),故答案为:(3,2,﹣1);(2)∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,有序实数对(1,﹣4,4)的特征多项式为:x2﹣4x+4,∴(x2+4x+4)(x2﹣4x+4)=x4﹣4x3+4x2+4x3﹣16x2+16x+4x2﹣16x+16=x4﹣8x2+16;(3)根据题意得(px2+qx﹣1)(mx2+nx﹣2)=2x4+x3﹣10x2﹣x+2,令x=﹣2,则(4p﹣2q﹣1)(4m﹣2n﹣2)=2×16﹣8﹣10×4+2+2,∴(4p﹣2q﹣1)(4m﹣2n﹣2)=32﹣8﹣40+2+2,∴(4p﹣2q﹣1)(4m﹣2n﹣2)=﹣12,∴(4p﹣2q﹣1)(2m﹣n﹣1)=﹣6,故答案为:﹣6.【点评】本题考查了多项式乘多项式,新定义问题,给x赋予特殊值﹣2是解题的关键.27.【分析】(1)①根据题意,即可画出图形;②根据∠BPH=180°﹣∠OPA﹣∠BPA=90°,可得答案;(2)连接BC,PC,利用SAS可证明△ABO≌△PBC,得AO=PC,∠BPC=∠BAO,再通过导角发现∠HPC=30°,从而解决问题.【解答】解:(1)①如图所示,即为所求;②∵△ABP是等边三角形,∴∠BPA=60°,∵∠OAP=α=60°,∴∠OPA=30°,∴∠BPH=180°﹣∠OPA﹣∠BPA=90°;(2)OA=2CH,证明如下:如图,连接BC,PC,由(2)可知,△ABP是等边三角形,∴BA=BP,∠ABP=∠BPA=60°,∵△BOC是等边三角形,∴BO=BC,∠BOC=60°,∴∠ABO=60°﹣∠OBP=∠PBC,∴△ABO≌△PBC(SAS),∴AO=PC,∠BPC=∠BAO,∵∠OAP=α,∴∠BAO=∠BAP+∠OAP=60°+α,∴∠BPC=60°+α,∵∠BPN=180°﹣∠APO﹣∠BPA=120°﹣(90°﹣α)=30°+α,∴∠HPC=∠BPC﹣∠BPN=30°,∵CH⊥ON,∴∠CHO=90°,在Rt△CHP中,PC=2CH,∴OA=2CH.【点评】本题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,证明△ABO≌△PBC是解题的关键.28.【分析】(1)①②根据点P为点M关于点N的对称平移点的定义画出图形,可得结论.(2)分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.【解答】解:(1)①如图1中,点A关于点B的对称平移点为F(6,4).故答案为:(6,4).②若点A为点B关于点C的对称平移点,则点C的坐标为(3,﹣2).故答案为:(3,﹣2);(2)如图2中,当m>0时,四边形OKDE是梯形,∵OE=1.5m,DK=0.5m,D(m,m),=×0.5m×m=1,∴S△DEK∴m=2或﹣2(舍弃),当m<0时,同法可得m=﹣2,综上所述,m的值为±2.【点评】考查坐标与图形变化﹣旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.。

八年级上册数学第一、二章综合练习(含答案)

八年级上册数学第一、二章综合练习(含答案)

八年级上册数学第一、二章综合练习(含答案)一、 选择题:(每小题3分,共30分)1、下列各数中,没有平方根的是( )A 、2)3(- B 、1- C 、0 D 、12、下列等式中,错误的是( )A 、864±=±B 、1511225121±=C 、62163-=-D 、1.0001.03-=- 3、下列命题中正确的是( )A 、有理数是有限小数B 、无限小数是无理数C 、数轴上的点与有理数一一对应D 、数轴上的点与实数一一对应4、计算3(2)(21)a a --的结果是( ) A 、 4242a a - B 、4242a a -+ C 、43168a a -+ D 、43168a a --5、在实数23-,0, 3.14-中,无理数有( ) A 、1个 B 、2个 C 、3个 D 、4个6、下列各式中,正确的是( )A 、(a -b )2 = a 2-2ab -b 2B 、(-b +a )(b +a )= b 2-a 2C 、(a +b )2 = a 2+b 2D 、(a +b )2 = a 2+2a b +b 27、下列各式比较大小正确的是( )A 、32-<-B 、6655->-C 、14.3-<-πD 、310->-8、计算34(510)(710)⨯⨯的正确结果是( ) A 、 73510⨯ B 、 83.510⨯ C 、90.3510⨯ D 、73.510⨯ 9、已知x m =a, x n =b,那么x 3m+2n 的值等于( )A 、3a+2bB 、a 3+b 2C 、a 3b 2D 、a 3m b 2n10、已知 a +b =5,ab=-2 ,那么a 2+b 2的值为( )A 、25B 、29C 、33D 、不确定二、填空题(每小题3分,共15分)11、49的平方根是 ,算术平方根是 ;338-的立方根是______。

