大气水分 及其相变

合集下载

第三章 大气中的水分

第三章 大气中的水分

降水及阵性降水。
雨层云
Ns
中 云 高层云 <6000m 高积云
As 由水滴和冰晶组成, Ac 可降水或变
雨层云。
卷云 高云
卷层云
Ci Cs
由冰晶组成,一般 不产生降水。
云的结构
◆ 云量的观测
——天空被云遮蔽的程度叫云量,以0 ~ 10 的 成数表示。云量的多少与纬度、海陆分布、大 气环流等因素有关。 晴天:0~3; 少云:3 ~ 5;多云:6~ 8; 阴天:9 ~ 10 。
的压力,用 E 表示,其单位与水汽压相同。 饱和水汽压随温度升高而增大,随温度降
低而减小。 不同气温下的饱和湿度
气温(℃)
水蒸气压力 (mmHg)
水蒸气量 (g/m3)
0
4.58
4.58
5
6.54
6.81
10
9.21
9.42
15
12.79
12.85
20
17.54
17.32
4、相对湿度
指空气中实际水汽压与同温度下的饱和 水汽压之比的百分数,用 f 表示,即:
蒸发受气象因子和地理环境影响。蒸发面温度 越高,蒸发越快、蒸发量越大。蒸发量变化与 气温变化基本一致,即每天午后最大日出前最 小;夏季大冬季小;海洋大、大陆小。
蒸 发 面 的 影 响
地理纬度的影响
4、凝结及其条件
——空气中水的凝结必须具备两个条件: ◆空气要达到饱和或过饱和状态; ◆要有凝结核。
蒸发、融解、升华——吸收潜热; 凝结、冻结、凝华——释放潜热。
例如: 常温下,水的蒸发潜热为 L = 2497 J , 即蒸发 1 g 水需要消耗 2497 J 的热量; 与此相反, 1 g 水冻结成冰则可释放出 334.7 J 热量。

第四章 水分.

第四章 水分.

土壤蒸发:
除气象条件外,土壤含水量、土壤结构、性质、颜色、方位等。 粗糙的土壤表面蒸发强于平滑的土壤表面; 深色土壤比浅色土壤蒸发强; 高地比谷地、凹地蒸发强; 南坡比北坡强
二、植物蒸腾
植物体内的水分通过体表以气态水的形式向外界大气输送的 过程称为蒸腾。<物理过程、生理过程>
植物从土壤中吸收的水分,
第四章 水分
大气中的水份是大气组成成分中最富于变化的部分。
1. 空气湿度的表示方法和变化规律 2. 水面蒸发、农田蒸散及变化规律 3. 成云致雨的条件和降水特征、水分利用率
第一节 大气湿度 一、水的相变
1.水相变化的物理过程 2.水相变化中的蒸发潜热 L=2500-2.4t < 2450 J/g > t:温度
大部分通过蒸腾起到输送养分和降低体温的作用。
从叶肉细胞开始向外扩散 到达大气的过程与物理电学中电流、电压、电阻关系有些类似。
叶片内的饱和水气压与大气中的未饱和的水汽压形成压差;相当于电压; 水分 叶片大气:有四种阻抗,(叶肉阻抗)rm、(气孔阻抗)rs、(
片流边界层阻抗)rb、(大气阻抗)ra,相当于电阻;
2. 空气湿度的时间变化
(1)水汽压的日、年变化
水汽压的日变化 影响近地面空气中水汽含量随时间变化的主要因素是蒸发强度和乱
流强度。
单峰型
当温度升高时,蒸发作用增强,
但,如果湍流作用不旺盛, 蒸发的水多停留在低空。 最高值:14-15h
双峰型:
乱流较强的温暖季节,由于湍流的作用,绝对湿度的日变化呈双峰型。
第二节 蒸发与蒸腾 一、蒸发
蒸发是指水分子从液态或固态水的自由面逸出而成为汽态的过程或现象。 单位时间内单位面积上蒸发的水量称为蒸发速率,单位:gcm-2s-1。 水面蒸发、土壤蒸发

