Ni-NTA Purification System 中文版
NiNTA琼脂糖纯化树脂
Ni-NTA琼脂糖纯化树脂是以6%交联的琼脂糖为基质,通过化学方法偶联了四配位的氮川三乙酸(NTA)螯合镍离子(Ni2+) 后的产品,更加稳定,可以纯化组氨酸标签的蛋白。Ni-NTA琼脂糖纯化树脂可以用于各种表达来源(如大肠杆菌、酵母、昆 虫细胞和哺乳动物细胞)的组氨酸标签蛋白的纯化。在含组氨酸标签的重组蛋白表达后,可以利用变性或非变性条件对目的 蛋白进行纯化。已经连接到树脂上的蛋白可以用低pH溶液,咪唑溶液洗脱。
淀完全溶解。 4. 12,000 rpm离心30 min去除剩余的不溶物。小心的将上清转移到干净的管中而不触碰下面的沉淀。
组氨酸标签蛋白纯化步骤
离心法组氨酸标签蛋白纯化步骤 可根据自身实验情况进行调整,可以再室温或是4°C进行纯化。 1. 加入适量的 Ni-NTA树脂到离心管中。离心管在3000 rpm离心2 min然后小心的去除上清。 2. 加入两倍柱体积的Binding/wash buffer 将缓冲液和树脂完全混匀。 3. 离心管在3000 rpm离心2 min 然后小心的去除上清。 4. 将蛋白提取物与Binding/wash buffer混匀,使总体积相当于两个柱体积。 5. 将上步中的混合液加入柱,在旋转振荡器混匀30 min,使混合液与树脂混匀。 6. 离心管在3000 rpm离心2 min,吸出上清,如需要可将上清留存进行下游分析。 7. 用两倍柱体积的Binding/wash buffer清洗。离心管在3000 rpm离心2 min吸出上清,如需要可将上清留存进行下游分析。. 8. 重复清洗步骤,通过测量在280 nm吸光度,直到洗出液值达到基线值。 9. 用一倍柱体积的Elution Buffer 洗脱柱上的组氨酸标签蛋白。离心管在3000 rpm离心2 min 然后小心的吸出并保存上清。
蛋白纯化(his标签)说明书
Instruction ManualProBond TM Purification SystemFor purification of polyhistidine-containing recombinant proteinsCatalog nos. K850-01, K851-01, K852-01, K853-01, K854-01,R801-01, R801-15Version K2 September200425-0006iiTable of ContentsKit Contents and Storage (iv)Accessory Products (vi)Introduction (1)Overview (1)Methods (2)Preparing Cell Lysates (2)Purification Procedure—Native Conditions (7)Purification Procedure—Denaturing Conditions (11)Purification Procedure—Hybrid Conditions (13)Troubleshooting (15)Appendix (17)Additional Protocols (17)Recipes (18)Frequently Asked Questions (21)References (22)Technical Service (23)iiiKit Contents and StorageTypes of Products This manual is supplied with the following products:Product CatalogNo.ProBond™ Purification System K850-01ProBond™ Purification System with Antibodywith Anti-Xpress™ Antibody K851-01with Anti-myc-HRP Antibody K852-01with Anti-His(C-term)-HRP Antibody K853-01with Anti-V5-HRP Antibody K854-01ProBond™ Nickel-Chelating Resin (50 ml) R801-01ProBond™ Nickel Chelating Resin (150 ml) R801-15ProBond™Purification System Components The ProBond™ Purification System includes enough resin, reagents, and columns for six purifications. The components are listed below. See next page for resin specifications.Component Composition Quantity ProBond™ Resin 50% slurry in 20% ethanol 12 ml5X NativePurification Buffer250 mM NaH2PO4, pH 8.02.5 M NaCl1 × 125 ml bottleGuanidinium LysisBuffer6 M Guanidine HCl20 mM sodium phosphate, pH 7.8500 mM NaCl1 × 60 ml bottleDenaturingBinding Buffer8 M Urea20 mM sodium phosphate, pH 7.8500 mM NaCl2 × 125 ml bottlesDenaturing WashBuffer8 M Urea20 mM sodium phosphate, pH 6.0500 mM NaCl2 × 125 ml bottlesDenaturing ElutionBuffer8 M Urea20 mM NaH2PO4, pH 4.0500 mM NaCl1 × 60 ml bottle3 M Imidazole,20 mM sodium phosphate, pH 6.0500 mM NaCl1 × 8 ml bottlePurificationColumns10 ml columns 6Continued on next pageivKit Contents and Storage, ContinuedProBond™Purification System with Antibody The ProBond™ Purification System with Antibody includes resin, reagents, and columns as described for the ProBond™ Purification System (previous page) and 50 µl of the appropriate purified mouse monoclonal antibody. Sufficient reagents are included to perform six purifications and 25 Western blots with the antibody.For more details on the antibody specificity, subclass, and protocols for using the antibody, refer to the antibody manual supplied with the system.Storage Store ProBond™ resin at +4°C. Store buffer and columns at room temperature.Store the antibody at 4°C. Avoid repeated freezing and thawing of theantibody as it may result in loss of activity.The product is guaranteed for 6 months when stored properly.All native purification buffers are prepared from the 5X Native PurificationBuffer and the 3 M Imidazole, as described on page 7.The Denaturing Wash Buffer pH 5.3 is prepared from the Denaturing WashBuffer (pH 6.0), as described on page 11.Resin and ColumnSpecificationsProBond™ resin is precharged with Ni2+ ions and appears blue in color. It isprovided as a 50% slurry in 20% ethanol.ProBond™ resin and purification columns have the following specifications:• Binding capacity of ProBond™ resin: 1–5 mg of protein per ml of resin• Average bead size: 45–165 microns• Pore size of purification columns: 30–35 microns• Recommended flow rate: 0.5 ml/min• Maximum flow rate: 2 ml/min• Maximum linear flow rate: 700 cm/h• Column material: Polypropylene• pH stability (long term): pH 3–13• pH stability (short term): pH 2–14ProductQualificationThe ProBond™ Purification System is qualified by purifying 2 mg of myoglobinprotein on a column and performing a Bradford assay. Protein recovery mustbe 75% or higher.vAccessory ProductsAdditionalProductsThe following products are also available for order from Invitrogen:Product QuantityCatalogNo.ProBond™ Nickel-Chelating Resin 50 ml150 mlR801-01R801-15Polypropylene columns(empty)50 R640-50Ni-NTA Agarose 10 ml25 ml R901-01 R901-15Ni-NTA Purification System 6 purifications K950-01 Ni-NTA Purification Systemwith Antibodywith Anti-Xpress™ Antibody with Anti-myc-HRP Antibody with Anti-His(C-term)-HRP Antibodywith Anti-V5-HRP Antibody 1 kit1 kit1 kit1 kitK951-01K952-01K953-01K954-01Anti-myc Antibody 50 µl R950-25 Anti-V5 Antibody 50 µl R960-25 Anti-Xpress™ Antibody 50 µl R910-25 Anti-His(C-term) Antibody 50 µl R930-25 InVision™ His-tag In-gel Stain 500 ml LC6030 InVision™ His-tag In-gelStaining Kit1 kit LC6033Pre-Cast Gels and Pre-made Buffers A large variety of pre-cast gels for SDS-PAGE and pre-made buffers for your convenience are available from Invitrogen. For details, visit our web site at or contact Technical Service (page 23).viIntroductionOverviewIntroduction The ProBond™ Purification System is designed for purification of 6xHis-tagged recombinant proteins expressed in bacteria, insect, and mammalian cells. Thesystem is designed around the high affinity and selectivity of ProBond™Nickel-Chelating Resin for recombinant fusion proteins containing six tandemhistidine residues.The ProBond™ Purification System is a complete system that includespurification buffers and resin for purifying proteins under native, denaturing,or hybrid conditions. The resulting proteins are ready for use in many targetapplications.This manual is designed to provide generic protocols that can be adapted foryour particular proteins. The optimal purification parameters will vary witheach protein being purified.ProBond™ Nickel-Chelating Resin ProBond™ Nickel-Chelating Resin is used for purification of recombinant proteins expressed in bacteria, insect, and mammalian cells from any 6xHis-tagged vector. ProBond™ Nickel-Chelating Resin exhibits high affinity and selectivity for 6xHis-tagged recombinant fusion proteins.Proteins can be purified under native, denaturing, or hybrid conditions using the ProBond™ Nickel-Chelating Resin. Proteins bound to the resin are eluted with low pH buffer or by competition with imidazole or histidine. The resulting proteins are ready for use in target applications.Binding Characteristics ProBond™ Nickel-Chelating Resin uses the chelating ligand iminodiacetic acid (IDA) in a highly cross-linked agarose matrix. IDA binds Ni2+ ions by three coordination sites.The protocols provided in this manual are generic, and may not result in 100%pure protein. These protocols should be optimized based on the bindingcharacteristics of your particular proteins.Native VersusDenaturingConditionsThe decision to purify your 6xHis-tagged fusion proteins under native ordenaturing conditions depends on the solubility of the protein and the need toretain biological activity for downstream applications.• Use native conditions if your protein is soluble (in the supernatant afterlysis) and you want to preserve protein activity.• Use denaturing conditions if the protein is insoluble (in the pellet afterlysis) or if your downstream application does not depend on proteinactivity.• Use hybrid protocol if your protein is insoluble but you want to preserveprotein activity. Using this protocol, you prepare the lysate and columnsunder denaturing conditions and then use native buffers during the washand elution steps to refold the protein. Note that this protocol may notrestore activity for all proteins. See page 14.1MethodsPreparing Cell LysatesIntroduction Instructions for preparing lysates from bacteria, insect, and mammalian cellsusing native or denaturing conditions are described below.Materials Needed You will need the following items:• Native Binding Buffer (recipe is on page 8) for preparing lysates undernative conditions• Sonicator• 10 µg/ml RNase and 5 µg/ml DNase I (optional)• Guanidinium Lysis Buffer (supplied with the system) for preparing lysatesunder denaturing conditions• 18-gauge needle• Centrifuge• Sterile, distilled water• SDS-PAGE sample buffer• Lysozyme for preparing bacterial cell lysates• Bestatin or Leupeptin, for preparing mammalian cell lysatesProcessing Higher Amount of Starting Material Instructions for preparing lysates from specific amount of starting material (bacteria, insect, and mammalian cells) and purification with 2 ml resin under native or denaturing conditions are described in this manual.If you wish to purify your protein of interest from higher amounts of starting material, you may need to optimize the lysis protocol and purification conditions (amount of resin used for binding). The optimization depends on the expected yield of your protein and amount of resin to use for purification. Perform a pilot experiment to optimize the purification conditions and then based on the pilot experiment results, scale-up accordingly.Continued on next page2Preparing Bacterial Cell Lysate—Native Conditions Follow the procedure below to prepare bacterial cell lysate under native conditions. Scale up or down as necessary.1. Harvest cells from a 50 ml culture by centrifugation (e.g., 5000 rpm for5 minutes in a Sorvall SS-34 rotor). Resuspend the cells in 8 ml NativeBinding Buffer (recipe on page 8).2. Add 8 mg lysozyme and incubate on ice for 30 minutes.3. Using a sonicator equipped with a microtip, sonicate the solution on iceusing six 10-second bursts at high intensity with a 10-second coolingperiod between each burst.Alternatively, sonicate the solution on ice using two or three 10-secondbursts at medium intensity, then flash freeze the lysate in liquid nitrogen or a methanol dry ice slurry. Quickly thaw the lysate at 37°C andperform two more rapid sonicate-freeze-thaw cycles.4. Optional: If the lysate is very viscous, add RNase A (10 µg/ml) andDNase I (5 µg/ml) and incubate on ice for 10–15 minutes. Alternatively,draw the lysate through a 18-gauge syringe needle several times.5. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.Note: Some 6xHis-tagged protein may remain insoluble in the pellet, and can be recovered by preparing a denatured lysate (page 4) followed bythe denaturing purification protocol (page 12). To recover this insolubleprotein while preserving its biological activity, you can prepare thedenatured lysate and then follow the hybrid protocol on page 14. Notethat the hybrid protocol may not restore activity in all cases, and should be tested with your particular protein.6. Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or freeze at -20°C. When ready to use, proceed to theprotocol on page 7.Continued on next page3Preparing Bacterial Cell Lysate—Denaturing Conditions Follow the procedure below to prepare bacterial cell lysate under denaturing conditions:1. Equilibrate the Guanidinium Lysis Buffer, pH 7.8 (supplied with thesystem or see page 19 for recipe) to 37°C.2. Harvest cells from a 50 ml culture by centrifugation (e.g., 5000 rpm for5 minutes in a Sorvall SS-34 rotor).3. Resuspend the cell pellet in 8 ml Guanidinium Lysis Buffer from Step 1.4. Slowly rock the cells for 5–10 minutes at room temperature to ensurethorough cell lysis.5. Sonicate the cell lysate on ice with three 5-second pulses at high intensity.6. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris.Transfer the supernatant to a fresh tube.7. Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or at -20°C. When ready to use, proceed to the denaturingprotocol on page 11 or hybrid protocol on page 13.Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCAprecipitation prior to SDS-PAGE to prevent the precipitation of SDS.Harvesting Insect Cells For detailed protocols dealing with insect cell expression, consult the manual for your particular system. The following lysate protocols are for baculovirus-infected cells and are intended to be highly generic. They should be optimized for your cell lines.For baculovirus-infected insect cells, when the time point of maximal expression has been determined, large scale protein expression can be carried out. Generally, the large-scale expression is performed in 1 liter flasks seeded with cells at a density of 2 × 106 cells/ml in a total volume of 500 ml and infected with high titer viral stock at an MOI of 10 pfu/cell. At the point of maximal expression, harvest cells in 50 ml aliquots. Pellet the cells by centrifugation and store at -70°C until needed. Proceed to preparing cell lysates using native or denaturing conditions as described on the next page.Continued on next page4Preparing Insect Cell Lysate—Native Condition 1. Prepare 8 ml Native Binding Buffer (recipe on page 8) containingLeupeptin (a protease inhibitor) at a concentration of 0.5 µg/ml.2. After harvesting the cells (previous page), resuspend the cell pellet in8 ml Native Binding Buffer containing 0.5 µg/ml Leupeptin.3. Lyse the cells by two freeze-thaw cycles using a liquid nitrogen or dryice/ethanol bath and a 42°C water bath.4. Shear DNA by passing the preparation through an 18-gauge needle fourtimes.5. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris.Transfer the supernatant to a fresh tube.6. Remove 5 µl of the lysate for SDS-PAGE analysis. Store remaining lysateon ice or freeze at -20°C. When ready to use, proceed to the protocol on page 7.Preparing Insect Cell Lysate—Denaturing Condition 1. After harvesting insect cells (previous page), resuspend the cell pellet in8 ml Guanidinium Lysis Buffer (supplied with the system or see page 19for recipe).2. Pass the preparation through an 18-gauge needle four times.3. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.4. Remove 5 µl of the lysate for SDS-PAGE analysis. Store remaining lysateon ice or freeze at -20° C. When ready to use, proceed to the denaturingprotocol on page 11 or hybrid protocol on page 13.Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCAprecipitation prior to SDS-PAGE to prevent the precipitation of SDS.Continued on next pagePreparing Mammalian Cell Lysate—Native Conditions For detailed protocols dealing with mammalian expression, consult the manual for your particular system. The following protocols are intended to be highly generic, and should be optimized for your cell lines.To produce recombinant protein, you need between 5 x 106and 1 x 107 cells. Seed cells and grow in the appropriate medium until they are 80–90% confluent. Harvest cells by trypsinization. You can freeze the cell pellet in liquid nitrogen and store at -70°C until use.1. Resuspend the cell pellet in 8 ml of Native Binding Buffer (page 8). Theaddition of protease inhibitors such as bestatin and leupeptin may benecessary depending on the cell line and expressed protein.2. Lyse the cells by two freeze-thaw cycles using a liquid nitrogen or dryice/ethanol bath and a 42°C water bath.3. Shear the DNA by passing the preparation through an 18-gauge needlefour times.4. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.5. Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or freeze at -20° C. When ready to use, proceed to theprotocol on page 7.Preparing Mammalian Cell Lysates—Denaturing Conditions For detailed protocols dealing with mammalian expression, consult the manual for your particular system. The following protocols are intended to be highly generic, and should be optimized for your cell lines.To produce recombinant protein, you need between 5 x 106and 1 x 107 cells. Seed cells and grow in the appropriate medium until they are 80–90% confluent. Harvest cells by trypsinization. You can freeze the cell pellet in liquid nitrogen and store at -70°C until use.1. Resuspend the cell pellet in 8 ml Guanidinium Lysis Buffer (suppliedwith the system or see page 19 for recipe).2. Shear the DNA by passing the preparation through an 18-gauge needlefour times.3. Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.4. Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or freeze at -20° C until use. When ready to use, proceed to the denaturing protocol on page 11 or hybrid protocol on page 13.Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCAprecipitation prior to SDS-PAGE to prevent the precipitation of SDS.Purification Procedure—Native ConditionsIntroduction In the following procedure, use the prepared Native Binding Buffer, NativeWash Buffer, and Native Elution Buffer, columns, and cell lysate preparedunder native conditions. Be sure to check the pH of your buffers before starting.Buffers for Native Purification All buffers for purification under native conditions are prepared from the5X Native Purification Buffer supplied with the system. Dilute and adjust the pH of the 5X Native Purification Buffer to create 1X Native Purification Buffer (page 8). From this, you can create the following buffers:• Native Binding Buffer• Native Wash Buffer• Native Elution BufferThe recipes described in this section will create sufficient buffers to perform one native purification using one kit-supplied purification column. Scale up accordingly.If you are preparing your own buffers, see page 18 for recipe.Materials Needed You will need the following items:• 5X Native Purification Buffer (supplied with the system or see page 18 forrecipe)• 3 M Imidazole (supplied with the system or see page 18 for recipe)• NaOH• HCl• Sterile distilled water• Prepared ProBond™ columns with native buffers (next page)• Lysate prepared under native conditions (page 2)Imidazole Concentration in Native Buffers Imidazole is included in the Native Wash and Elution Buffers to minimize the binding of untagged, contaminating proteins and increase the purity of the target protein with fewer wash steps. Note that, if your level of contaminating proteins is high, you may add imidazole to the Native Binding Buffer.If your protein does not bind well under these conditions, you can experiment with lowering or eliminating the imidazole in the buffers and increasing the number of wash and elution steps.Continued on next page1X Native Purification Buffer To prepare 100 ml 1X Native Purification Buffer, combine:• 80 ml of sterile distilled water• 20 ml of 5X Native Purification Buffer (supplied with the system or see page 18 for recipe)Mix well and adjust pH to 8.0 with NaOH or HCl.Native Binding Buffer Without ImidazoleUse 30 ml of the 1X Native Purification Buffer (see above for recipe) for use as the Native Binding Buffer (used for column preparation, cell lysis, and binding).With Imidazole (Optional):You can prepare the Native Binding Buffer with imidazole to reduce the binding of contaminating proteins. (Note that some His-tagged proteins may not bind under these conditions.).To prepare 30 ml Native Binding Buffer with 10 mM imidazole, combine: • 30 ml of 1X Native Purification Buffer• 100 µl of 3 M Imidazole, pH 6.0Mix well and adjust pH to 8.0 with NaOH or HCl.Native Wash Buffer To prepare 50 ml Native Wash Buffer with 20 mM imidazole, combine:• 50 ml of 1X Native Purification Buffer• 335 µl of 3 M Imidazole, pH 6.0Mix well and adjust pH to 8.0 with NaOH or HCl.Native Elution Buffer To prepare 15 ml Native Elution Buffer with 250 mM imidazole, combine:• 13.75 ml of 1X Native Purification Buffer• 1.25 ml of 3 M Imidazole, pH 6.0Mix well and adjust pH to 8.0 with NaOH or HCl.Continued on next pageDo not use strong reducing agents such as DTT with ProBond™ columns. DTTreduces the nickel ions in the resin. In addition, do not use strong chelatingagents such as EDTA or EGTA in the loading buffers or wash buffers, as thesewill strip the nickel from the columns.Be sure to check the pH of your buffers before starting.PreparingProBond™ ColumnWhen preparing a column as described below, make sure that the snap-off capat the bottom of the column remains intact. To prepare a column:1. Resuspend the ProBond™ resin in its bottle by inverting and gentlytapping the bottle repeatedly.2. Pipet or pour 2 ml of the resin into a 10-ml Purification Columnsupplied with the kit. Allow the resin to settle completely by gravity(5-10 minutes) or gently pellet it by low-speed centrifugation (1 minuteat 800 ×g). Gently aspirate the supernatant.3. Add 6 ml of sterile, distilled water and resuspend the resin byalternately inverting and gently tapping the column.4. Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant.5. For purification under Native Conditions, add 6 ml Native BindingBuffer (recipe on page 8).6. Resuspend the resin by alternately inverting and gently tapping thecolumn.7. Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant.8. Repeat Steps 5 through 7.Storing PreparedColumnsTo store a column containing resin, add 0.02% azide or 20% ethanol as apreservative and cap or parafilm the column. Store at room temperature.Continued on next pagePurification Under Native Conditions Using the native buffers, columns and cell lysate, follow the procedure below to purify proteins under native conditions:1. Add 8 ml of lysate prepared under native conditions to a preparedPurification Column (page 9).2. Bind for 30–60 minutes using gentle agitation to keep the resinsuspended in the lysate solution.3. Settle the resin by gravity or low speed centrifugation (800 ×g), andcarefully aspirate the supernatant. Save supernatant at 4°C forSDS-PAGE analysis.4. Wash with 8 ml Native Wash Buffer (page 8). Settle the resin by gravityor low speed centrifugation (800 ×g), and carefully aspirate thesupernatant. Save supernatant at 4°C for SDS-PAGE analysis.5. Repeat Step 4 three more times.6. Clamp the column in a vertical position and snap off the cap on thelower end. Elute the protein with 8–12 ml Native Elution Buffer (seepage 2). Collect 1 ml fractions and analyze with SDS-PAGE.Note: Store the eluted fractions at 4°C. If -20°C storage is required, addglycerol to the fractions. For long term storage, add protease inhibitors to the fractions.If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.Purification Procedure—Denaturing ConditionsIntroduction Instructions to perform purification using denaturing conditions with prepareddenaturing buffers, columns, and cell lysate are described below.Materials Needed You will need the following items:• Denaturing Binding Buffer (supplied with the system or see page 19 forrecipe)• Denaturing Wash Buffer, pH 6.0 (supplied with the system or see page 19 forrecipe) and Denaturing Wash Buffer, pH 5.3 (see recipe below)• Denaturing Elution Buffer (supplied with the system or see page 20 forrecipe)• Prepared ProBond™ columns with Denaturing buffers (see below)• Lysate prepared under denaturing conditions (page 11)Preparing the Denaturing Wash Buffer pH 5.3 Using a 10 ml aliquot of the kit-supplied Denaturing Wash Buffer (pH 6.0), mix well, and adjust the pH to 5.3 using HCl. Use this for the Denaturing Wash Buffer pH 5.3 in Step 5 next page.Be sure to check the pH of your buffers before starting. Note that thedenaturing buffers containing urea will become more basic over time. PreparingProBond™ ColumnWhen preparing a column as described below, make sure that the snap-off capat the bottom of the column remains intact.If you are reusing the ProBond™ resin, see page 17 for recharging protocol.To prepare a column:1. Resuspend the ProBond™ resin in its bottle by inverting and gentlytapping the bottle repeatedly.2. Pipet or pour 2 ml of the resin into a 10-ml Purification Columnsupplied with the kit. Allow the resin to settle completely by gravity(5-10 minutes) or gently pellet it by low-speed centrifugation (1 minuteat 800 ×g). Gently aspirate the supernatant.3. Add 6 ml of sterile, distilled water and resuspend the resin byalternately inverting and gently tapping the column.4. Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant.5. For purification under Denaturing Conditions, add 6 ml of DenaturingBinding Buffer.6. Resuspend the resin by alternately inverting and gently tapping thecolumn.7. Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant. Repeat Steps 5 through 7.Continued on next pagePurification Procedure—Denaturing Conditions, ContinuedPurification Under Denaturing Conditions Using the denaturing buffers, columns, and cell lysate, follow the procedure below to purify proteins under denaturing conditions:1. Add 8 ml lysate prepared under denaturing conditions to a preparedPurification Column (page 11).2. Bind for 15–30 minutes at room temperature using gentle agitation (e.g.,using a rotating wheel) to keep the resin suspended in the lysatesolution. Settle the resin by gravity or low speed centrifugation (800 ×g), and carefully aspirate the supernatant.3. Wash the column with 4 ml Denaturing Binding Buffer supplied with thekit by resuspending the resin and rocking for two minutes. Settle theresin by gravity or low speed centrifugation (800 ×g), and carefullyaspirate the supernatant. Save supernatant at 4°C for SDS-PAGEanalysis. Repeat this step one more time.4. Wash the column with 4 ml Denaturing Wash Buffer, pH 6.0 supplied inthe kit by resuspending the resin and rocking for two minutes. Settle the resin by gravity or low speed centrifugation (800 ×g), and carefullyaspirate the supernatant. Save supernatant at 4°C for SDS-PAGEanalysis. Repeat this step one more time.5. Wash the column with 4 ml Denaturing Wash Buffer pH 5.3 (see recipeon previous page) by resuspending the resin and rocking for 2 minutes.Settle the resin by gravity or low speed centrifugation (800 ×g), andcarefully aspirate the supernatant. Save supernatant at 4°C for SDS-PAGE analysis. Repeat this step once more for a total of two washes with Denaturing Wash Buffer pH 5.3.6. Clamp the column in a vertical position and snap off the cap on thelower end. Elute the protein by adding 5 ml Denaturing Elution Buffersupplied with the kit. Collect 1 ml fractions and monitor the elution bytaking OD280readings of the fractions. Pool the fractions that contain the peak absorbance and dialyze against 10 mM Tris, pH 8.0, 0.1% Triton X-100 overnight at 4°C to remove the urea. Concentrate the dialyzedmaterial by any standard method (i.e., using 10,000 MW cut-off, low-protein binding centrifugal instruments or vacuum concentrationinstruments).If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.。
包涵体的纯化和复性总结--最全的前人经验
包涵体的纯化和复性总结二、包涵体的洗涤?1、包涵体的洗涤问题?通常的洗涤方法一般是洗不干净的,我以前是这么做的,先把包涵体用6M盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,你可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,我觉得比通常的直接洗脱效果好。
?包涵体一般难溶解,所以你要注意未溶解的部分,你可以跑电泳对比,因为有时候难溶解的就是你的目标蛋白,所以每次处理都要把上清和沉淀跑电泳对比,免得把目标蛋白弄丢了。
此外刚处理完的包涵体好溶解。
冷冻后难溶解,溶解也需要长点时间,也需要大量的溶剂。
如果说是不少不溶解的不是你要的,那就不用管了。
?2、如何得到比较纯的包涵体?对于包涵体的纯化,包涵体的前处理是很重要的。
包涵体中主要含有重组蛋白,但也含有一些细菌成分,如一些外膜蛋白、质粒DNA和其它杂质。
洗涤常用1%以下的中性去垢剂,如Tween、Triton、Lubel和?NP40等加EDTA 和还原剂2-巯基苏糖醇(DTT)、β-巯基乙醇等反复多次进行,因去垢剂洗涤能力随溶液离子强度升高而加强,在洗涤包涵体时可加50?mM?NaCL。
这样提取的包涵体纯度至少可达50%以上,而且可保持元结构。
也可用低浓度的盐酸胍或尿素/中性去垢剂/EDTA/还原剂等洗去包涵体表面吸附的大部分不溶性杂蛋白。
洗涤液pH以与工程菌生理条件相近为宜,使用的还原剂为0.1-5mM。
EDTA为0.1-0.3?mM。
去垢剂如Triton?X-100、脱氧胆酸盐和低浓度的变性剂如尿素充分洗涤去除杂质,这一步很重要,因为大肠杆菌外膜蛋白Omp?T(37?KDa)在4-8mol/L尿素中具有蛋白水解酶活性,在包涵体的溶解和复性过程中可导致重组蛋白质的降解。
?对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。
它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。
包涵体处理重要
条条大路通罗马,纯化之路千万条。
本篇是写给蛋白质纯化新手的,就一些最常用的纯化工艺、概念方法作一些列举。
以起始原料的不同来进行分类,分为:大肠杆菌、酵母、细胞培养、腹水、血清、生物组织六个板块。
板块一、大肠杆菌(这里讨论的大肠杆菌为非分泌到培养基中的重组蛋白,是否有重组蛋白分泌到培养基中的工程菌我没有见过。
)一、关于菌体的量大肠杆菌表达的基因工程蛋白是纯化人员最方便获得的原料,对纯化工艺开发来说几乎没有原料方面的限制。
常看到有战友用个几毫升的菌液去做纯化,对此我十分不解,同样要做,为什么不多做点呢?很少的菌体会给纯化带来一些难以估计的问题,工艺的重复性和放大往往出现问题。
因此,要做个好工艺就多发酵表达一些菌体吧。
我做纯化时,初始工艺摸索用的菌体量一般为10g左右。
二、关于是否包涵体表达包涵体的定义我就不讲了。
我要讲的是,一个基因工程蛋白是否是包涵体表达的说法本身就不完全准确。
至于包涵体在电镜下的晶体颗粒表现等等对我们纯化来说毫无意义,我相信做纯化工艺的人没有谁去看这个电镜,也不关心。
我们判断的依据只是SDS-PAGE,目的蛋白在破菌沉淀中,我们就认为是包涵体表达,但这是一个似是而非的结论。
看着没问题,实际上是有毛病的。
关键在于你用的是什么破菌缓冲液!有些蛋白在用缓冲液A破菌时是在破菌沉淀中,而用缓冲液B破菌时却在破菌上清中。
缓冲液A和B的差别可能只是pH上相差1-2个单位。
那么它是包涵体表达还是可溶上清表达呢?说这个问题主要在于有些战友往往非常在意他的目标蛋白是否包涵体表达。
甚至还有包涵体表达就用专门的包涵体蛋白纯化方法等等。
我们应该关心的是目标蛋白在什么缓冲体系下是可溶的,在什么缓冲体系下是不溶的!不要让包涵体这个概念给你误导。
三、关于表达量我们常常在发表的文章上看到,我这个工程菌的目标蛋白的表达量达到菌体总蛋白的30%、50%等等。
我要说都是文章的作者在忽悠。
不知道他们是如何定量的,用的最多的大概就是SDS-PAGE的扫描分析吧。
NTA翻译解读
CHEMICAL CLEANING(NTA-PROCEDURE)of ACFB-boilersSUZHOU苏州ACFB-锅炉化学清洗(NTA程序)1 Boil out NTA氮川三乙酸煮炉1.1General综述This document includes a general description for chemical cleaning of the evaporator system by using “Nitrilo-tri- acetic- aci d”(NTA).本文档描述使用“氮川三乙酸”(NTA)对蒸发系统进行化学清洗。
Reference drawing:参考图纸K170040.B.101.007 P&I diagram流程图Boiler design data:锅炉设计数据Maximum rating 最大功率275 t/hMaximum continuous rating最大持续功率250 t/hOperation pressure操作压力P=125 bar(a)Operation temperature 操作温度T=540 ℃Feedwater temperature(after feedwater tank) T=156℃给水温度(除氧器后)Feedwater temperature(after hp-preheater) T=200℃给水温度(高加后)1.2Chemistry化学The principle of the internal chemical cleaning is the removal of oxide layers, scale and other deposits, in order to create a metallic clean surface, upon which a homogeneous magnetite layer can be formed. 内部化学清洗是为去除氧化层,剥落层和其他沉积物,达到一个金属清洁表面,这就可以形成一层均匀的磁铁矿层。
包涵体的纯化和复性总结--最全的前人经验
包涵体旳纯化和复性总结ﻫ二、包涵体旳洗涤ﻫ1、包涵体旳洗涤问题ﻫ一般旳洗涤措施一般是洗不干净旳,我此前是这样做旳,先把包涵体用6M盐酸胍溶解充足,过滤除去未溶解旳物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以始终稀释到合适旳浓度,你可以找到一种合适清除杂质旳措施,其实这就是梯度沉淀旳措施,我觉得比一般旳直接洗脱效果好。
ﻫﻫ包涵体一般难溶解,因此你要注意未溶解旳部分,你可以跑电泳对比,由于有时候难溶解旳就是你旳目旳蛋白,因此每次解决都要把上清和沉淀跑电泳对比,免得把目旳蛋白弄丢了。
ﻫ此外刚解决完旳包涵体好溶解。
冷冻后难溶解,溶解也需要长点时间,也需要大量旳溶剂。
如果说是不少不溶解旳不是你要旳,那就不用管了。
2、如何得到比较纯旳包涵体对于包涵体旳纯化,包涵体旳前解决是很重要旳。
ﻫ包涵体中重要具有重组蛋白,但也具有某些细菌成分,如某些外膜蛋白、质粒DNA和其他杂质。
洗涤常用1%如下旳中性去垢剂,如Tween、Triton、Lubel和NP40等加EDTA和还原剂2-巯基苏糖醇(DTT)、β-巯基乙醇等反复多次进行,因去垢剂洗涤能力随溶液离子强度升高而加强,在洗涤包涵体时可加50 mM NaCL。
这样提取旳包涵体纯度至少可达50%以上,并且可保持元构造。
也可用低浓度旳盐酸胍或尿素/中性去垢剂/EDTA/还原剂等洗去包涵体表面吸附旳大部分不溶性杂蛋白。
洗涤液pH以与工程菌生理条件相近为宜,使用旳还原剂为0.1-5mM。
EDTA为0.1-0.3 mM。
去垢剂如Triton X-100、脱氧胆酸盐和低浓度旳变性剂如尿素充足洗涤清除杂质,这一步很重要,由于大肠杆菌外膜蛋白Omp T(37 KDa)在4-8mol/L尿素中具有蛋白水解酶活性,在包涵体旳溶解和复性过程中可导致重组蛋白质旳降解。
对于尿素和盐酸胍旳选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。
它们对包涵体氢键有较强旳可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。
细胞裂解
我以前做蛋白大量表达超声破碎时,总体积为200ml,功率300瓦,超3秒,停3秒,60次为一个循环,每个循环之间停5min,共作了3个循环,效果很好。
不知你的“原来的80倍”是多少,如果和我的差不多,是要延长总时间,但要注意样品要放在冰上,中间停一会,防止产生的热量太多,使蛋白变性。
我的方案是:1 细胞先用无菌PBS洗二次;2 吹下细胞后,4度12000rpm/min离心10min,再用无菌PBS悬浮,重复离心一次;3 常规超声波处理。
注意事项:1 全部处理过程一定要在冰上进行;2 超声波时,一定不要有泡沫产生;3 在冰上超声波处理。
由于上次求助无人回应,一气之下遍找资料,汇总出菌体/细胞裂解的常用方法和配方,希望能对其它求助兄弟有所帮助。
菌体/细胞裂解法汇总一、反复冻融法:1、将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
/c?word=%B4%F3%B3%A6%3B%B8%CB%BE%FA%2C%C1%D1%BD%E2&url=http%3A//www%2E bioon%2Ecom/experiment/mb/mb1/200410/80878%2Ehtml&b=0&a=3&user=baidu2、至少3次以上冻溶。
/bbs/actions/archive/post/3895899_0.html3、IFCC推荐法:收集细胞悬液,4℃低温离心(3000rpm,5min),弃上清,加入一定量PBS(200ul),轻轻吹打混匀,-200C 冷冻30 min,370C 解冻,如此反复3次,可形成细胞裂解液。
/bbs/actions/archive/post/252157_0.html4、用液氮冻融三四次就可以了,细胞冻住后,取出放37度水浴,溶解后震荡,再冻/dispbbs.asp?BoardID=89&ID=142945&replyID=597858&skin=1二、超声波处理法1、要设定好超声时间和间隙时间,一般超声时间不超过5秒,间隙时间最好大于超声时间,这些都有利于保护酶的活性。
视紫红质-光活化的质子泵
(3)样品制备-各种视紫红质制备
① The main absorbance bands of the pigments in membrane vesicles isolated from E. coli cells or in a solubilized state were extracted by reaction with hydroxylamine. Hydroxylamine specifically attacks the Schiff base bond between lysine and retinal.