12、32a a a ⋅⋅= ;423)2(z xy -= 。

八年级上册数学整式的乘法综合练习题 含答案

八年级上册数学整式的乘法综合练习题 含答案

整式的乘法综合练习题一、选择题(共9小题)1.下列计算正确的是( )A.3a + 2b = 5ab B.3a 一 2a =1 C.a6a2 = a3 D.(一a3b)2 = a6b2 2.计算x(3x2 一 2x2 ) 的结果是( )A.x B. x3 C. x5 D.5x33.把2a(ab 一 b + c)化简后得( )A.2a2b一ab+ac B.2a2一2ab+2ac C.2a2b+2ab+2ac D.2a2b一2ab+2ac 4.如(y + a) 与(y 一 7) 的乘积中不含y 的一次项,则a 的值为( )A. 7 B.一7 C. 0 D. 145.下列计算正确的是( )A.a3 + a4 = a7 B.a4 a5 = a9 C.4m 5m = 9m D.a3 + a3 = 2a6 6.计算a3 a3 结果是( )A.2a3 B.a9 C.a5 D.a67.若(x + 4)(x 一 2) = x2 + ax + b ,则ab的积为( )A.一10 B.一16 C. 10 D.一68.下列运算正确的是( )A.a2 a3 = a6 B.2a3 3a2 = 6a6 C.(一2x3 )4 = 8x12 D.(一x6 ) x3 = 一x3 9.下列计算结果等于a5 的是( )A.a3 + a2 B.a3 a2 C. (a3 )2 D.a10 a2二、填空题(共5小题)10.计算:x5 x3 的结果等于.11.计算:(一6a2b5)(一2a2b2)=.12.已知10x = 8,10y = 16 ,则102x y = .13.计算6x 3 (2x 2 y) = .14.计算:(0.25)2019 (4)2018 = .三、解答题(共5小题)15 .解方程:2x(x 1) x(2x + 3) =15.16.已知x3m = 2, y2m = 3 ,求(x2m)3 + (y m )6 (x2 y)3my m 的值.17 .计算:(1) 32 (2) + 42 (2)3 | 22 |;(2) 3a6 a2 a3 . ( a) + (2a2 )2.18.规定a *b = 2a 2b ,求:(1) 求2 * 3;(2) 若2 * (x +1) =16 ,求x 的值.19.规定两数a,b 之间的一种运算,记作(a,b) :如果a c = b ,那么(a,b) = c.例如:因为23 = 8,所以(2,8) = 3.(1)根据上述规定,填空:(3,9) = ,(5,125) = ,(一1, 1 ) = ,(一2,一32) = .2 16(2) 令(4,5) = a,(4,6) = b,(4,30) = c,试说明下列等式成立的理由:(4 ,5) + (4,6) = (4,30).参考答案一、选择题(共9小题)1.【解答】解:A 、3a + 2b ,无法计算,故此选项错误;B 、3a 一 2a = a ,故此选项错误;C 、a6 a2 = a4 ,故此选项错误;D 、(一a3b)2= a6b2,正确.故选:D.2.【解答】解:x(3x2 一 2x2 ) = 3x3 一 2x3 = x3.故选:B.3.【解答】解:原式= 2a2b 一 2ab + 2ac.故选:D.4.【解答】解:(y + a)(y 一 7) = y2+ (a 一 7)y 一 7a,由结果不含y 的一次项,得到a 一 7 = 0,解得:a = 7.故选:A.5.【解答】解: A 、a3 + a4 ,无法计算,故此选项错误;B 、a4 a5 = a9 ,正确;C 、4m 5m = 20m ,故此选项错误;D 、a3 + a3 = 2a3 ,故此选项错误.故选:B.6.【解答】解:a3 a3 = a6.故选:D.7.【解答】解:(x+4)(x一2)=x2一2x+4x一8=x2+2x一8,:a=2,b=一8,:ab=一16,故选:B.8.【解答】解: A 、原式= a5 ,故本选项错误.B 、原式= 6a5 ,故本选项错误.C 、原式=16x12 ,故本选项错误.D 、原式计算正确,故本选项正确.故选:D.9.【解答】解: A 、不是同底数幂的乘法,故A 不符合题意;B 、a3 a2 = a5 ,故B 符合题意;C 、 (a3 )2 = a6 ,故C 不符合题意;D 、a10 a2 = a8 ,故D 不符合题意;故选:B.二、填空题(共5小题)10.【解答】解:x5 x3 = x5+3 = x8故答案为:x8.11.【解答】解:原式= 3b3.故答案为:3b3.12.【解答】解:10x=8,10y= 16,:102x = 64,:102x y =102x 10y = 64 16 = 4.故答案为: 4.13.【解答】解:6x3 (2x2 y)= (6 2)x3+2 y= 12x5 y.故答案为:12x5 y.14.【解答】解:(0.25)2019 (4)2018= (0.25) (0.25)2018 (4)2018= (0.25) (0.25 4)2018= 0.25故答案为:0.25.三、解答题(共5小题)15.【解答】解:2x(x 1) x(2x + 3) =15 2x2 2x 2x2 3x =15,整理得:5x =15,解得:x = 3.16.【解答】解:x3m = 2, y2m = 3,:(x2m)3 + (y m )6 (x2 y)3m y m= (x 3m )2 + (y 2m )3 (x 6m y 3m y m )= (x 3m )2 + (y 2m )3 (x 3m y 2m )2= 22 + 33 (2 3)2 = 5.17.【解答】解: (1)原式 = 9 (2)+16 (8) 4 =18 2 4=12;(2)原式 = 3a 62 + a 3+1 + 4a 4 = 3a 4 + a 4 + 4a 4= 8a 4.18.【解答】解: (1) a*b = 2a 2b ,:2*3 = 22 23 = 48 = 32;(2) 2*(x +1) =16,:22 2x+1 = 24 则 2 +x +1= 4, 解得: x =1. 19.【解答】解: (1) 32 = 9, 53 = 125, ( )4 = , (2)5 = 32, 2 16:(3,9) = 2, (5,125) = 3, ( 1, 1) = 4, (2, 32) = 5,2 16 故选: 2, 3, 4, 5;(2) 令 (4,5) = a , (4,6) = b , (4,30) = c ,, 1 1则 4a = 5, 4b = 6, 4c = 30, 56 = 30, :4a 4b = 4c:4a+b = 4c :a + b = c , :(4, 5) + (4, 6) = (4, 30). , ,。