第四章 大气中的水分

第四章 大气中的水分

Ei E过冷却水面-E冰面
冰分子脱出冰面所受 的束缚比水分子脱出 水面的束缚大
E冰面 E过冷却水面 100%
冰晶和过冷却水滴共存情况在云中很普遍 冰晶效应 如果实际水汽压处于两者的饱和水汽压之间:
es (过冷却水滴) ea (实际水汽) es (冰晶)
蒸发
凝华
水滴不断蒸发而减小,冰晶因不断凝华而 增大,在冰和水之间水汽转移现象。 冰晶效应:这种由于冰水共存引起冰水间的 水汽转移的作用
E>e 未饱和 蒸发 E=e 饱和 动态平衡 E<e 过饱和 凝结
4
水 融解线
蒸发线
升华线
水的三种相态分别存在于不同的温度和压强条 件下: (1)水只存在于0℃以上的区域,冰只存在于0℃ 以下的区域,水汽虽然可存在于0℃以上及以下的区 域,但其压强却被限制在一定值域下。
蒸发过程:较大动能水分子脱出液面使液面温 度降低。如果保持其温度不变,必须自外界供给热 量,这部分热量等于蒸发潜热L,L 与温度t有如下 的关系:
第四章 大气中的水分
凝结
水汽输送
凝结
降水
蒸发 植物蒸腾

降水
地表径流 地下径流
蒸发
海洋
下渗
地球上水分循环过程对地-气系统的热量平衡和 天气变化起着非常重要的作用
(一) 蒸发和凝结的基本原理
大气中 (二) 地表面和大气中的凝结现象 的水分
(三) 降水及人工影响天气
(一)蒸发和凝结的基本原理
1、水相变化
辐射雾多发生 在夜长、气温低的 冬季。只要满足条 件,在大部分地区 均可形成。
29
(4)混合冷却:当温差较大,且接近饱和的两 团空气水平混合后,也可能产生凝结。由于饱和水 汽压随温度的改变呈指数曲线形式,就可能使混合 后气团的平均水汽压比混合气团平均温度下的饱和 水汽压大。

气象与气候学课件 第三章

气象与气候学课件  第三章

△E代表同温度下冰面饱和水汽压和过冷却水面饱和水汽压之 差:△E=E-Ei。其变化趋势如图中实线所示:自0℃开始,随 着温度降低,差值迅速增大,至-12℃时达最大值 (△E=0.269hPa)温度继续降低时,差值减小。f0表示冰面饱 和水汽压对过冷却水面饱和水汽压的相对百分数 。
“冰晶效应”: 在云中,冰晶和过冷却水共存的情况是很普遍的,如果 当时的实际水汽压介于两者饱和水汽压之间,就会产生冰水 之间的水汽转移现象。水滴会因不断蒸发而缩小,冰晶会因 不断凝华而增大。这就是“冰晶效应”,该效应对降水的形 成具有重要意义。(通俗地说:就是对于水而言未饱和要发 生蒸发,而不断缩小;而对于冰晶而言,过饱和要发生凝华, 而不断增大)

返回
思考题
• 新疆的降水的水汽来源是来自大西洋的多还 是来自北冰洋的多? • 倒春寒天气现象?
阿尔泰山脉
友谊峰4374米
艾比湖189米
准噶尔盆地
托木尔峰 7435米
天山山脉
罗布泊洼地 780米
塔里木盆地
乔戈里峰 8611米
昆仑山脉
思考题
• 新疆的降水的水汽来源是来自大西洋的多还是来 自北冰洋的多? • 和新疆的地形有关,三山夹两盆,山脉以东西向 为主,向西开敞的地形利于西侧水汽深入,阻隔 来自北侧的水汽。
(一)饱和水汽压与温度的关系:
饱和水汽压与温度的关系可由克拉柏龙-克劳修司 (Clapeyron-Clausius)方程经过积分后描述。
式中E为饱和水汽压,E0=6.11hPa(为t=0℃时,纯水平面上的 饱和水汽压)。 饱和水汽压随温度的升高而增大。这是因为蒸发面温度 升高时,水分子平均动能增大,单位时间内脱出水面的分子增 多,落回水面的分子数才和脱出水面的分子数相等;高温时的 饱和水汽压比低温时要大。

