霍尔效应测量(精)
霍尔效应测量
3、测量用稳压源、恒流源
FH4512A霍尔效应螺旋管实验仪
1、 螺 旋 管 线 包
2、 霍 尔 传 感 器 3、 移 动 探 测 杆
FHtech富 阳 华 盛 FH4512 型 螺 旋 管 磁 场 实 验 仪
控制电源 输入
上
上
下
下
换向
Is/Vs输 入
上
上
下
下
换向
测量输出
上
上
下
下
换向
直流励磁输入
5、 被 测 电 压 输 出 端 4、 测 量 电 压 /电 流 输 入 端
图4 FH4512A 螺旋管磁场实验仪
6、 励 磁 电 流 输 入 端
【实验原理 】
1、霍耳元件测磁场原理
霍尔效应从本质上讲是运动的带电粒子在磁场中 受洛仑兹力的作用而引起的偏转。当带电粒子(电 子或空穴)被约束在固体材料中,这种偏转就导致 在垂直电流和磁场的方向上产生正负电荷在不同侧 的聚积,从而形成附加的横向电场。
霍尔元件仍位于气隙中心,调节 Is =5.00mA , 调节 IM =50、100、200……1000mA,分别测量霍尔电压 VH 值 填入表(2),并绘出 IM - VH 曲线,验证线性关系的 范围,分析当IM 达到一定值以后, IM- VH 直线斜率变 化的原因。
测量螺旋管中磁感应强度B的分布
c) FH2601数字源表面板右边是霍尔片工作电流源 。
2、连线路 首先将二个电流源输出调节到最小。
a) 将霍尔传感器的工作电流端(红色线+、黑色 线-)与FH2601的2mA电流输出端相连接。
b) 将霍尔传感器的输出电压(霍尔电压)与 FH2601的电压检测输入端相连接。
霍尔效应法测量磁场实验原理
霍尔效应法测量磁场实验原理
霍尔效应是一种将磁场转化为电场的现象。
在导体中通过一定大小的电流时,磁场将
激发在导体中的自由电子,在磁场的作用下,自由电子受力偏移其轨迹,导致电子在垂直
于电流流动方向和磁场方向的方向上产生横向漂移,于是就在导体上产生了横向电场。
这
个现象被称为霍尔效应,相应的电压称为霍尔电压,而产生这种电压的元件称为霍尔元件。
通过测量霍尔电压可以精确测量磁场的大小。
在磁场B作用下,在宽度为w,长度为l的薄片导体上通过电流I,在导体中激发载流子,随后载流子受到洛伦兹力的作用,在y方向上发生位移,导致产生的跨导G与磁感应
强度B直接成正比关系:
G=Vxy/I = RH B
其中Vxy为横向电压,I为电流,RH是霍尔系数,容易得知,做定量测量时,RH是定值,而在实验条件不变的情况下,Vxy与I成正比,Vxy与B成正比,因此,B∝Vxy,也就是说,磁场强度与横向电压成正比。
因此,可以通过测量横向电压Vxy的大小,从而获得磁场B的大小。
但需要注意的是,为了保证测量的准确性,霍尔元件应该放置在磁场的均匀区域内,且磁场的方向应与导体
中电流的前进方向垂直。
总之,霍尔效应是一种精准测量磁场的方法,它可以广泛应用于科学研究和工程实践中。
霍尔效应实验报告
霍尔效应实验报告引言:霍尔效应是指当电流通过垂直于电流方向的导电体时,会产生横向电势差(Hall voltage)。
通过研究霍尔效应,可以了解材料的电性质,并在磁传感器、霍尔元件等领域得到应用。
本实验旨在通过测量霍尔效应的相关参数,深入了解其原理和特性。
实验材料与仪器:1. 霍尔片:选用精确的霍尔片,并保证其表面电阻低于10 Ω;2. 磁铁:用于产生磁场,保证其磁场均匀且稳定;3. 恒流源:用于提供稳定的电流;4. 毫伏表:用于测量霍尔电压;5. 恒温槽:用于控制实验环境温度。
实验原理:当电流通过霍尔片时,由于霍尔片内产生的洛伦兹力,电子受力方向与电流方向成正交关系,从而形成电子在导电体中的漂移运动。
此过程中,电子受力方向受磁场和电荷载流方向的共同作用。
当磁场、电流和电子漂移方向垂直时,会在导体一侧产生电势差,即霍尔电压。
实验步骤:1. 将霍尔片固定在实验台上,并将磁铁与霍尔片垂直放置;2. 连接恒流源,并设置电流大小;3. 通过毫伏表测量霍尔电压,并记录;4. 重复步骤2和3,改变电流大小,记录相应的霍尔电压;5. 在实验过程中,保持实验环境温度恒定,使用恒温槽进行控制。
实验数据及结果:按照上述步骤进行实验,依次记录不同电流值下的霍尔电压。
随后,根据实验数据绘制电流与霍尔电压之间的关系曲线图,并进行数据分析。
分析与讨论:通过实验数据的分析,我们可以得到以下几个结论:1. 霍尔电压与电流存在线性关系,电流越大,霍尔电压也越大;2. 霍尔电压与磁场的关系是非线性的,且磁场强度越大,霍尔电压也越大;3. 霍尔电压与温度存在一定的关系,随着温度的升高,霍尔电压会变化。
以上结论验证了霍尔效应的基本原理。
当电流通过霍尔片时,受到磁场的作用,电子受到洛伦兹力的驱动,从而产生横向电势差。
而电势差的大小与电流、磁场以及温度等因素有关。
实验误差分析:在实验过程中,由于外界环境的干扰以及仪器的精度等原因,会产生一定的误差。
霍尔效应标准测厚仪标准
霍尔效应标准测厚仪标准
霍尔效应标准测厚仪的标准主要包括以下几方面:
1.测量范围:通常要求测厚范围广、分辨率高,以适应不同行业及不同材
料的测量要求。
2.测量精度:通常要求其测量精度在±1%以内。
3.使用环境:对于特殊环境,如高温、潮湿、易爆等环境,测厚仪需满足
相应的要求以确保安全可靠的运行。
4.外观及材料:外观设计和材质选择要符合相关行业、国家标准。
5.同步实时显示功能:测厚仪应具有大值、小值和自动计算厚薄比功能,