沪科版数学八年级上册综合训练50题-含答案

沪科版数学八年级上册综合训练50题-含答案

沪科版数学八年级上册综合训练50题含答案(填空、解答题)一、填空题1.如图,在平面直角坐标系中,点O 为坐标原点,若直线26y x =-与x 轴、y 轴分别交于点A ,B , 则AOB 的面积为________.2.如图,直线22y x =--与x 轴交于点A ,与y 轴交于点B ,把直线AB 沿x 轴的正 半轴向右平移2个单位长度后得到直线CD ,则直线CD 的函数解析式是__________.3.在ABC 中,∠A=∠B=∠C ,则ABC 是_________三角形.4.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线BC 交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为___.5.下列给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息,请你根据表格中的相关数据计算:m +n =____________.6.阅读下面的材料:小芸的作法如下:请回答:小芸的作图依据是____________________________________.7.若函数y kx b=+的图象如图所示,则不等式0+>的解集是___________.kx b8.如图,在ABC中,按以下步骤作图:、于点D、E.∠以点B为圆心,任意长为半径作弧,分别交AB BC∠分别以点D、E为圆心,大于1DE的同样长为半径作弧,两弧交于点F.2∠作射线BF 交AC 于点G . 如果23=AB BC ,求ABG BGC S S ∆∆=________.9.函数y ax b =+的图象如图,不等式2ax b +≤的解集为__________.10.一次函数y =x ﹣5的图象与y 轴的交点坐标为 _________.11.已知点P 的坐标为(a +1,5﹣3a ),且它到两个坐标轴的距离相等,则点P 的坐标为_______________.12.如图,长方形纸片ABCD 中AD ∠BC ,AB ∠CD ,∠A =90°,将纸片沿EF 折叠,使顶点C 、D 分别落在点C '、D '处,C 'E 交AF 于点G .若∠CEF =68°,则么∠GFD '=______°.13.已知点()1,3M -,点N 为x 轴上一动点,则MN 的最小值为______. 14.已知点P (m ,2)在第一象限,那么点B (3,﹣m )在第____象限.15.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点P ⎛ ⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.16.如图,在∠ABC 中,AB =17,AC =12,AD 为中线,则∠ABD 与∠ACD 的周长之差=__.17.某下岗职工购进一批货物到集贸市场零售,已知卖出的货物质量x (千克)与售价y (元)的关系如表所示:写出y 关于x 的函数关系式是____________.18.“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y (千米)与小刚跑步所用时间x (分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了__分钟.19.在ABC 中,AB AC =,点D 是ABC 外一点,连接AD 、BD 、CD ,且BD 交AC 于点O ,在BD 上取一点E ,使得AE AD =,EAD BAC ∠=∠,若70ACB ∠=︒,则BDC ∠的度数为 _____.20.已知1(2, 1)A ,2(1, 0)A -,…,(, )k k k A x y ,…,(k 为正整数),且满足111k k x x -=-,11k k y y -=-,则A 2022的坐标为____.21.已知点P (x ,y )位于第四象限,并且x ≤y +4(x ,y 为整数),写出一个符合上述条件的点P 的坐标_________.22.如图,ABC 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .若11AB cm =,BCE 的周长为17cm ,则BC=________cm .23.如图,已知1A (1,0),2A (1,﹣1),3A (﹣1,﹣1),4A (﹣1,1),5A (2,1),…,则点2010A 的坐标是________.24.下表分别给出了一次函数y 1=k 1x +b 1与y 2=k 2x +b 2图像上部分点的横坐标x 和纵坐标y 的对应值.则当x ____时,y 1>y 2.25.如图所示,OC 平分AOB ∠,OD 平分COB ∠,90AOD ∠=︒,则BOD ∠=_______︒.26.如图,在∠ABC 中,∠ACB =90°,AC =BC ,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,AP 与BC 的延长线交于点D .过点P 作PF ∠AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 并延长交DH 于点G .下列结论中,正确的是______.(填序号)∠∠APB =45°,∠PF =P A ,∠DG =AP +GH ,∠BD =AH +AB .27.如图,ADC △是45°的直角三角板,ABE 是30°的直角三角板,CD 与BE 交于点F ,则DFB ∠的度数为__________28.如图,在长方形ABCD 中4AB DC ==,5AD BC ==.延长BC 到E ,使2CE =,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→→向终点A 运动,设点P 运动的时间为t 秒,存在这样的t ,使DCP 和DCE △全等,则t 的值为______.29.如图,已知∠AOB=90°, ∠COD=90°,OE 为∠BOD 的角平分线,∠BOE=25°,则∠AOC=_____30.已知点A (3,4),点B (﹣1,1),在x 轴上有两动点E 、F ,且EF=1,线段EF 在x 轴上平移,当四边形ABEF 的周长取得最小值时,点E 的坐标为________.二、解答题 31.(1)解方程:2101x x-=+ (2)已知等腰三角形的两边长为5cm 和4cm ,求它的周长.32.如图,BA =BE ,∠A =∠E ,∠ABE =∠CBD ,ED 交BC 于点F ,且∠FBD =∠D . 求证:AC ∠BD .证明:∠∠ABE =∠CBD (已知), ∠∠ABE +∠EBC =∠CBD +∠EBC ( ) 即∠ABC =∠EBD在∠ABC 和∠EBD 中, ___________ABC EBD A E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EBD ( ), ∠∠C =∠D ( ) ∠∠FBD =∠D ,∠∠C = (等量代换), ∠AC ∠BD ( )33.如图,在四边形ABCD 中,AD BC ∥,点E 为对角线BD 上一点,A BEC ∠=∠ ,且AB EC =.(1)求证:ABD ECB ≌;(2)若65BDC ∠=︒,求DBC ∠的度数.34.如图,已知:DE //BC ,CD 是∠ACB 的平分线,∠B =80°,∠A =50°,求:∠EDC 与∠BDC 的度数.35.点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,则∠MOC=__________ (2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求∠BON 和∠CON 的度数.36.如图,射线OB 在钝角AOC ∠的内部,且180,AOB AOC OP ∠+∠=︒分AOB ∠,OQ 平分AOC ∠.(1)当OB 与OQ 重合时,求AOC ∠得度数; (2)若100AOC ∠=︒,求POQ ∠的度数;(3)若AOC n ∠=︒,求POQ ∠的度数(用含n 的代数式表示).37.如图,在等边∠ABC 中,点D ,E 分别在边BC ,AC 上,且AE =CD ,BE 与AD 相交于点P ,BQ 上AD 于点Q .(1)求证:AD =BE ; (2)求∠PBQ 的度数;(3)若PQ =3,PE =1,求AD 的长.38.如图,在平面直角坐标中,∠ABC 各顶点都在小方格的顶点上.(1)画出∠ABC 关于x 轴对称的图形∠A 1B 1C 1;写出∠A 1B 1C 1各顶点坐标A 1 ;B 1 ;C 1(2)在y 轴上找一点P ,使P A +PB 1最短,画出P 点,并写出P 点的坐标 . (3)若网格中的最小正方形边长为1,则∠A 1B 1C 1的面积等于 .39.如图,ABC ∆中,ABC C ∠=∠,BD 是ABC ∠的平分线,48A ∠=,求BDC ∠的度数.40.如图所示,四边形ABCD 中,∠ADC 的角平分线DE 与∠BCD 的角平分线CA 相交于E 点,已知:∠ACB =32°,∠CDE =58°.(1)求∠DEC 的度数; (2)试说明直线AD BC ∥41.如图,已知ABC FED ≅,A ∠和F ∠是对应角,CB 和DE 是对应边,82AF BE =,=.(1)写出其他对应边及对应角;(2)判断AC 与DF 的位置关系,并说明理由. (3)求AB 的长.42.在△ABC 中,∠C>∠B .如图∠,AD∠BC 于点D ,AE 平分∠BAC .(1)如图∠,AD∠BC 于点D ,AE 平分∠BAC ,能猜想出∠DAE 与∠B 、∠C 之间的关系是什么?并说明理由.