气象气候学-大气中的水分

气象气候学-大气中的水分

1.什么是饱和水汽压?饱和水汽压:水汽与水或冰两相共存,其间分子交换过程达到动态平衡时的水汽压。

2.饱和水汽压主要受哪些因素影响?✓蒸发面的温度✓蒸发面的性质(水面、冰面、溶液面)✓蒸发面的形状(平面、凹面、凸面)3.饱和水汽压与温度成什么关系?饱和水汽压随温度升高而按指数规律迅速增大。

4.为什么饱和水汽压随温度升高而迅速增大?温度越高,水分子平均动能越大,单位时间脱出水面的分子越多;只有当水面上水汽密度增大到更大值时,落回水面的分子数才和脱出水面的分子数相等。

温度越高,水汽分子平均动能越大,而水汽压是水汽重量及其碰撞器壁的结果,故也随之增大。

5.饱和水汽压随温度升高而迅速增大有什么重要意义?温度升高,饱和变不饱和,蒸发重现;温度降低,不饱和变饱和,凝结出现。

饱和水汽压随温度改变的量,高温时比低温时大。

6.蒸发面性质对饱和水汽压有什么影响?冰面和过冷却水面的饱和水汽压仍随温度升高而按指数规律变化.7.蒸发面形状如何影响饱和水汽压?温度相同时,凸面的饱和水汽压最大,平面次之,凹面最小。

凸面的曲率愈大,饱和水汽压愈大;凹面的曲率愈大,饱和水汽压愈小大水滴曲率小,饱和水汽压小;小水滴曲率大,饱和水汽压大;从而出现大水滴“吞并”小水滴现象。

8.影响蒸发的因素有哪些?气象因素:热源、饱和差、风和湍流扩散、气压下垫面因素:水源、水面大小,形状及深度、水质、物理性质9.空气湿度随时间变化有何规律?10.大气中水汽凝结需要什么条件?凝结核、水汽饱和或过饱和11.不同饱和或过饱和途径对云雾的形成有何差异?水汽凝结以冷却为主。

绝热冷却对形成云最为主要;辐射冷却、平流冷却与混合冷却对形成雾最为主要。

12.什么是云?与雾有什么区别?云是悬浮在大气中的大量小水滴、冰晶微粒或两者混合物的可见聚合群体;底部不接触地面。

雾是悬浮于近地面空气中的大量小水滴或冰晶的可见聚合群体,底部接触地面。

13.云的形成需要什么条件?凝结核、充足水汽、冷却过程14.形成云的上升冷却过程有哪些类型?热力对流:多形成积状云动力抬升:锋面、气旋作用,多形成层状云大气波动:多形成波状云地形抬升:可形成积状云、层状云与波状云积状云:空气对流上升冷凝而成的具有孤立分散、云底平坦、顶部凸起形态的垂直发展云块。

14附章 大气中的水汽及其相变原理、云的形成

14附章  大气中的水汽及其相变原理、云的形成

对流上限 几百米~2000米 Cu hum 凝结高度
500~1200
特点:a云体的水平尺度L>H垂直尺度全由水滴组成 b云内上升速度W<5米/秒
淡积云 碎积云
c
Cu hum
解体
Fc
2)、浓积云阶段——对流上限越过凝结高度很多。
a.云体L<H
Cu cong
b.云内上升速度w=15-20米/秒 c.
切变线:是一种风的不连续线,往往会使空气辐合上升。
冷锋切变
暧锋切变
准静止锋切变
冷锋式切变,即偏北风和西南风的切变;暖锋式切变, 即东南风和西南风的切变,准静止锋式切变即偏东风和偏西 风的切变。切变线一般主要出现在中、低空即3000米和 1500左右的空中。在我国东部地区常会出现和维持准静止锋 式的切变线。 如:初夏在江淮流域到长江以南的江淮切变线。夏季即会在 华北地区出现切变线。所以,切变线上降水量分布很不均匀, 常在辐合较强、水汽供应充沛的地区形成暴雨。是造成夏半 年我国降水的一个重要天气系统。
Cb
高空 伪卷云 消散 d. Cb 中空 积云性高积云 低空 积云性层积云
⑤、积状云有明显的日变化:
淡积云→浓积云(阵雨)→积雨云→消散(或者打雷、下雨) 上升 迟中午 晚下午 入夜
2、层状云—大规模上升运动形成的云。(铺天盖地,是连续比较均
匀的云层) 1) 包括:卷层云(Cs),高层云(As),雨层云(Ns),层云 (Ss)。 2) 形成原因:槽线,切变线,锋面、气旋等天气系统所引起的大规模 的系统性的铅直运动,在大气层结稳定、水汽较充沛的条件下,可 形成范围广,分布均匀的层状系。 3) 形成条件:①气层稳定(例:暖锋云系) ②垂直速度小 ③持续时间长(连续几天)

