2018绵阳二诊关键题的来源、破解和评析

合集下载

2018年四川省绵阳市游仙区中考数学二诊试卷带答案解析(解析版)

2018年四川省绵阳市游仙区中考数学二诊试卷带答案解析(解析版)

2018年四川省绵阳市游仙区中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣2的绝对值是()A.B.C.2D.2.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志3.(3分)我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10﹣3毫米的颗粒物,用科学记数法表示数2.5×10﹣3,它应该等于()A.0.25 B.0.025 C.0.0025 D.0.000254.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°5.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a>﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2>b﹣26.(3分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为多少?()A.18米B.13米C.12米D.5米7.(3分)如图,从一块直径是1m的圆形铁皮上剪出一个圆心角为90°的扇形,如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?()A.B.C.D.8.(3分)如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(﹣4,m),B(﹣1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+7 C.y=(x+3)2﹣5 D.y=(x+3)2+4 9.(3分)2018(第七届)绵阳之春国际车展将于2018年4月18日﹣22日在绵阳国际会展中心盛大举行.某品牌汽车为了推广宣传,特举行“趣味答题闯关赢大奖”活动,参与者需连续闯过三关方能获得终极大奖.已知闯过第一关的概率为0.8,连续闯过两关的概率为0.5,连续闯过三关的概率为0.3,已经连续闯过两关的参与者获得终极大奖的概率为()A.B.C.D.10.(3分)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带长度至少为多少?(参考数据:≈1.414,≈1.732,≈2.236)()A.320cm B.395.24 cm C.431.76 cm D.480 cm11.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为多少?()A.1 B.C.2 D.12.(3分)关于x的方程x2+2kx+3k=0的两个相异实根均大于﹣1且小于3,那么k的取值范围是()A.﹣1<k<0 B.k<0 C.k>3或k<0 D.k>﹣1二、填空题(共6小题,每小题3分,满分18分)13.(3分)因式分解:x3﹣9x=.14.(3分)如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=度.15.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为只,树为棵.16.(3分)如图,CD为大半圆的直径,小半圆的圆心O1在线段CD上,大半圆O的弦AB与小半圆O1交于E、F,AB=6cm,EF=2cm,且AB∥CD.则阴影部分的面积为cm2(结果保留准确数)17.(3分)请看如图左边杨辉三角(1),并观察右边等式(2):写出(x+)200的展开式中含x196项的系数是.18.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G,如果正方形ABCD的边长为1,则△CHG的周长为三.解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:()﹣2+(﹣)0+(﹣1)1001﹣(﹣3)×tan30°(2)先化简,再求值:(﹣a2+b2),其中a=3﹣2,b=3﹣3 20.(11分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21.(11分)如图,矩形ABCD的顶点A在坐标原点,顶点C在y轴上,OB=2.将矩形ABCD绕点O顺时针旋转60°,使点D落在x轴的点G处,得到矩形AEFG,EF与AD交于点M,过点M的反比例函数图象交FG于点N,连接DN.(1)求反比例函数的解析式;(2)求△AMN的面积;22.(11分)如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ23.(11分)绵阳某工厂从美国进口A、B两种产品销售,已知每台A种产品进价为3000元,售价为4800元;受中美贸易大战的影响,每台B种产品的进价上涨500元,进口相同数量的B种产品,在中美贸易大战开始之前只需要60万元,中美贸易大战开始之后需要80万元.(1)中美贸易大战开始之后,每台B种产品的进价为多少?(2)中美贸易大战开始之后,如果A种产品的进价和售价不变,每台B种产品在进价的基础上提高40%作为售价.公司筹集到不多于35万元且不少于33万元的资金用于进口A、B两种产品共150台,请你设计一种进货方案使销售后的总利润最大.24.(12分)如图,二次函数y=x2﹣2mx+8m的图象与x轴交于A、B两点(点A 在点B的左边且OA≠OB),交y轴于点C,且经过点(m,9m),⊙E过A、B、C三点.(1)求这条抛物线的解析式;(2)求点E的坐标;(3)过抛物线上一点P(点P不与B、C重合)作PQ⊥x轴于点Q,是否存在这样的点P使△PBQ和△BOC相似?如果存在,求出点P的坐标;如果不存在,说明理由.25.(14分)在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF 交对角线BD于点G(如图2),求线段MG的长.2018年四川省绵阳市游仙区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣2的绝对值是()A.B.C.2D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2的绝对值是:2﹣.故选:C.2.(3分)下列图形中,是轴对称图形,不是中心对称图形的是()A.正方形B.正三角形C.正六边形D.禁止标志【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A、图形是中心对称轴图形,也是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:B.3.(3分)我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶PM2.5是指直径小于或等于2.5×10﹣3毫米的颗粒物,用科学记数法表示数2.5×10﹣3,它应该等于()A.0.25 B.0.025 C.0.0025 D.0.00025【分析】把2.5的小数点向左移动3个位,即可得到.【解答】解:2.5×10﹣3=0.0025.故选:C.4.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°【分析】求出∠ACO的度数,根据三角形的外角性质得到∠AOB=∠A+∠ACO,代入即可.【解答】解:∠ACO=45°﹣30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.故选:C.5.(3分)下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得﹣2a>﹣2bC.由a>b,得﹣a>﹣b D.由a>b,得a﹣2>b﹣2【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,当c<0时,得ac<bc,错误;B、由a>b,得﹣2a<﹣2b,错误;C、由a>b,得﹣a<﹣b,错误;D、由a>b,得a﹣2>b﹣2,正确;故选:D.6.(3分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为多少?()A.18米B.13米C.12米D.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE 的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan45°=18×1=18米,∴CD=CE﹣DE=18米﹣5米=13米;故选:B.7.(3分)如图,从一块直径是1m的圆形铁皮上剪出一个圆心角为90°的扇形,如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?()A.B.C.D.【分析】首先求得扇形的弧长,然后利用圆的周长公式即可求得.【解答】解:∵⊙O的直径为1m,则半径是:m,∴S=π×()2=,⊙O连接BC、AO,根据题意知BC⊥AO,AO=BO=,在Rt△ABO中,AB=,即扇形的对应半径R=,弧长l=,设圆锥底面圆半径为r,则有2πr=,解得:r=(m).故选:A.8.(3分)如图,将函数y=(x+3)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(﹣4,m),B(﹣1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+7 C.y=(x+3)2﹣5 D.y=(x+3)2+4【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B于点C,则C(﹣1,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x+3)2+1的图象过点A(﹣4,m),B(﹣1,n),∴m=(﹣4+3)2+1=1,n=(﹣1+3)2+1=3,∴A(﹣4,1),B(﹣1,3),过A作AC∥x轴,交B′B于点C,则C(﹣1,1),∴BC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x+3)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x+3)2+4.故选:D.9.(3分)2018(第七届)绵阳之春国际车展将于2018年4月18日﹣22日在绵阳国际会展中心盛大举行.某品牌汽车为了推广宣传,特举行“趣味答题闯关赢大奖”活动,参与者需连续闯过三关方能获得终极大奖.已知闯过第一关的概率为0.8,连续闯过两关的概率为0.5,连续闯过三关的概率为0.3,已经连续闯过两关的参与者获得终极大奖的概率为()A.B.C.D.【分析】设闯过第二关的概率为x,依据0.8x=0.5,可得x=;设闯过第三关的概率为y,依据连续闯过三关的概率为0.3,即可得到连续闯过两关的参与者获得终极大奖的概率.【解答】解:设闯过第二关的概率为x,则0.8x=0.5,∴x=,设闯过第三关的概率为y,∵连续闯过三关的概率为0.3,∴0.8××y=0.3,解得y=,即连续闯过两关的参与者获得终极大奖的概率为,故选:D.10.(3分)如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带长度至少为多少?(参考数据:≈1.414,≈1.732,≈2.236)()A.320cm B.395.24 cm C.431.76 cm D.480 cm【分析】由主视图知道,高是20cm,两顶点之间的最大距离为60cm,应利用正六边形的性质求得底面对边之间的距离,然后所有棱长相加即可.【解答】解:根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边.则AC=60÷2=30(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=15(cm),所以AD=2AB=30(cm),胶带的长至少=30×6+20×6≈431.76(cm).故选:C.11.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为多少?()A.1 B.C.2 D.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.【解答】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD 相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为﹣1;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为﹣1.故选:D.12.(3分)关于x的方程x2+2kx+3k=0的两个相异实根均大于﹣1且小于3,那么k的取值范围是()A.﹣1<k<0 B.k<0 C.k>3或k<0 D.k>﹣1【分析】把一元二次方程解的问题转化为抛物线与x轴的交点问题,则利用题意得抛物线y=x2+2kx+3k与x轴的两个交点到在(﹣1,0)和(3,0)之间,利用二次函数图象得到x=﹣1时,y>0和当x=3时,y>0;接着由3k<0确定抛物线与x轴有2个交点,然后解关于k的不等式组确定k的范围.【解答】解:∵关于x的方程x2+2kx+3k=0的两个相异实根均大于﹣1且小于3,∴抛物线y=x2+2kx+3k与x轴的两个交点到在(﹣1,0)和(3,0)之间,∴3k<0,解得k<0,∵x=﹣1时,y>0,∴1﹣2k+3k>0,解得k>﹣1;当x=3时,y>0,∴9+6k+3k>0,解得k>﹣1,∴k的范围为﹣1<k<0.故选:A.二、填空题(共6小题,每小题3分,满分18分)13.(3分)因式分解:x3﹣9x=x(x+3)(x﹣3).【分析】先提取公因式x,再利用平方差公式进行分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).14.(3分)如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=145度.【分析】根据平行线的性质求得∠AFC=∠A=60°,再根据三角形的外角的性质求得∠E=35°,再根据三角形的中位线定理的位置关系得到GH∥EF,从而求解.【解答】解:∵AB∥CD,∠A=60°,∴∠AFC=∠A=60°.又∠C=25°,∴∠E=35°,∵G、H分别为CF、CE的中点,∴GH∥EF,∴∠1+∠E=180°,∴∠1=145°.15.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为20只,树为5棵.【分析】通过理解题意,可知本题存在两个等量关系,即3×树的棵树+5=鸦的只数,5×(树的棵树﹣1)=鸦的只数,根据这两个等量关系可列出方程组.【解答】解:可设鸦有x只,树y棵.则,解得.答:鸦有20只,树有5棵.16.(3分)如图,CD为大半圆的直径,小半圆的圆心O1在线段CD上,大半圆O的弦AB与小半圆O1交于E、F,AB=6cm,EF=2cm,且AB∥CD.则阴影部分的面积为4πcm2(结果保留准确数)【分析】将两个圆变为同心圆.做OM⊥AB于M,连接OB、OF,构造直角三角形,利用所构造的两个三角形有公共边OM,可找到两个半圆的半径平方差与已知条件之间的关系:OB2﹣OF2=OM2+32﹣(OM2+12〕=8,阴影部分的面积是两个半圆的面积差.代入数据求解即可.【解答】解:如图将两个圆变为同心圆.作OM⊥AB于M,连接OB、OF,则MF=EF=1,BM=AB=3,S阴影=πOB2﹣πOF2,=π(OB2﹣OF2),=π[OM2+32﹣(OM2+12)],=4π(cm2),故答案为:4π.17.(3分)请看如图左边杨辉三角(1),并观察右边等式(2):写出(x+)200的展开式中含x196项的系数是19900.【分析】首先确定x196是展开式中第几项,根据杨辉三角即可解决问题.【解答】解:(x+)200展开式中含x196项的系数,由(x+)200=x200+200•x199•()+•x198•()2…可知,展开式中第三项为19900•x198•()2=19900x196,∴(x+)200展开式中含x196项的系数是19900,故答案为:19900.18.(3分)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H 不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC 交于点G,如果正方形ABCD的边长为1,则△CHG的周长为2【分析】连接AH、AG,作AM⊥HG于M.判定△AHD≌△AHM,可得DH=HM,AD=AM,即可得出AM=AB,AG=AG,再判定Rt△AGM≌Rt△AGB,即可得到GM=GB,进而得到△CHG的周长.【解答】解:如图,连接AH、AG,作AM⊥HG于M.∵EA=EH,∴∠1=∠2,∵∠EAB=∠EHG=90°,∴∠HAB=∠AHG,∵DH∥AB,∴∠DHA=∠HAB=∠AHM,∵AH=AH,∠D=∠AMH=90°,∴△AHD≌△AHM,∴DH=HM,AD=AM,∵AM=AB,AG=AG,∴Rt△AGM≌Rt△AGB,∴GM=GB,∴△GCH的周长=CH+HM+MG+CG=CH+DH+CG+GB=2BC=2×1=2,故答案为:2.三.解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:()﹣2+(﹣)0+(﹣1)1001﹣(﹣3)×tan30°(2)先化简,再求值:(﹣a2+b2),其中a=3﹣2,b=3﹣3【分析】(1)先计算负整数指数幂、零指数幂、化简二次根式、代入三角函数值,再计算乘法,最后计算加减可得;(2)先将括号内多项式因式分解,再利用乘法分配律展开,最后计算加减可得,继而将a、b的值代入计算可得.【解答】解:(1)原式=9+1﹣1﹣(2﹣3)×=9﹣2+3=10;(2)原式=﹣×[﹣(a+b)(a﹣b)]=﹣+a+b=a+b,当a=3﹣2,b=3﹣3时,原式=3﹣2+3﹣3=.20.(11分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【分析】(1)根据C类人数有15人,占总人数的25%可得出总人数,求出A类人数,进而可得出结论;(2)直接根据概率公式可得出结论;(3)求出“实践活动类”的总人数,进而可得出结论.【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.21.(11分)如图,矩形ABCD的顶点A在坐标原点,顶点C在y轴上,OB=2.将矩形ABCD绕点O顺时针旋转60°,使点D落在x轴的点G处,得到矩形AEFG,EF与AD交于点M,过点M的反比例函数图象交FG于点N,连接DN.(1)求反比例函数的解析式;(2)求△AMN的面积;【分析】(1)根据反比例函数系数k的几何意义来求k的值.(2)利用分割法求得△AMN的面积即可.【解答】解:(1)由题意可得:OB=OE=2,∠DOG=60°∴∠ACD=90°﹣60°=30°.在Rt△EOM中,EM===2=OE•EM=×2×2=2∴S△EOM∴反比例函数解析式为:y=;(2)如图,连接DN,AN.在Rt△BOC中,∠BOC=60°∴BC=OB=×2=6∴EF=OG=6∴S=AE﹣AG=6×2=12矩形AGFE在y=中,当x=6时,y=∴NG=∴FN=FG﹣NG=2﹣=由(1)可知:EM=2,∴MF=EF﹣EM=6﹣2=4=MF•FN=××4=∴S△MFNS△ONG=OG•NG=×6×=2=S矩形AGFE﹣S△AEM﹣S△MFN﹣S△ONG=12﹣2﹣﹣2=.∴S△AMN22.(11分)如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【分析】(1)利用全等三角形的性质得AD=BO=AB=1,再由切线长定理得到DP=DA=1,连接OP,则可证明四边形AOPD为菱形得到DQ∥AB,然后证明四边形ABQD为平行四边形,从而得到BQ=AD=1;(2)先证明△BFO∽△ABD,利用相似比得到BF=,在利用切线长定理得到DA=DP,QB=QP,作QK⊥AD于K,如图,则QK=AB=2,利用勾股定理得到(AD ﹣BQ)2+22=(DA+BQ)2,则BQ=,从而得到BQ=BF.【解答】(1)∵△ABD≌△BFO,∴AD=BO=AB=1,∵射线AM、DQ为半圆O的切线,∴DP=DA=1,连接OP,∵OA=AD=DP=OP,∴四边形AOPD为菱形,∴DQ∥AB,∵射线AM、BN为半圆O的切线,∴DA⊥AB,QB⊥AB,∴DA∥BQ,∴四边形ABQD为平行四边形,∴BQ=AD=1;(2)证明:∵BF⊥AB,OE⊥BD,∴∠BFO=∠ABD,∴△BFO∽△ABD,∴=,∴BF=,∵AD、DQ、QB为切线,∴DA=DP,QB=QP,作QK⊥AD于K,如图,则QK=AB=2,在Rt△QDK中,∵DK2+KQ2=DQ2,∴(AD﹣BQ)2+22=(DA+BQ)2,∴BQ=,∴BQ=BF,即BQ=FQ.23.(11分)绵阳某工厂从美国进口A、B两种产品销售,已知每台A种产品进价为3000元,售价为4800元;受中美贸易大战的影响,每台B种产品的进价上涨500元,进口相同数量的B种产品,在中美贸易大战开始之前只需要60万元,中美贸易大战开始之后需要80万元.(1)中美贸易大战开始之后,每台B种产品的进价为多少?(2)中美贸易大战开始之后,如果A种产品的进价和售价不变,每台B种产品在进价的基础上提高40%作为售价.公司筹集到不多于35万元且不少于33万元的资金用于进口A、B两种产品共150台,请你设计一种进货方案使销售后的总利润最大.【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以列出相应的不等式和一次函数,从而可以解答本题.【解答】解:(1)设中美贸易大战开始之后,每台B种产品的进价为x元,,解得,x=2000,经检验,x=2000是原分式方程的解,答:中美贸易大战开始之后,每台B种产品的进价为2000元;(2)设购进A种产品m台,销售后总利润为w元,330000≤3000+2000(150﹣m)≤350000,解得,30≤m≤50,w=(4800﹣3000)m+2000×40%(150﹣m)=1000m+120000,∴当m=50时,w取得最大值,此时w=170000,150﹣m=100,答:购进A种产品50台,B种产品100台,销售后的总利润最大.24.(12分)如图,二次函数y=x2﹣2mx+8m的图象与x轴交于A、B两点(点A 在点B的左边且OA≠OB),交y轴于点C,且经过点(m,9m),⊙E过A、B、C三点.(1)求这条抛物线的解析式;(2)求点E的坐标;(3)过抛物线上一点P(点P不与B、C重合)作PQ⊥x轴于点Q,是否存在这样的点P使△PBQ和△BOC相似?如果存在,求出点P的坐标;如果不存在,说明理由.【分析】(1)把已知点的坐标代入抛物线解析式,可得到关于m的方程,则可求得m的值,可求得抛物线解析式;(2)由抛物线解析式可先求得A、B、C的坐标,过E作EG⊥x轴于点G,作EF ⊥y轴于点F,则可求得AG和OE,设EG=a,则可表示出CF,在Rt△AGE和Rt △CEF中,可分别表示出AE和CE,由AE=CE,则可求得a的值,则可求得E点坐标;(3)设出P点坐标,则可表示出PQ和BQ的长,利用相似三角形对应边成比例可得到关于P点坐标的方程,则可求得P点坐标.【解答】解:(1)把(m,9m)代入解析式,得m2﹣2m2+8m=9m,解得m=﹣1或m=0(舍去),∴抛物线解析式为y=x2+2x﹣8;(2)由(1)可得y=x2+2x﹣8,当y=0时,可求得x=﹣4或x=2,∵点A在点B的左边,∴OA=4,OB=2,∴AB=OA+OB=2+4=6,当x=0时,y=﹣8,∴OC=8,过点E作EG⊥x轴于点G,EF⊥y轴于点F,连接CE、AE,如图1,则AG=AB=3,OG=EF=OA﹣AG=4﹣3=1,设OF=GE=a,则CF=OC﹣OF=8﹣a,在Rt△AGE中,AE2=AG2+GE2=9+a2,在Rt△CEF中,CE2=EF2+CF2=1+(8﹣a)2,∵AE=CE,∴9+a2=1+(8﹣a)2,解得a=,∴E(﹣1,﹣);(3)设P点坐标为(t,t2+2t﹣8),则PQ=|t2+2t﹣8|,BQ=|a﹣2|,∵∠BOC=∠PQB=90°,∴当△PBQ和△BOC相似时,有△PBQ∽△CBO和△PBQ∽△BCO两种情况,①当△PBQ∽△CBO时,则=,即=,解得a=0(舍去)或a=2(舍去)或a=﹣8,∴P(﹣8,40);②当△PBQ∽△BCO时,则=,即=,解得a=2(舍去)或a=﹣或a=﹣,∴P点坐标为(﹣,﹣)或(﹣,);综上可知存在满足条件的点P,其坐标为(﹣8,40)或(﹣,﹣)或(﹣,).25.(14分)在矩形ABCD中,BC=6,点E是AD边上一点,∠ABE=30°,BE=DE,连接BD.动点M从点E出发沿射线ED运动,过点M作MN∥BD交直线BE于点N.(1)如图1,当点M在线段ED上时,求证:MN=EM;(2)设MN长为x,以M、N、D为顶点的三角形面积为y,求y关于x的函数关系式;(3)当点M运动到线段ED的中点时,连接NC,过点M作MF⊥NC于F,MF 交对角线BD于点G(如图2),求线段MG的长.【分析】(1)如图1中,作EH⊥MN于H.首先证明MH=HN,在Rt△EMH中,根据cos30°==,即可解决问题;(2)如图1中,作NK⊥AD于K.只要求出NK、DM即可解决问题;(3)连接MC交BD于点J,可得∠NMC=90°,进而可得△MJG∽△NMC;可得=,解可得PG的长;【解答】解:(1)如图1中,作EH⊥MN于H.∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=30°∴∠AEB=60°,∵EB=ED,∴∠EBD=∠EDB,∵∠AEB=∠EBD+∠EDB,∴∠EDB=∠EBD=30°,∵MN∥BD,∴∠ENM=∠EBD,∠EMN=∠EDB=30°,∴∠ENM=∠EMN,∴EN=EM,∵EH⊥MN,∴NH=MH,在Rt△EMH中,cos30°==,∴2MH=EM,∴MN=EM.(2)如图1中,作NK⊥AD于K.由(1)可知:BC=AD=6,AB=CD=2,AE=2,BE=DE=4,∵MN=EM,∴EM=x,∴DM=4﹣x,在Rt△MNK中,NK=MN=x,∴y=MD•NK=﹣x2+x.(3)解:连接MC交BD于点J(如图2).∵点M是线段ED中点,∴EM=MD=2,MN=2.∵DC=AB=AE•tan60°=2,∴MC==4.∴cos∠DMC==.∴∠DMC=60°.∴∠NMC=180°﹣∠EMN﹣∠DMC=90°.∵MN∥BD,∴∠MJD=∠NMC=90°.∴MJ=MD=1.NC==2∵∠MGJ=90°﹣∠FMC,∠MCF=90°﹣∠FMC,∴∠MGJ=∠MCF.∵∠MJG=∠NMC=90°,∴△MJG∽△NMC,∴=,∴PG=×2=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