(2)如图∠,AE 平分∠BAC ,F 为AE 上的一点,且FD∠BC 于点D ,这时∠EFD 与∠B 、∠C 有何数量关系?请说明理由.(3)如图∠,AE 平分∠BAC ,F 为AE 延长线上的一点,FD∠BC 于点D ,请你写出这时∠EFD 与∠B 、∠C 之间的数量关系(只写结论,不必说明理由).43.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .(1)当直线MN 绕点C 旋转到图(1)的位置时,求证:∠ADC △∠CEB ;∠DE AD BE =+.(2)当直线MN 绕点C 旋转到图(2)、图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.44.如图,在ABC 中,BD 、CE 是边AC 、AB 上的中线,BD 与CE 相交于点O ,N 是OC 的中点.(1)求证:2OC OE =;(2)若1CDN S =△,求ABC 的面积.45.贝贝在银行的信用卡中存入2万元,每次取出500元,若卡内余额为y (元),取钱的次数为x .(利息忽略不计)(1)写出y 与x 之间的函数关系式;(2)求自变量x的取值范围;(3)取多少次钱后,余额为原存款的14?46.水池中有水20m3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56m3,王师傅的具体记录如下表.设从12:00时起经过tmin池中有水ym3,右图中折线ABCD表示y关于t的函数图象.(1)每个出水口每分钟出水m3,表格中a=;(2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16m 3?47.如图,△ABC 是等腰直角三角形,∠BAC =90°,△ACD 是等边三角形,E 为△ABC 内一点,AC =CE ,∠BAE =15°,AD 与CE 相交于点F .(1)求∠DFE 的度数;(2)求证:AE =BE .48.已知两个全等的等腰直角∠ABC 、∠DEF ,其中90ACB DFE ∠=∠=︒,E 为AB 中点,∠DEF 可绕顶点E 旋转,线段DE ,EF 分别交线段CA ,CB (或它们所在直线)于M 、N .(1)如图1,当线段EF 经过∠ABC 的顶点C 时,点N 与点C 重合,线段DE 交AC 于M ,求证:AM MC =;(2)如图2,当线段EF 与线段BC 边交于N 点,线段DE 与线段AC 交于M 点,连MN ,EC ,请探究AM ,MN ,CN 之间的等量关系,并说明理由;(3)如图3,当线段EF 与BC 延长线交于N 点,线段DE 与线段AC 交于M 点,连MN ,EC ,请猜想AM ,MN ,CN 之间的等量关系,不必说明理由.49.已知,在平面直角坐标系中,点A ,B 的坐标分别是(),a a --,(),0b 且20b -=.(1)求a ,b 的值;(2)在坐标轴上是否存在点C ,使三角形ABC 的面积是8?若存在,求出点C 的坐标;若不存在,请说明理由.50.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足(a ﹣c +4)20,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)求点B 的坐标及AO 和BC 位置关系;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S △△=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.参考答案:1.9【分析】分别令0x =,0y =,求出A 、B 两点坐标,再利用三角形面积公式即可求出面积.【详解】当0x =时,y =-6,∠B 点坐标为(0,6)-,即6OB =,当0y =时,3x =,∠A 点坐标为(3,0),即3OA =, ∠1136922AOB S OA OB ==⨯⨯=, 故答案为:9.【点睛】本题考查了求一次函数图象与坐标轴形成的三角形的面积,求出一次函数与坐标轴的交点坐标是解题关键.2.22y x =-+【分析】利用“左加右减”的规律解答.【详解】把直线AB :22y x =--沿x 轴的正半轴向右平移2个单位长度后得到直线CD , 则直线CD 的函数解析式是:()22222y x x =---=-+,即22y x =-+.故答案是:22y x =-+.【点睛】本题主要考查了一次函数图象与几何变换,难度不大,掌握平移规律“左加右减,上加下减”即可.3.等边【详解】试题分析:在∠ABC 中,∠A=∠B=∠C ,根据三角形内角和为180°,可得出各角的度数均为60°,即可得到结果.在∠ABC 中,∠A=∠B=∠C ,又∠A+∠B+∠C=180°,所以∠A=∠B=∠C=60°,即∠ABC 为等边三角形.考点:等边三角形的判定,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.1【分析】根据线段垂直平分线的性质得到DA=DB ,得到∠B=∠DAB ,根据角平分线的性质得出∠DAC=∠DAB,从而求出∠B=30°,根据直角三角形的性质计算即可.【详解】解:∠DE是AB的垂直平分线,∠DA=DB,∠∠B=∠DAB,∠AD是∠CAB的平分线,∠∠DAC=∠DAB,∠∠C=90°,∠∠B=30°,∠DE=1BD,2∠AD是∠CAB的平分线,∠C=90°,DE∠AB,∠DE=DC,BD,∠DC=12∠BD=3,∠DC=1,即DE=1,故答案为1.【点睛】本题考查的是线段垂直平分线的性质、角平分线的性质,及直角三角形中30°所对的直角边是斜边的一半,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.6【分析】根据题意设一次函数关系式为y=kx+b,将(−1,m)、(1,3)、(3,n)代入可得相应的等式,求解后即可得出答案.【详解】解:设一次函数关系式为y=kx+b,将(−1,m)、(1,3)、(3,n)代入得:m=−k+b,k+b=3,n=3k+b,∠m+n=−k+b+3k+b=2k+2b=2×3=6.故答案为:6.【点睛】本题考查一次函数图象上点的坐标特征及待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.6.到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.【详解】试题分析:直接利用线段的垂直平分线的性质及直线的性质进而分析得到答案.试题解析:分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,C D 两点的依据是:到线段两个端点距离相等的点在线段的垂直平分线上.连接CD 的依据是:两点确定一条直线.故答案为到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线. 7.x <2##2x >【分析】根据一次函数的性质,结合函数图象,可以写出不等式0kx b +>的解集.【详解】解:由图象可得,函数y =kx +b 与x 轴的交点为(2,0),y 随x 的增大而减小, ∠不等式kx +b >0的解集是x <2.故答案为:x <2.【点睛】本题主要考查一次函数与一元一次不等式,解答本题的关键是明确题意,利用数形结合的思想解答.8.23【分析】由作图步骤可知BG 为ABC ∠的角平分线,过G 作GM AB ⊥于M ,GN BC ⊥于N ,可得GM GN =,最后运用三角形的面积公式解答即可.【详解】解:如图,过点G 作GM AB ⊥于M ,GN BC ⊥于N .由作图可知,BG 平分ABC ∠,∠GM BA GN BC ⊥⊥,,∠GM GN =, ∠ABGBCG S S ∆∆122132AB GM AB BC BC GN ⨯===⨯, 故答案为:23. 【点睛】本题考查角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键.9.0x ≥【分析】观察函数图形得到当0x ≥时,一次函数y ax b =+的函数值小于或等于2,即2ax b +≤.【详解】解:根据题意得当0x ≥时,2ax b +≤,即不等式2ax b +≤的解集为0x ≥.故答案为:0x ≥.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.10.(0,﹣5)【分析】代入x =0求出y 值,进而可得出直线与y 轴的交点坐标.【详解】解:当x =0时,y =0﹣5=﹣5,∠一次函数y =x ﹣5的图像与y 轴的交点坐标是(0,﹣5).故答案为:(0,﹣5).【点睛】本题考查了一次函数图像上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式()0y kx b k =+≠是解题关键.11.(4,-4)或(2,2)【分析】根据点P 到两个坐标轴的距离相等可得a +1+5-3a =0或a +1=5-3a ,解方程可得a 的值,进而可得点P 的坐标.【详解】解:由题意得:a +1+5-3a =0或a +1=5-3a ,解得a =3或a =1.故当a =3时,P (4,-4);当a =1时,P (2,2);故答案为:(4,-4)或(2,2).【点睛】此题主要考查了点的坐标,关键是掌握点P 到两个坐标轴的距离相等时,横纵坐标相等或相反数关系.12.44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∠AD //BC ,∠∠DFE =180°−∠CEF =180°−68°=112°,∠∠D ′FE =112°,∠GFE =180°−112°=68°,∠∠GFD ′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.13.3【分析】如图,过M 点做x 轴的垂线,交x 轴于点N ,MN 的长度即为所求.