第四章 大气中的水分

第四章 大气中的水分

空气中常见的降温过程:
(1)绝热冷却 云、雨、雪、雹等。 (2)辐射冷却 露、霜、辐射雾等。 (3)接触冷却(平流冷却) 平流雾、雾凇V等。 (4)混合冷却:两团温差大、但都接近饱和而未饱 和的空气混合后有可能达到饱和。 低云、雾。
17
温度(℃)
-30 0.5
-20 1.2
-10 2.9
0 6.1
按云的外形、结构特点和成因:分为11属,29类。

高云族:云底高度6000米以上,冰晶,白色。一般不降水 中云族:云底高度2000-6000米,水滴、过冷却水滴、冰 晶。有时降水 低云族:云底高度2000米以下,水滴、水滴或冰晶。 云型 层状云 低 雨层云 层积云 层云 淡积云 浓积云 积雨云 碎云 中 高层云 高 卷层云、卷云
e 100% E
5
2.年变化
干燥而全年的绝对湿度a变化不大的地区:与T的 年变化相反,冬季最大,夏季最小。 季风气候区:冬季寒冷干燥,夏季炎热湿润,与气 温一致。
我国 最大 江南 春末夏初 华南 春(初春) 华北 夏季 西北 冬季 律) 最小 秋季 秋季 春季 夏季(不受季风影响,符合一般规
6
第二节 蒸发和蒸散
24
雾的种类(根据成因):雾可分为多种类型,常见 的有辐射雾和平流雾。
⑴辐射雾:局部地区在晚上辐射冷却,t≤td而形成的 雾,日出后消散 有利条件:晴朗、微风、湿度大、大气层结稳定的夜 间 特点: ①季节性强(冬半年),常出现在秋冬季节; ②明显日变化; ③地方性特点:局地性、范围小。 “十雾九晴” :辐射雾,预示着晴天
纯净空气--水汽自生凝结过程 凝结(华)核:能起到水汽凝结(华)核心作用的大气 气溶胶质粒,包括固体、液体或亲水气体。 作用机制:

大气中水分

大气中水分

三、空气湿度的垂直分布
通过蒸发(蒸腾)作用,水汽进入大气,随空气的垂
直运动向上输送,高度高愈度高愈,水高汽:愈少,因此,在对流层 中水汽压和绝对湿度水随高汽度含的量升减高小而减小。
从地面上升到1实.5~际2水.0汽Km高压度减处小,e就减小到近地面 的1/2左右,5Km处约绝为近对地湿面度的减1/小10。相对湿度随高度的 分 随布高比度较 增复加杂而,减相难小对以,湿用气简温度单随?的高?规度?律增?说加明而?。降?这低是,因使为饱水和汽水压汽
土壤的坡度、坡向等有关。
4、抑制土壤水分蒸发的措施: 根据土壤水分蒸发所处的阶段,采取不同的措施。
第一阶段:松土以切断土壤毛细管 第二阶段:镇压结合中耕松土 第三阶段:考虑灌溉措施
三、植物蒸腾 通过植物体表蒸发水分的过程称为蒸腾
(transpiration)。
蒸腾主要是通过叶片气孔来实现的。
蒸腾速度主要取决于三个基本条件:小气候条 件、植物的形态结构、植物的生理类型。
一、大气中的水汽含量及其表示方法
(一)水汽压(e)---- hPa(百帕)
大气中水汽所产生的分压强叫水汽压 (vapour pressure)。
水汽压的大小和空气中水汽含量的多少有关, 当空气中的水汽含量增多时,水汽压就相应地增大, 反之,水汽压减小。所以,用水汽压的大小可表示 空气中水汽含量的多少。
一、大气中的水汽含量及其表示方法
饱和水汽密度也随温度的升高而迅速增大。 由于绝对湿度的直接测量比较困难,而水汽压 值简单易测,所以在实际工作中,常用水汽压代 替绝对湿度。
一、大气中的水汽含量及其表示方法
(四)相对湿度(r)--天气预报湿度的指标
空气的实际水汽压与同温度下饱和水汽压之百分