【四川(新课标Ⅲ)】四川省绵阳市2018届高三第二次诊断考试理综化学试题(附答案精品)

【四川(新课标Ⅲ)】四川省绵阳市2018届高三第二次诊断考试理综化学试题(附答案精品)

四川省绵阳市2018届高三第二次诊断考试理综化学试题【试卷整体分析】考试范围:高考内容难度:一般题型统计(试题总量12)单选题7题58.3%填空题5题41.7% 难易度统计(平均难度:0.57)容易0题较易2题16.7%一般10题83.3%较难0题困难0题知识点统计(考核知识点6个)知识点数量试题数量试题数量比分数分数占比化学与STSE 1个1题8.3% 0分0%常见无机物及其应用2个2题16.7% 0分0% 物质结构与性质2个2题16.7% 0分0% 化学实验基础3个3题25.0% 0分0% 有机化学基础2个2题16.7% 0分0% 化学反应原理2个2题16.7% 0分0% 【试卷整体分析】题号题型知识点1 单选题原电池原理理解2 填空题逆合成分析法3 填空题Fe2+的还原性4 单选题元素周期律、元素周期表的推断5 填空题物质分离、提纯综合应用6 单选题多官能团有机物的结构与性质7 单选题化学实验方案的设计与评价8 单选题弱电解质的电离平衡9 填空题物质制备的探究10 单选题氯气与还原性化合物的反应11 填空题物质结构与性质综合考查12 单选题化学科学对人类文明发展的意义第I卷(选择题)1.化学与生活、环境密切相关,下列说法错误的是A.补铁剂与维生素C共同服用可提高补铁效果B.铁粉和碳粉的混合物可作食品抗氧化剂C.生活中钢铁制品生锈主要是析氢腐蚀所致D.新能源汽车的推广使用有助于减少光化学烟雾2.下列过程中,气体被氧化的是A.乙烯使酸性KMnO,溶液褪色B.CO2通入Na2SiO2溶液产生胶状沉淀C.用湿润的淀粉-KI试纸检验Cl2D.用CuSO4溶液吸收含H2S的工业废气【答案】A【解析】A.乙烯被酸性KMnO,溶液氧化;B.发生复分解反应,没有发生氧化还原反应;C.Cl2被KI还原;D.发生复分解反应,没有发生氧化还原反应。

故选A。

3.右表为元素周期表中短周期的一部分,Y元素最高正价与最低负价的代数和为4,下列叙述正确的是A.原子半径: W B.元素的非金属性:X>Y>ZC.氢化物的热稳定性:W>X D.氧化物对应水化物的酸性: Y【答案】C【解析】Y元素最高正价与最低负价的代数和为4,Y是硫,对应W、X、Z分别是氮、氧、氯。

最新-绵阳市高中2018级第二次诊断性考试-人教版[整理]

最新-绵阳市高中2018级第二次诊断性考试-人教版[整理]

保密*启用前 [考试时间:2018年1月18日上午9:00—11:30]绵阳市高中2018级第二次诊断性考试理科综合能力测试本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,两卷共8页。

满分300分,考试时间150分钟。

第L卷答案涂在答题卡上,第Ⅱ卷答案写在答题卷上。

第Ⅰ卷(选择题,共126分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考试科目用4B或5B铅笔准确涂写在答题卡上,同时将第Ⅱ卷答卷密封线内的项目填写清楚。

2,第1卷每小题选出答案后,用4B或5B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,.用橡皮擦擦干净后,再选涂其它答案,不能答在试题卷上。

3.可能用到的相对原子质量:H1 C12 N14 O16一、选择题(本题包括13小题。

每小题只有一个选项符合题意.每小题6分)1.科学家在研究分泌蛋白的合成和分泌时,向豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,经过一段时间后,被标记的氨基酸可依次出现在该细胞的不同部位。

下面有关叙述哪一项是正确的?A.被标记的氨基酸首先出现在附着有核糖体的内质网中B.连接图中①、②、③、④所示结构的是具膜的小泡C.图中②、③、④分别代表内质网、高尔基体、细胞膜D.细胞内的各种生物膜既各施其职,又有紧密的联系,2.下面是在不同温度条件下测定某种植物光合作用与呼吸作用的强度绘制成的曲线。

如果在光照强度相同时,对植物生长最有利的温度是A.t0~t1B.t1~t2C.t2~t3D.t3~t43.下面是将某动物体(XY型)的性腺制成切片后,在显微镜下观察到的细胞分裂时期示意图。