【详解】解:如图,当MN x ⊥轴时,MN 的长度最小,最小值为3,故答案为:3.【点睛】本题考查平面直角坐标系中点到坐标轴的距离.掌握点到直线上的所有连线中,垂线段最短是解题的关键.14.四【分析】根据点P 在第一象限,即可得到点m 的符号,从而得到-m 的符号,即可得出点B 所在的位置.【详解】点P (m ,2)在第一象限,得m >0.由不等式的性质,得3>0,﹣m <0 那么点B (3,﹣m )在第四象限.故答案为:四.【点睛】此题主要考查点的坐标与象限的关系,解题的关键是熟记各象限对应的点的坐标符号.15.【分析】依据题意得到三个关系式:c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∠点(1P 在“勾股一次函数”a b y x c c =+的图象上,把(1P 代入得:a b c c=+,即a b +=, ∠,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∠1102ab =,222+=a b c ,故20ab =, ∠22()2a b ab c +-=,∠22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.16.5【分析】分别表示出∠ABD 与∠ACD 的周长,再作差即可得出结果.【详解】解:∠AD 是中线,∠BD=DC ,∠AB=17,AC=12,∠C △ABD - C △ACD =AB+AD+BD-AC-AD-DC=AB-AC=5,故答案为:5【点睛】本题考查的是中线的性质,掌握中线的性质是解题的关键.17.y =2.1x【详解】根据表格,易得规律:y=2x+0.1x=2.1x .故答案: 2.1y x = .18.493【详解】分析: 由图象可以看出,0-1min 内,小刚的速度可由距离减小量除以时间求得,1-3min 内,根据等量关系“距离减小量=小刚跑过的路程+小强跑过的路程”可得出小强的速度;由于小刚的速度始终是180米/分,小强的速度开始是220米/分,则他们的速度之差是40米/分,则10分钟相差400米,设再经过t 分钟两人相遇,利用相遇问题得到180t +120t =400,然后求出t 后加上前面的15分钟可得到小刚从家出发到他们再次相遇的时间总和.详解: 小刚比赛前的速度v 1=(540-440)=100(米/分),设小强比赛前的速度为v 2(米/分),根据题意得2×(v 1+v 2)=440,解得v 2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t 分钟两人相遇,则180t+120t=400,解得t =43(分) 所以小刚从家出发到他们再次相遇时5+10+43=493(分). 故答案为:493. 点睛: 本题考查了一次函数的应用:会利用一次函数图象解决行程问题的数量关系,相遇问题,追击问题的综合应用;解答时灵活运用行程问题的数量关系解答是关键. 19.40︒##40度【分析】根据SAS 证明ABE ACD ≌,再利用全等三角形的性质ABD ACD ∠=∠,然后由三角形的外角性质BOC ABD BAC ∠=∠+∠,BOC ACD BDC ∠=∠+∠,可说明BAC BDC ∠=∠,再利用等腰三角形的性质可求出70ABC ACB ∠=∠=︒,最后利用三角形的内角和解答即可.【详解】解:∠EAD BAC ∠=∠,∠BAC EAC EAD EAC ∠-∠=∠-∠,即BAE CAD ∠=∠,在ABE 和ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∠()ABE ACD SAS ≌,∠ABD ACD ∠=∠,∠BOC ∠是ABO 和DCO 的外角,∠BOC ABD BAC ∠=∠+∠,BOC ACD BDC ∠=∠+∠,∠ABD BAC ACD BDC ∠+∠=∠+∠,∠BAC BDC ∠=∠,∠AB AC =,70ACB ∠=︒,∠70ABC ACB ∠=∠=︒,∠180180707040BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒,∠40BDC BAC ∠=∠=︒.故答案为:40︒.【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,等腰三角形的性质,三角形的内角和等知识.根据全等三角形的判定和性质是解题的关键,也是本题的难点.20.1,02⎛⎫ ⎪⎝⎭##(0.5,0) 【分析】根据111k k x x -=- ,yk =1﹣yk ﹣1,求出前几个点的坐标会发现规律,这些点每6个为一个循环,根据规律求解即可.【详解】解:∵A 1(2,1),A 2(﹣1,0),…,Ak (xk ,yk ),…,(k 为正整数),且满足111k k x x -=-,yk =1﹣yk ﹣1,∴A 3(12,1),A 4(2,0),A 5(﹣1,1),A 6(12,0),A 7(2,1),A 8(﹣1,0),通过以上几个点的坐标可以发现规律,这些点每6个为一个循环,∵2022=6×337,∴A 2022的坐标为(12,0).故答案为:(12,0).【点睛】本题主要考查规律型:点的坐标,读懂题意,准确找出点的坐标规律是解答此题的关键.21.(1,-2)(答案不唯一).【分析】直接利用第四象限内点的坐标特点得出x ,y 的取值范围,进而得出答案.【详解】解:∠点P (x ,y )位于第四象限,并且x≤y+4(x ,y 为整数),∠x >0,y <0,∠当x=1时,1≤y+4,解得:0>y≥-3,∠y 可以为:-2,故写一个符合上述条件的点P 的坐标可以为:(1,-2)(答案不唯一).故答案为(1,-2)(答案不唯一).【点睛】此题主要考查了点的坐标,正确把握横纵坐标的符号是解题关键.22.6【分析】根据垂直平分线的性质可得AE=BE ,即可得出AC=BE+CE ,根据∠BCE 的周长即可得答案.【详解】∠DE 是AB 的垂直平分线,∠AE=BE ,∠AB=AC ,AC=AE+CE ,AB=11,∠BE+CE=AC=11, ∠BCE 的周长为17cm ,∠BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.23.(503,-503)【分析】根据图象得出点的坐标的规律,依据规律求解即可.【详解】解:根据图象得:2A ,6A ,10A 等在第四象限,每四个点循环一次,∠2010÷4=502⋯2,∠2010A 与2A 都在第四象限,横坐标为:(2010-2)÷4+1=503,纵坐标为-503,故答案为:(503,-503).【点睛】题目主要考查坐标与图形,点坐标规律探索,理解题意,找出点的坐标的规律是解题关键.24.>-2【分析】根据待定系数法求出y 1、y 2的函数表达式,再由y 1>y 2解一元一次不等式即可解答.【详解】解:将x =-1,y 1=0,x =-2,y 1=-3代入y 1=k 1x +b 1中,得:1111032k b k b =-+⎧⎨-=-+⎩,解得:1133k b =⎧⎨=⎩,∠y 1=3x +3,将x =-4,y 2=-1,x =-3,y 2=-2代入y 2=k 2x +b 2中,得:22221423k b k b -=-+⎧⎨-=-+⎩,2215k b =-⎧⎨=-⎩, ∠y 2=-x -5,由y 1>y 2得:3x +3>-x -5,解得:x >-2,即当x >-2时,y 1>y 2,故答案为:>-2.【点睛】本题考查待定系数法求一次函数表达式、解一元一次不等式,熟练掌握待定系数法求函数表达式的解法步骤是解答的关键.25.30【分析】直接利用角平分线的定义得出∠BOC=12∠AOB=12(90BOD ︒+∠)=1452BOD ︒+∠,进而得出方程∠BOD=12∠COB=12(1452BOD ︒+∠),从而求出答案. 【详解】解:∠90AOD ∠=︒,∠OC 平分∠AOB , ∠∠BOC=12∠AOB=12(90BOD ︒+∠)=1452BOD ︒+∠, ∠OD 平分COB ∠, ∠∠BOD=12∠COB=12(1452BOD ︒+∠), ∠∠BOD=30°.故答案为:30.【点睛】此题主要考查了角平分线的定义,正确得出关于∠BOD 的方程是解题关键. 26.∠∠∠【分析】∠根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义可得∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;∠先求出∠APB =∠FPB ,再利用“角边角”证明∠ABP 和∠FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;∠根据PF ∠AD ,∠ACB =90°,可得AG ∠DH ,然后求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后求出DG =GH +AF ,根据AFA 可得结论;∠根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明∠AHP 与∠FDP 全等,根据全等三角形对应边相等可得DF =AH .