气象学与气候学-大气中的水分-蒸发和凝结

气象学与气候学-大气中的水分-蒸发和凝结

E
E e19.9t / 273t 0
5
饱和水汽压随温度的升高而增大 高温时的饱和水汽压比低温时要大 随着温度的升高,饱和水汽压按指数规律迅速 增大
6
重要推论:
空气温度的变化对蒸发和凝结有重要影响
高温时,饱和水汽压大,空气中所能容纳的水 汽含量增多,因而能使原来已处于饱和状态的 蒸发面会因温度升高而变得不饱和,蒸发重新 出现;
气象学与气候学
大气中的水分-蒸发和凝结
1
一.水相变化
1、水的三态和相变原理 (1)大气中的水分,可以以固态、液态、气
态存在,水分处于哪种形态,取决于其温度。 (2)相变原理 (principle of phase transformation) 水的相态变化,实质上是水分子运动状态
的反映。
2
2.水相变化判据
(一)空气要达到饱和或超饱和状态 (e≥E) 途径:1、增加大气中的水汽含量
2、空气冷却使T<Td,减小E 绝热冷却:空气上升 辐射冷却:夜间地面降温 平流冷却:暖空气流到冷水面上
10
三、大气中水汽的凝结条件
(二)有充足的凝结核 1、来源: 土壤微粒、风化岩石、火山微粒 工业、失火烟尘 海水飞溅时泡沫中的盐粒 流星、陨石燃烧后的微尘 。 2、作用 增大水滴半径,降低E,快速饱和, 增大水滴体积, 下降时不易蒸发掉 。
11
End
12
同样,可以得到冰面上的水相变化判据
4
二.饱和水汽压
(一)饱和水汽压与温度的关系
(1)定义: 在一定的温度条件下,一定体积 的空气所能容纳的水汽分子的数量是有一定 限度的,如果水汽含量恰好达到此限度,就 称为饱和空气,饱和空气中水汽所产生的压 力,就称为饱和水汽压。

气象学 第七章

气象学 第七章

年变化:同气温年变化,最高在7月,最 低在1月。
二、相对湿度的日变化和年变化
日变化:一般与气温日变 化反相,最大值出现在清 晨,最小值出现在14~15 时。 年变化:一般与气温年变 化反相,最小在7月,最 大在1月;但我国大部份 地区的相对湿度最大在7 月,最小在1月,这主要 是因为这些地区是由季风 气候控制的。
由热力学第一定律有 L U v U w E( v v v w ) U v U w R w T dL dU v dU w R w dT dU v c vvdT, dU w c w dT, c pv c vv R w 整理可得 dL (c pv c w )dT 积分上式0 L L 0 (c pv c w )( T T0 ) ( L L ,T0 T ) 将L 0 2.5 10 6 J kg 1 , c pv 1.863 10 3 J kg 1 K 1 , c w 4.19 10 3 J kg 1 K 1 , T0 273 K代入上式可得 L 2.5 10 6 2.327 10 3 t J kg 1 同理可得融解潜热L f 和升华潜热L S L f 3.34 10 5 2.076 10 3 t J kg 1 L S 2.83 10 6 0.251 10 3 t J kg 1
北半球不同纬度水量平衡各分量的平均 值见表 水量平衡方程各分量的大小是变化的, 只要改变下垫面的构造和特征,就能使 水量平衡的各个分量发生变化,如修建 水库、植树造林。
纬度 °N
80-90
S海洋(%)
93.4
T气(K)
249.6
70-80 60-70 50-60 40-50 30-40 20-30 10-20 0-10