且可自动清零,同一批次产品可实现连续测量,并自动判断产品厚度最小值和厚薄比测量值是否合格。
6.数据打印输出:可选配标准配置,包括主机、电源线、使用说明书、产
品合格证、3mm直径钢珠等。
以上是霍尔效应标准测厚仪的一些标准,具体可能会因地区、设备型号等不同而有所差异。
霍尔效应及其应用(精)
VH (V1 V2 V3 V4) 4
实验数据记录及处理
1.测量VH~IS曲线(取IM=0.6A)
Is(mA) 0 0.5 1 1.5 2 2.5 3 3.5 4 V1(+ +) V2(+ -) V3(- +) V4(- -) VH(mV)
2.测量VH~IM曲线(IS=3.0mA)
霍尔效应及其应用
※ ※ ※ ※ ※
思数实实实
考据验验验
题记内原目
录容理的
及
与
处
要
理
求
﹡实验目的和要求
了解霍尔效应实验原理 学习用“对称测量法”消除副效应的影响,测量
试样的VH~IS和VH~IM曲线 确定试样的导电类型、载流子浓度及迁移率
﹡实验原理
霍尔效应从本质上讲是运动的带电粒子在磁 场中受洛仑兹力作用而引起的偏转。当带电粒子 (电子或空穴)被约束在材料中,这种偏转就导 致在垂直电流和磁场的方向中上产生正负电荷的 聚积,从而形成附加的横向电场,即霍尔电场。
5.求出霍尔系数 RH ,载流子浓度 n ,电导率 ,迁移率 。
说明:由VH ~ Is曲线得出斜率
其中 k
RH
B d
B kBIM
k B 为实量电磁铁端口的磁场分布(自己拟定步骤,注意在变化大
的区间应增大)
思考题
1.霍尔元件都用半导体材料制成而不用金 属材料,为什么?
Y
4
++++++++
Is
EH V
FE -e
FB
----------
Z
B
实验十九霍尔效应-电导率的测定
实验十九 霍尔效应-电导率的测定一、实验目的1. 掌握霍尔效应产生的原理。
2. 了解变温霍尔效应测试系统的使用方法。
3. 掌握测量材料电阻率的基本原理和方法。
二、实验原理1. 霍尔效应霍尔效应是指在外加磁场下,处于导电状态的材料中的载流子由于受洛伦兹力的作用运动发生偏转,在垂直于磁场方向的材料的两端积聚异种电荷的现象。
并且当外加磁场一定,电流不变以及温度恒定的情况下,材料在平行磁场两端积聚电荷数达到稳定,因此产生一个恒定电压V H , 称为霍尔电压,该值大小由下式表述:t IBR V H H /= (1)式中:V H 单位为V ,t 为样品厚度,单位为m ;I 为通过样品的电流,单位为A ; B 为磁通密度,单位为wb/m 2;R H 为霍尔系数,与材料的性质有关,单位m 2/C 。
2. 材料的电阻率材料的电阻率是表征材料导电能力的重要参数,它与材料的几何形状以及材料中所加电流和电压无关。
标准样品(直六面体)的电阻率由下式表示:)(m ILtwV ⋅Ω=ρσ (2) 其中V σ为电导电压,单位为V ,t 为样品厚度,单位为m ,w 为样品宽度,单位为m ,L 为样品电位引线之间的距离,单位为m ,I 为通过样品的电流,单位为A 。
三、实验仪器设备及流程1.CVM-200霍尔效应仪。
2.TC-201温控仪。
3.SV-12变温恒温仪。
4. 可换向永磁磁铁。
5. 实验样品:1) 美国Lakeshore公司HGT-2100高灵敏霍尔探头,工作电流10mA,室温下灵敏度为55-140mV/kG;2) 碲镉汞单晶,厚1.11mm,最大电流50mA。
四、实验操作步骤1.磁场标定系统中的S1为已在室温下标定过的霍尔探头,在室温下用开关选择样品S1,并使恒温器位于可换向永磁磁铁中心,恒温器真空抽口垂直于商标面。
开机后快速将横流源输出调到mA,此时CVM-200表的微伏表电压读数即为磁场的特斯拉数。
霍尔探头最大电流为10mA。
讲义_霍尔效应测量
讲义_霍尔效应测量变温霍尔效应引言1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。
在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。
霍尔效应的研究在半导体理论的发展中起了重要的推动作用。
直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。
利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。
测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。
根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。
实验目的1. 了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。
2. 掌握霍尔系数和电导率的测量方法。
通过测量数据处理判别样品的导电类型,计算室温下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。
3. 掌握动态法测量霍尔系数(RH)及电导率(σ)随温度的变化,作出RH~1/T,σ~1/T曲线,了解霍尔系数和电导率与温度的关系。
4. 了解霍尔器件的应用,理解半导体的导电机制。
实验原理1.半导体内的载流子根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。
(1)本征激发半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。