(2)结构与功能 ① 微生物型视紫红质 功能
结构:7TM (A-G)
视黄醛结合位点
Kouyama, T. Photochem. Photobiol. Sci. 2010, 9,1458. Crocker, E. J. Mol. Biol. 2006, 357, 163.
② 动物型视紫红质
功能:G-protein-coupled receptors,GPCR G蛋白偶联受体
(3)视紫红质光异构化 ① 微生物型视紫红质
BR蛋白一个完整的质子泵的时间顺序为: 1)光激发使视黄醛异构化(all-trans变为 13-cis, 15-anti ),质子化的席夫碱基将 一个质子传递给Asp85, Asp85是席夫碱 基的质子受体; 2)由于偶联作用,质子由质子基团释放 基团释放到膜外侧; 3)质子化的Asp96将一个质子传递给席 夫碱基,Asp96是席夫碱基的质子给体; 4) Asp96从胞内侧重新提取质子; 5)质子化的Asp85将质子传递给质子释 放基团,BR回复到基态。
opsin to achieve a final retinal concentration of 10-20 µM, ⑤ Incubated under dim light for up to 60 min at room temperature (RT) or, if necessary, subsequently
His标签融合蛋白纯化步骤
His标签融合蛋白纯化步骤(ni-nta琼脂糖凝胶亲和层析纯化法)1.缓冲液配制◆lysisbuffer1(undernativecondition)0.5mmtris.hcl0.5mnacl5%(w/v)glycerol10mmimidazol100mg(1mg/ml)lysozyme(purificationof6xhis-taggedproteinsfrome.coli)1%nonidetp40(np40=igepalca-630)0.25%tween20(ortriton100)0.02%nan3(optional)200µg(2µg/ml)rnasea(optional)1mg(10µg/ml)dnase1(optional)50mmnaf(optional)1mmn a3vo4(optional)+ddh2oto100ml,adjustphto8.0usingnaoh此lysisbuffer适用于于从e.coli、哺乳动物细胞和昆虫细胞中提纯拎his标签的蛋白质。
仅在用作水解e.coli细菌时,重新加入溶菌酶。
na3vo4是磷酸酶抑制剂,保护磷酸化的蛋白不被磷酸酶还原。
naf是酯酶抑制剂,保护脂蛋白不被酯酶降解。
特别注意:当采用镍琼脂糖凝胶提纯拎his标签的蛋白时,缓冲液中无法提edta,因edta能够并使镍从螯合物上瓦解,从而并使拆分介质丧失效果。
◆lysisbuffer2(underdenaturecondition)50mmtris-cl8murea(or6mgu-hcl)10mmimidazole0.05%tween20adjustphto8.0usingnaoh◆dialysis/tevcleavagebuffer50mmtris-cl,ph8.0100mmnacl(dependsonsolubilityofprotein)2.5%glycerol0.5mmedta0.5mmdttortcep◆缓冲液a:50mmtris.hcl0.5mnacl5%glycerol0.05%tween20用高浓度hcl调节ph值至8.0。
重组人表皮生长因子在毕赤酵母X33中的构建、表达和纯化
重组人表皮生长因子在毕赤酵母X33中的构建、表达和纯化高云鹏;赵雨;王新宇;白雪媛;王佳雯【摘要】在毕赤酵母X33中表达人表皮生长因子并纯化,对表皮生长因子(EGF)进行密码子优化,构建pPICZa A-EGF真核表达质粒,转化X33感受态细胞;利用抗性筛选以及PCR鉴定阳性菌株.经过甲醇诱导和镍柱纯化,聚丙烯酰胺凝胶电泳检测蛋白分泌表达情况.成功构建了表达pPICZa A-EGF真核表达质粒,转入X33中获得阳性菌株,成功诱导蛋白分泌表达并纯化.在毕赤酵母X33中成功表达人表皮生长因子,纯化后纯度为80%,收率为5.8 mg/L.【期刊名称】《科学技术与工程》【年(卷),期】2018(018)017【总页数】4页(P141-144)【关键词】表皮生长因子;毕赤酵母;蛋白表达;纯化【作者】高云鹏;赵雨;王新宇;白雪媛;王佳雯【作者单位】长春中医药大学中医药与生物工程研究开发中心,长春130117;长春中医药大学中医药与生物工程研究开发中心,长春130117;长春中医药大学中医药与生物工程研究开发中心,长春130117;长春中医药大学中医药与生物工程研究开发中心,长春130117;长春中医药大学中医药与生物工程研究开发中心,长春130117【正文语种】中文【中图分类】Q786表皮生长因子(EGF)首次从成熟小鼠的颌下腺中分离出来[1]。
而人的肾脏、十二指肠、胰腺、肝脏以及乳腺中都发现了人表皮生长因子(hEGF)存在[2, 3]。
hEGF是包含有53个氨基酸残基,具有三个二硫键的6.2 kDa大小的多肽。
EGF能够与表皮生长因子受体(EGFR)结合并使其激活,活化后的EGFR由单体转化为二聚体并发生自磷酸化,进一步激活下游包括MAPK/Akt和JNK在内的一系列通路,诱导细胞增殖[4]。
hEGF刺激皮肤、角膜、肺、器官以及胃肠道表皮细胞的增殖和分化。
hEGF同时能够促进角质细胞的生长和迁移,提高成纤维细胞和胚胎细胞的增殖[4,5]。
以琳生物 NI NTA蛋白纯化方法
以琳生物 NI NTA蛋白纯化方法以琳生物ni-nta蛋白纯化方法以琳生物ni-nta提纯系统一树脂和柱的特性2+ni-ntaagarose是用ni离子预处理过的,显兰色,ni-ntaagarose和纯化柱有以下特性:结合能力:5-10mg蛋白/ml树脂平均孔径大小:45-165微米建议洗涤速率:0.5ml/min最大线形洗脱速率:700cm/h最大压力:2.8psi(0.2bar)柱子的材料:聚丙烯ph稳定性:长期3-13,短期2-14二ni-nta树脂ni-ntaagarose可将任何含有6个组氨酸标签的载体在细菌,昆虫细胞或哺乳动物细胞中表达融合蛋白纯化,树脂有高亲和力并能选择性结合六个组氨酸标签的重组融合蛋白。
借款可以在正常、变性或无机条件下利用ni-ntaagarose展开提纯,融合至树脂上的蛋白可以利用高ph缓冲液或用咪唑与组氨酸竞争而被洗清下来。
三正常条件同变性条件对六个组氨酸标签蛋白的提纯就是应用领域正常条件还是变性条件依赖于蛋白的可溶性及与否须要留存蛋白的生物学活性。
正常条件:蛋白裂解后期在上清中是可溶性的,并想要保持蛋白的活性变性条件:蛋白水解后在溶液中,就是不可溶性的,并且后期工作不依赖蛋白的活性复合条件:蛋白是不可溶性的,并且想要保留它的活性,准备裂解物和柱子在变性条件下,然后利用正常缓冲液在洗脱阶段以复性蛋白。
注:此过程不能恢复所有蛋白的活性。
方法一制备细胞裂解物㈠准备工作材料1正常结合缓冲液在正常条件下制裂解物用2超声裂解物310ug/mlrnase和5ug/mldnaseⅰ(盐酸胍水解液)4盐酸胍水解缓冲液(由试剂盒提供更多),用作在变性条件下制取裂解物518号针头6离心机,无菌的蒸馏水7sds-page样品缓冲液8用以制取细菌裂解物的溶菌酶9bestation或leupeptin用于制备哺乳动物裂解物㈡制取细胞裂解物―正常条件下15000rpm5min离心50ml培养液,弃上清,留菌体沉淀,用8mlnativebindingbuffer重悬菌体。
包涵体的纯化和复性总结--最全的前人经验
包涵体的纯化和复性总结二、包涵体的洗涤1、包涵体的洗涤问题通常的洗涤方法一般是洗不干净的,我以前是这么做的,先把包涵体用6M盐酸胍溶解充分,过滤除去未溶解的物质,注意留样跑电泳,然后用水稀释到4M,离心把沉淀和上清分别跑电泳,如此类推可以一直稀释到合适的浓度,你可以找到一个合适去除杂质的办法,其实这就是梯度沉淀的方法,我觉得比通常的直接洗脱效果好。
包涵体一般难溶解,所以你要注意未溶解的部分,你可以跑电泳对比,因为有时候难溶解的就是你的目标蛋白,所以每次处理都要把上清和沉淀跑电泳对比,免得把目标蛋白弄丢了。
此外刚处理完的包涵体好溶解。
冷冻后难溶解,溶解也需要长点时间,也需要大量的溶剂。
如果说是不少不溶解的不是你要的,那就不用管了。
2、如何得到比较纯的包涵体对于包涵体的纯化,包涵体的前处理是很重要的。
包涵体中主要含有重组蛋白,但也含有一些细菌成分,如一些外膜蛋白、质粒DNA和其它杂质。
洗涤常用1%以下的中性去垢剂,如Tween、Triton、Lubel和NP40等加EDTA 和还原剂2-巯基苏糖醇(DTT)、β-巯基乙醇等反复多次进行,因去垢剂洗涤能力随溶液离子强度升高而加强,在洗涤包涵体时可加50 mM NaCL。
这样提取的包涵体纯度至少可达50%以上,而且可保持元结构。
也可用低浓度的盐酸胍或尿素/中性去垢剂/EDTA/还原剂等洗去包涵体表面吸附的大部分不溶性杂蛋白。
洗涤液pH以与工程菌生理条件相近为宜,使用的还原剂为0.1-5mM。
EDTA为0.1-0.3 mM。
去垢剂如Triton X-100、脱氧胆酸盐和低浓度的变性剂如尿素充分洗涤去除杂质,这一步很重要,因为大肠杆菌外膜蛋白Omp T(37 KDa)在4-8mol/L尿素中具有蛋白水解酶活性,在包涵体的溶解和复性过程中可导致重组蛋白质的降解。
对于尿素和盐酸胍的选择:尿素和盐酸胍属中强度变性剂,易经透析和超滤除去。
它们对包涵体氢键有较强的可逆性变性作用,所需浓度尿素8-10M,盐酸胍6-8M。
重组人胶原蛋白肽的表达及纯化工艺的优化
重组人胶原蛋白肽的表达及纯化工艺的优化摘要:将重组大肠杆菌pC6-BL21活化后,用IPTG诱导表达,探讨了大肠杆菌中重组胶原蛋白肽的最佳表达及纯化条件。结果表明,菌株在37 ℃,接种量为2%,摇瓶培养3.0 h后,加入终浓度为0.5 mmol/L的IPTG,30 ℃诱导5.0 h,收获的蛋白产量最高,经Ni-NTA柱亲和层析纯化,用梯度咪唑缓冲液洗脱蛋白,150 mmol/L咪唑缓冲液洗脱蛋白为纯蛋白,Western blotting分析显示该表达产物与人COL6A2单克隆抗体有特异结合能力。关键词:重组人胶原蛋白肽;纯化;表达Optimization of Expression and Purification Procedure of Recombinant Human Collagen PeptideAbstract: To optimize the fermentation and purification conditions of recombinant human collagen peptide(CP6) in E. coli pC6-BL21, the temperature, opportunity and time for induction as well as inducer concentration for CP6 expression in recombinant E. coli was optimized. The optimal induction and expression conditions were as follows, after inoculating at an amount of 2%, the bacteria were fermented for 3.0 h at 37 ℃; then 0.5 mmol/L IPTG was added as inducer; and the peptide was expressed under 30 ℃for 5.0 h. After fermented under the optimal conditions, the lysate of bacteria was purified by nickel ion affinity; and purity of target protein was determined by SDS-PAGE. Results showed that pure protein could be obtained if eluted by 150 mmol/L imidazole buffer after being purified, and western blotting showed that the expressed protein could specifically bind with human monoclonal antibody COL6A2.Key words: recombinant human collagen peptide; expression; purification胶原蛋白是一类广泛分布于动物结缔组织的蛋白质[1],对维护机体的正常生理功能和损伤修复有重要作用。目前胶原蛋白的生产主要是用酸、碱水解法从动物结缔组织提取,提取过程中会或多或少地丧失胶原蛋白的生物活性,应用于人体时还可能会产生排异反应,且存在着极大的病毒隐患[2,3]。鉴于胶原蛋白有广阔的应用前景,特别是医用材料、保健品领域迫切需要大量优质的胶原蛋白,寻找新的安全可靠的手段制备胶原蛋白十分重要,利用基因工程手段重组表达人胶原蛋白成为研究热点[4-6]。本实验以LB培养基为基础,采用单因素实验对重组人胶原蛋白在大肠杆菌中诱导表达的一系列条件,如接种量、诱导时机、诱导物浓度、诱导温度和表达时间等进行了优化[7],并对所得的胶原蛋白进行了纯化和鉴定,为进一步研究发酵工艺提供了实验基础。1材料与方法1.1材料和试剂实验菌种为重组大肠杆菌pC6-BL21(DE3),由吉林农业大学生物物理实验室构建并保存。质粒提取试剂盒、胶回收试剂盒、IPTG(异丙基硫代半乳糖苷)、蛋白胨(OXOID)、酵母提取物(Yeast extract,YE)均购自北京鼎国生物工程有限公司;Ni-NTA His·Bind树脂和Ni-NTA缓冲液试剂盒均购自MERCK公司,其他试剂和药品均为国产分析纯。1.2表达条件的优化挑取一环-80 ℃、25%甘油保存的工程菌,接种于LB固体培养基中,37 ℃培养24 h,然后挑单菌落于100 mL LB液体培养基中,37 ℃,200 r/min振荡培养过夜,以活化菌种。活化后按不同接种量、诱导时机、诱导物IPTG浓度、诱导温度和表达时间设置单因素实验,诱导胶原蛋白的表达,单因素实验每个处理设置3个重复。①接种量:设置1%、2%、3%、4%、5% 5个接种量水平,将活化的菌种接种到含有50 mL LB培养基的250 mL的三角烧瓶中,37 ℃、200 r/min振荡培养4.0 h至OD600为0.7时,加入终浓度为1 mmol/L的IPTG诱导,37 ℃发酵培养4.0 h;②诱导时机:将过夜活化的种子液按2%的接种量接种于50 mL LB培养基中,37 ℃,200 r/min分别培养1.0、1.5、2.0、2.5、3.0、3.5、4.0 h后加入终浓度为1 mmol/L的IPTG进行诱导,37 ℃发酵培养4.0 h;③IPTG浓度:活化的菌种接种后在37 ℃培养2.5 h后加入IPTG至终浓度分别为0.1、0.3、0.5、0.7、1.0 mmol/L,分别诱导培养5.0 h;④诱导温度:按最佳接种量和最佳诱导物浓度,在不同的诱导温度下(28、30、33、37 ℃)诱导胶原蛋白的表达,确定最佳诱导温度;⑤表达时间:使用①~④所得的实验条件,分别在菌种诱导表达后2.0、3.0、4.0、5.0、6.0、7.0 h取样,以确定最佳表达时间长度。1.3重组蛋白含量的测定①细胞密度测定:发酵液经稀释1~10倍后,用可见分光光度计在600 nm处测其光吸收值。②重组蛋白含量的测定:工程菌发酵结束后,取50 mL经诱导的摇瓶培养发酵液,10 000 r/min离心1 min,用0.5 mL pH值为7.4、50 mmol/L的Tris-HCl 缓冲液洗涤沉淀,吸净上清液。用1~5 μL的蒸馏水重悬菌体,并立即加入等量的2×SDS聚丙烯酰胺凝胶加样缓冲液,混匀后,沸水浴5 min。吸取裂解后的样品液作聚丙烯酰胺凝胶电泳,考马斯亮蓝染色测定菌体总蛋白后,采用Bandscan软件扫描SDS-PAGE电泳图,分析出每条泳道重组蛋白占菌体总蛋白的百分含量并计算出重组蛋白含量。1.4表达产物的分离纯化菌体经超声破碎后离心,上清经Ni-NTA柱亲和层析,用10倍体积20 mmol/L Tris-HCl(含0.3 mol/L NaCl,pH 8.0)平衡柱体,然后分别用60、100、120、150 mmol/L 的咪唑缓冲液(pH 8.0)进行梯度洗脱,收集各个洗脱峰,SDS-PAGE分析收集的成分。1.5重组蛋白的Western blotting鉴定将纯化的重组蛋白进行SDS-PAGE,转印至醋酸纤维素膜上,然后将膜在含5%的PBS中室温封闭2.0 h,洗膜后加入小鼠抗人COL6A2的单克隆抗体(1∶2 000稀释)在4 ℃放置2.0 h,洗膜后再加入羊抗鼠IgG-HRP(1∶2 000稀释)在4 ℃放置2.0 h,充分漂洗后加入化学发光底物Super Signal检测试剂,暗室X光片暗匣曝光、显影。2结果与分析2.1接种量的优化从图1可以看出,菌体的生物量随着接种量的增加而提高,而重组蛋白产量在接种量为2%时最高,继续增大接种量,其产量反而下降。这可能是由于接种量增加导致菌体生长过快过稠,造成营养基质缺乏或溶解氧不足而不利于发酵产蛋白[8]。考虑到在大规模发酵过程中,接种量过小会导致菌体增殖缓慢,而接种量过大对菌体生长和酶转化得率会产生一定抑制作用,确定2%为最佳接种量。2.2IPTG诱导时机的优化诱导时机对目的蛋白表达效果的影响比较大(图2),培养3.0 h后,即对数生长中后期再添加诱导剂,蛋白的表达量最高。过早添加诱导剂会抑制菌体的增殖,导致生物量减少,在培养时间内获得的表达量也就低;过晚添加诱导剂,菌体已处于生长稳定期,培养基内营养成分减少,细胞代谢速度减缓,合成蛋白的能力降低,表达量也会减少。因此选择在对数生长中后期即培养3.0 h后加入诱导剂。2.3IPTG诱导浓度的优化如图3所示,不同浓度的IPTG对外源蛋白的表达有一定的影响。低浓度条件下,随着IPTG的浓度增加,外源蛋白的表达量也增加,在IPTG浓度为0.5 mmol/L时达到最大值,此后随着IPTG浓度的增加表达量反而下降。由于高浓度的IPTG会对菌体生长造成毒害作用,同时为了节约成本,选择0.5 mmol/L为最适诱导浓度。2.4诱导温度的优化过低或过高的温度都会使菌体代谢缓慢,不利于外源基因的表达[9]。实验结果(图4)表明,随着温度升高,收获的菌体生物量先升后降,在30 ℃时菌体生物量最高。而重组蛋白的表达随着温度的升高而加强,在37 ℃时最高,因此选择37 ℃为最佳诱导温度。2.5表达时间的优化如图5所示,诱导5.0 h时蛋白表达量和生物量均达到最大值。继续诱导,生物量和表达量均下降。