5、水分

5、水分
1、蒸散的计算公式: A、水分平衡法 Pi+△ Sw+-R0-D-ET=0 适用范围:大范围、长时间的蒸散计 算
B、桑斯威特法(气候学法)
ETP:每月的可能蒸散,ld是实际日长, Nm是一个月的日数,tm为月平均气温 桑斯威特法是计算当地可能蒸散的平均 量的公式
C、彭曼法(气象学法)
E0:开阔水面蒸发量,其大小主要 是由开阔水面的净辐射Rn和空气的干燥 力Ea有关,其贡献大小与湿度常数r和该 温度下饱和水汽压的斜率S有关,其中
三、降水 定义:降水是指降落到地面的液态或者 固态水 1、降水的形成 云滴增大是使云变成降水的关键因 素,云滴增大主要通过凝结增长过程和云滴 碰并增大的 2、降水的种类 A、雨:降落到地面的液态水,按 性质可分为 1、连续性降水。多为雨层云 的高层云,时间长、尺度中
2、阵性降水 。一般为积雨云,降水时间短、 强度大 3、毛毛雨。多为层云和层积云 B、雪:从云中降到地面的各种类型冰 晶的集合物如果地面气温高于零度,可能会 出现雨夹雪 C、霰:白色不透明而疏松的小冰球 D、冰雹:从去中降落的冰球或者冰块 3、降水的特性 1、降水量:指单位时间落到单位面积 上未蒸 发的水层厚度 2、降水强度:单位时间内的降水量
三、蒸腾 阻抗公式:
蒸腾潜热
蒸腾系数: 指植物形成单位重量干物质所消耗 的水量Kt 一般抗干旱作物蒸腾系数低,水份 利用率高;而一般作物则蒸腾系数高, 水分利用率低
四、蒸散
可能蒸散: 在一个平坦开阔的地表,其上生成 有旺盛且完全覆盖地面的矮小绿色作物, 在无热平流干扰,且永远有充分供水条 件下的农田蒸散 ETp
近地面气层的凝结物的雾 定义:当近地层的温度降到露点温度 下,空气中的水汽凝结成小水滴或者凝华 成冰晶,弥漫于空气中,使水平能见度小 于1000米的天气现象 条件:1近地面水汽充足 2有冷却过程 3有凝结核 4大气层稳定

第四章 水分

第四章 水分
湿度取决于蒸发速度、乱流交换强度 而影响蒸发的因子中,蒸发面的温度是决定 因子,所以近地层大气的湿度也有周期性日、 年变化
水汽压(e): 相对湿度(f):
17
(一)水汽压的日变化和年变化
1.日变化: 单峰型(海洋型)--地面水分充分供应,乱流弱的地 区,水汽压与气温变化一致:emax14:00,emin日出前 双峰型(大陆型)---地面 水分供应不够充分,或乱 流较强(水汽扩散强)的 地区。emax 9:00-10:00, 21:00-22:00 emin 日出前, 14:00-15:00
干燥而全年的绝对湿度a变化不大的地区:与T的 年变化相反,冬季最大,夏季最小。 季风气候区:冬季寒冷干燥,夏季炎热湿润,与气 温一致。
我国 最大 江南 春末夏初 华南 春(初春) 华北 夏季 西北 冬季 最小 秋季 秋季 春季 夏季(不受季风影响,符合一般规律)
20
第二节 蒸发和蒸散
蒸发--常温下液面上水的汽化现象
e>E
d<0 Td>T
温度露点差 T-Td
温度露点差:空气温度与露点温度之差。 反映空气e=0 r=0
未饱和 湿空气
e<E 0<r<100%
饱和 湿空气
e=E r=100%
过饱和 湿空气
e>E r>100%
饱和差
露点温度 温度露点差
d=E
d>0
Td<T T-Td>0
40
⑵平流雾 暖湿空气移到冷的下垫面上逐渐冷却, 气流下层t ≤td而形成的雾。
有利条件:下垫面与暖湿空气的温差较大,有利于逆温的 形成;暖空气湿度大;适宜的风向(由暖向冷)和风 速(2-7m/s);大气层结较稳定。 特点:范围大、危害重(浓厚),无日变化。春季较多 混合雾----平流辐射雾

气象学与气候学 第三章(1)

气象学与气候学  第三章(1)

有充足的凝结核:
1、来源:土壤微粒、风化岩石、火山微粒;工 业、失火烟尘;海水飞溅泡沫中的盐粒;流星、陨 石燃烧后的微尘。 2、作用: ①增大水滴的半径,降低饱和水汽压,快速饱和 ②增大水滴的体积,下降中不易蒸发掉 例:无核冰晶:3—5倍的饱和水汽压才能凝结;有 核冰晶:相对湿度小于100%也可以凝结
压 强 8 C K