因此,半导体内存在参与导电的两种载流子:电子和空穴。
这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。
显然,导带上每产生一个电子,价带上必然留下一个空穴。
利用霍尔效应测量磁场强度的准确性与精度
利用霍尔效应测量磁场强度的准确性与精度在科学领域中,测量是一个至关重要的环节。
而测量磁场强度是许多领域中的一个重要任务,如电子学、物理学、工程学等。
而利用霍尔效应作为一种磁场测量的手段,其准确性与精度备受关注。
霍尔效应是指当一个导体中有电流通过时,放置在器件中的霍尔元件会产生一种电势差,称为霍尔电压。
霍尔电压与电流方向和磁场的垂直夹角有关。
通过测量霍尔电压的大小,我们可以得知磁场的强度。
利用霍尔效应测量磁场强度的准确性是指测量结果与真实值之间的偏差程度。
而精度则是指在多次测量中结果的一致性。
测量结果准确且精度高,意味着测量方法具备很强的可靠性。
然而,利用霍尔效应测量磁场强度并非是一项完美的技术。
首先,霍尔电压的大小受到很多因素的影响,如环境温度、材料特性等。
这些因素的变化可能会引起测量结果的偏差。
因此,在实际应用中,我们需要对这些因素进行修正,以提高测量的准确性。
其次,霍尔元件本身也存在一定的误差。
例如,霍尔元件的位置和姿态对测量结果的影响较大,而由于制造和安装的差异,元件之间的特性也会产生差异。
因此,在测量中需要进行校准,以减小这些误差。
除了误差修正和校准,提高利用霍尔效应测量磁场强度的准确性与精度还需要考虑其他因素。
例如,在实际应用中,磁场的强度范围可能会很大,因此需要选择合适的霍尔元件和电路来适应不同磁场强度的测量。
此外,采用合适的采样频率和滤波技术,可以降低噪声对测量结果的影响,提高准确性和精度。
针对利用霍尔效应测量磁场强度的准确性和精度,科学家们进行了大量的研究和改进。
他们提出了各种新的方法和技术,以提高测量的可靠性。
例如,利用微电子加工技术制作高精度的霍尔元件,通过优化电路设计,减小误差。
此外,利用计算机模拟和数据处理方法,可以进一步提高准确性和精度。
综上所述,利用霍尔效应测量磁场强度的准确性与精度是一个相对复杂的问题。
尽管存在各种误差和挑战,科学家们在不断努力,改进测量方法和技术。
霍尔效应实验方法
霍尔效应实验方法【实用版3篇】目录(篇1)1.霍尔效应实验方法的概述2.霍尔效应实验方法的原理3.霍尔效应实验方法的步骤4.霍尔效应实验方法的应用5.霍尔效应实验方法的注意事项正文(篇1)【霍尔效应实验方法的概述】霍尔效应实验方法是一种用于测量半导体材料中的霍尔效应的实验方法。
霍尔效应是指当半导体材料中的载流子在电场作用下发生偏移,并在材料内部产生横向电场,从而导致横向电流的现象。
霍尔效应实验方法可以帮助研究者了解半导体材料的性质,并为器件设计和制造提供重要参数。
【霍尔效应实验方法的原理】霍尔效应实验方法的原理是基于霍尔效应的测量。
在半导体材料中,载流子受到电场作用而发生偏移,形成横向电场。
当横向电场达到一定程度时,会在材料表面产生横向电流。
通过测量横向电流,可以计算出载流子浓度和电场强度等相关参数。
【霍尔效应实验方法的步骤】1.准备半导体材料:选择合适的半导体材料,如硅、锗等,并加工成薄片或晶圆。
2.制作电极:在半导体材料表面制作电极,通常需要四个电极,分别是源极、漏极、霍尔极和反向霍尔极。
3.施加电压:通过源极和漏极施加直流电压,形成直流电场。
4.测量电流:通过霍尔极和反向霍尔极测量横向电流。
5.计算参数:根据测量得到的横向电流,计算载流子浓度、电场强度等参数。
【霍尔效应实验方法的应用】霍尔效应实验方法在半导体材料研究、器件设计和制造等领域具有广泛应用。
通过测量霍尔效应参数,可以了解半导体材料的载流子浓度、迁移率、电阻率等重要参数,为器件设计和制造提供重要依据。
【霍尔效应实验方法的注意事项】1.在实验过程中,要注意半导体材料的加工和处理,避免污染和损伤。
2.在施加电压时,要注意控制电压和电流,避免超过材料的承受范围。
目录(篇2)1.霍尔效应实验方法的背景和意义2.霍尔效应实验方法的原理3.霍尔效应实验方法的实验步骤4.霍尔效应实验方法的注意事项5.霍尔效应实验方法的应用领域正文(篇2)一、霍尔效应实验方法的背景和意义霍尔效应实验方法是一种用于测量磁场强度的实验方法,它基于霍尔效应的原理。
霍尔效应 测试 标准
霍尔效应测试标准一、测试环境要求1.温度:测试环境温度应保持在(25±5)℃。
2.湿度:测试环境湿度应保持在(50±10)%。
3.洁净度:测试环境应无尘埃,无有害气体,并保持清洁。
4.磁场:测试环境中应无强磁场干扰。
二、样品准备1.样品尺寸:样品应为矩形形状,长宽尺寸不少于10mm×5mm。
2.样品材质:样品应采用具有霍尔效应的半导体材料。
3.表面处理:样品表面应平整、清洁,无划痕、毛刺等缺陷。
4.电极制备:在样品上制备霍尔电极,电极尺寸应与样品尺寸相适应。
三、测试设备1.电源:提供稳定的直流电源,电压范围为(0-10)V。
2.霍尔效应测试仪:具备测量霍尔电压、霍尔电流、磁场等参数的功能。
3.信号发生器:用于产生磁场信号,频率范围为(0-10)kHz。
4.万用表:用于测量电压、电流等参数。
5.显微镜:用于观察样品的表面状态。
四、测试方法1.将样品放入测试仪中,连接电源和信号发生器。
2.将万用表连接到测试仪的电压和电流测量端口,用于记录测量数据。