比较甲、乙两个细胞所处的分裂时期,可以得出下列哪一项结论?A.它们处于同一细胞周期的不同阶段B.都可发生基因突变和基因重组C.只有甲图发生了X和Y染色体的分离D.乙图细胞分裂的结果染色体数且减半4.在人体特异性免疫反应中,体液免疫与细胞免疫的关系是A.只有体液免疫才需要抗体的参与,只有细胞免疫才需要淋巴细胞的参与B.体液免疫和细胞免疫分别组成人体内防止病原体入侵的第二、第三道防线C.对侵入人体的病原体由体液免疫发挥作用,—对癌细胞由细胞免疫发挥作用D.在抗病毒感染中,往往先通过体液免疫发挥作用,再通过细胞免疫发挥作用一5.下面有关真核细胞基因结构和功能的叙述哪一项是错误的?A.等位基因A与a的最本质区别是两者的碱基排列顺序不同B.对血友病患者的造血干细胞进行基因改造后,其遗传性发生改变C.不同种类的蛋白质的基因所含外显子和内含子的数目是不同的D.用PCR技术进行DNA的体外扩增时要发生碱基互补配对6.等物质的量的下列物质分别与足量的NaOH溶液完全反应,需要NaOH的量最多的是A.NaHS18 B.AICl3C.SiO2D.7.某货车由于制动失灵冲人高速公路边的小河沟内,车上装载的化工原料遇水着火燃烧,该化工原料可能是A.NH4N18 B.KCl18C.CaC2D.CaO8.设NA表示阿伏加德罗常数的值,下列叙述正确的是A.0.8gNH2—所含电子数为N AB.在44g干冰中,含C=O键数为4N AC.1molSi02晶体中含有2N A个Si—O键D.常温常压下,48g臭氧所含分子数为N A9.下列实验方案合理的是A.蔗糖水解(H2S18作催化剂)后,在水解液中加新制的Cu(OH)2悬浊液加热煮沸检验水解产物B.用氨水清洗做过银镜反应的试管C.除去苯中的苯酚,加饱和NaHC18溶液再分液D.用新制的生石灰,通过加热蒸馏,以除去乙醇中的少量水10.广义的水解观认为:无论是盐的水解还是非盐的水解,其最终结果是:反应中各物质和水分别解离成两部分,然后两两重新组合成新的物质。

2018年四川省绵阳市安州区中考数学二诊试卷及答案(解析版)

2018年四川省绵阳市安州区中考数学二诊试卷及答案(解析版)

2018年四川省绵阳市安州区中考数学二诊试卷一、选择题:(每题3分,共36分)1.(3分)计算(﹣)﹣1的结果是()A.﹣ B.C.2 D.﹣22.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨3.(3分)对于一组统计数据3,3,6,5,3.下列说法错误的是()A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是64.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m45.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣26.(3分)下列四个命题中,①若a>b,则>;②垂直于弦的直径平分弦;③平行四边形的对角线互相平分;④反比例函数y=,当k<0时,y随x的增大而增大.其正确命题的个数是()A.1 B.2 C.3 D.47.(3分)如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB 的延长线于点F,则在题中条件下,下列结论不能成立的是()A.BE=CE B.AB=BF C.DE=BE D.AB=DC8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=09.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112° D.124°10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm211.(3分)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C,测得∠α=30°,∠β=45°,量得BC长为100米.若设河的宽度为x,则下列各关系式正确的是()A.=1 B.=C.=D.=12.(3分)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题:(每空3分,共18分)13.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店的销售额平均每月的增长率是.14.(3分)不等式组的解集是.15.(3分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是.16.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若OB=6cm,则B点运动的轨迹长度是cm.17.(3分)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD=.18.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为.三、解答题:(19题每小题16分、20题10分、21题10分、25题14分,其余各题均12分,共计86分)19.(16分)(1)计算:4sin45°+|﹣2|﹣+()0.(2)先化简,再求值:(1﹣)÷().其中a=+220.(10分)某中学艺术节期间,学校向学生征集书画作品,学校从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)请你将条形统计图补充完整,并估计全校共征集多少件作品?(2)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A (﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22.(12分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?23.(12分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE 交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.2018年四川省绵阳市安州区中考数学二诊试卷参考答案与试题解析一、选择题:(每题3分,共36分)1.(3分)计算(﹣)﹣1的结果是()A.﹣ B.C.2 D.﹣2【分析】根据负整数指数幂的运算法则计算.【解答】解:原式=﹣=﹣2.故选D.2.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.3.(3分)对于一组统计数据3,3,6,5,3.下列说法错误的是()A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是6【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个,利用平均数和方差的定义可分别求出.【解答】解:A、这组数据中3都出现了3次,出现的次数最多,所以这组数据的众数为3,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=[(3﹣4)2+(3﹣4)2+(6﹣4)2+(5﹣4)2+(3﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到小的顺序排列,第3个数是3,故中位数为3,故此选项错误;故选:D.4.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选:B.5.(3分)若点A(m,n)在一次函数y=3x+b的图象上,且3m﹣n>2,则b的取值范围为()A.b>2 B.b>﹣2 C.b<2 D.b<﹣2【分析】由点A的坐标结合一次函数图象上点的坐标特征,可得出3m+b=n,再由3m﹣n>2,即可得出b<﹣2,此题得解.【解答】解:∵点A(m,n)在一次函数y=3x+b的图象上,∴3m+b=n.∵3m﹣n>2,∴﹣b>2,即b<﹣2.故选:D.6.(3分)下列四个命题中,①若a>b,则>;②垂直于弦的直径平分弦;③平行四边形的对角线互相平分;④反比例函数y=,当k<0时,y随x的增大而增大.其正确命题的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的性质、垂径定理、平行四边形的性质、反比例函数的性质进行判断即可.【解答】解:①若a>b,则>;不正确;②垂直于弦的直径平分弦;正确;③平行四边形的对角线互相平分;正确;④反比例函数y=,当k<0时,在每个象限中,y随x的增大而增大;不正确.其中正确命题的个数为2个.故选:B.7.(3分)如图,平行四边形ABCD中,E是BC边的中点,连接DE并延长交AB 的延长线于点F,则在题中条件下,下列结论不能成立的是()A.BE=CE B.AB=BF C.DE=BE D.AB=DC【分析】根据线段中点的定义可得BE=CE,平行四边形的对边相等可得AB=DC,然后利用“角边角”证明△BFE和△CDE全等,根据全等三角形对应边相等可得BF=CD,DE=EF.【解答】解:∵E是BC边的中点,∴BE=CE,∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠EBF,在△BFE和△CDE中,,∴BF=CD,DE=EF.∵BE=EF无法证明,∴DE=BE结论不成立.故选:C.8.(3分)若二次函数y=ax2+1的图象经过点(﹣2,0),则关于x的方程a(x ﹣2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=﹣2,x2=6 C.x1=,x2= D.x1=﹣4,x2=0【分析】二次函数y=ax2+1的图象经过点(﹣2,0),得到4a+1=0,求得a=﹣,代入方程a(x﹣2)2+1=0即可得到结论.【解答】解:∵二次函数y=ax2+1的图象经过点(﹣2,0),∴4a+1=0,∴a=﹣,∴方程a(x﹣2)2+1=0为:方程﹣(x﹣2)2+1=0,解得:x1=0,x2=4,故选:A.9.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的⊙O交AB于点D.E是⊙O上一点,且=,连接OE.过点E作EF⊥OE,交AC的延长线于点F ,则∠F 的度数为( )A .92°B .108°C .112°D .124°【分析】直接利用互余的性质再结合圆周角定理得出∠COE 的度数,再利用四边形内角和定理得出答案.【解答】解:∵∠ACB=90°,∠A=56°,∴∠ABC=34°, ∵=,∴2∠ABC=∠COE=68°,又∵∠OCF=∠OEF=90°,∴∠F=360°﹣90°﹣90°﹣68°=112°.故选:C .10.(3分)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选:B .11.(3分)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A ,又在河的另一岸边取两点B 、C ,测得∠α=30°,∠β=45°,量得BC 长为100米.若设河的宽度为x ,则下列各关系式正确的是( )A .=1B .=C .=D .=【分析】直接利用已知得出AD=CD ,再利用tan30°=,进而得出答案.【解答】解:过点A 作AD ⊥BC 于点D ,∵∠β=45°,∴AD=CD=x ,则tan30°==. 故选:D .12.(3分)如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于B、C两点,且D、E分别为顶点.则下列结论:①a=;②AC=AE;③△ABD是等腰直角三角形;④当x>1时,y1>y2其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【分析】把点A坐标代入y2,求出a的值,即可得到函数解析式;令y=3,求出A、B、C的横坐标,然后求出BD、AD的长,利用勾股定理的逆定理以及结合二次函数图象分析得出答案.【解答】解:∵抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A(1,3),∴3=a(1﹣4)2﹣3,解得:a=,故①正确;过点E作EF⊥AC于点F,∵E是抛物线的顶点,∴AE=EC,E(4,﹣3),∴AF=3,EF=6,∴AE==3,AC=2AF=6,∴AC≠AE,故②错误;当y=3时,3=(x+1)2+1,解得:x1=1,x2=﹣3,故B(﹣3,3),D(﹣1,1),则AB=4,AD=BD=2,∴AD2+BD2=AB2,∴③△ABD是等腰直角三角形,正确;∵(x+1)2+1=(x﹣4)2﹣3时,解得:x1=1,x2=37,∴当37>x>1时,y1>y2,故④错误.故选:B.二、填空题:(每空3分,共18分)13.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店的销售额平均每月的增长率是50%.【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故答案是:50%.14.(3分)不等式组的解集是1<x≤2.【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【解答】解:,解不等式①,得x>1,解不等式②,得x≤2,所以不等式组的解集为:1<x≤2.15.(3分)一次函数y1=k1x+b和反比例函数y2=(k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是x<﹣2或0<x<1.【分析】根据图象可以知道一次函数y1=k1x+b和反比例函数y2=(k1∙k2≠0)的图象的交点的横坐标,若y1>y2,则根据图象可以确定x的取值范围.【解答】解:如图,依题意得一次函数y1=k1x+b和反比例函数y2=(k1∙k2≠0)的图象的交点的横坐标分别为x=﹣2或x=1,若y1>y2,则y1的图象在y2的上面,x的取值范围是x<﹣2或0<x<1.故答案为x<﹣2或0<x<116.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若OB=6cm,则B点运动的轨迹长度是πcm.【分析】利用弧长公式计算即可.【解答】解:由题意B点运动的轨迹是,的弧长==,故答案为.17.(3分)如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,则AD=4.【分析】只要证明AD=BC,在Rt△BCD中求出BC即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠ACB=∠ADB=30°,∵BD是直径,∴∠BAD=90°,∠ABD=60°,∴∠CBD=∠ABD﹣∠ABC=30°,∴∠ABC=∠CBD,∴==,∴=,∴AD=CB,∵∠BCD=90°,∴BC=CD•tan60°=•=4,∴AD=BC=4.故答案为4.18.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,若AO=10,则⊙O的半径长为2.【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=320,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2,故答案为:2.三、解答题:(19题每小题16分、20题10分、21题10分、25题14分,其余各题均12分,共计86分)19.(16分)(1)计算:4sin45°+|﹣2|﹣+()0.(2)先化简,再求值:(1﹣)÷().其中a=+2【分析】(1)先代入三角函数值、计算绝对值、化简二次根式、计算零指数幂,再依次计算乘法、加减运算可得.(2)先根据分式混合元算的法则把原式进行化简,再代入进行计算即可.【解答】解:(1)原式=4×+2﹣2+1=2+2﹣2+1=3;(2)原式=÷=•=,当a=+2时,原式==1+.20.(10分)某中学艺术节期间,学校向学生征集书画作品,学校从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)请你将条形统计图补充完整,并估计全校共征集多少件作品?(2)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【分析】(1)所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件),继而可补全条形统计图,再用4个班的平均数量乘以班级总数可得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解;(1)∵本次调查的总数量为6÷=24(件),∴C班级的数量为24﹣(4+6+4)=10(件),补全图形如下:估计全校共征集作品约24÷4×30=180(件);(2)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中两名学生性别相同的概率为=.21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A (﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)将A(﹣3,m+8)代入反比例函数y=,求出m,求出点A的坐标,根据反比例函数图象上得的坐标特征求出反比例函数的解析式,利用待定系数法求出一次函数解析式;(2)求出AB与x轴相交于点C的坐标,根据三角形的面积公式计算即可.【解答】解:(1)将A(﹣3,m+8)代入反比例函数y=,得,=m+8,解得m=﹣6,m+8=﹣6+8=2,∴点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,解得,n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,,则一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,令﹣2x﹣4=0,解得x=﹣2,∴点C的坐标为(﹣2,0),即OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1=4.22.(12分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.23.(12分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE 交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.【分析】(1)连结OD,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得==,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB 中,可得2k2+4k2=5,求出k即可解决问题.【解答】(1)证明:连接OD,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)连接BD.∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴==,∴CD2=CB•CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,==,设BD=K,AD=2K,在Rt△ADB中,2k2+4k2=9,∴k=,∴AD=.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.方法3、先判断出△PME∽△DNP即可得出,进而用两边对应成比例夹角相等判断出△ADP∽△CDF,得出比例式即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S=AD•DC=AC•DQ,△ADC∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,连接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线的解析式;(2)由题意可求得C点坐标,设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可求得C′点的坐标,则可求得平移的单位,可求得m的值;(3)由(2)可求得E点坐标,连接BE交对称轴于点M,过E作EF⊥x轴于点F,当BE为平行四边形的边时,过Q作对称轴的垂线,垂足为N,则可证得△PQN ≌△BEF,可求得QN,即可求得Q到对称轴的距离,则可求得Q点的横坐标,代入抛物线解析式可求得Q点坐标;当BE为对角线时,由B、E的坐标可求得线段BE的中点坐标,设Q(x,y),由P点的横坐标则可求得Q点的横坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,∴,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C(﹣6,8),设平移后的点C的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C(﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,在△PQN和△BEF中∴△PQN≌△BEF(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).。