【详解】解:∠∠∠ABC 的角平分线BE 和∠BAC 的外角平分线相交于点P ,∠∠ABP =12∠ABC ,∠CAP =12(90°+∠ABC )=45°+12∠ABC ,在∠ABP 中,∠APB =180°﹣∠BAP ﹣∠ABP =180°﹣(45°+12∠ABC +90°﹣∠ABC )﹣12∠ABC =180°﹣45°﹣12∠ABC ﹣90°+∠ABC ﹣12∠ABC =45°,故∠正确; ∠∠PF ∠AD ,∠APB =45°(已证),∠∠APB =∠FPB =45°,∠PB 为∠ABC 的角平分线,∠∠ABP =∠FBP ,在∠ABP 和∠FBP 中,APB FPB PB PBABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABP ∠∠FBP (ASA ),∠AB =BF ,AP =PF ,故∠正确;∠∠PF ∠AD ,∠ACB =90°,由∠知PD =PH ,∠∠DPH 为等腰直角三角形,∠∠PDH =45°,∠∠P AF =45°,∠AG ∠DH ,∠AP =PF ,PF ∠AD ,∠∠P AF =45°,∠∠ADG =∠DAG =45°,∠DG =AG ,∠∠P AF =45°,AG ∠DH ,∠∠ADG 与∠FGH 都是等腰直角三角形,∠DG =AG ,GH =GF ,∠DG =GH +AF ,∠AFP A ,∠DG+GH ,故∠错误;∠∠∠ACB =90°,PF ∠AD ,∠∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∠∠AHP =∠FDP ,∠PF ∠AD ,∠∠APH =∠FPD =90°,在∠AHP 与∠FDP 中,AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠AHP ∠∠FDP (AAS ),∠DF =AH ,∠BD =DF +BF ,又∠AB =BF ,∠BD =AH +AB ,故∠正确;故答案为:∠∠∠.【点睛】本题考查外角的性质,角平分线的性质,三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质,解题关键是掌握外角的性质,角平分线的性质,三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质.27.15°【分析】根据三角板的性质和三角形外角的性质求解即可.【详解】∠ADC △是45°的直角三角板,ABE 是30°的直角三角板∠4530ADC ABE =︒=︒∠,∠∠ADC ABE DFB =+∠∠∠∠453015DFB ADC ABE =-=︒-︒=︒∠∠∠故答案为:15°.【点睛】本题考查了三角板的角度问题,掌握三角板的性质和三角形外角的性质是解题的关键.28.32或112 【分析】分两种情况进行讨论,根据题意得出522CP t =-=和922DP t =-=,即可求得.【详解】解:当P 在BC 上时,由题意得2BP t =,∠52CP BC BP t =-=-,∠90DCP DCE ∠=∠=︒,CD 为公共边,∠要使DCP DCE ≌,则需CP CE =,如图1所示:∠2CE =,∠522t -=, ∠32t =, 即当32t =时,DCP DCE ≌;当P 在AD 上时,由题意得2BC CD DP t ++=,∠5BC =,4CD =,∠29DP t =-,∠90CDP DCE ∠=∠=︒,CD 为公共边,∠要使DCP CDE ≌,则需DP CE =,如图2所示:即292t-=,∠112t=,即当112t=时,DCP CDE≌;综上所述:当32t=或112t=时,DCP和CDE全等.故答案为:32或112.【点睛】本题考查了全等三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.29.130°【分析】直接利用角平分线的定义结合度分秒换算方法分析得出答案.【详解】解:∠OE为∠BOD的平分线,∠2∠BOE=∠BOD,∠∠BOE=25°,∠∠BOD=50°,∠∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,∠∠AOC=360°-∠AOB-∠COD-∠BOD,=360°-90°-90°-50°,=130°.【点睛】此题主要考查了角平分线的定义以及度分秒的换算,正确理解相关定义是解题关键.30.(﹣25,0)【详解】如图,过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小.∠A(3,4),∠A′(2,4),∠B(-1,1),∠B′(-1,-1).设直线A′B′的解析式为y=kx+b,则241k bk b+=⎧⎨-+=-⎩,解得,k=53,b=23.∠直线A′B′的解析式为y=53x+23,当y=0时,53x+23=0,解得x=-25.故线段EF平移至如图所示位置时,四边形ABEF的周长最小,此时点E的坐标为(-25,0).点睛:本题考查了待定系数法求一次函数的解析式,轴对称-最短路线问题,根据“两点之间,线段最短”确定点E、F的位置是关键,也是难点.31.(1)x=1;(2)三角形的周长为14cm或13cm【分析】(1)先去分母,然后解一元一次方程,最后进行检验即可得;(2)根据题意进行分类讨论:∠当腰长是5cm时,则三角形的三边是5cm,5cm,4cm;∠当腰长是4cm时,三角形的三边是4cm,4cm,5cm;考虑三边能否构成三角形,然后求周长即可得.【详解】(1)解:211x x-=+,方程两边同时乘以:()1x x +得()210x x -+=,210x x --=,1x =检验:1x =时,()10x x +≠,∴1x =是原方程的解;(2)解:等腰三角形的两边长分别为4cm 和5cm ,∠当腰长是5cm 时,则三角形的三边是5cm ,5cm ,4cm ,554+>,满足三角形的三边关系,∴三角形的周长是55414++=(cm );∠当腰长是4cm 时,三角形的三边是4cm ,4cm ,5cm ,445+>,满足三角形的三边关系.∴三角形的周长是54413++=(cm );综上,三角形的周长为14cm 或13cm .【点睛】题目主要考查解分式方程及等腰三角形的定义,三角形三边关系等,理解题意,综合运用这些知识是解题关键.32.答案见解析【分析】结合等式的性质利用ASA 可证∠ABC ∠∠EBD ,由全等三角形对应角相等的性质等量代换可得∠C =∠FBD ,根据内错角相等,两直线平行可得AC ∠BD.【详解】解:∠∠ABE =∠CBD (已知),∠∠ABE +∠EBC =∠CBD +∠EBC (等式的性质),即∠ABC =∠EBD在∠ABC 和∠EBD 中,ABC EBD AB BEA E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EBD (ASA ),∠∠C =∠D ( 全等三角形对应角相等)∠∠FBD =∠D ,∠∠C =∠FBD (等量代换),∠AC ∠BD (内错角相等,两直线平行).故答案为:等式的性质;AB =BE ;ASA ;全等三角形对应角相等;∠FBD ;内错角相等,两直线平行.【点睛】本题主要考查了全等三角形的判定与性质及平行线的判定,熟练的掌握每一步证明的依据是解题的关键.33.(1)见详解(2)50DBC ∠=︒【分析】(1)由“AAS ”可证ABD ECB ≌;(2)由全等三角形的性质可得BD BC =,由等腰三角形的性质可求解.【详解】(1)证明:∠AD BC ∥,∠ADB EBC ∠=∠,在ABD △和ECB 中,A BEC AB ECADB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABD ECB ≌(AAS );(2)解:∠ABD ECB ≌,∠BD BC =,∠65BDC BCD ∠=∠=︒,∠50DBC ∠=︒.【点睛】本题考查了全等三角形的判定和性质,平行线的性质以及等腰三角形的性质,还考查学生运用定理进行推理的能力,题目比较典型,难度适中.34.∠BDC =75°,∠EDC =25°【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出1===252BCD ACD ACB ∠∠∠,则由三角形内角和定理可求出∠BDC =180°-∠B -∠BCD =75°,再由平行线的性质即可得到∠EDC =∠BCD =25°.【详解】解:∠∠A =50°,∠B =80°,∠∠ACB =180°-∠A -∠B =50°,∠CD 平分∠ACB ,∠1===252BCD ACD ACB∠∠∠,∠∠BDC=180°-∠B-∠BCD=75°,∠DE∥BC,∠∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.35.(1)25°;(2)25°.【详解】试题分析:(1)根据∠MON和∠BOC的度数可以算出∠MOC的度数,(2)根据OC是∠MOB的平分线,可求出∠MOC=65°, ∠BOC=65°,因为∠MON=90°,利用角的和差关系可求出: ∠CON=∠MON∥∠MOC=90°∥65°=25°, ∠BON=∠BOC∥∠CON,即∠BON=65°∥25°=40°.试题解析:(1)因为∠MON=90°,∠BOC=65°,所以∠MOC=∠MON-∠BOC=90°-65°=25°.故答案为25°.(2)因为∠BOC=65°,OC是∠MOB的平分线,所以∠MOB=2∠BOC=130°,所以∠BON=∠MOB-∠MON=130°-90°=40°,所以∠CON=∠COB-∠BON=65°-40°=25°.点睛:本题主要考查角的和差关系以及角平分线的定义进行角度的计算,解决本题的关键要学会分析简单的几何图形,弄清角与角之间的和差关系.36.(1)120°;(2)10°;(3)n°-90°【分析】(1)根据角平分线的定义得到AOB=∠BOC=12∠AOC,再结合∠AOB+∠AOC=180°,可得∠AOC的度数;(2)根据∠AOC得到∠AOB,再根据角平分线的定义得到∠AOP=40°和∠AOQ=50°,从而求出∠POQ;(3)根据(2)中的方法和过程求解即可.【详解】解:(1)如图(1),∠OQ平分∠AOC,且点Q与点B重合,∠∠AOB=∠BOC=12∠AOC,。