3.在显微镜下观察样品的表面状态,确保电极制备良好,无缺陷。
4.设置磁场信号发生器的频率和幅度,启动测试程序。
5.在程序控制下,依次测量样品的霍尔电压、霍尔电流等参数,记录数据。
6.在测试过程中,应保持样品表面清洁,避免受到尘埃等杂质的影响。
7.在测试结束后,关闭测试程序,断开电源和信号发生器。
五、测试数据分析1.将测量数据整理成表格,包括霍尔电压、霍尔电流、磁场等参数的值。
2.根据测量数据,计算霍尔电阻等指标,并进行数据分析。
霍尔效应及其参数测定实验报告
霍尔效应及其参数测定实验报告本实验主要介绍了霍尔效应及其参数测定的实验方法。
实验采用霍尔元件通过外磁场产生霍尔电势,从而测定材料的电导率、载流子浓度和载流子迁移率等参数。
实验结果表明,霍尔效应可以非常有效地测量半导体材料的电学特性,是一种重要的研究手段。
关键词:霍尔效应,霍尔元件,电导率,载流子浓度,载流子迁移率一、实验目的1.了解霍尔效应的基本原理2.掌握霍尔元件的制备方法3.掌握霍尔效应参数的测定方法4.学会使用实验仪器进行实验操作二、实验原理霍尔效应是指在磁场中,电流流动的导体中会出现电势差现象。
当磁场方向与电流方向垂直时,将产生垂直于两个方向的霍尔电势。
这种现象被称为霍尔效应。
霍尔电势的大小与电流、磁场及材料的特性有关。
霍尔元件是用于测量霍尔效应的元件。
霍尔元件通常由半导体材料制成,其结构为一个平面小矩形,两端连接电极,垂直于平面的方向中心处有一个小孔,可以通过孔内通入磁场。
当通入磁场时,材料中的载流子会受到洛伦兹力的作用,使载流子在材料中产生偏移,从而导致霍尔电势的产生。
通过测量霍尔电势的大小以及施加磁场的大小和方向,可以确定材料的电导率、载流子浓度和载流子迁移率等参数。
三、实验步骤1.制备霍尔元件首先,将半导体材料切割成小片,然后将其表面进行化学处理,以便在其表面上生长一层厚度为几微米的氧化层。
接着,将元件在高温下进行烘烤,使氧化层形成一种结构,即霍尔元件的结构。
最后在两端连接电极,制成完整的霍尔元件。
2.测量霍尔电势将霍尔元件放入测量器中,通入一定电流,然后施加一定磁场,记录霍尔电势的大小。
3.测量电阻率在不施加磁场的情况下,通过测量电流和电压的大小,计算出材料的电阻率。
4.计算载流子浓度和迁移率通过测量霍尔电势的大小、电阻率和电子电荷数,可以计算出载流子浓度和迁移率等参数。
四、实验结果与分析通过实验测量,得到了不同条件下的霍尔电势大小和材料的电阻率。
通过计算,得到了材料的电导率、载流子浓度和迁移率等参数。
大学物理(精品本科)4霍尔效应测量通电螺线管的磁场.docx
霍尔效应测量通电螺线管的磁场一、 实验目的1. 了解霍尔效应及其规律。
2. 了解和熟悉集成霍尔传感器的特性和应用。
3. 测定集成霍尔传感器的灵敏度。
4. 测量通电螺线管内的磁场分布。
二、 实验仪器ICH-1新型螺线管磁场测定仪。
ICH-1新型螺线管磁场测定仪的测量范围为-67〜+67111T,灵敏度为31.3±1.3V/T,由SS95A 型集 成霍尔传感器探测棒、螺线管、直流恒流电源(0〜0.5A )、直流稳压电源(2.4〜2.6 V 和4.8〜5.2 V 两档)、 数字电压表(19.999 V 和1999.9mV 两档)、双刀换向开关和单刀换向开关各一个、导线若干组成。
三、 实验原理1. 霍尔效应1879年,美国物理学家E ・H •霍尔在实验中发现, 当有电流沿着垂直于磁场的方向通过导体或半导体 时,在垂直于电流和磁场方向,导体或半导体的两侧 之间会出现横向电势差,这种现象称为霍尔效应。
在 与电流及磁场垂直方向上产生的电势差称为霍尔电 势差(如图1所示)。
实验表明C/H =(心)IB = K n IB d其中,是产生的霍尔电势差,是由半导体本身电子迁移率决定的物理常数称为霍尔系数,B 为磁 感应强度,/为流过霍尔元件的电流强度,K H 称为霍尔元件的灵敏度。
2. 霍尔传感器虽然从理论上讲霍尔元件在无磁场作用(即5 = 0)时,霍尔电势差等于零(0)=0),但实际实 验中用数字电压表测量时并不为零,这是由于半导体材料结晶不均匀及各电极不对称等加工工艺以及附 加效应的影响,产生了附加电势差,该电势差称为剩余电压。
本实验采用SS95A 型集成霍尔传感器,其霍尔元件结构见图2。
该传感器是一种高灵敏度集成霍尔 传感器,由霍尔元件、放大器和薄膜电阻剩余电压补偿组成。
测量时输出信号大,并且剩余电压的影响 已被消除。
集成霍尔传感器有三根引线,分别是:“?+”、W 其中“叮'和“7”构成电流输入端,和构成电压输出端。
实验报告霍尔效应及霍尔元件基本参数的测量
霍尔效应及霍尔元件基本参数的测量一、实验目的1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。
2.掌握常温情况下测量霍尔系数的方法。
3.判断样品的导电类型,计算霍尔系数、载流子浓度、电导率、霍尔迁移率。
4.用霍尔元件测量铁电磁铁气隙中磁感应强度B沿X方向的分布曲线及电磁铁的励磁曲线。
二、实验原理1.霍尔效应和霍尔系数图1霍尔效应示意图如图1所示,在半导体的x方向有均匀的电流I x通过,同时在z方向上加有磁场B z,那么在这块半导体的y方向会出现一个横向电势差U H,这种现象叫做“霍尔效应”,U H称为“霍尔电压”,对应的y轴的电场称为“霍尔电场”。