绵阳市高中2018级第二次诊断性考试化学答案

绵阳市高中2018级第二次诊断性考试化学答案

绵阳市高中2018级第二次诊断性考试理科综合能力测试·化学参考答案和评分标准选择题:7. D 8. B 9. D 10. B 11. C 12. A 13. C非选择题(一)必考题26.(14分)(1)球形冷凝管(1分)(2)水(1分)乙醇会被KMnO4氧化,并且生成的乙酸最后导致己二酸不纯(2分)(3)3HSO-3+2MnO-4+OH-==3SO2-4+2MnO2↓+2H2O(2分)(4)避免降温时乙二酸钾结晶析出(2分)MnO2(1分)作催化剂,作氧化剂,实验室制取氯气的原料等(1分)(5)97.3%(2分)C(2分)27.(14分)(1)Bi2S3+6Fe3+==2Bi3++6Fe2++3S(2分)(2)防止Bi3+水解(1分)SiO2(1分)(3)Bi3+(1分)盐酸(1分)取洗涤液于试管中,滴加AgNO3溶液,如溶液不变浑浊,表明铋粉已洗净(或检验洗涤液中是否存在Fe2+,加入的试剂可以是用氯水和KSCN溶液检验,或铁氰化钾溶液)(2分)(4)消耗的硝酸多,成本高,且产生有毒的NO2气体(2分)(5)提高电极的导电性(1分)Li-e-==Li+(1分)2Bi+3Li2S-6e-==Bi2S3+6Li+(2分)28.(15分)(1)NaHS(2分)(2)+20.6(2分)(3)Ⅱ(1分)BC(2分)(4)①>(2分)S2(2分)② 40%(2分)7.4 kPa(2分)(二)选考题35. [化学—选修3:物质结构与性质](15分)(1)[Ar]3d104s2或1s22s22p63s23p63d104s2(1分)10(1分)(2)>(1分)NaH、KH均为离子晶体,阳离子半径Na+<K+,晶格能NaH>KH(2分)(3)sp2(1分)sp3(1分)bde(2分)(4)① H>Al>Na(1分)SiH4(1分)②8(2分)34M(NaAlH4)2N A d×107=34×542×6.02×1023×1.28×107(2分)36. [化学—选修5:有机化学基础](15分)(1)OH (1分) C 15H 25O 3N (2分)(2)羰基、羟基(2分)(3)OH Cl +水ONa HO +NaCl +H 2O (2分)(4)CH 3OH 、浓硫酸,加热(2分) OH (2分)(5)NaOH 溶液浓度,反应物的用量比,是否使用TEBA 催化剂(2分)(6)11(2分)。

四川省绵阳市安州区2018年中考物理二诊试卷(含解析)

四川省绵阳市安州区2018年中考物理二诊试卷(含解析)

四川省绵阳市安州区2018年中考物理二诊试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)如图是用木槌敲击同一音叉时,示波器在相同时间内截取的二列声波图,一次重敲,一次轻敲,下列说法正确的是()A.重敲时音调高,甲图是重敲时的声波图B.轻敲时响度大,两次敲击音色相同C.两次敲击音调、音色都相同,乙图是轻敲时声波图D.甲的音量比乙的音量大,甲的音调也比乙的音调高2.(3分)“共享单车”已入驻我区,推动了绿色出行,深受市民欢迎。

骑共享单车时,用手机摄像头扫描二维码后自动开锁(如图所示)。

①手机扫描二维码时,二维码位于摄像头一倍焦距以内;②单车轮胎表面有凹凸不平的花纹是为了增大摩擦;③骑行时,看见树木向后退是以自行车为参照物;④尾灯是靠光的折射来提醒后方司机注意安全的;⑤车铃利用振动发出声音来提醒行人注意安全;⑥单车的踏脚相当于省力杠杆,以上说法中正确的是()A.①②⑥B.②③⑤C.①④⑥D.②③⑥3.(3分)关于电磁波,有以下说法:①看电视时调节频道实际上是在改变电视台发射电磁波的频率;②向某卫星发出波长为0.1m的电磁波,0.3s后收到反射波,该电磁波的频率是3×109Hz,卫星距离地面9×107m;③无线广播信号发射时,调制器的作用把声音信号转变为电流信号;④4G是新的移动通信技术,它的传输速度更快,且没有电磁波辐射;⑤手机既能发射电磁波也能接收电磁波;⑥红外线和X光线的传播都不需要介质,声波的传播却需要介质,但都具有能量。

以上这些说法正确的是()A.①②③④ B.③④⑤⑥ C.①②③⑥ D.②③⑤⑥4.(3分)有四位同学在同一地点同时做托里拆利实验,其中有两人不小心使玻璃管内混入了一些空气,有一人把管放斜了,只有一人操作完全正确。

他们记录到玻璃管内水银柱的长度分别为:725mm,733mm,749mm,760mm,那么,实验地点当时的实际大气压与下列哪种情况的水银柱产生的压强相同()A.725mmHg B.733mmHg C.749mmHg D.760mmHg5.(3分)一次家庭探究活动中,小华把一个正在发光的灯泡放到U形磁体中间,惊讶的发现了灯丝突然晃动起来。

理综(绵阳二诊试卷及答案)

理综(绵阳二诊试卷及答案)

生物试题参考答案及评分标准说明:1.生物学专有名词和专业术语........出现错字、别字、改变了原含义等,扣1分/字(或不得分)。

2.除参考答案外,其它合理答案应酌情给分。

选择题(36分)1---6C B D C A D非选择题(54分)29.(8分)(1)细胞代谢(2分)(2)细胞分化(1分)信息交流(1分)(3)生命活动的主要承担者都是蛋白质;遗传信息的携带者都是DNA(核酸);都以ATP作为直接能源物质;膜的主要组成成分都是磷脂和蛋白质;都能通过葡萄糖的氧化分解获得能量;都共用一套密码子翻译;都通过转录和翻译过程表达遗传信息等(2+2分)30.(10分)(1)各种化学物质的含量和理化性质(2分)(2)Na+(2分)主动运输(2分)(3)不认同(1分)血浆中存在缓冲物质,可以将吸收的酸性物质中和,血浆pH不会发生明显改变;如果为软化血管而过量摄入酸性物质导致血浆PH发生明显改变反而会危及健康(3分)31.(9分)(1)促甲状腺激素释放激素(2分)下丘脑(2分)(2)促进(1分)抑制(1分)(3)给该病人注射适量的TSH,其血液中的TRH含量将下降到正常值,甲状腺激素含量将升高到正常值(1+1+1=3分)32.(12分)(1)反转录(2分)(2)①1/2(2分)②两条非同源染色体上(2分)③分别位于Z、W染色体上(2分)F 1个体随机交配,统计F2中的普通型家蚕的性别。

如果F2中普通型家蚕中雌雄均有,则基因的位置为a;如F2中普通型家蚕中只有雄性,则基因的位置为b。

(1+1+1+1=4分)或(F1个体随机交配,统计F2中耐热型家蚕的性别比例,如果F2中耐热型家蚕中雌:雄=1:1,则基因的位置为a;如F2中耐热型家蚕中雌:雄=2:1,则基因的位置为b。

)或(F1个体随机交配,统计F2中家蚕的表现型及比例,如果F2中耐热雄:耐热雌:普通雄:普通雌=3:3:1:1,则基因的位置为a;如F2中耐热雌:耐热雄:普通雄=2:1:1,则基因的位置为b。

四川省绵阳市2018届高三第二次诊断性测试文科综合试题 含答案

四川省绵阳市2018届高三第二次诊断性测试文科综合试题 含答案

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴暂答题卡上的指定位置。

2.选择题的作答,每小题选出答案后,用统一提供的2B铅笔把答题卡上对用题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再填涂其他答案。

答在试题卷、草稿纸上无效。

3.非选择题的作答,用统一提供的签字笔直接答在答题卡上对应的答题区域內。

答在试题卷、草稿纸上无效。

4.考试结束后,将答题卡交回。

第Ⅰ卷(选择题共50分)本卷共35小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

十三五规划正式将京津冀协同发展纳入国家区域协调发展战略,疏解北京非首都功能成为实施京津冀协同发展的关键着力点。

河北省香河县地处京津之间,距北京市中心45公里,县政府以北为契机,积极构筑机器人产业港,引进高新机器人产业,2018年有30余家来自京津地区的机器人相关企业签约入驻,初步形成了涵盖核心零部件等机器人产业体系。

据此完成1-3题。

1.相比河北,我国机器人产业初期选择落户京津地区主要考虑的是()A.交通运输网络B.劳动力成本C.靠近原料产地D.教科研实力2.促使北京市机器人产业向香河县转移的主要因素是()A.人口密度B.城市职能C.市场因素D.内部交易成本3.相比京津地区,香河县目前发展机器人产业的主要优势是()A.产业基础好B.优美的环境C.生产成本低D.交通通达度高东北地区普通小学在校学生数从1980年的1297.9万,锐减至2018年的473.9万。

图示意东北地区近25年普通小学在校学生数占全国小学在校学生数的比例。

据此完成4-6题。

4.东北地区人口出生率陡降时期始于()A.20世纪70年代B. 20世纪80年代C. 20世纪90年代D. 21世纪10年代5.1980-2018年东北地区小学在校学生人数减少的主因是()A.老工业基地衰落B.移民外迁C.医疗水平较低D.人口政策6.2180年后东北地区面临的人口问题主要是()A.人口迁入压力增加B.人口合理容量增大C.劳动适龄人口陡减D.社会养老负担减轻太湖流域位于长江三角洲地区,平原面积约占80%,水系发达,是典型的平原水网地区。

2018绵阳二诊试卷评讲(南山实验周德伟)

2018绵阳二诊试卷评讲(南山实验周德伟)

9.从早市到晚市,三环附近的社区流动商贩密度大,根本原因是这里
A.离天安门广场近 B.人口流动量大 C.政府管制力度小 D.正规商业缺乏
10.推断甲社区的城市用地为
A.居民住宅
B.工业
C.娱乐康体
D.外事
11.本着政府引导,兼顾就近消费、商贩效益与城市监管,下列地区中适宜设置
固定型摊贩区的是
A.党政机关附近 B.城市干道两侧 C.公园绿地内外 D.学校医院附近
作物(牲畜)习性 区域发展过程
发展条件评价 发展问题成因分析 可持续发展建议
36.(22分)阅读图文资料,完成下列要求。 蕉麻是一种优质的热带硬纤维作物。年降水量2500~2800mm,土层深厚肥沃,排水
良好的环境最适宜蕉麻生长。蕉麻纤维细长、坚韧、质轻,在海水中浸泡不易腐烂。蒸麻 纤维是船用缆蝇、地毯等优质原材料,如今,蕉麻大多被制成浆,并加工成高级办公用纸、 纸币产量的占全球的90%;菲律宾南部的棉兰老岛(图6a)是蕉麻的主产地之一,初加工 后的蕉麻主要出口到欧洲、美国和日本。南美洲西北部的瓦瓜多尔(图6b)广泛采用大型 种植因生产、机械方法制麻,已成为世界第二大蕉麻纤维出口国。
C.农垦和移民
D.经贸和旅游
√ 4.从西汉至今,玉门关城镇位置的变迁是因为
A.风沙侵袭

B.水源地变迁 C.公路的修建
D.地质灾害
5.融入“一带一路”战略,图示地区将建成
√A.国际性商品谷物基地 C.国家新能源开发基地
B.国家对外开放的桥头堡 D.劳动力密集产业承接地
36.(22分)阅读图文资料,完成下列要求。 蕉麻是一种优质的热带硬纤维作物。年降水量2500~2800mm,土层深厚肥沃,排
年份 2004 2007 2010 2013 变动

2018年四川省绵阳市安州区中考生物二诊试题(解析版)

2018年四川省绵阳市安州区中考生物二诊试题(解析版)

2018年四川省绵阳市安州区中考生物二诊试卷一、选择题1. 2018年一月流感的大面积爆发,全国各地的儿童医院都人满为患,患者以发热为主要症状。

本次以乙型流感病毒为主,在一段时期内,中、小学校、托幼园等集体单位采取了一系列的预防措施。

科学家认为乙型流感病毒属于生物的判断依据是()A. 有细胞结构B. 能对外界刺激作出反应C. 能繁殖D. 能导致人患病【答案】C【解析】乙型流感病毒没有细胞结构,不能独立生活,只能寄生在活细胞里,靠自己的遗传物质中的遗传信息,利用细胞内的物质,制造出新的病毒,能在人体细胞内繁殖,属于生物。

故选C。

2. “朝蝇暮蚊”,其主要影响因素是()A. 阳光B. 温度C. 空气D. 湿度【答案】A【解析】苍蝇是白昼活动频繁的昆虫,具有明显的趋光性;蚊子怕光但又不喜欢光线太暗,最喜欢在弱光下吸血。