6
2 A 3 O
4 B’ B 2
1
水汽
-16
-12
-8
-4
0
4℃
二、饱和水汽压
蒸发、凝结、动态平衡状态,实有水汽压e 与对应的饱和水汽压E进行比较。 饱和水汽压和蒸发面的温度、性质(水面、 冰面,溶液面等)、形状(平面、凹面、凸 面)之间,有密切的关系。
1饱和水汽压与温度的关系
第二节 地表面和大气中的凝结物
要求
1、熟练掌握露、霜、雾淞、雨淞、雾、云等的概 念;雾的形成条件、云的形成条件、分类。 2.掌握各类雾的形成、云的特点。
一、地面的水汽凝结物
1.露与霜 2.雾凇与雨凇
露与霜

露:温度在0以上,水汽凝结为液态, 称为露;(夏季最多) 露的水量很小,但对植物生长却十分有 利,尤其在干旱地区和干热天气情况下, 露常有维持植物生命的功效;


霜:温度在0以下,水汽凝结为固态,称
为霜;(常见于冬季) 无霜期长短对农业有重要意义;一般说来, 纬度愈高,无霜期愈短;纬度相同,海拔愈 高,无霜期愈短.山地阳坡无霜期长于阴坡; 低洼地段无霜期比平坦开阔地段短;
农业上要预防的是霜冻而不是霜,霜和露都是好天气的标志: 露 水见晴天;霜重风晴天
露和霜的形成条件
1水相变化的物理过程
水汽浓度不大,单位时间内跑出水面 的水分子比落回水中的水汽分子多, 系统中的水就有一部分变成了水汽, 这就是蒸发过程,水分子落回水面的 过程叫凝结过程。

气象学-第4章 大气中的水分(ppt模板)

气象学-第4章  大气中的水分(ppt模板)

• 4.2 蒸发和蒸散 • 4.2.1 水面蒸发 • 4.2.2 土壤蒸发 • 4.2.3 农田蒸散
• 4.2.1、水面蒸发 • 蒸发速率:单位时间从单位面积上蒸发出的水量, 单位是g· cm-2· d-1。 • 蒸发量 单位时间因蒸发而消耗的水层厚度 单位 mm • • • • • • •
影响因素 1、蒸发面温度 2、饱和差 3、风速大小 4、气压 5、蒸发面性质
• 形成
• 1 暖云降水:
• 暖云:指云体处于0℃等温线以下的云块。 降水过程: 抬升作用 长),碰并 水汽上升 凝结成云滴,(凝结增 大水滴。
2 冷云降水:云体温度低于0度
• 水汽在一定的条件下,以凝结核为中心,由核化作用形成初始冰
晶,而后籍冰晶效应迅速形成较大的冰晶。->碰并、粘连、结淞 ->大雪晶,下降到0℃等温线以下时,融化,降至地面,->雨。
• • • •
• • • •
4.2.3 农田蒸散: 农田蒸散 植物蒸腾与株间土壤蒸发的总和 A 主要特点: (1) 农田蒸散不限于土壤表面的水分,还包括植物根系层土壤 的水分; (2) 植物通过叶片气孔的张闭,可自行调节叶片蒸腾强度,从 而影响农田蒸散; (3) 蒸腾主要在白天,而土壤蒸发则昼夜均可进行; (4)蒸散面不仅是土面,还有叶面、茎面等植株表面。 B 可能蒸散: 开阔地面,无平流作用,短草完全覆盖,供水充分条件下的蒸散。 C影响: (1) 气象因素,辐射差额、温度、湿度和风等。 (2) 植物因素,植物覆盖度、植物种类、生长发育状况、气孔 数目与排列、张闭程度等。 (3)土壤因素,土壤通气性、土壤含水量以及水分向土面和根 系分布流动的速度等。
• 4.3.2.3
自由大气中
• 云:水汽凝结物悬浮在自由大气中,由微小水滴、过冷却水滴、冰晶单独或 混合组成。 • 1 形成条件 空气的上升运动