半导体的长、宽、高分别为L、a、b,p(n)型半导体的载流子为空穴(电子),在沿x方向电场的作用下,以平均漂移速度v x运动,形成电流I x,由于在z轴方向有磁场B z,载流子受到洛伦兹力的作用F q v B⋅⨯=()P型半导体中空穴带正电,由右手定则可知:受到的洛伦兹力沿着y轴负向,那么空穴向着y轴负向运动,在y轴方向形成沿着y轴正向的电场—霍尔电场,当该电场对空穴的作用力qE y与洛伦兹力F达到平衡时,空穴不再沿着y轴偏离,达到稳态,只有沿着x方向的电流。
同理,n型半导体中电子带负电,电子的速度方向为x轴负向,电荷为-q,那么根据右手定则可知:受到的洛伦兹力沿着y轴负向,那么电子向着y轴负向运动,在y 轴方向形成沿着y 轴负向的电场—霍尔电场,当该电场对电子的作用力qE y 与洛伦兹力F 达到平衡时,电子不再沿着y 轴偏离,达到稳态,只有沿着x 方向的电流。
因此,在给定电流方向以及外加磁场方向时,根据霍尔电场的方向便可以判断半导体是n 型还是p 型。
下面推导霍尔系数的表达式。
在稳态下,载流子受到的电场力与洛伦兹力达到平衡,即为Hx z H U qv B E q q a==,H H x z E R J B =(其中R H 即为霍尔系数) 而根据半导体中电流公式:x x x I nqv S nqv ab ==可知:H H x zU bR I B =(3/m C ) (1) 2. 霍尔效应中的副效应及消除办法在霍尔系数的测量中,会伴随一些热磁副效应、电极不对称等因素引起的附加电压叠加在霍尔电压上,主要有爱廷豪森效应、能斯脱效应、里纪—勒杜克效应、电极位置不对称、温度梯度存在等副效应。
霍尔效应和霍尔元件特性测定数据处理范例(精)
-1.54
1.54
-1.96
1.75
2.00 2.25 -1.76 1.77 -2.24 2.01 2.25 2.54 -1.97 1.99 -2.52 2.26 2.50 2.82 -2.19 2.21 -2.80 2.51 2.75 3.10 -2.41 2.44 -3.08 2.76 3.00 3.39 -2.63 2.66 -3.36 3.01
I
===
∆
c H
K最佳值及不确定度的计算:
H M
V I
-
斜率为
2.50
0.00616/
406
H
M
V
k mV mA
I
∆
===
∆
(
1/2
22
1/2
2
2
7
2
221181/2
0.616
3.0043.14101800
169/
H
H
M S
R L
V
K
I I u N
mV mA T
-
⎡⎤
⨯+
∆
∴=⨯
∆⨯
⎡⎤
⨯+
=⨯
⨯⨯⨯⨯
∆=;霍尔电压示值误差:
0.05H V m mV
∆=;
励磁电流示值误差:0.005M
I m A
∆=
⑴霍尔电压与霍尔电流关系测试数据表:
H S V I -500M I mA =0.25 0.28 -0.23 0.22 -0.29 0.26 0.50 0.56 -0.44 0.44 -0.56 0.50 0.75 0.85 -0.67 0.67 -0.85 0.76 1.00 1.12 -0.88 0.88 -1.12 1.00 1.25 1.41 -1.10 1.11 -1.41 1.26 1.50 1.69 -1.32 1.32 -1.68 1.50 1.75
实验三-霍尔效应法测量半导体的载流子浓度、-电导率和迁移
实验三霍尔效应法测量半导体的载流子浓度、电导率和迁移率一、实验目的1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。
2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS 和VH-IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
二、实验原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子〔电子或空穴〕被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图〔1〕〔a〕所示的N 型半导体试样,假设在X 方向的电极D、E 上通以电流Is,在Z 方向加磁场B,试样中载流子〔电子〕将受洛仑兹力:其中e 为载流子〔电子〕电量,V为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。
无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子发生便移,则在Y 方向即试样A、A´电极两侧就开始聚积异号电荷而在试样A、A´两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH 称为霍尔电压,电极A、A´称为霍尔电极。
电场的指向取决于试样的导电类型。
N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。
对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与Fg方向相反的横向电场力:其中EH 为霍尔电场强度。
FE 随电荷积累增多而增大,当到达稳恒状态时,两个力平衡,即载流子所受的横向电场力e EH 与洛仑兹力eVB相等,样品两侧电荷的积累就到达平衡,故有设试样的宽度为b,厚度为d,载流子浓度为n,则电流强度V Is 与的关系为由〔3〕、〔4〕两式可得即霍尔电压VH〔A、A´电极之间的电压〕与IsB 乘积成正比与试样厚度d成反比。