收集时间过早,蛋白的表达还不充分,收集时间过迟则可能导致细胞老化,自溶,发酵液中杂蛋白多,不利于纯化,综合考虑确定最佳诱导时间为5.0 h。2.6目的蛋白的分离纯化大量诱导表达融合蛋白,经超声破碎、离心后,收集上清液,经Ni-NTA柱亲和层析提纯重组蛋白,用梯度咪唑缓冲液洗脱蛋白,150 mmol/L咪唑缓冲液洗脱蛋白为纯蛋白。SDS-PAGE检测见图6,重组蛋白相对分子质量约为46 ku,与预期相符。2.7重组蛋白的Western blotting鉴定Western blotting(图7)分析显示,1号泳道空白对照无特异性反应条带,而2号泳道中纯化产物与小鼠抗人COL6A2的单克隆抗体有特异性反应。3结论本实验研究了不同的培养条件对重组蛋白表达的影响,结果表明接种量对重组蛋白表达影响较大,当接种量过大时,会直接影响菌体生长状态,从而抑制重组蛋白的表达;ITPG有毒性,培养基中IPTG浓度过低会使诱导力度不够,蛋白表达少,过高则可能会影响菌体生长;诱导时机和诱导后的培养时间都对目的蛋白的产量有重要的影响。确定了重组蛋白表达的最佳培养条件:接种量为2%,培养3.0 h后添加终浓度为0.5 mmol/L的ITPG,37 ℃下诱导表达5.0 h,表达的重组蛋白含量最高。本研究使用重组质粒pET22b-CP6转化的大肠杆菌pC6-BL21(DE3),经IPTG 诱导表达,得到可溶性重组蛋白,经Ni-NTA柱亲和层析纯化获得重组蛋白,方法简单易行。本实验的结果为进一步在发酵罐内进行分批发酵和补料发酵提供了参考。参考文献:[1] 蒋挺大,张春萍. 胶原蛋白[M]. 北京:化学工业出版社,2001.[2] TOMITA M, MUNETSUNA H, SATO T, et al. Transgenic silkworms produce recombinant human type III procollagen in cocoons[J]. Nat Biotechnol,2002,21(1):52-56.[3] RUGGIERO F, EXPOSITO J Y, BOURNAT P, et al. Triple helix assembly and processing of human collagen produced in transgenic tobacco plants[J]. FEBs Letters,2000,469(1): 132-136.[4] 杨立霞,修建新,朱欣杰,等. 重组生产胶原蛋白的研究进展[J]. 河北化工,2007,30(007):43-46.[5] LUO Y E,FAN D D,MA X X,et al. Process control for production of human-like collagen in fed-batch Escherichia coli BL21[J]. Chin J Chem Eng,2005,13(2):276-279.[6] 范代娣. 一种类人胶原蛋白及其生产方法[P]. 中国专利:ZL01 1067578,2005-04-13.[7] 沈宝明,谭新球,谭周进,等. 影响工程菌株目的基因表达的因素[J]. 生物技术通报,2010(3):6-12.[8] 戎晶晶,刁振宇,周国华. 大肠杆菌表达系统的研究进展[J].药物生物技术,2005,12(6):416-420.[9] MICHAEL J W, MARIA P, SHAWNR R C, et al. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli[J]. Applied and Environment Microbiology, 1997,63(11):4313-4320.。
purification翻译
purification翻译purification的中文意思是“净化”,它是一个名词,指的是通过去除杂质和污染物来使某物变得纯净的过程。
下面是一些关于purification的例句和用法:1. Water purification is the process of removing contaminants from water to make it safe for drinking. (水净化是将水中的污染物去除,使其适合饮用的过程。
)2. The air purification system in the building helps to remove pollutants and improve indoor air quality. (建筑物中的空气净化系统有助于去除污染物,改善室内空气质量。
)3. The purification process involves multiple steps, such as filtration, disinfection, and chemical treatment. (净化过程涉及多个步骤,如过滤、消毒和化学处理。
)4. The purification of metals is an important step in the production of high-quality alloys. (金属的净化是生产高质量合金的重要步骤。
)5. This face mask is designed with a built-in purification filter to remove pollutants and impurities from the air you breathe. (这款口罩设计有内置的净化过滤器,可以去除你呼吸的空气中的污染物和杂质。
)6. The company specializes in the purification of wastewater and offers innovative solutions for industrial water treatment. (该公司专注于废水净化,并为工业水处理提供创新解决方案。
克劳宁 Ni-NTA Agarose 用户手册说明书
Ni-NTA Agarose用户手册克劳宁(北京)生物科技有限公司北京市海淀区中关村西区天创科技大厦407A邮编:100080电话: 0086-10-62698317传真: 0086-10-62698352电邮:***************.cn订购:***************.cn咨询:**************.cn网站: 目录用户手册介绍 ------------------------------------------------------------------- 1细胞裂解 ------------------------------------------------------------------------ 1昆虫细胞裂解 ------------------------------------------------------------------- 1哺乳动物细胞裂解 -------------------------------------------------------------- 1蛋白纯化-非变性条件 ----------------------------------------------------------- 2蛋白纯化-变性条件 ------------------------------------------------------------- 2蛋白纯化-混合条件 ------------------------------------------------------------- 3 Ni-NTA树脂活化 --------------------------------------------------------------- 3组成成分 ------------------------------------------------------------------------ 3疑难解答 ------------------------------------------------------------------------ 4 2011年12月修订Ni-NTA 纯化MCLAB Ni-NTA agarose beads可用于从细菌、昆虫及哺乳动物细胞中纯化高质量的6x HIS-tagged 重组蛋白。
金斯瑞Ni-NTA亲和层析介质说明书
Ni-NTA亲和层析介质Cat.No.L00250版本号: 05052017 目录I.产品描述 (1)II.纯化步骤 (2)III.故障排除 (4)IV.订购信息 (4)I.产品描述金斯瑞Ni-NTA亲和层析介质(产品编号L00250)是把NTA(氮川三乙酸)共价偶联到4%的琼脂糖介质上,再通过NTA的4个结合位点螯合Ni2+制备而成的亲和层析介质。
Ni-NTA亲和层析介质的Ni2+脱落率非常低,它能耐受蛋白纯化过程中使用的很多添加剂,并且有着较高的蛋白结合能力和稳定性,因此Ni-NTA亲和层析介质非常适用于多组氨酸重组蛋白的纯化。
我们提供10 ml,25ml,500 ml三种规格的包装。
表1:产品特征柱体积10 ml、25 ml和500 ml(20 ml、50 ml和1000 ml的50 %悬浆液)吸附量每毫升填料吸附量>20 mg 6xHis-tagged 蛋白(27 kDa)基质4%琼脂糖平均粒径90 μm(45-165 μm)保护液1×PBS(含20%乙醇)存储条件2-8℃保质期2‐8℃储存18个月表2:Ni-NTA亲和层析介质可耐受试剂变性剂表面活性剂还原剂盐其他6 M 盐酸胍2%Triton X-100 20 mM β-ME 4 M MgCl250%甘油8 M尿素2% Tween 20 1 mM DTT 5 mM CaCl2 20%乙醇1% CHAPS 2 M NaCl 1 mM EDTA1II.纯化步骤常规条件下纯化多组氨酸标签蛋白1试剂准备所用缓冲液需采用高纯水配制,使用前建议用0.45 μm滤膜过滤。
Lysis平衡缓冲液(LE Buffer):50 mM Na2HPO4, 0.3 M NaCl, pH=8.0洗涤缓冲液:50 mM Na2HPO4, 0.3 M NaCl, 10 mM imidazole pH =8.0洗脱缓冲液:50 mM Na2HPO4, 0.3 M NaCl, 250 mM imidazole pH =8.02样品准备大肠杆菌或酵母细胞质中表达的重组蛋白(1) 4℃离心(如:5000 rpm 离心5分钟)收集50 ml培养基中的细胞。
cOmplete His-Tag Purification Resin中文说明书
cOmplete His-Tag Purification Resin 是一种即用型的镍离子螯合纯化树脂,其固相支持介 质为琼脂糖,适用于小规模至大规模的 His 标签融合蛋白纯化。能从粗制裂解液中一步 法纯化获得高纯度的蛋白。 cOmplete His-Tag Purification Resin 使用了一种新的化学螯合物和技术,使 Ni2+在树脂上 的结合更加牢固。与最常用的螯合物氮川乙酸(NTA)和亚氨二乙酸(IDA)不同,cOmplete His-Tag Purification Resin 使用的螯合物能保护 Ni2+免受巯醇还原,使 Ni2+的脱落可能性降 至最低(图 1)。因此,应用 His-Tag Purification Resin 进行蛋白纯化后的缓冲液和蛋白洗 脱液中几乎没有 Ni2+存在,Ni2+存在于蛋白溶液中将催化氧化反应,导致蛋白破坏。在 纯化反应后,无需进行 Ni2+去除。 与其他金属螯合蛋白纯化树脂不同的是,His-Tag Purification Resin 与含有 EDTA(金属螯 合蛋白酶抑制剂)、DTT(还原剂)的溶液完全兼容(图 1)。这意味着您可根据您的蛋 白特性,灵活地选择缓冲液条件和参数。
即使在严苛的缓冲条件下,5 次蛋白纯化操作后,cOmplete His-Tag Purification Resin 依 然可保持其蛋白结合载量,且无需进行镍离子的重新螯合。 cOmplete His-Tag Purification Resin 可以与罗氏蛋白酶抑制剂混合片剂 cOmplete ULTRA Table(t 含 EDTA,抑制金属蛋白酶活性),以及罗氏磷酸酶抑制剂混合片剂 PhosSTOP Tablet 一起使用,在纯化过程中,全面保护蛋白免受蛋白酶水解和磷酸化作用。
镍柱纯化系统
蛋白纯化系统操作步骤Introduction镍柱纯化系统是为纯化在细菌、昆虫和哺乳动物细胞表达的,带有6个组氨酸标签的重组蛋白而设计的。
这个系统设计了镍柱琼脂糖对串联排列的6-His 残基有高度的亲和力和选择性。
镍柱纯化系统包括了纯化缓冲液和在非变性、变性和杂合条件下的纯化蛋白树脂。
产生的蛋白可有许多用途。
变性与非变形条件判断预纯化的蛋白是变性或非变性条件依靠蛋白的溶解性和保留应用的生物活性。
蛋白质纯化步骤:第一步:确定在非变性或杂合条件下纯化。
第二步:制备相应的缓冲液。
第三步:按相应条件进行细菌裂解。
第四步:制备相应条件下的纯化柱。
第五步:按相应条件纯化。
第六步:柱清洗和保存。
第一步:确定在变性或杂合条件下纯化Native Condition如果你的蛋白是可溶性的(裂解后在上清中)并且保有应用蛋白的生物活性,用非变性条件Denaturing Condition如果你的蛋白是不可溶性的(裂解后在沉淀中)或者你下游的应用不依靠蛋白的生物活性,用变性条件。
如果你的蛋白是不可溶性的但是你想保留蛋白的生物活性,用杂合步骤。
在变性条件下制备溶菌产物和柱子然后在洗涤的洗脱中用非变性缓冲液使蛋白再折叠。
注意这种步骤并不可以使所有蛋白复性。
第二步:制备相应的缓冲液参见不同条件下的具体情况第三步:细胞裂解液的制备非变性条件:1. 收集50ml细菌培养液(5000rpm,5min),重悬于8ml的非变性结合缓冲液中。
2. 加入8mg的溶菌酶,然后冰上孵育30min。
3. 用超声破碎仪,在高强度的破碎下,每次10-second ,10-second 一个时间间隔,共六次。
在冰浴中操作。
4.可选步骤:如果裂解液非常粘稠,加入RNase A (10 μg/m l) and DNase I (5 μg/ml) ,冰上孵育10-15min,可选择地,用注射器针头反复抽吸几次。
5. 3,000 × g for 15 minutes 弃去细胞碎片,上清转移到另一个试管中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ni-NTA Purification System For purification of polyhistidine-containing recombinant proteinsCatalog nos. K950-01, K951-01, K952-01, K953-01, K954-01,R901-01, R901-10, R901-15iiTable of ContentsKit Contents and Storage (iv)Accessory Products (vi)Introduction (1)Overview (1)Methods (2)Preparing Cell Lysates (2)Purification Procedure—Native Conditions (7)Purification Procedure—Denaturing Conditions (11)Purification Procedure—Hybrid Conditions (13)Troubleshooting (15)Appendix (17)Additional Protocols (17)Recipes (18)Frequently Asked Questions (21)Technical Service (22)References (23)iiiKit Contents and StorageTypes of Products This manual is supplied with the following products:Kit Name Catalog No.Ni-NTA Purification System K950-01Ni-NTA Purification System with Antibodywith Anti-Xpress™ Antibody K951-01with Anti-myc-HRP Antibody K952-01with Anti-His(C-term)-HRP Antibody K953-01with Anti-V5-HRP Antibody K954-01Ni-NTA Agarose (10 ml) R901-01Ni-NTA Agarose (25 ml) R901-15Ni-NTA Agarose (100 ml) R901-10System Components The Ni-NTA Purification System components are listed below and include enough resin, reagents, and columns for six purifications.Component Composition QuantityNi-NTA Agarose 50% slurry in 30% ethanol 10 ml5X NativePurification Buffer250 mM NaH2PO4, pH 8.02.5 M NaCl1 × 125 ml bottleGuanidinium LysisBuffer6 M Guanidine HCl20 mM sodium phosphate, pH 7.8500 mM NaCl1 × 60 ml bottleDenaturing BindingBuffer8 M Urea20 mM sodium phosphate, pH 7.8500 mM NaCl2 × 125 ml bottlesDenaturing WashBuffer8 M Urea20 mM sodium phosphate, pH 6.0500 mM NaCl2 × 125 ml bottlesDenaturing ElutionBuffer8 M Urea20 mM NaH2PO4, pH 4.0500 mM NaCl1 × 60 ml bottleImidazole 3 M Imidazole20 mM sodium phosphate, pH 6.0500 mM NaCl1 × 8 ml bottle Purification columns 10 ml columns 6ivKit Contents and Storage, ContinuedNi-NTA Purification System with Antibody The Ni-NTA Purification System with