人教版八年级数学上册期末综合复习测试题(含答案)

人教版八年级数学上册期末综合复习测试题(含答案)

八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。

2022年人教版八年级上册数学第十三章综合测试试卷及答案

2022年人教版八年级上册数学第十三章综合测试试卷及答案
2
-22-
第十三章 综合练习
(2)同(1)得∠BAD=∠BDA,∠EAC=∠C.
∵∠BAE=n°,即∠BAD+∠DAE=n°,
且∠BDA=∠DAC+∠C=∠DAE+2∠EAC,
∴∠DAE+2∠EAC+∠DAE=n°,
∴∠DAE+∠EAC=1 n°,即-
第10题图
-10-
第十三章 综合练习
11.如图为3×3的方格纸,在其中一个空白小方格中画上半径 相等的圆,使整个图形为轴对称图形,则这样的轴对称图形共 有 3 个.
第11题图
-11-
第十三章 综合练习
12. 如图1,正△ABC的面积为1,把它的各边延长一倍得到正 △A1B1C1,再把正△A1B1C1的各边延长一倍得到正△A2B2C2 (如图2),如此进行下去,…… (1)正△A1B1C1的面积为 7 ; (2)正△AnBnCn的面积为 7n .(用含n的式子表示,n为正整数)
8.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,
E,F分别为BC和CD上的动点,连接AE,AF,EF.当△AEF的周
长最小时,∠EAF的度数为( C )
A.60°
B.90°
C.100° D.120°
第8题图
-9-
第十三章 综合练习
二、填空题(本大题共4小题,每小题5分,满分20分) 9.点(2022,2023)关于x轴对称的点的坐标是 (2022,-2023) . 10.如图,在△ABC中,AB的垂直平分线交BC于点D,交AB于点 F,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE.若 △ADE的周长为8,则BC的长为 8 .
-3-
第十三章 综合练习
3.如果△ABC与△A1B1C1关于y轴对称,已知点A(-4,6), B(-6,2),C(2,1),现将△A1B1C1向左平移5个单位长度,再 向下平移3个单位长度后得到△A2B2C2,则点B2的坐标为

八年级数学上册综合算式专项练习题分数运算

八年级数学上册综合算式专项练习题分数运算

八年级数学上册综合算式专项练习题分数运算在八年级数学上册中,分数运算是一个重要的知识点。

熟练掌握分数的四则运算,对于学生理解数学概念和解决实际问题具有重要意义。

本文将为大家提供一系列综合算式专项练习题,帮助同学们巩固分数运算的知识。

一、加法与减法1. 计算:2/3 + 1/4 = ?2. 计算:5/8 - 1/6 = ?3. 计算:3/5 + 7/10 - 1/4 = ?二、乘法与除法4. 计算:2/3 × 3/4 = ?5. 计算:5/6 ÷ 2/5 = ?6. 计算:7/8 × 1/2 ÷ 3/5 = ?三、混合运算7. 计算:2/3 + 1/2 × 3/4 - 1/6 = ?8. 计算:3/5 - (1/4 + 2/3) × 1/2 = ?9. 计算:5/8 ÷ 2/3 + 7/10 - 1/4 = ?四、综合应用10. 某电商平台上,一件衣服原价为108元,现以8折优惠出售,小明用一张优惠券再减去20元,请计算小明最终需要支付的金额。