所以“朝蝇幕蚊”其主要影响因素是阳光。

故选A。

3. 用显微镜观察植物细胞时,从甲图到乙图,正确的操作步骤是()①转动粗准焦螺旋②转动细准焦螺旋③调节光圈④转动转换器⑤移动装片A. ⑤→①→②→④B. ⑤→③→②→④C. ⑤→④→③→②D. ①→②→③→④【答案】C【解析】试题分析:我们在使用显微镜时要先用低倍镜观察后用高倍镜观察,在低倍镜观察到物像是如何换用高倍物镜观察呢,首先要移动玻片把物像移动到视野中央,因为高倍镜的视野窄,虽然在低倍镜下能看到的物像,如果偏离视野中央的话,换上高倍镜,物像可能就不在视野中了.低倍镜换高倍镜是通过转动转换器来完成的.当换上高倍镜后,由于视野变窄,透光量少,视野就会变得很暗,需要调节光圈,或反光镜使视野变得亮一些.换上高倍物镜后物像只是有点模糊,一般转动细准焦螺旋就能使用物像更加清晰.解:根据分析可知,从甲图到乙图,首先⑤移动装片,④转动转换器,③调节光圈,②转动细准焦螺旋.A、此选项调节的是粗准焦螺旋.故A错误.B、此选项的操作顺序错了,会看不清物像的.故B错误.C、此选项先是把物像移动中央,然后换上高倍物像,换上大光圈增大视野亮度后,再调节细准焦螺旋使物像更加清晰,故C正确.D、此选项没有移动装片,换成高倍物镜后有可能看不到物像,故D错误.故选:C.考点:显微镜的基本构造和使用方法.4. 下表是某同学用大豆种子探究“种子萌发的环境条件”的实验情况.请判断其探究的环境条件是()A. 温度B. 空气C. 水分D. 光照【答案】C【解析】通过对表中的内容分析可知,①与②存在唯一的变量--水分,其它因素都相同,他研究的问题是水分对种子萌发的影响。

四川省绵阳市涪城区2018届九年级下学期学情调查(二诊)数学试题(解析版)

四川省绵阳市涪城区2018届九年级下学期学情调查(二诊)数学试题(解析版)

四川省绵阳市涪城区中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.4的算术平方根是()A.16B.±2C.2D.2.某物体的主视图如图所示,则该物体可能为()A.B.C.D.3.在过去的2017年,绵阳南郊机场的年旅客吞吐量达到了330万人次,再次达到新高,用科学记数法表示应是()A.3.3×107B.33×105C.3.3×106D.0.33×1074.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)5.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d6.已知圆O是正n边形A1A2…A n的外接圆,半径长为18,如果弧A1A2的长为π,那么边数n为()A.5B.10C.36D.727.关于x的方程x2+kx﹣2=0的一个根是﹣2,则方程的另一个根是()A.﹣1B.1C.2D.﹣28.如图,AB是⊙O的一条弦,直径CD⊥AB于点E,若AB=24,CD=26,则DE的长度是()A.5B.6C.7D.89.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为()米.A.750B.375C.375D.75010.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是()A.①②B.②③C.①②④D.②③④11.如图,在平行四边形ABCD中,BC=4,现将平行四边形ABCD绕点A旋转到平行四边形AEFG 的位置,其中点B,C,D分别落在点E,F,G处,且点B,E,D,F在同一直线上,如果点E 恰好是对角线BD的中点,那么AB的长度是()A.4B.3C.2D.12.如果,一圆桌周围有20个箱子,依顺时针方向编号1~20,小明从1号箱子沿着圆桌依顺时针方向前进,每经过一个箱子就丢入一颗球,所有小球共有红、黄、绿3种颜色,1号箱子红色,2号箱子黄色,3号箱子绿色,4号红色,5号黄色,6号绿色……,颜色依次循环,当他围绕圆桌刚好丢完2018圈时,则第10号箱子有()个黄球.A.671B.672C.673D.674二、填空题(本大题共6小题,每小题3分,共18分)13.因式分解:x2﹣9x+18=.14.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为.15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.16.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为.17.如图,在菱形ABCD中,已知∠ABC=60°,AB=6,E为AD中点,BE与AC交于点O,F为EC上点,且OF∥BC,连接BF,BF与AC交于点M,则OM的长度是.18.如图,AB为⊙P直径,点O是⊙P上一点,以O为圆心,OA为半径的⊙O与AB交于点C,与OB交于点D,连接OC,AD,若OA=5,△OAC的面积为12,则△ACD的面积是.三、解答题(本大题共7小题,共计86分)19.(16分)(1)计算:﹣2﹣1﹣(﹣π)0﹣4sin45°(2)先化简,再求值:(﹣1)÷,其中x=320.(11分)共享单车近日成为市民新宠,越来越多的居民选择共享单车作为出行的交通工具,某中学课外兴趣小组为了了解某小区居民每周使用共享单车时间的情况,随机抽取了该小区部分使用共享单车的居民进行调查(问卷调查表如图所示),并用调查结果绘制了图①、图②两幅每周使用共享单车时间的人数统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人;在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若该小区共有1200名居民,请你估计该小区使用共享单车的时间在“A”选项的有多少人?21.(11分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个长方体形状的包装盒,E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若要求改包装盒的高是20cm(以图中所示位置为参照),则x的值应是多少?(2)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?22.(11分)在平面直角坐标系xOy中,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,3)和B(﹣3,m).(1)求反比例函数y1=和一次函数y2=ax+b的解析式;(2)点C是坐标平面内一点,且BC∥x轴,当∠BAC=90°时,求点C坐标.23.(11分)如图,AB是⊙O直径,点C是⊙O上一点,D为的中点,AD与BC交于点M.(1)证明:△ACD∽△CMD;(2)若AC=3,tan∠CBD=,求△BCD的面积.24.(12分)已知抛物线y=x2﹣ax与x轴交于O,A两点,点B(﹣1,3)在抛物线上,点C(0,m)(m>3),延长BC与抛物线交于点E,过E作ED⊥x轴于点D,线段CD与抛物线交于点F,连接AB.(1)求抛物线解析式;(2)若四边形ABCD的面积为25,请求出点C坐标;(3)当m为何值时,四边形ABCF是平行四边形.25.(14分)如图,在平面直角坐标系xOy中,A(﹣8,0),B(﹣5,4),BC∥x轴,且与y轴交于点C,点D与点A关于y轴对称,连接CD.(1)若令∠CDA=α,证明:∠BAD=2α;(2)如图1,点M为线段BC上动点(不与端点重合),N为射线CD上点,且∠AMN=∠ABC,若令BM=m,请求出点N坐标(用含m的代数式表示);(3)如图2,点E在线段AB上,其横坐标为﹣6,作EF∥x轴,且与CD交于点F,在EF延长线上有动点P,射线FD上有点Q,且∠APQ=∠ABC,若=t,求的值(用含t的代数式表示).2018年四川省绵阳市涪城区中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆柱的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主视图,难度不大.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:330万用科学记数法表示应是3.3×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.【分析】根据不等式的性质进行判断.【解答】解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.【点评】考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.【分析】设正多边形的中心角的度数是x,根据弧长公式即可求得x的值,然后利用360度除以x即可得到.【解答】解:设正多边形的中心角的度数是x,根据题意得:=π,解得:x=10.则n==36.故选:C.【点评】本题考查了正多边形的计算以及扇形的弧长公式,正确求得中心角的度数是关键.7.【分析】方程的另一个根为a,根据根与系数的关系得出﹣2a=﹣2,求出即可.【解答】解:设方程的另一个根为a,∵关于x的方程x2+kx﹣2=0的一个根是﹣2,∴﹣2a=﹣2,解得:a=1,故选:B.【点评】本题考查了一元二次方程的解和根与系数的关系,能熟记根与系数的关系内容是解此题的关键.8.【分析】连接OA,根据垂径定理求出AE,根据勾股定理得出方程,求出方程的解即可.【解答】解:设DE为x,连接OA,∵CD是⊙O的直径,弦AB⊥CD于点E,AB=24,∴∠AEO=90°,AE=EB=12,由勾股定理得:OA2=AE2+OE2,132=122+(13﹣x)2,解得:x=8,则DE的长度是8,故选:D.【点评】本题考查了垂径定理和勾股定理的应用,能求出AE=EB是解此题的关键,注意:垂直于弦的直径平分弦.9.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.10.【分析】根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y 随x的增大而增大即可判断④.【解答】解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;故选:C.【点评】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.11.【分析】如图,利用平行四边形的性质得AD=BC=4,AD∥BC,则∠2=∠3,再利用旋转的性质得∠1=∠2,AB=AE,接着证明∠AEB=∠DAB得到DB=DA=4,然后证明△BAE∽△BDA,最后利用相似比计算AB的长.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD=BC=4,AD∥BC∴∠2=∠3,∵平行四边形ABCD绕点A旋转到平行四边形AEFG的位置,点B,E,D,F在同一直线上,∴∠1=∠2,AB=AE,∴∠1=∠3,∠4=∠AEB,而∠AEB=∠3+∠DAE,∴∠AEB=∠DAB=∠4,∴DB=DA=4,而点E为BD的中点,∴BE=2,∵∠1=∠3,∠4为公共角,∴△BAE∽△BDA,∴AB:BD=BE:BA,即AB:4=2:AB,∴AB=2.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质和相似三角形的判定与性质.12.【分析】根据第10号箱子得球的颜色可得出,其颜色按“红、绿、黄”三个一循环进行循环,结合2018=3×672+2可得出:当他围绕圆桌刚好丢完2018圈时,则第10号箱子有673个红球、673个绿球、672个黄球,此题得解.【解答】解:第1圈第10号箱子丢进的为红球,第2圈第10号箱子丢进的为绿球,第3圈第10号箱子丢进的为黄球,第4圈第10号箱子丢进的为红球,…,即第10号箱子得球颜色分别为:红、绿、黄、红、绿、黄、红、…,∵2018=3×672+2,∴2018个球中有673个红球、673个绿球、672个黄球.故选:B.【点评】本题考查了规律型中图形的变化类,根据箱子里面得球颜色的变化找出变化规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(x﹣3)(x﹣6),故答案为:(x﹣3)(x﹣6)【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.14.【分析】首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故答案为:36°.【点评】此题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.15.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】作AC⊥OB、O′D⊥A′B,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tan∠ABC==,由旋转性质知BO′=BO=6,tan∠A′BO′=tan∠ABO==,设O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的长即可得.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(3,),∴OC=3,AC=,∵OB=6,∴BC=OC=3,则tan∠ABC==,由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,∴==,设O′D=x,BD=3x,由O′D2+BD2=O′B2可得(x)2+(3x)2=62,解得:x=或x=﹣(舍),则BD=3x=,O′D=x=,∴OD=OB+BD=6+=,∴点O'的坐标为(,),故答案为:(,).【点评】本题考查了坐标与图形变化﹣旋转,主要利用了勾股定理、解直角三角形,熟记性质并作辅助线构造出直角三角形是解题的关键.17.【分析】先证明△ABC是等边三角形,得AC=BC=6,证明△AOE∽△COB,则=,得OC=4,再证明△OFC∽△AEC,则,得OF=2,由平行线分线段成比例线段定理可得结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=AD=6,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=BC=6,∵E是AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴=,∴AO=2,OC=4,∵OF∥BC,BC∥AD,∴OF∥AE,∴△OFC∽△AEC,∴,∴,OF=2,∵OF∥BC,∴,∴,∵OM +MC =4, ∴OM =1. 故答案为:1.【点评】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,等边三角形的判定等知识,依次得AO 、OC 、OM 、MC 的关系是解题的关键.18.【分析】先过点C 作CE ⊥OA ,CF ⊥OD ,可知四边形CEOF 是矩形,然后根据△OAC 的面积求出CE 的长度,进而求出三角形OCD 与三角形OAD 的面积,最后根据割补求出△ACD 的面积. 【解答】解:过点C 作CE ⊥OA 于点E ,CF ⊥OD 于点F . ∵AB 为⊙P 直径, ∴∠AOB =90°, ∴四边形CEOF 是矩形, ∴∠OEC =90°,CF =OE ,∵OA =OC =OD =5,△OAC 的面积为12∴,即,∴,在Rt △OCE 中,=,∴∴,,∴S △ACD =S △OAC +S △OCD ﹣S △OAD =,故答案为3.【点评】本题考查了圆与正方形的相关知识,正确运用勾股定理和割补三角形面积是解题的关键.三、解答题(本大题共7小题,共计86分)19.【分析】(1)先化简二次根式、计算负整数指数幂、零指数幂、代入三角函数值,再依次计算乘法、加减运算即可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算即可得.【解答】解:(1)原式=3﹣﹣1﹣4×=3﹣﹣1﹣2=﹣;(2)原式=•==.【点评】本题考查了实数的混合运算与分式的化简求值.解题的关键是对分式的分子分母因式分解及分式混合运算顺序和运算法则.20.【分析】(1)根据选C的有50人,占50%,从而可以求得本次本次接受问卷调查的人数以及在扇形统计图中“D”选项所占的百分比;(2)根据条形统计图中选B的人数和(1)求得的调查的总人数可以求得扇形统计图中,“B”选项所对应扇形圆心角的度数;(3)根据题意可以求得选A的人数,从而可以将条形统计图补充完整;(4)根据统计图中的数据可以求得该小区使用共享单车的时间在“A”选项的有多少人.【解答】解:(1)由题意可得,本次接受问卷调查的有:50÷50%=100(人),在扇形统计图中“D”选项所占的百分比为:×100%=10%,故答案为:100,10%;(2)由题意可得,扇形统计图中,“B”选项所对应扇形圆心角为:360°×=72°,故答案为:72;(3)选A的有:100﹣20﹣50﹣10=20,补全的条形统计图如右图所示;(4)由题意可得,该小区使用共享单车的时间在“A”选项的有:1200×=240(人),即该小区使用共享单车的时间在“A”选项的有240人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.【分析】(1)由AE=FB=x知EF=60﹣2x,据此得包装盒的高为×(60﹣2x)=(30﹣x),根据题意列出方程,解之可得;(2)由AE=x知包装盒的宽为x,从而得出包装盒的侧面积S=x•(30﹣x)•4=﹣8(x ﹣15)2+1800,根据二次函数的性质求解可得.【解答】解:(1)设AE=FB=x(cm),则EF=60﹣2x,∴包装盒的高为×(60﹣2x)=(30﹣x),由题意得(30﹣x)=20,解得:x=30﹣10;(2)∵AE=x,∴包装盒的宽为x,则包装盒的侧面积S=x•(30﹣x)•4=﹣8x2+240x=﹣8(x﹣15)2+1800,∴当x=15时,S取得最大值.【点评】本题主要考查二次函数的应用,解题的关键是根据等腰直角三角形的性质得出包装盒的高、宽,并列出侧面积的函数解析式.22.【分析】(1)根据点A、B都在反比例函数的图象上,先计算k,再计算m,然后用待定系数法求出一次函数的解析式;(2)过点A作AD⊥BC,垂足为D,根据线段AD、BD的长,得到特殊的直角三角形:△ABD 和△ADC,从而得到点C的坐标.【解答】解:(1)因为点A、B都在反比例函数的图象上,所以k=1×3=3,所以反比例函数的解析式为:y1=,当x=﹣3时,m=﹣1,所以点B(﹣3,﹣1)由于点A、B都在一次函数y2=ax+b的图象上,所以,解得所以一次函数的解析式为:y2=x+2(2)如图所示:作∠BAC=90°,过点A作AD⊥BC,垂足为D,∵点A(1,3),点B(﹣3,﹣1),所以点D(1,﹣1)∴AD=3﹣(﹣1)=4,BD=1﹣(﹣3)=4∵AD⊥BC,∴∠BAD=45°,又∵∠BAC=90°,∴∠DAC=∠C=45°,∴AD=CD=4设点C(m,﹣1),∴m=1+CD=5.所以点C(5,﹣1)答:点C的坐标为(5,﹣1)【点评】本题考查了待定系数法确定反比例函数、一次函数解析式及等腰直角三角形的性质和判定.解决本题的关键是作AD⊥BC,构造了等腰直角三角形.23.【分析】(1)想办法证明∠DCM=∠CAD即可解决问题;(2)连接OD交BC于H.设CD=BD=a.利用相似三角形的性质求出a即可解决问题;【解答】(1)证明:∵D为的中点,∴=,∴∠DCB=∠CAD,∵∠CDM=∠ADC,∴△ACD∽△CMD.(2)解:连接OD交BC于H.设CD=BD=a.∵AB是直径,∴∠ACB=∠ADB=90°,∵=,∴∠CBD=∠DAB,OD⊥BC,∴tan∠CBD=tan∠DAB==,∴AD=2a,∵△ACD∽△CMD,∴===,∵AC=3,∴CM =,DM =a ,AM =a ,在Rt △ACM 中,AM ===a ,∴a =,∴AD =2,BD =CD =,在Rt △ADB 中,AB ==5,∴OD =,∵OD ⊥BC ,∴CH =HB ,∵OA =OB ,∴OH =AC =,∴DH =1,在Rt △ACB 中,BC ==4,∴S △BCD =•BC •DH =×4×1=2.【点评】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、勾股定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考压轴题.24.【分析】(1)把B 点坐标代入y =x 2﹣ax 中求出a 的值即可得到抛物线解析式;(2)作BH ⊥x 轴于H ,如图,先解方程得到x 2﹣2x =0得A (2,0),利用待定系数法表示出直线BC 的解析式为y =(m ﹣3)x +m ,则解方程x 2﹣2x =(m ﹣3)x +m 得E (m ,m 2﹣2m ),根据三角形面积公式,利用S 四边形ABCD =S 梯形OCBH +S △OCD ﹣S △ABH 列方程得到(m +3)•1+•m •m ﹣•3•3=25,然后解方程求出m 即可得到C 点坐标;(3)易得直线CD 的解析式为y =﹣x +m ,直线AB 的解析式为y =﹣x +2,根据平行四边形的判定方法当BC ∥AF 时,四边形ABCF 为平行四边形,则可设直线AF 的解析式为y =(m ﹣3)x +n ,把A (2,0)代入得2m ﹣6+n =0得到直线AF 的解析式为y =(m ﹣3)x +6﹣2m ,再解方程组得F (3,m ﹣3),然后把F (3,m ﹣3)代入y =x 2﹣2x 得关于m 的方程,最后解关于m 的方程即可【解答】解:(1)把B (﹣1,3)代入y =x 2﹣ax 得1+a =3,解得a =2,∴抛物线解析式为y =x 2﹣2x ;(2)作BH ⊥x 轴于H ,如图,当y =0时,x 2﹣2x =0,解得x 1=0,x 2=2,则A (2,0),设直线BC 的解析式为y =kx +m ,把B (﹣1,3)代入得﹣k +m =3,解得k =m ﹣3,∴直线BC 的解析式为y =(m ﹣3)x +m ,解方程x 2﹣2x =(m ﹣3)x +m ,整理得x 2﹣(m ﹣1)x ﹣m =0,解得x 1=﹣1,x 2=m ,∴E (m ,m 2﹣2m ),∴D (m ,0),∵S 四边形ABCD =S 梯形OCBH +S △OCD ﹣S △ABH ,∴(m +3)•1+•m •m ﹣•3•3=25,整理得m 2+m ﹣56=0,解得m 1=7,m 2=﹣8(舍去),∴C 点坐标为(0,7);(3)易得直线CD 的解析式为y =﹣x +m ,直线AB 的解析式为y =﹣x +2,∴AB ∥CD ,当BC ∥AF 时,四边形ABCF 为平行四边形,而直线BC 的解析式为y =(m ﹣3)x +m ,∴直线AF 的解析式可设为y =(m ﹣3)x +n ,把A (2,0)代入得2m ﹣6+n =0,解得n =6﹣2m ,∴直线AF 的解析式为y =(m ﹣3)x +6﹣2m解方程组得,则F (3,m ﹣3),把F (3,m ﹣3)代入y =x 2﹣2x 得m ﹣3=9﹣6,解得m =6,∴当m 为6时,四边形ABCF 是平行四边形.【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和平行四边形的判定;会利用待定系数法求二次函数解析式和一次函数解析式,理解两直线平行的问题;理解坐标与图形性质.25.【分析】(1)如图1中,连接AC.只要证明AB=BC即可解决问题;(2)如图1﹣1中,设AC交MN于G,延长MC到H,使得CH=BM=m.连接HN.想办法证明△NCH∽△ACB,可得=,即=,推出CN=m即可解决问题;(3)如图2中,连接AC、PC、AQ,作PH∥AC交CD于H.设AC交EF于J.由△APQ∽△CHP,可得=,想办法求出CH:PH的值即可解决问题;【解答】解:(1)如图1中,连接AC.∵A(﹣8,0),B(﹣5,4),BC∥x轴,∴AB==5,BC=5,∴AB=BC=5,∴∠BAC=∠BCA,∵BC∥AD,∴∠BCA=∠CAD,∴∠BAC=∠CAB,∵A、D关于y轴对称,∴CA=CD,∴∠CAD=∠CDA=α,∴∠BAD=2α.(2)如图1﹣1中,设AC交MN于G,延长MC到H,使得CH=BM=m.连接HN.∵∠BAC=∠BCA=∠CAD=∠CDA=α,∴∠ABC=∠ACD,∵∠AMN=∠ABC,∴∠AMG=∠NCG,∵∠AGM=∠NGC,∴△AGM∽△NGC,∴=,∴=,∵∠MGC=∠AGN,∴△MGC∽△AGN,∴∠ANG=∠MCG=α,∴∠MAN=∠ANM=α,∴AM=MN,∵∠HMA=∠HMN+∠AMN=∠BAM+∠ABM,∴∠HMN=∠BAM,∵AB=BC=MH,∴△BAM≌△HMN,∴∠H=∠ABM,∵∠ACB=∠NCH,∴△NCH∽△ACB,∴=,∴=,∴CN=m,∴N(m,4﹣m).(3)如图2中,连接AC、PC、AQ,作PH∥AC交CD于H.设AC交EF于J.同法可证:∠PAQ =∠PCH ,∵AC ∥PH ,∴∠ACH =∠CHP ,∵∠ACD =∠APQ ,∴∠APQ =∠CHP ,∴△APQ ∽△CHP ,∴=,易知E (﹣6,),F (,),J (﹣,),∴FJ =,EF =,∵=t ,∴PF =, ∵PH ∥CJ ,∴FH :FC =PF :FJ =:=13:8t ,∴FH :CH =13:(13+8t )∵CJ =CF ,∴∠CJF =CFJ =∠HPF =∠PFH ,∴HP =HF ,∴PH :CH =13:(1+8t ),∴PA :PQ =CH :PH =(13+8t ):13.【点评】本题考查相似三角形综合题、平行线的性质、等腰三角形的判定和性质、相似三角形的判定和性质、轴对称图形的性质等知识,解题的关键是学会添加常用辅助线构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。