比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
霍尔效应及霍尔元件基本参数的测量
受的横向电场力 与洛仑兹
力 相等,样品两侧电荷
的积累就达到动态平衡,故 有
(1)
设试样的宽为b,厚度为
d,载流子浓度为n ,则
图1 霍尔效应实验原理示意图
(a)载流子为电子(N型);(b)载流子为空穴(P型)
(2)
2021/4/8
3
由(1)、(2)两式可得:
(3)
比例系数
RH
1 ne
称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
元件较理想的材料,由于电子的迁移率比空穴迁移率大,所于霍尔元件多采用
N型材料,其次霍尔电压的大小与材料的厚度成反比,因此薄膜型的霍尔元件
的输出电压较片状要高得多。
2021/4/8
5
【实验装置】
TH-H型霍尔效应组合实验仪由实 验仪和测试仪两大部分组成 。
⑴ 励磁恒流源: 输出电流:0—10A,示值误差 为末位±1(mA) ⑵ 样品工作恒流源: 输出电流:0—10mA,示值误 差为末位±1(10µA) ⑶ 直流数字毫伏表:
霍尔效应及霍尔元件 基本参数的测量
2021/4/8
1
【实验目的】
1.了解霍耳效应实验原理以及有关霍耳器件 对材料要求的知识。
2.学习用对称测量法消除副效应的影响。 3.测绘试样的VH-IS图线和 VH-IM 图线,计算
器件的霍尔系数RH和灵敏度KH。 4.根据RH判断试样的导电类型、载流子浓
然后求 、 、 和 的代数平均值。
2021/4/8
VH
V1V2
V3V4 4
(6)
通过上述的测量方法,虽然还不能消除所有的副效应,但其引入的误
差不大,可以略而不计。
7
(2)电导率 和迁移率µ的测量
霍尔效应及磁场的测定
霍尔效应及磁场的测定霍尔效应及磁场的测定近年来,在科研和⽣产实践中,霍尔传感器被⼴泛应⽤于磁场的测量,它的测量灵敏度⾼,体积⼩,易于在磁场中移动和定位。
本实验利⽤霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正⽐,从⽽掌握霍尔效应的物理规律;⽤通电螺线管中⼼点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;⽤霍尔元件测螺线管内部的磁场沿轴线的分布。
【实验⽬的与要求】1.了解霍尔传感器的⼯作原理,学习测定霍尔传感器灵敏度的⽅法;2.掌握⽤霍尔传感器测量螺线管内磁感应强度沿轴线⽅向的分布。
【实验原理】⼀、霍尔效应图8-1 霍尔效应原理图把矩形的⾦属或半导体薄⽚放在磁感应强度为B 的磁场中,薄⽚平⾯垂直于磁场⽅向。
如图8-1所⽰,在横向⽅向通以电流I ,那么就会在纵向⽅向的两端⾯间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流⼦的类型。
(图8-1载流⼦为带负电的电⼦,是N 型半导体或⾦属),这⼀⾦属或半导体薄⽚称为霍尔元件。
假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,⾃由电⼦运动的⽅向与电流I 的流向相反的。
由于洛伦兹⼒Bv e F m-=的作⽤,电⼦向⼀侧偏转,在半导体薄⽚的横向两端⾯间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。
电⼦在霍尔电场H E 中所受的电场⼒为HHEe F -=,当电场⼒与磁场⼒达到平衡时,有()()0=?-+-B v e E e HBv E H ?-=若只考虑⼤⼩,不考虑⽅向有 E H =vB 因此霍尔电压U H =wE H =wvB (1)根据经典电⼦理论,霍尔元件上的电流I 与载流⼦运动的速度v 之间的关系为 I=nevwd (2)式中n 为单位体积中的⾃由电⼦数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。
由式(1)和式(2)可得IB K IB d R end IBUH H H=??==(3)即IK UB H H=(4)式中enR H1=是由半导体本⾝电⼦迁移率决定的物理常数,称为霍尔系数,⽽K H 称为霍尔元件的灵敏度。
霍尔效应测量磁场的原理
霍尔效应测量磁场的原理1. 霍尔效应的概念1.1 什么是霍尔效应?大家听说过“霍尔效应”吗?其实,它并不复杂。
简单来说,霍尔效应就是当电流通过导体或半导体时,如果这个导体被放在一个垂直的磁场中,会在它的两侧产生电压。
这种电压被称为霍尔电压。
就像是你在河里看到的水流,因为磁场的“推力”,电流也会被“推”到一边,形成了这种电压。
是不是有点神奇?1.2 霍尔效应的发现霍尔效应最早是由美国物理学家埃德温·霍尔在1879年发现的。
那时的科学家就像探险家一样,勇敢地探索未知的领域。
霍尔通过实验发现了这一现象,真是开创了物理学的新篇章。
2. 霍尔效应如何测量磁场2.1 基本原理要测量磁场,我们首先需要了解霍尔效应的“工作原理”。
当电流流过一个材料时,它会在材料中产生电场,这个电场会跟磁场的方向垂直。
由于这种电场的存在,电荷会在材料的两侧积累,从而产生霍尔电压。
简单来说,就是“磁场让电流跑偏”,而这个“跑偏”的程度就可以用来测量磁场的强度。
2.2 如何进行测量首先,我们需要把一个霍尔探测器放在我们想测量的磁场中。