Antibody includes resin, reagents, and columns as described for the Ni-NTA Purification System (previous page) and 50 µl of the appropriate purified mouse monoclonal antibody. Sufficient reagents are included to perform six purifications and 25 Western blots with the antibody.For more details on the antibody specificity, subclass, and protocols for using the antibody, refer to the antibody manual supplied with the system.Storage Store Ni-NTA Agarose at +4°C. Store buffers and columns at roomtemperature.Store the antibody at 4°C. Avoid repeated freezing and thawing of theantibody as it may result in loss of activity.The product is guaranteed for 6 months when stored properly.All native purification buffers are prepared from the 5X Native PurificationBuffer and the 3 M Imidazole, as described on page 7.The Denaturing Wash Buffer pH 5.3 is prepared from the Denaturing WashBuffer (pH 6.0), as described on page 11.Resin and Column Specifications Ni-NTA Agarose is precharged with Ni2+ ions and appears blue in color. It is provided as a 50% slurry in 30% ethanol.Ni-NTA Agarose and purification columns have the following specifications: •Binding capacity of Ni-NTA Agarose: 5–10 mg of protein per ml of resin •Average bead size: 45–165 microns•Pore size of purification columns: 30–35 microns•Recommended flow rate: 0.5 ml/min•Maximum linear flow rate: 700 cm/h•Maximum pressure: 2.8 psi (0.2 bar)•Column material: Polypropylene•pH stability (long term): 3–13•pH stability (short term): 2–14Product Qualification The Ni-NTA Purification System is qualified by purifying 2 mg of myoglobin protein on a column and performing a Bradford assay. Protein recovery must be 75% or higher.Limited Use Label License No. 102: Ni-NTA Resin The Ni-NTA Agarose contained in this product is manufactured by QIAGEN®under a license from Hoffmann-LaRoche Inc., Nutley, NJ and/or Hoffmann-LaRoche Ltd., Basel, Switzerland and is provided only for use in research. Information about licenses for commercial use is available from QIAGEN GmbH, Max-Volmer-Strasse 4, D-40724 Hilden, Germany.vAccessory ProductsAdditionalProductsThe following products are also available for order from Invitrogen:Product QuantityCatalogN o.ProBond™ Nickel-Chelating Resin 50 ml150 ml R801-01 R801-15Polypropylene columns (empty) 50 R640-50Ni-NTA Agarose 10 ml25 ml100 ml R901-01 R901-15 R901-10ProBond™ Purification System 6 purifications K850-01 ProBond™ Purification System withAntibodywith Anti-Xpress™ Antibody 1 kit K851-01 with Anti-myc-HRP Antibody 1 kit K852-01 with Anti-His(C-term)-HRP Antibody 1 kit K853-01 with Anti-V5-HRP Antibody 1 kit K854-01 Anti-myc Antibody 50 µl R850-25 Anti-V5 Antibody 50 µl R960-25 Anti-Xpress™ Antibody 50 µl R910-25 Anti-His(C-term) Antibody 50 µl R930-25 InVision™ His-tag In-gel Stain 500 ml LC6030 InVision™ His-tag In-gel Staining Kit 1 kit LC6033Pre-Cast Gels and Pre-made Buffers A large variety of pre-cast gels for SDS-PAGE and pre-made buffers for your convenience are available from Invitrogen. For details, visit our web site at or contact Technical Service (page 22).viIntroductionOverviewIntroduction The Ni-NTA Purification System is designed for purification of 6xHis-taggedrecombinant proteins expressed in bacteria, insect, and mammalian cells. Thesystem is designed around the high affinity and selectivity of Ni-NTA Agarosefor recombinant fusion proteins that are tagged with six tandem histidineresidues.The Ni-NTA Purification System is a complete system that includespurification buffers and resin for purifying proteins under native, denaturing,or hybrid conditions. The resulting proteins are ready for use in many targetapplications.This manual is designed to provide generic protocols that can be adapted foryour particular proteins. The optimal purification parameters will vary witheach protein being purified.Ni-NTA Resin Ni-NTA Agarose is used for purification of recombinant proteins expressed inbacteria, insect, and mammalian cells from any 6xHis-tagged vector. The resinexhibits high affinity and selectivity for 6xHis-tagged recombinant fusionproteins.Proteins can be purified under native, denaturing, or hybrid conditions usingthe Ni-NTA Agarose. Proteins bound to the resin are eluted with low pHbuffer or by competition with imidazole or histidine. The resulting proteins areready for use in target applications.The protocols provided in this manual are generic, and may not result in 100%pure protein. These protocols should be optimized based on the bindingcharacteristics of your particular proteins.BindingCharacteristicsNi-NTA Agarose uses nitrilotriacetic acid (NTA), a tetradentate chelatingligand, in a highly cross-linked 6% agarose matrix. NTA binds Ni2+ ions by fourcoordination sites.Native VersusDenaturingConditionsThe decision to purify 6xHis-tagged proteins under native or denaturingconditions depends on the solubility of the protein and the need to retainbiological activity for downstream applications.•Use native conditions if your protein is soluble (in the supernatant after lysis)and you want to preserve protein activity.•Use denaturing conditions if the protein is insoluble (in the pellet after lysis)or if your downstream application does not depend on protein activity.•Use hybrid protocol if your protein is insoluble but you want to preserveprotein activity. Prepare the lysate and columns under denaturing conditionsand then use native buffers during the wash and elution steps to refold theprotein. Note that this protocol may not restore activity for all proteins. Seepage 14.1MethodsPreparing Cell LysatesIntroduction Instructions for preparing lysates from bacteria, insect, and mammalian cellsusing native or denaturing conditions are described below.Materials Needed You will need the following items:•Native Binding Buffer (recipe is on page 8) for preparing lysates undernative conditions•Sonicator•10 µg/ml RNase and 5 µg/ml DNase I (optional)•Guanidinium Lysis Buffer (supplied with the system) for preparing lysatesunder denaturing conditions•18-gauge needle•Centrifuge•Sterile, distilled water•SDS-PAGE sample buffer•Lysozyme for preparing bacterial cell lysates•Bestatin or leupeptin, for preparing mammalian cell lysatesProcessing Higher Amount of Starting Material Instructions for preparing lysates from specific amount of starting material (bacteria, insect, and mammalian cells) and purification using 2 ml resin under native or denaturing conditions are described in this manual.If you wish to purify your protein of interest from higher amounts of starting material, you may need to optimize the lysis protocol and purification conditions (amount of resin used for binding). The optimization depends on the expected yield of your protein and amount of resin to use for purification. Perform a pilot experiment to optimize the purification conditions and then based on the pilot experiment results, scale-up accordingly.Continued on next page2Preparing Bacterial Cell Lysate—Native Conditions Follow the procedure below to prepare bacterial cell lysate under native conditions. Scale up or down as necessary.1.Harvest cells from a 50 ml culture by centrifugation (e.g., 5000 rpm for5 minutes in a Sorvall SS-34 rotor). Resuspend the cells in 8 ml of NativeBinding Buffer (recipe on page 8).2.Add 8 mg lysozyme and incubate on ice for 30 minutes.ing a sonicator equipped with a microtip, sonicate the solution on iceusing six 10-second bursts at high intensity with a 10-second coolingperiod between each burst.Alternatively, sonicate the solution on ice using two or three 10-secondbursts at medium intensity, then flash freeze the lysate in liquid nitrogen or a methanol dry ice slurry. Quickly thaw the lysate at 37°C andperform two more rapid sonicate-freeze-thaw cycles.4.Optional: If the lysate is very viscous, add RNase A (10 µg/ml) andDNase I (5 µg/ml) and incubate on ice for 10–15 minutes. Alternatively,draw the lysate through a 18-gauge syringe needle several times.5.Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.Note: Some 6xHis-tagged protein may remain insoluble in the pellet, and can be recovered by preparing a denatured lysate (page 2) followed bythe denaturing purification protocol (page 12). To recover this insolubleprotein while preserving its biological activity, you can prepare thedenatured lysate and then follow the hybrid protocol on page 14. Notethat the hybrid protocol may not restore activity in all cases, and should be tested with your particular protein.6.Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or freeze at -20°C. When ready to use, proceed to theprotocol on page 10.Continued on next page3Preparing Bacterial Cell Lysate—Denaturing Conditions Follow the procedure below to prepare bacterial cell lysate under denaturing conditions:1.Equilibrate the Guanidinium Lysis Buffer, pH 7.8 (supplied with thesystem or see page 19 for recipe) to 37°C.2.Harvest cells from a 50 ml culture by centrifugation (e.g., 5000 rpm for5 minutes in a Sorvall SS-34 rotor).3.Resuspend the cell pellet in 8 ml of Guanidinium Lysis Buffer from Step 1.4.Slowly rock the cells for 5–10 minutes at room temperature to ensurethorough cell lysis.5.Sonicate the cell lysate on ice with three 5-second pulses at high intensity.6.Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris.Transfer the supernatant to a fresh tube.7.Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or at -20°C. When ready to use, proceed to the denaturingprotocol on page 11 or hybrid protocol on page 13.Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCAprecipitation prior to SDS-PAGE to prevent the precipitation of SDS.Harvesting Insect Cells For detailed protocols dealing with insect cell expression, consult the manual for your particular system. The following lysate protocols are for baculovirus-infected cells and are intended to be highly generic. They should be optimized for your cell lines.For baculovirus-infected insect cells, when the time point of maximal expression has been determined, large scale protein expression can be carried out. Generally, the large-scale expression is performed 1 liter flasks seeded with cells at a density of 2 × 106 cells/ml in a total volume of 500 ml and infected with high titer viral stock at an MOI of 10 pfu/cell. At the point of maximal expression, harvest cells in 50 ml aliquots. Pellet the cells by centrifugation and store at -70°C until needed. Proceed to preparing cell lysates using native or denaturing conditions as described on the next page.Continued on next page4Preparing Insect Cell Lysate—Native Condition 1.Prepare 8 ml Native Binding Buffer (recipe on page 8) containingleupeptin (a protease inhibitor) at a concentration of 0.5 µg/ml.2.After harvesting the cells (see previous page), resuspend the cell pellet in8 ml Native Binding Buffer containing 0.5 µg/ml Leupeptin.3.Lyse the cells by two freeze-thaw cycles using a liquid nitrogen or dryice/ethanol bath and a 42 C water bath.4.Shear DNA by passing the preparation through an 18-gauge needle fourtimes.5.Centrifuge the lysate at 3,000 × g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.6.Remove 5 µl of the lysate for SDS-PAGE analysis. Store remaining lysateon ice or freeze at -20° C. When ready to use, proceed to the protocol on page 7.Preparing Insect Cell Lysate—Denaturing Condition 1.After harvesting insect cells (see previous page), resuspend the cell pelletin 8 ml Guanidinium Lysis Buffer (supplied with the system or seepage 19 for recipe).2.Pass the preparation through an 18-gauge needle four times.3.Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.4.Remove 5 µl of the lysate for SDS-PAGE analysis. Store remaining lysateon ice or freeze at -20° C. When ready to use, proceed to the denaturingprotocol on page 11 or hybrid protocol on page 14.Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCAprecipitation prior to SDS-PAGE to prevent the precipitation of SDS.Continued on next pagePreparing Mammalian Cell Lysate—Native Conditions For detailed protocols dealing with mammalian expression, consult the manual for your particular system. The following protocols are intended to be highly generic, and should be optimized for your cell lines.To produce recombinant protein, you need between 5 x 106and 1 x 107 cells. Seed cells and grow in the appropriate medium until they are 80–90% confluent. Harvest the cells by trypsinization. You can freeze the cell pellet in liquid nitrogen and store at -70°C until use.1.Resuspend the cell pellet in 8 ml Native Binding Buffer (recipe onpage 8). The addition of protease inhibitors such as bestatin andleupeptin may be necessary depending on the cell line and expressedprotein.2.Lyse the cells by two freeze-thaw cycles using a liquid nitrogen or dryice/ethanol bath and a 42°C water bath.3.Shear the DNA by passing the preparation through an 18-gauge needlefour times.4.Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.5.Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or freeze at -20° C. When ready to use, proceed to theprotocol on page 7.Preparing Mammalian Cell Lysates—Denaturing Conditions For detailed protocols dealing with mammalian expression, consult the manual for your particular system. The following protocols are intended to be highly generic, and should be optimized for your cell lines.To produce recombinant protein, you need between 5 x 106and 1 x 107 cells. Seed cells and grow in the appropriate medium until they are 80–90% confluent. Harvest the cells by trypsinization. You can freeze the cell pellet in liquid nitrogen and store at -70°C until use.1.Resuspend the cell pellet in 8 ml Guanidinium Lysis Buffer (suppliedwith the system or see page 19 for recipe).2.Shear the DNA by passing the preparation through an 18-gauge needlefour times.3.Centrifuge the lysate at 3,000 ×g for 15 minutes to pellet the cellulardebris. Transfer the supernatant to a fresh tube.4.Remove 5 µl of the lysate for SDS-PAGE analysis. Store the remaininglysate on ice or freeze at -20° C until use. When ready to use, proceed tothe denaturing protocol on page 11 or hybrid protocol on page 14.Note: To perform SDS-PAGE with samples in Guanidinium Lysis Buffer, you need to dilute the samples, dialyze the samples, or perform TCAprecipitation prior to SDS-PAGE to prevent the precipitation of SDS.Purification Procedure—Native ConditionsIntroduction In the following procedure, use the prepared Native Binding, Wash, andElution Buffers, columns, and cell lysate prepared under native conditions forpurification. Be sure to check the pH of your buffers before starting.Buffers for Native Purification All buffers for purification under native conditions are prepared from the5X Native Purification Buffer supplied with the system. Dilute and adjust the pH of the 5X Native Purification Buffer to create 1X Native Purification Buffer (see page 8). From this, you can create the following buffers:Native Binding BufferNative Wash BufferNative Elution BufferThe recipes described in this section will create sufficient buffers to perform one native purification using one kit-supplied purification column. Scale up accordingly.If you are preparing your own buffers, see page 18 for recipe.Materials Needed You will need the following items:•5X Native Purification Buffer (supplied with the system or see page 18 forrecipe)• 3 M Imidazole (supplied with the system or see page 18 for recipe)•NaOH•HCl•Sterile distilled water•Prepared Ni-NTA columns with native buffers (next page)•Lysate prepared under native conditions (page 2)Imidazole Concentration in Native Buffers Imidazole is included in the Native Wash and Elution buffers to minimize the binding of untagged, contaminating proteins and increase the purity of the target protein with fewer wash steps. Note that, if your level of contaminating proteins is high, you may add imidazole to the Native Binding Buffer.If your protein does not bind well under these conditions, you can experiment with lowering or eliminating the imidazole in the buffers and increasing the number of wash and elution steps.Continued on next page1X Native Purification Buffer To prepare 100 ml 1X Native Purification Buffer, combine:80 ml of sterile distilled water20 ml of 