高2018级绵阳二诊阅卷报告

高2018级绵阳二诊阅卷报告

高2018级绵阳二诊语文主观题阅卷报告实用类文本阅读第6题在党和政府的高度重视下,我国疫苗研发取得了举世瞩目的成就。

请结合材料简要分析我国疫苗研发取得这些成就的原因。

(6分)【解析】我国疫苗研发取得举世瞩目的成就的原因,文本依据主要在材料二和材料三里。

材料二重点是说国家政府的重视和研发团队积极研究,材料三的重点是说我国在疫苗研发上积极参与国际合作。

所以大方面来说应该从国家层面、研发团队层面和参与国际合作层面这三个角度答题,但是国家的重视已经是题干提问的前提,属于已知原因,因此学生如果答到也不再给分。

【评分细则】①从研发角度看——研发团队优秀:科研人员奋力攻关,高效研发疫苗;(近似的答案都给2分)②从国家政策角度看——研发政策灵活:开通绿色通道,简化审批程序,既重速度,又保质量;(近似的答案都给2分。

该点学生可能不会专门分点来答,一般会放在国家重视这个点来答,如没有归纳到政策灵活但答到了开通绿色通道,简化审批程序等内容可以给1分)③从国际合作角度看——研发成果共享:保持研究的开放性,共享成果,同时强化与国际组织的合作与交流;(近似的答案都给2分。

该点也可以答成积极参与国际合作与交流:保持研究的开放性,共享研发成果。

)④从企业角度——企业深度参与:如国药集团等企业积极参与疫苗的研发和国际交流。

(近似的答案都给2分。

该点在文中材料三有所提及,但学生也可能不会专门分点作答,可能会答到其他的点里面。

可以给1分)(每点2分,答对三点得满分)文学类文本阅读第8题面对鹿兆海的题字请求,朱先生胡态度前后发生转变,请简要分析朱先生胡心理变化过程及原因。

(6分)【审题】1.出题意图分析:③--⑥区域阅读,抓取朱先生的言行举止特别是细节,揣摩其态度变化,再联系鹿兆海的话语推知变化原因。

2.考查角度:小说中的人物心理变化,原因表述(内涵有逻辑)。

3.学生审题情况:a.审题区间定位不准确;b.“心理变化及过程”导致答题未能一一对应。

4252--四川省绵阳市盐亭县2018年中考数学二诊试卷(解析版)

4252--四川省绵阳市盐亭县2018年中考数学二诊试卷(解析版)