这个探测器通常是一个小小的半导体芯片。
我们把电流通过这个芯片,磁场就在这里发挥作用。
电流流过的过程中,磁场会在霍尔探测器上产生霍尔电压。
我们用仪器测量这个电压,就能计算出磁场的强度。
3. 霍尔效应的实际应用3.1 日常生活中的应用霍尔效应不仅在实验室里闪耀光芒,还在我们日常生活中发挥着重要作用。
比如,我们的汽车里就有霍尔传感器,用来检测轮胎的转速和位置。
还有,智能手机里的霍尔传感器可以用来检测手机的翻转动作,真的是无处不在啊!3.2 在工业中的应用在工业领域,霍尔效应也是一位大明星。
它被广泛应用于电机控制和电流测量等方面。
例如,工业中的电流传感器使用霍尔效应来精确测量电流的强度,这对于确保设备安全和高效运行至关重要。
结语霍尔效应的发现和应用真是现代科技的瑰宝。
它通过简单却巧妙的原理,为我们提供了一种精准测量磁场的方法。
霍尔效应测量
三、霍尔效应实验装置和测试方法
1、实验装置 2、测量方法 3、样品制备
1、实验装置
l 磁铁 l 标准电阻 l 样品电流电源 l 数字电压表 l 样品架 g
电流输入 电压输出 磁场输入
样品架
线圈
闸刀
2、测量方法
① 霍尔电压的测量
l 由于产生霍尔效应的同时,伴随多种副效应,以致实 测的AB间电压不等于真实的VH值,因此必需设法消除。
(3-15)
(⑵)霍尔系数R
R
n nn2
p
2
pp
q(nn p p )2
对于n型半导体,n>>p 对于p型半导体,p>>n
Rn
n
nq
Rp
p
pq
(3-16) (3-17) (3-18)
其中,γ是霍尔因子——表征载流子在半导体材料体内的 碰撞,其大小与温度和杂质浓度有关(图3-2),一般 取1.
一、霍尔效应原理
1、霍尔效应本质
运动的带电粒子在磁场中受洛仑兹力的作用而引
起的偏转。如果在与电流垂直的方向加有磁场,样品中就会
引起一个横向的电势差,这个电势差方向与电流和磁场方向垂 直,这种现象就成为霍尔效应。
由电磁场感生 的霍尔电场Ey
外加磁场Bz
外加电流jx
2、霍尔效应中主要参数表达式
(⑴)霍尔电场Ey Ey RBz jx
第三章
霍尔效应测量
测量方法简介
霍尔效应(Hall effect)是导电材料中的电流
与磁场相互作用而产生电动势的效应。1879年美国霍普金 斯大学研究生霍尔在研究金属导电机理时发现了这种电磁 现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量 磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实 际应用。随着半导体材料和制造工艺的发展,人们又利 用半导体材料制成霍尔元件,由于半导体的霍尔效应显 著而得到实用和发展,现在成为半导体材料电学参数测 量的重要手段;被越来越多地用来确定半导体材料的导 电类型、载流子浓度以及禁带宽度等参数。
霍尔效应法测量磁感应强度的原理
霍尔效应法测量磁感应强度的原理一、引言霍尔效应法是一种测量磁场强度的方法,它基于霍尔效应的原理。
霍尔效应是指当一个导体带电流时,如果将其放置在一个磁场中,那么在导体两侧会产生一定的电势差。
这个现象被称为霍尔效应。
利用这个原理可以测量磁场强度。
二、霍尔元件霍尔元件是利用霍尔效应测量磁场强度的重要部件。
它通常由半导体材料制成,具有一个矩形形状的平面结构。
在这个结构中,有一条电流引线和两个电压引线。
三、工作原理当电流通过霍尔元件时,会在其上产生一个横向的电场E。
如果将它放置在一个垂直于该平面的磁场B中,则由于洛伦兹力作用,载流子将会偏移,并且在元件两侧产生一个电势差VH。
VH=RHIB其中RH被称为霍尔系数,I为电流,B为磁感应强度。
因此,在给定的电流下,可以通过测量VH来计算出B。
四、实验步骤1.连接电路:将霍尔元件连接到电路中,使其处于一个恒定的电流下。
2.调整磁场:调整磁场强度和方向,使其垂直于霍尔元件的平面。
3.测量电势差:使用万用表测量霍尔元件两侧的电势差VH。
4.计算磁感应强度:根据公式VH=RHIB,计算出磁感应强度B。
五、误差分析在实际测量中,可能会存在一些误差。
其中最主要的误差来自于霍尔系数的不确定性。
这个系数是由材料和工艺决定的,不同的元件可能会有不同的值。
此外,在实验过程中还可能存在一些温度漂移和电源稳定性等问题。
六、应用领域霍尔效应法广泛应用于磁场测量、位置检测、速度检测等领域。
例如,在机械加工中,可以利用霍尔效应来检测刀具位置和转速;在汽车行业中,可以利用霍尔效应来检测轮速和转向角度等信息。
七、总结霍尔效应法是一种简单而有效的测量磁场强度的方法。
它基于霍尔效应的原理,利用霍尔元件来测量电势差,从而计算出磁感应强度。
在实际应用中,需要注意一些误差来源,同时可以将其应用于多个领域中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、研究霍尔效应与霍尔元件特性 a) 测量霍尔元件的零位(不等位)电势 V0 和不
等电阻 R0 (1)短路之间霍尔电压输入端,调节调零旋纽
使电压表显示00.00mv; (2)断开励磁电流IM。 (3)调节霍尔控制(工作)电流Is =2.00mA,开
关改变霍尔工作电流输入方向分别测出零位霍 尔电压VO1、 ,VO2并计算出不等位电阻。
旋管内B的分布状态。
【思考与讨论 】
1、霍耳效应的定义是什么?用它测磁场的 原理是什么?工作电流IS、螺线管磁场B、 霍耳电势差VH三者方向关系是什么?