5X Native Purification Buffer (supplied with the system or see page 18 for recipe)Mix well and adjust pH to 8.0 with NaOH or HCl.Native Binding Buffer Without ImidazoleUse 30 ml of the 1X Native Purification Buffer (see above for recipe) for use as the Native Binding Buffer (used for column preparation, cell lysis, and binding).With Imidazole (Optional):You can prepare the Native Binding Buffer with imidazole to reduce the binding of contaminating proteins. (Note that some His-tagged proteins may not bind under these conditions.).To prepare 30 ml Native Binding Buffer with 10 mM imidazole, combine:30 ml of 1X Native Purification Buffer100 µl of 3 M Imidazole, pH 6.0Mix well and adjust pH to 8.0 with NaOH or HCl.Native Wash Buffer To prepare 50 ml Native Wash Buffer with 20 mM imidazole, combine:50 ml of 1X Native Purification Buffer335 µl of 3 M Imidazole, pH 6.0Mix well and adjust pH to 8.0 with NaOH or HCl.Native Elution Buffer To prepare 15 ml Native Elution Buffer with 250 mM imidazole, combine: 13.75 ml of 1X Native Purification Buffer1.25 ml of 3 M Imidazole, pH 6.0Mix well and adjust pH to 8.0 with NaOH or HCl.Continued on next pageDo not use strong reducing agents such as DTT with Ni-NTA Agarose columns.DTT reduces the nickel ions in the resin. In addition, do not use strongchelating agents such as EDTA or EGTA in the loading buffers or wash buffers,as these will strip the nickel from the columns.Be sure to check the pH of your buffers before starting.Preparing Ni-NTAColumnWhen preparing a column as described below, make sure that the snap-off capat the bottom of the column remains intact. To prepare a column:1.Resuspend the Ni-NTA Agarose in its bottle by inverting and gentlytapping the bottle repeatedly.2.Pipet or pour 1.5 ml of the resin into a 10-ml Purification Column.Allow the resin to settle completely by gravity (5–10 minutes) or gentlypellet it by low-speed centrifugation (1 minute at 800 ×g). Gentlyaspirate the supernatant.3.Add 6 ml sterile, distilled water and resuspend the resin by alternatelyinverting and gently tapping the column.4.Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant.5.For purification under Native Conditions, add 6 ml Native BindingBuffer (recipe on previous page).6.Resuspend the resin by alternately inverting and gently tapping thecolumn.7.Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant.8.Repeat Steps 5 through 7.Storing PreparedColumnsTo store a column containing resin, add 0.02% azide or 20% ethanol as apreservative and cap or parafilm the column. Store at room temperature.Continued on next pagePurification Under Native Conditions Using the native buffers, columns and cell lysate, follow the procedure below to purify proteins under native conditions:1.Add 8 ml lysate prepared under native conditions to a preparedPurification Column (page 9).2.Bind for 30–60 minutes using gentle agitation to keep the resinsuspended in the lysate solution.3.Settle the resin by gravity or low speed centrifugation (800 ×g), andcarefully aspirate the supernatant. Save supernatant at 4°C forSDS-PAGE analysis.4.Wash with 8 ml Native Wash Buffer (see page 8). Settle the resin bygravity or low speed centrifugation (800 ×g), and carefully aspirate thesupernatant. Save supernatant at 4°C for SDS-PAGE analysis.5.Repeat Step 4 three more times.6.Clamp the column in a vertical position and snap off the cap on thelower end. Elute the protein with 8–12 ml Native Elution Buffer (seepage 8). Collect 1 ml fractions and analyze with SDS-PAGE.Note: Store the eluted fractions at 4°C. If -20°C storage is required, addglycerol to the fractions. For long term storage, add protease inhibitors to the fractions.If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.Purification Procedure—Denaturing ConditionsIntroduction Instructions to perform purification using denaturing conditions with prepareddenaturing Buffers, columns, and cell lysate are described below. Be sure tocheck the pH of your buffers before starting.Materials Needed You will need the following items:•Denaturing Binding Buffer (supplied with the system or see page 19 forrecipe)•Denaturing Wash Buffer, pH 6.0 (supplied with the system or see page 20 forrecipe) and Denaturing Wash Buffer, pH 5.3 (see recipe below)•Denaturing Elution Buffer (supplied with the system or see page 20 forrecipe)•Prepared Ni-NTA Agarose with denaturing buffers (below)•Lysate prepared under denaturing conditions (page 2)Be sure to check the pH of your buffers before starting. Note that thedenaturing buffers containing urea will become more basic over time. Preparing theDenaturing WashBuffer pH 5.3Using a 10 ml aliquot of the kit-supplied Denaturing Wash Buffer (pH 6.0),adjust the pH to 5.3 using HCl. Use this for the Denaturing Wash Buffer pH 5.3in Step 5 next page.Preparing Ni-NTAColumnWhen preparing a column as described below, make sure that the snap-off capat the bottom of the column remains intact.If you are reusing the Ni-NTA Agarose, see page 17 for recharging protocol.To prepare a column:1.Resuspend the Ni-NTA Agarose in its bottle by inverting and gentlytapping the bottle repeatedly.2.Pipet or pour 2 ml of the resin into a 10-ml Purification Column suppliedwith the kit. Allow the resin to settle completely by gravity(5-10 minutes) or gently pellet it by low-speed centrifugation (1 minute at800 ×g). Gently aspirate the supernatant.3.Add 6 ml of sterile, distilled water and resuspend the resin by alternatelyinverting and gently tapping the column.4.Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant.5.For purification under Denaturing Conditions, add 6 ml of DenaturingBinding Buffer.6.Resuspend the resin by alternately inverting and gently tapping thecolumn.7.Allow the resin to settle using gravity or centrifugation as described inStep 2, and gently aspirate the supernatant. Repeat Steps 5 through 7.Purification Procedure—Denaturing Conditions, ContinuedPurification Under Denaturing Conditions Using the denaturing buffers, columns, and cell lysate, follow the procedure below to purify proteins under denaturing conditions:1.Add 8 ml lysate to a prepared Purification Column.2.Bind for 15–30 minutes at room temperature using gentle agitation (e.g.,using a rotating wheel) to keep the resin suspended in the lysatesolution. Settle the resin by gravity or low speed centrifugation (800 ×g), and carefully aspirate the supernatant.3.Wash the column with 4 ml Denaturing Binding Buffer by resuspendingthe resin and rocking for two minutes. Settle the resin by gravity or lowspeed centrifugation (800 ×g), and carefully aspirate the supernatant.Save supernatant at 4º C for SDS-PAGE analysis. Repeat this step onemore time.4.Wash the column with 4 ml Denaturing Wash Buffer (pH 6.0) byresuspending the resin and rocking for two minutes. Settle the resin bygravity or low speed centrifugation (800 ×g), and carefully aspirate thesupernatant. Save supernatant at 4º C for SDS-PAGE analysis. Repeatthis step one more time.5.Wash the column with 4 ml Denaturing Wash Buffer pH 5.3 (seeprevious page) by resuspending the resin and rocking for two minutes.Settle the resin by gravity or low speed centrifugation (800 ×g), andcarefully aspirate the supernatant. Save supernatant at 4º C for SDS-PAGE analysis. Repeat this step once more for a total of two washes with Denaturing Wash Buffer pH 5.3.6.Clamp the column in a vertical position and snap off the cap on thelower end. Elute the protein by adding 5 ml Denaturing Elution Buffer.Collect 1 ml fractions and monitor the elution by taking OD280readingsof the fractions. Pool fractions that contain the peak absorbance anddialyze against 10 mM Tris, pH 8.0, 0.1% Triton X-100 overnight at 4°C to remove the urea. Concentrate the dialyzed material by any standardmethod (i.e., using 10,000 MW cut-off, low-protein binding centrifugalinstruments or vacuum concentration instruments).If you wish to reuse the resin to purify the same recombinant protein, wash the resin with 0.5 M NaOH for 30 minutes and equilibrate the resin in a suitable binding buffer. If you need to recharge the resin, see page 17.。