四川省绵阳市盐亭县2018年中考数学二诊试卷(解析版)一、选择题:本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)若0.0002017用科学记数法表示为2.017×10n,则n的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0002017=2.017×10﹣4,则n=﹣4.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)若a>b,则下列式子正确的是()A.a﹣6>b﹣2 B.a< b C.4+3a>4+3b D.﹣2a>﹣2b【分析】根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立即可.【解答】解:A、若a>b⇒a﹣6>b﹣6或者a﹣2>b﹣2,故A选项错误;B、若a>b⇒a>b,故B选项错误;C、若a>b⇒3a>3b⇒4+3a>4+3b,故C选项正确;D、若a>b⇒﹣2a<﹣2b,故D选项错误.故选:C.【点评】此题考查了不等式的性质,掌握不等式的性质是本题的关键,①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.3.(3分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.【分析】解答此题首先要明确主视图是从物体正面看到的图形,然后根据几何体的主视图,判断出这个几何体可以是哪个图形即可.【解答】解:∵几何体的主视图由3个小正方形组成,下面两个,上面一个靠左,∴这个几何体可以是.故选:A.【点评】此题主要考查了三视图的概念,要熟练掌握,解答此题的关键是要明确:主视图是从物体正面看到的图形.4.(3分)下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.5.(3分)函数y=中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠3【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故选:D.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)已知下列命题:①若a>b,则c﹣a<c﹣b;②若a>0,则=a;③对角线互相平分且相等的四边形是菱形;④如果两条弧相等,那么它们所对的圆心角相等.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】根据矩形的判定以及圆周角定理、不等式的性质和二次根式的性质分别判断得出即可.【解答】解:①若a>b,则c﹣a<c﹣b;原命题与逆命题都是真命题;②若a>0,则=a;逆命题:若=a,则a>0,是假命题,故此选项错误;③对角线互相平分且相等的四边形是矩形;原命题是假命题,故此选项错误;④如果两条弧相等,那么它们所对的圆心角相等,逆命题:相等的圆心角所对的弧相等,是假命题,故此选项错误,故原命题与逆命题均为真命题的个数是1个.故选:D.【点评】此题主要考查了矩形、圆周角定理、二次根式、不等式的性质,熟练掌握相关性质是解题关键.7.(3分)如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF 的度数.【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故选:C.【点评】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,关键是掌握三角形内角和是180°.8.(3分)用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的底面周长是( )A .2π cmB .3π cmC .4π cmD .5π cm【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式计算即可.【解答】解:这个纸帽的底面周长==4π(cm ).故选:C .【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.(3分)如图,A 、B 是双曲线y=(k >0)上的点,A 、B 两点的横坐标分别是a 、3a ,线段AB 的延长线交x 轴于点C ,若S △AOC =3.则k 的值为( )A .2B .1.5C .4D .6【分析】分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E ,由于反比例函数的图象在第一象限,所以k >0,由点A 是反比例函数图象上的点可知,S △AOD =S △AOF =|k |,再由A 、B 两点的横坐标分别是a 、3a 可知AD=3BE ,故点B 是AC 的三等分点,故DE=2a ,CE=a ,所以S △AOC =S 梯形ACOF ﹣S △AOF =3,故可得出k 的值.【解答】解:如图,分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y轴于点G ,BE ⊥x 轴于点E ,∵k >0,点A 是反比例函数图象上的点,∴S △AOD =S △AOF =|k |,∵A 、B 两点的横坐标分别是a 、3a ,∴AD=3BE ,∴点B 是AC 的三等分点,∴DE=2a ,CE=a ,∴S △AOC =S 梯形ACOF ﹣S △AOF =(OE +CE +AF )×OF ﹣|k |=×5a ×﹣|k |=3,解得k=1.5.故选:B .【点评】本题考查反比例函数系数k 的几何意义,解题时注意:过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.10.(3分)如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A′B′C′D′与正方形ABCD 是以AC 的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD 的相似比是( )A .B .C .D .【分析】延长A′B′交BC 于点E ,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.【解答】解:∵在正方形ABCD中,AC=3∴BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是.故选:B.【点评】本题考查了位似变换和坐标与图形的变化的知识,解题的关键是根据已知条件求得两个正方形的边长.11.(3分)如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a <0,则可对②进行判断;利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用抛物线的对称性得到可对③进行判断;利用x=﹣1时,y<0可对④进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选:C.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,且两交点为抛物线上的对称点.熟练掌握二次函数图象与系数的关系.12.(3分)如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A.B.C.D.【分析】△CMN的面积=CP×MN,通过题干已知条件,用x分别表示出CP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2.【解答】解:(1)当0<x≤1时,如图1,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴,即,∴MN=x,∴y=CP×MN=(0<x≤1),∵﹣<0,∴函数图象开口向下;(2)当1<x<2,如图2,同理证得,△CDB∽△CNM,,即,∴MN=2﹣x,∴y=CP×MN=(2﹣x)×(2﹣x)=,∵>0,∴函数图象开口向上;综上,答案A的图象大致符合;故选:A.【点评】本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)若a﹣b=2,3a+2b=3,则3a(a﹣b)+2b(a﹣b)=6.【分析】此题可先提取公因式(a﹣b),然后把a﹣b=2,3a+2b=3代入整式即可得出答案.【解答】解:∵a﹣b=2,3a+2b=3,∴3a(a﹣b)+2b(a﹣b)=(a﹣b)(3a+2b)=2×3=6.【点评】本题考查提公因式法分解因式和整体思想的运用,是基础题.14.(3分)不等式组的解集是﹣3<x≤1.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(3分)如图,在等腰Rt△ABC中,∠A=90°,AC=6,D是AC上一点,过D作DE⊥BC于点E,若,则CE的长为.【分析】根据等腰直角三角形的性质得到AB=AC=6,∠C=∠B=45°,根据三角函数的定义得到AD=,求得CD=,解直角三角形得到结论.【解答】解:在等腰Rt△ABC中,∠A=90°,AC=6,∴AB=AC=6,∠C=∠B=45°,∵,∴AD=,∴CD=,∵DE⊥BC,∴CE=CD=,故答案为:.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质.16.(3分)如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为1或.【分析】分两种情形:①当G在AD边上时,②当G′在CD上时分别求解即可;【解答】解:①当G在AD边上时,∵AE=BG,AB=AB,∠BAG=∠ABE=90°,∴△ABG≌△BAE,∴AG=BE,∵AG∥BE,∴==1.②当G′在CD上时,易证△ABE≌△BCG′,∴∠BAE=∠CBG′,∵∠CBG′+∠ABF′=90°,∴∠BAE+∠ABF′=90°,∴∠AF′B=90°,∴BG′⊥AE,∵AB=8.BE=6,∴AE=BG′==10,∵•AB•BE=•AE•BF′,∴BF′=,F′G′=10﹣=,∴==故答案为1或.【点评】本题考查相似三角形的判定和性质、全等三角形的判定和性质、正方形的性质、勾股定理平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.17.(3分)一个口袋中装有四个完全相同的小球,把它们分别标号为1、2、3、4,随机摸出两个球,则摸出两个小球标号的和等于5的概率是.【分析】根据题意列出相应的表格,得出所有等可能的情况数,找出之和为5的情况数,即可求出所求的概率.【解答】解:列表得:12341﹣﹣﹣(2,1)(3,1)(4,1)2(1,2)﹣﹣﹣(3,2)(4,2)3(1,3)(2,3)﹣﹣﹣(4,3)4(1,4)(2,4)(3,4)﹣﹣﹣所有等可能的情况有12种,其中摸出两个小球标号的和等于5的有4种结果,∴摸出两个小球标号的和等于5的=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.(3分)如图:在x轴的上方,直角∠BOA绕原点O顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则tanA=.【分析】如图,作辅助线;首先证明△BOM∽△OAN,得到=,设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=,即可解决问题.【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.三、解答题:本大题共7个小题,共86分.解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:﹣2cos30°+()﹣2﹣|1﹣|(2)先化简,再求值:(﹣x﹣1)÷,其中x是方程x2=2x的根.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的解得到x的值,代入计算即可求出值.【解答】解:(1)原式=3﹣2×+4﹣+1=+5;(2)原式=•=﹣(x+2)(x﹣1),由x是方程x2=2x的根,得到x=0或x=2(不符合题意,舍去),则当x=0时,原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(11分)某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:818590939598100跳绳数/个人数128115将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是95个,中位数是95个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【解答】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8人,跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5人,故统计表为:跳绳数/个818590939598100人数12581185直方图为:(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级不能得满分的有720×=54人.【点评】本题考查了频数分布表及频率分布直方图的知识,解题的关键是读懂题意并读懂两个统计图,难度中等.21.(11分)如图,直线y=2x+3与y轴交于A点,与反比例函数y=(x>0)的图象交于点B,过点B作BC⊥x轴于点C,且C点的坐标为(1,0).(1)求反比例函数的解析式;(2)点D(a,1)是反比例函数y=(x>0)图象上的点,在x轴上是否存在点P,使得PB+PD最小?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)先根据直线y=2x+3求出点B坐标,再利用待定系数法可求得反比例函数解析式;(2)先根据反比例函数解析式求出点D 的坐标,若要在x轴上找一点P,使PB+PD 最小,可作点D关于x的轴的对称点D′,连接BD′,直线BD′与x轴的交点即为所求点P.【解答】解:(1)∵BC⊥x轴于点C,且C点的坐标为(1,0),∴在直线y=2x+3中,当x=1时,y=2+3=5,∴点B的坐标为(1,5),又∵点B(1,5)在反比例函数y=上,∴k=1×5=5,∴反比例函数的解析式为:y=;(2)将点D(a,1)代入y=,得:a=5,∴点D坐标为(5,1)设点D(5,1)关于x轴的对称点为D′(5,﹣1),过点B(1,5)、点D′(5,﹣1)的直线解析式为:y=kx+b,可得:,解得:,∴直线BD′的解析式为:y=﹣x+,根据题意知,直线BD′与x轴的交点即为所求点P,当y=0时,得:﹣x+=0,解得:x=,故点P的坐标为(,0).【点评】本题主要考查一次函数与反比例函数的交点问题及依据轴对称性质求最短路线问题,待定系数法求一次函数、反比例函数的解析式是解题关键.22.(11分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【分析】(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;【解答】解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.【点评】本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.23.(11分)如图,在△ABC中,∠ABC=90°,D是边AC上一点,连接BD,使∠A=2∠1,点E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求AB的长.【分析】(1)由OD=OB得∠1=∠ODB,则根据三角形外角性质得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,则可根据切线的判定定理得到AC是⊙O的切线;(2)由∠A=60°得到∠C=30°,∠DOC=60°,根据含30度的直角三角形三边的关系得CD=2OD=4,在Rt△ABC中,根据AB=BC•tan30°计算即可;【解答】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线;(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴OC=2OD=4,BC=OB+OC=6在Rt△ABC中,AB=BC•tan30°=2.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了扇形面积的计算.24.(12分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;,BP=x(0≤x≤2),求y与x之间的函数关(3)在平移变换过程中,设y=S△OPB系式,并求出y的最大值.【分析】(1)根据平移的性质,可得PQ,根据一组对边平行且相等的四边形是平行四边形,可得答案;(2)根据正方形的性质,平移的性质,可得PQ与AB的关系,根据等腰直角三角形的判定与性质,可得∠PQO,根据全等三角形的判定与性质,可得AO与OP 的数量关系,根据余角的性质,可得AO与OP的位置关系;(3)根据等腰直角三角形的性质,可得OE的长,根据三角形的面积公式,可得二次函数,根据二次函数的性质,可得到答案.【解答】(1)四边形APQD为平行四边形;(2)OA=OP,OA⊥OP,理由如下:∵四边形ABCD是正方形,∴AB=BC=PQ,∠ABO=∠OBQ=45°,∵OQ⊥BD,∴∠PQO=45°,∴∠ABO=∠OBQ=∠PQO=45°,∴OB=OQ,在△AOB和△OPQ中,∴△AOB≌△POQ(SAS),∴OA=OP,∠AOB=∠POQ,∴∠AOP=∠BOQ=90°,∴OA⊥OP;(3)如图,过O作OE⊥BC于E.①如图1,当P点在B点右侧时,则BQ=x+2,OE=,∴y=וx,即y=(x+1)2﹣,又∵0≤x≤2,∴当x=2时,y有最大值为2;②如图2,当P点在B点左侧时,则BQ=2﹣x,OE=,∴y=וx,即y=﹣(x﹣1)2+,又∵0≤x≤2,∴当x=1时,y有最大值为;综上所述,∴当x=2时,y有最大值为2.【点评】本题考查了二次函数综合题,利用平行四边形的判定是解题关键;利用全等三角形的判定与性质是解题关键;利用等腰直角三角形的性质的出OE的长是解题关键,又利用了二次函数的性质.25.(14分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM 是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△PAC =S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.【解答】解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC =S△PAN+S△PCN,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.。

绵阳市高中2018届第二次诊断性考试(文科)数学试题-精编含解析(纯word版)

绵阳市高中2018届第二次诊断性考试(文科)数学试题-精编含解析(纯word版)

绵阳市高中2018届第二次诊断性考试(文科)数学试题一、选择题(每小题5分,共60分)1、若复数复数z 满足(1)1(i z i i +=-是虚数单位),则z =A .1 B.-1 C .i D .i -2、已知集合(){|40},{|23}x A x x x B x Z =-<=∈>,{1,2,3}B =,则A B = A .{|24}x x ≤< B .{}2,4 C .{}3 D . {}2,33、已知向量()(),2,1,1,a x b x ==-+若3a b ⋅= ,则a 为A .3B .5C .4、“2a =”是1:30l x ay -+=与直线2:450l ax y -+=垂直的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5、执行如图所示的程序框图,输出的n 等于 A .2 B .3 C .4 D .56、过双曲线2222:1(0,0)x y E a b a b-=>>的 右焦点且垂直于x 轴的直线与双曲线交于A 、B 两点,与双曲线的渐近线交于C 、D 两点,若AB CD =,则双曲线的离心率是A .2 D .37、在区间[]0,2上随机取2个数,则这2个数之和大于3的概率是 A .14 B .16 C .18 D .1168、中国高速铁路技术世界领先,高速列车运行时不仅速度比普通列车快而且噪音更小,声强是指声音在传播途径中每1平方米面积上声能流密度,用I (单位:2/m W )表示。

声强级I L (单位dB )与声强I (单位:2/m W )的函数关系式为:1210lg()10I IL -=,若普通列车的声强级为95dB ,高速列车的声强级为95dB ,则普通列车的声强是高速列车的声强的A .106B .105C .104D .1039、已知直线l 过抛物线24y x =的焦点,且与抛物线交于A,B 两点,若直线l 的斜率为2,则线段AB 中点到y 轴的距离是A .52 B .32C.1 D1 10、已知函数()2sin(2)6f x x π=+,当,4x πθ⎡⎤∈-⎢⎥⎣⎦时,()f x ⎡⎤∈⎣⎦,则cos θ的取值范围是A.⎣⎦ B.12⎤⎥⎣⎦ C.12⎡-⎢⎣⎦ D .11,2⎡⎤-⎢⎥⎣⎦ 11、过点(6,9)P 作圆()2224x y +-=的两条切线,切点为M,N.分别交x 轴于B,C 两点,则PBC ∆的面积是 A .1645 B .1625C .32D .30 12、若函数()axf x xe =的图像与()xg x e =的图像无交点,则实数a 的取值范围是 A .1,e ⎡⎫+∞⎪⎢⎣⎭B .11(,1)e e --C .1(,)e-∞ D .1(,1)e-∞-二、填空题(每小题5分,共20分)13、交通部门利用测速仪测得成绵高速公路绵阳段2018年元旦期间某时段车速的数据(单位km/h ),从中随机抽取2000个样本,作出如图所示的频率分布直方图,则绵阳段车速的众数的估计值为 。

2018年四川省绵阳市涪城区中考生物二诊试卷(含解析)

2018年四川省绵阳市涪城区中考生物二诊试卷(含解析)

2018年四川省绵阳市涪城区中考生物二诊试卷一、选择题(本大题共18小题,共36.0分)1.如图所示,天平两端托盘上的盛水烧杯内各插有1根树枝,且两根树枝的树叶一多一少,开始时天平两端平衡。