2、与霍耳效应同时产生的副效应是否一定 很小?实验是如何基本消除副效应产生 的附加电势差的?
再见!
二、测量螺纹管的磁感应强度B 1、测量螺纹管中心的磁感应强度B 2、测量螺纹管磁感应强度B的分布
【实验内容 】
1、熟悉FH2601三个部分的功能。
a) FH2601数字源表,面板的左边是大电流恒流 源,只能用于螺旋管线包励磁用,严格禁止用 于霍尔片工作电流。
b) FH2601数字源表面板中部是电压检测部分, 用于测量霍尔电压的大小。
霍尔效应原理图
Z
磁
Y
场
方
X
向
A
L1
fE
V
-
fL
Is
VH
d B
L2
图1 霍尔效应原理
2、用霍耳元件测通电长直螺线管轴向磁感应强度B分布
B
X 图3 螺旋管轴线上磁场分析
实验项目
一、研究霍尔效应及霍尔元件特性 1、测量霍尔元件零位(不等位)电势V0 及不等位电阻R0 = V0/Is 2、研究VH与励磁电流IM,工作(控制) 电流Is之间的关系
霍尔元件仍位于气隙中心,调节 Is =5.00mA , 调节 IM =50、100、200……1000mA,分别测量霍尔电压 VH 值 填入表(2),并绘出 IM - VH 曲线,验证线性关系的 范围,分析当IM 达到一定值以后, IM- VH 直线斜率变 化的原因。
测量螺旋管中磁感应强度B的分布
上
上
下
下
换向
Is/Vs输入
上
上
下
下
换向
测量输出
上
上
下
下
换向
直流励磁输入
5、被测电压输出端 4、测量电压/电流输入端
图4 FH4512A 螺Leabharlann 管磁场实验仪6、励磁电流输入端
【实验原理 】
1、霍耳元件测磁场原理
霍尔效应从本质上讲是运动的带电粒子在磁场中 受洛仑兹力的作用而引起的偏转。当带电粒子(电 子或空穴)被约束在固体材料中,这种偏转就导致 在垂直电流和磁场的方向上产生正负电荷在不同侧 的聚积,从而形成附加的横向电场。
【实验仪器】
1、FH2601实验用数字源表 2、FH4512A霍尔效应螺纹管磁场实验仪
FH2601实验用数字源表
图5 FH2601实验用数字源表平面图
FH4512A霍尔效应螺旋管实验仪
1、螺旋管线包 2、霍尔传感器 3、移动探测杆
FHtech富阳华盛 FH4512 型螺旋管磁场实验仪
控制电源 输入
a ) 将霍尔控制棒移到螺旋管中间位置(探测棒
上标有标记线),调节IM =1000 mA ,Is =5.00mA,测量相应的VH 。 b) 将霍尔元件从中心向边缘移动每隔10mm选
B VH KH IS
一个点测出相应的VH ,填入表3。
c)由以上所测 VH 值,由公式VH =KHISB计算
出各点的磁感应强度,并绘出B-X图,显示螺
b)测量霍尔电压 VH 与工作电流Is 的关系将霍尔探测 棒移至螺旋管中心,调节IM =1000mA,调节Is =0.500 、1.00……、5.00mA(励磁电流为 100.0mA),分别 测出其相应的霍尔电压VH 填入表(1)。绘出Is — VH 曲线,验证线形关系。
c)测量霍尔电压 VH 与励磁电流 IM 的关系
c) FH2601数字源表面板右边是霍尔片工作电流源 。
2、连线路 首先将二个电流源输出调节到最小。
a) 将霍尔传感器的工作电流端(红色线+、黑色 线-)与FH2601的2mA电流输出端相连接。
b) 将霍尔传感器的输出电压(霍尔电压)与 FH2601的电压检测输入端相连接。
c) 将螺旋管线包的输入线与FH2601的1A恒流源 相连接。 注意以上三组线千万不能接错,以免烧坏元 件。确认接线无误后开机。
大学物理实验
霍尔效应测量 螺纹管磁场
物电学院普物教研室
【实验目的】
1、解霍尔效应原理及霍尔元件有关参数的含义和作用。 2、测绘霍尔元件的VH-Is,VH- IM曲线了解霍尔电势差
VH与霍尔元件控制(工作)电流Is,磁感应强度B及 励磁电流和IM之间的关系。 3、学习利用霍尔效应测量感应强度B及磁场分布。 4、学习用“对称交换测量法”消除负效应产生的系统误差。 5、掌握用霍耳元件测量通电螺线管轴向磁场的方法。 6、了解通电长直螺线管轴线上的磁场强度分布。