假设优惠券可以与打折同时使用。

11. 小明学习了5天的数学课程,每天花费3小时。

他的学习计划是完成总课时的3/5,那么小明还需再学习多少天才能完成整个课程?12. 一辆汽车以每小时60公里的速度行驶,行程为180公里。

如果车辆行驶的1/4 距离是下坡路段,速度可以提高到每小时80公里。

请计算整个行程需要的时间。

通过以上一系列的综合算式专项练习题,同学们能够逐步熟悉和掌握分数运算的技巧。

在解答过程中,可以通过化简、通分、借位等方法来简化计算过程。

同时,对于与实际问题的结合,能够锻炼同学们的应用能力,帮助他们将数学知识灵活运用到生活中。

希望同学们认真完成以上练习题,并及时检查答案。

如果有任何疑惑或困难,可以向数学老师请教,或是与同学们一起进行讨论学习。

通过不断练习和巩固,相信大家能够在分数运算上取得更好的成绩,提高自己的数学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10题八年级上数学综合练习题一、填空题(每小题3分,共24分) 1. 计算:432)2(a a ⋅= .2. 如果分式2202x x x-=-,则x = . 3. 若一个多边形的内角和是外角和的3倍,则它是_______边形. 4. 因式分解:2242x x ++= . 5. 分式方程 211033x x x-+-=--的解为 . 6. 已知63x y xy +==-,,则22x y xy +=______________. 7. 如图,已知AC FE =,BC DE =,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是 . 8. 若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 . 二、单项选择题(每小题3分,共24分)9.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称.则2013)a b +(的值为( )A.0B. 1C. -1D.(-3)201310.如图,Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于 点D ,2CD =,则点D 到AB 的距离是( ) A .1 B .2 C .3 D .4八年级数学试卷 第1页 (共8页)11.下列运算正确的是( )A .222()a b a b +=+ B .235a b ab +=C .632a a a ÷=D .523a a a =⋅12.下列判定直角三角形全等的方法,不正确...的是 ( ) A .斜边和一锐角对应相等 B .两锐角对应相等C .两条直角边对应相等D .斜边和一条直角边对应相等13.化简22)11(b a abb a -⋅-的结果是( )A.b a +1 B.ba +-1C.b a -D. a b - 14.如图,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( )A .6B .4C .23D .515.下面有4个汽车标志图案,其中是轴对称图形的是 ( )① ② ③ ④A.①②③B.②③④C.①②④D.①③④16.某厂去年产值是m 万元,今年产值是n 万元(m<n ),则今年产值比去年产值增加的百分比是( )A .100⨯-n n m %B .1001⨯⎪⎭⎫⎝⎛+m n % C .100⨯-m m n % D .10010⨯-m m n %八年级数学试卷 第2页 (共8页)三、解答题(17、18每题5分,19、20每题6分,共22分)DACBDCBAEH第14题第7题ACD BEF17. 计算:12m 2-9+23-m.18. 如图,有两个74⨯的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时..满足以下要求: (1)线段的一个端点为梯形的顶点,另一个端点在梯形一边的格点上; (2)将梯形分成两个图形,其中一个是轴对称图形; (3)图1、图2中分成的轴对称图形不全等.19.先化简,再求值:2121(1)1a a a a ++-⋅+,其中a =31. .八年级数学试卷 第3页 (共8页)20.(1)因式分解:3231827x x x -+. (2)计算: 22()()a b a ab b -++.四、解答题(每小题7分,共14分)21. 雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=31AB ,AF=31AC ,当O 沿AD 滑动时, 雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 有何关系?说明理由.八年级数学试卷 第4页 (共8页)图1图2ADBEFC22.一辆汽车开往距离A 地180千米的B 地,出发后第一小时内按原计划的速度匀速行驶,一小时后 加速为原来速度的1.5倍,并比原计划提前40分钟到达B 地.求汽车原计划的行驶速度.五、解答题(每小题8分,共16分)23. 如图,已知AC ⊥CB ,DB ⊥CB ,AB ⊥DE ,AB =DE ,E 是BC 的中点. (1)观察并猜想BD 和BC 有何数量关系?并证明你猜想的结论. (2)若BD =6cm ,求AC 的长.八年级数学试卷 第5页 (共8页)24.观察“探究性学习”小组的甲、乙两名同学进行的因式分解: 甲:244x xy x y -+-=2()(44)x xy x y -+-(分成两组) =()4()x x y x y -+-(直接提公因式) =()(4)x y x -+; 乙:2222a b c bc --+=222(2)a b c bc -+-(分成两组) =22()a b c --(直接运用公式) =()()a b c a b c +--+.请你在他们解法的启发下,完成下面的因式分解: (1)32248m m m --+; (2)2229x xy y -+-.八年级数学试卷 第6页 (共8页)六、解答题(每小题10分,共20分)25.已知:点O 到ABC △的两边AB AC ,所在直线的距离相等,且OB OC =. (1)如图1,若点O 在边BC 上,求证:AB AC =;(2)如图2,若点O 在ABC △的内部,求证:AB AC =;(3)若点O 在ABC △的外部,AB AC =成立吗?请画图说明(不需证明).八年级数学试卷 第7页 (共8页)26.(1)如图(1)所示,已知120,MAN AC ∠=平分90,MAN ABC ADC ∠∠=∠=。

则能得出如下两个结论:○1DC BC =;○2.AD AB AC +=请你证明结论○2; (2)如图(2)所示,把(1)中的条件“90ABC ADC ∠=∠=”改为180ABC ADC ∠+∠=,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说 明理由。

八年级数学试卷 第8页 (共8页)参考答案一. 填空题(每小题3分,共24分)1. 108a 2.-2 3. 八 4. 22(1)x + 5. 2x = 6. 18- 7. 答案不唯一,C E ∠=∠也可以是AB FD =或AD FB =等 8.15或75二.单项选择题(每小题3分,共24分)9. C 10. B 11. D 12. B 13. B 14. B 15. A 16. C 三.解答题(17、18每小题5分,19、20每小题6分,共22分)17. 解:原式=3m 2-+. 18. 解:(答案不唯一)19. 解: 原式=a a a a 2)1(111+⋅+-+ = 1a + .当a =31时, 原式=34. 20. 解: (1)23(3)x x -; (2)33ab -.四.解答题(每小题7分,共14分)21. BAD CAD ∠=∠.证明:∵ AB=AC, AE=31AB,AF=31AC, ∴AE=AF .在⊿AOE 和⊿AOF 中,AE AF AO AO OE OF =⎧⎪=⎨⎪=⎩∴⊿AOE ≌⊿AOF . EAO FAO ∴∠=∠. 即BAD CAD ∠=∠.22. 解:设原计划每小时行驶x 千米,根据题意:325.1180180=---x x xx解得:x=60经检验x=60是原方程的解。

答:原计划每小时行驶60千米。

五.解答题(每小题8分,共16分) 23.(1)BD BC =.提示:先利用AAS 证明⊿CAB ≌⊿BED ,得BD BC =.(2)3AC cm =.由⊿CAB ≌⊿BED 得,6BC BD cm ==,AC EB =。

因为E 是BC 的中点,所以132EB BC cm ==,所以3AC cm =。

24. 解:(1)2(2)(2)m m -+; (2)(3)(3)x y x y -+--. 六.解答题(每小题10分,共20分)25. 证明:(1)过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF ,OB =OC ,∴Rt △OEB ≌Rt △OFC ∴∠B =∠C ,从而AB =AC 。

(2)过点O 分别作OE ⊥AB ,OF ⊥AC ,E 、F 分别是垂足,由题意知,OE =OF 。

在Rt △OEB 和Rt △OFC 中,∵OE =OF ,OB =OC ,∴Rt △OEB ≌Rt △OFC 。

∴∠OBE =∠OCF ,又由OB =OC 知∠OBC =∠OCB ,∴∠ABC =∠ACB , ∴AB =AC 。

(3)不一定成立。

(注:当∠A 的平分线所在直线与边BC 的垂直平分线重合时,有AB =AC ;否则,AB≠AC ,如例图)(成立)(不成立)26.(1)提示:证得⊿ADC ≌⊿ABC ,则有AD AB =,再证30ACD ACB ∠=∠=,则有12AD AC =, 12AB AC =,AD AB AC ∴+=;(2)成立。

提示:作,,CE AN CF AM ⊥⊥垂足分别为E 和F 。

证得⊿DFC ≌⊿BEC ,CD BC ∴=.即○1成立。

同时则有DF BE =,.AF AE AD AB ∴+=+由(1)可知: ,,AF AE AC AD AB AC +=∴+=即○2成立。

相关文档
最新文档