现将此装置移至光下照射一段时间后,发现天平左侧上升。

产生此现象的原因主要是植物的()A. 光合作用B. 呼吸作用C. 蒸腾作用D. 分解作用2.“草盛豆苗稀”体现了草和豆苗之间的关系是()A. 捕食B. 竞争C. 合作D. 共生3.学校生物兴趣小组想探究“酒精对细胞的影响”进行了如下实验:①取相同的新鲜杨梅各5颗分别放入编号为1号和2号的杯子中,②1号杯中加入适量的清水,2号杯中加入等量的高度白酒,③一段时间后观察,现象如下图所示,请你推测2号杯中液体颜色变红的主要原因是()A. 酒精破坏了细胞的细胞膜B. 酒精破坏了细胞的细胞壁C. 酒精破坏了细胞的细胞质D. 酒精破坏了细胞的细胞核4.下面关于植物的光合作用、呼吸作用、蒸腾作用应用的叙述不正确的是()A. 幼苗带土栽培可保护根毛B. 给农作物松土有利于根部的呼吸作用C. 合理密植可提高农作物产量D. 大棚作物补充二氧化碳可抑制光合作用5.前不久,网上出现一些“中、高考食谱”.据《重庆晨报》报道,一女士听说“吃猪脑能补人脑而增加记忆”,于是,她天天给将参加考试的女儿做猪脑吃,结果,女儿吃得直拉肚子.你认为下列哪道菜符合均衡膳食的要求()A. 皮蛋肉丸汤B. 豆腐白菜汤C. 青菜排骨汤D. 大骨鱼头汤6.如图是截取人体某部位连通的三种血管的片段,其中的血液依次流经()A. ①→②→③B. ③→②→①C. ②→③→①D. ③→①→②7.下列关于人体生理与卫生的叙述不正确的是()A. 青春期的男孩和女孩随着身体的发育,性意识开始萌动B. 冬天外界寒冷空气经呼吸道达到肺部时温度可升到37℃C. 遇到巨大声响时,要迅速张开口D. 近视眼可配戴凸透镜加以矫正8.下列有关人体结构与功能的叙述,错误的是()A. 肾小管细长而曲折,周围缠绕着大量的毛细血管,利于肾小管的重吸收B. 肺泡壁和毛细血管壁都是由一层扁平的上皮细胞构成,利于肺泡与血液的气体交换C. 心房与心室之间、心室与动脉之间、动脉血管中、静脉血管中都有瓣膜,能防止血液在循环过程中倒流D. 小肠内表面有许多环形皱襞,皱襞表面有许多小肠绒毛,这大大地增加了小肠消化和吸收的面积9.下列动物结构与功能对应错误的一组是()A. 家鸽-气囊-气体交换B. 蚯蚓-湿润的体壁-呼吸C. 蝗虫-外骨骼-保护、防止水分散失D. 水螅-刺细胞-捕食、防御10.下列几种动物行为,不属于学习行为的是()A. 失去雏鸡的母鸡抚爱小猫B. 小黑猩猩模仿取食白蚁C. 猴子表演骑车D. 蚯蚓走“I”迷宫11.下列技术属于有性生殖的是()A. 试管婴儿的培养产生B. 克隆技术产生“多莉”C. 嫁接繁殖苹果梨D. 通过组织培养大量繁殖草莓苗12.我国早在10世纪,人们就已经采用将轻症天花病人的痘浆接种到健康人身上的方法,来预防天花.这里所说的痘浆和这种方法分别属于()A. 抗体非特异性免疫B. 抗体特异性免疫C. 抗原非特异性免疫D. 抗原特异性免疫13.人的正常成熟精子细胞中的染色体组成是()A. 22对常染色体+XYB. 22条常色体+X或22条常染色体+YC. 22条常染色体+XYD. 22条常染色体+Y14.下列有关染色体、DNA和基因的描述中,正确的是()A. 染色体主要由DNA和基因组成B. 基因是DNA分子上有特定遗传效应的片段C. 一个DNA分子就是一条染色体D. 基因是DNA分子上的任意片段15.16.下面关于生物进化的叙述正确的是()A. 体色鲜艳的箭毒蛙在自然界能长期生存,不能用自然选择学说来解释B. 生物产生的变异都有利于适应环境C. 米勒的实验表明原始地球上能形成氨基酸等有机物D. 在晚近的地层中不可能找到低等生物的化石17.植物类群由低等到高等排序正确的是()A. 苔藓植物藻类植物蕨类植物种子植物B. 藻类植物苔藓植物蕨类植物种子植物C. 种子植物苔藓植物藻类植物蕨类植物D. 蕨类植物苔藓植物藻类植物种子植物18.生物种类的多样性的实质是()A. 基因的多样性B. 生存环境的多样性C. 形态的多样性D. 适应性的多样性二、简答题(本大题共4小题,共8.0分)19.刘超同学吃完早餐去参加学校的演讲比赛,上台时看到下面这么多观众,因为紧张而面红耳赤、心跳加快、血压升高。

2018绵阳二诊阅卷标准

2018绵阳二诊阅卷标准

绵阳二诊阅卷标准36、(1)①位于热带雨林地区,全年高温(或纬度低,热量充足)(2分);②全年多雨(或年降水量丰富或水分条件充足)(2分)(如果答全年高温多雨,得4分);③多山地,利于排水(2分);④火山活动频繁,火山灰土壤肥沃(2分,只答土壤肥沃1分)。

说明:答案必须体现因果关系;只因不果或者有果无因,得分减半,因果无逻辑联系不得分:如河流广布,土壤肥沃。

(2)①以家庭为单位,生产规模较小(2分),②机械化水平低(2分);③劳动密集型产业、附加值低(或经济效益低)(2分),应对市场风险能力弱;④传统的市场受新兴蕉麻生产国的冲击大(或科技水平低或距离市场远)(2分);⑤遭受台风、洪涝影响或抗灾能力弱(2分)。

(3)①距美国市场近,蕉麻纤维原料运输费用(成本)较低(2分);②大型种植园,机械化生产,效率较高(2分);③专业化程度或集约化程度高或规模大(2分);37、(1)①小农经营(2分);②自给自足经济(或商品经济不发达或商品率低)为主(2分);③城市化水平低(2分);④市场需求量小(2分)(市场范围小,不得分)。

(2)①集中分布在黄淮海区和长江区,两区占比保持在60%以上(或黄河区和长江区多,其他地区较少)(2分),②(西南、西北)西部地区产量低(2分);③蔬菜生产扩张速度西部地区远高于东部地区(或东部减少,西部增多)(2分);④生产重心具有逐步西移趋势(2分);⑤蔬菜生产的集中程度有所减小(2分)。

(3)①蔬菜的产销分离导致跨区流通,增加流通成本(或运输或交通成本),导致价格上涨(2分);②生产的季节性和周期性会导致价格波动(2分);③生产集聚可能会因自然灾害、食品安全、信息不对称等因素影响,加剧价格的异常波动(2分)。

④增加1点:冷藏保鲜或损耗导致成本上升(2分)(4)说明:本题阅卷严格对应三个方面给分(6分):可行性+必要性+影响(效益或者问题),但学生往往答不全,如:资源短缺;干旱加剧;荒漠化;盐碱化;只得2分。

2018年四川省绵阳市涪城区中考生物二诊试题(解析版)

2018年四川省绵阳市涪城区中考生物二诊试题(解析版)

2018年四川省绵阳市涪城区中考生物二诊试卷一、选择题1. 如图所示,天平两端托盘上的盛水烧杯内各插有1根树枝,且两根树枝的树叶一多一少,开始时天平两端平衡。

现将此装置移至光下照射一段时间后,发现天平左侧上升。

产生此现象的原因主要是植物的()A. 光合作用B. 呼吸作用C. 蒸腾作用D. 分解作用【答案】C【解析】试题分析:植物放在阳光下,同时进行三种作用:光合作用、呼吸作用和蒸腾作用.光合作用从外界吸收二氧化碳,释放出氧气,重量变化不大;呼吸作用吸收氧气,释放了二氧化碳,重量变化也不大;植物的蒸腾作用在不停的进行,因为它完成蒸腾作用的结果:1,促进植物体内水分及无机盐的运输;2,促进根部对水分的吸收;3,降低植物叶片表面的温度;左边的装置中叶片较多,蒸腾作用失去的水分较多,重量减轻会上升.故选:C考点:探究植物的蒸腾作用.2. “草盛豆苗稀”体现了草和豆苗之间的关系是()A. 捕食B. 竞争C. 合作D. 共生【答案】B【解析】试题分析:生物因素是指影响某种生物生活的其他生物,生物与生物之间的关系常见有:捕食关系、竞争关系、合作关系、寄生关系等,豆苗与草,相互争夺阳光、水分、无机盐和生存的空间等,属于竞争关系;草盛,即草多了,草吸收的水、无机盐就多;草还挤占豆苗的生存空间,遮挡阳光影响豆苗的光合作用,导致豆苗生长缓慢,因此才有了“草盛豆苗稀”景象。

考点:生物和生物之间有密切的联系。

3. 学校生物兴趣小组想探究“酒精对细胞的影响”进行了如下实验:①取相同的新鲜杨梅各5颗分别放入编号为1号和2号的杯子中,②1号杯中加入适量的清水,2号杯中加入等量的高度白酒,③一段时间后观察,现象如下图所示,请你推测2号杯中液体颜色变红的主要原因是()A. 酒精破坏了细胞的细胞膜B. 酒精破坏了细胞的细胞壁C. 酒精破坏了细胞的细胞质D. 酒精破坏了细胞的细胞核【答案】A【解析】细胞膜能控制物质的进出,既不让有害的物质进来,也不让有用的物质轻易出去,具有选择透过性,也有保护作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018 绵阳二诊关键题的来源、破解和评析
11.在
ABC 中, AB 4,CA 3CB ,则 ABC 面积的最大值为
点评:在《解析几何系统系突破》一书的第 2.2 节介绍了圆产生的三种方式,即三种定义, 把到两个定点距离之比等于不为 1 的常数作为圆的第二定义,即阿波罗尼斯圆。

圆心就在两 个定点所在直线上。

建系,求出圆的方程即可。

1 3 1 2
12.函数 f x
e x 1
x x ln x a ,若 f x
与 f
f x
有相同的值域,则
a 的取 3
2 值范围为
1
1
1
解析: f '
x
1
2
,注意到 f '1 0 ,且 f
x

x
e
x x
'' x
e
2x 1
x
x
2
注意到当 x
0,1
时,
'' 2
1 1 0
f x x 1

e x
x
2
1
当 x
1,
时,
2
1 0
f '' x
e x
1
x

x
2
所以 f 'x 在
0,单增,因为 f '
1 0 ,
5
所以 f
x

0,1
单减,在
1,
单增,则 f
x
f
a
min
1

6
5
当 x
0, 时, f x ,则 f x
的值域为
a,
6
5
5
因为 f
f x
的值域为
a ,所以 f
x
的值域
,
a,
必须含 x 1 ,即
6
6
5 6 a 1,即 a 1
6
点评 1:整个解答过程,观察是处于核心地位,在《高观点下函数导数压轴题的系统性解读》
的最开始,对高观点进行了解读,把观察能力视为“高观点下的思考4”。

在《高观点下函
数导数压轴题的系统性解读》在专门在4.6节讲“对导函数的观察和处理”,全面系统的解
读。

55
点评2:有老师质疑因为f x的定义域为0,,所以f x0,则0
a,即a,
66
问题出在对定义域的理解上,教材必修1约定,如果没有写f x的定义域,就默认使得有
意义的x的取值,即使f x的值域有负数,我们写出f f x,自然就没有要f x取负的
情况,如lg x1,我们默认x1或x1。

这样也能更好地理解lg1
2y x2ax的
值域为R,求a的范围。

15.若f x为偶函数,且x0时,f x x24x1,若函数g x f2x mf
x2
恰有7个零点,则m的值为
解 析 : 作 出 函 数 f
x
图 像 , 知 g
x 0 的 根 为 f x 1, f x k,k
3,1 , 则
1
m ,即 m 1,(当 m
1时,由 f x 1, f
x
2 3,1

2 0
16. 点
,
4
P x 0 y y
是 抛 物 线 x 2
4y 上 第 一 象 限 内 的 一 点 , 过 点 P 作 圆
E : x
的两条切线,切点为 M , N ,分别交 x 轴于 B,C 两点,给出以下命题:
2
y 2
4
2
① PM PN
y ; 0
②若 y
9 ,则直线 MN 的方程是 7x 6y 7 0 ; 0
162 5
③若 y
9 ,则 PBC 的面积是 0
④ PBC 面积的最小值是 32. 其中正确的命题是
; 点评 1:对于③④涉及内切圆面积的计算,在《解析几何系统系突破》一书在 4.10 节对解析 几何中的基本问题面积进行了系统性梳理,分为九类,其中第九类就是内切圆面积的处理, 给出了处理其问题的一般性方法。

点评 2:在 5.7 节作为拓展,介绍了大学知识的极点极线和曲线系,其中例 10 就是借助曲线 系可以最快的速度突破 2008 全国联赛试题,此题正好是这个题的改编。

21.已知函数 f
x e x ax 1,a R ,对于 x R , f x 1 2ln 2 恒成立。

(1)求 a 的最大值;
1 (2)当 a 取最大值时,若存在
1
x k f x x
成立,求
x
,使得不等式
'
3 0 0
2
正整数 k 的最小值 点评 1:第(1)问转化为
ln
ln 1 1 2ln 2
f x
恒成立,要解这个超
min
f
a
a a a
越不等式,找零点、求导即可。

第(2)问是改编 2012 全国新课标文科 21 题,除答案以外,
可以直接分参,引入导数的零点,找其范围即可突破。

在《高观点下函数导数压轴题的系统 性解读》一书的 4.6 节不仅给出了此题,还给出了几个变式。

点评 2:此题也略有不足,把原题的整数 k 改为了正整数 k ,有学生直接令 k 1,不成立,
验证 k 2成立,就得答案。

相关文档
最新文档