大气中的水分大气中的水分41水的相变42蒸发与蒸腾43

大气中的水分大气中的水分41水的相变42蒸发与蒸腾43
二、土壤蒸发
土壤水分以气态形式向大气中扩散的现象,它具 有明显的阶段性,大致可分为三个阶段。 第一阶段:土壤潮湿,含水量充分。 第二阶段:土壤较干(在干旱地区或干旱时期。 第三阶段:土壤含水量很低,植物开始萎蔫,此时,土 壤
水分的毛管力作用停止,只能以气态形式从 地
下通过干土层向大气扩散。
4.2 蒸发与蒸腾
4.4 水汽的凝结
一、水汽凝结的条件
⑵空气中水汽的饱和或过饱和 ②空气的冷却
降温是使空气达到饱和的主要途径。
⒈绝热冷却 ⒉辐射冷却 ⒊平流冷却 4.混合冷却
4.4 水汽的凝结
二、地面和近地层水汽凝结物
⑴地面水汽凝结物 ①露和霜
在晴朗微风夜晚,贴近地面空气由于地面冷 却而降温,达到露点时,空气达到饱和,继续降 温,水汽就会在地面或地面物体上凝结。
• 在水相转变过程中,发生能量交换,这种在相变时所 吸收或消耗的热量称为潜热。
4.2 蒸发与蒸腾
• 蒸发的定义 • 土壤蒸发 • 植物蒸腾 • 蒸散
4.2 蒸发与蒸腾
一、蒸发的定义
⑴定义
水由液态变为气态的过程称为蒸发。
⑵表示 自然条件下的蒸发,通常用蒸发速度和蒸发量来度量。
蒸发速度:也称蒸发通量密度,单位时间单位面积上水分蒸 发的数量,单位kg/(m2 •s)
第4章大气中的水分
第4章 大气中的水分
• 4.1 水的相变 • 4.2 蒸发与蒸腾 • 4.3 空气湿度的变化 • 4.4 水汽的凝结 • 4.5 大气降水
4.1 水的相变
• 一、水的相变 • 二、水相变化的判据
4.1 水的相变
一、水的相变
常温下,大气中的水分有三态,即水的三相: 固、液、气。
二、相对湿度的变化

气象学 第四章 水分

气象学 第四章 水分
凡是夜间有效辐射较大的地物表面,都易形成露 和霜。
2.雾凇与雨淞
雾凇(rime) 雾淞俗称“树挂”,是附着于地物迎风
面上的白色疏松的凝结物,由过冷却雾滴被 风吹到地物表面后迅速冻结而成。
粒状雾淞 出现在-2至-7 ℃、有雾且风速 较大的天气条件下。
晶状雾淞 出现在 -15 ℃左右、有雾且微 风的天气条件下。
一般来说冬季最大,夏季 最小。但在季风气候区,冬季 受寒冷大陆冷空气影响,寒冷 干燥;夏季受海洋气流的影响, 炎热湿润,所以相对湿度的变 相对湿度的日变化 化与气温相同。
§2 蒸发与蒸腾
一 水面蒸发 二 土壤水分的蒸发
一.水面蒸发(Evaporation)
的水蒸量发。速单率位(有Wm0m):/d单和位g时/c间m单2·d位,面二积者上的蒸关发系 是:
而成
或湿度大时
透明或毛
雨淞
玻璃状的 冰层,坚
硬,光滑
过雨低成冷滴于却在0℃雨物)滴体上或(冻毛温结毛度而气雨下温或降稍毛的低毛时有雨候
水平、垂直面均 可形成,但水平 面和迎风面上增 长快
(二)近地气层中的凝结物—雾(Fog)
雾是悬浮在近地气层中的微小水滴或冰晶的聚合 物,它常使能见度减小(<1000m)。其形成原因主要是 贴地气层温度降至露点以下,使近地气层中的水汽凝 结而悬浮与空中。
二.地面和大气中的凝结物(condensate)
(一)地面上的凝结物 1. 露与霜(dew and frost)
地面与地物表面辐射冷却,其表面温度降至空气 露点td以下,贴地气层中的水汽碰到地面就凝结成小 水滴,当td>0℃,凝结物为露水,td<0℃,凝结物为霜。
出现的有利条件:晴朗微风的夜晚与清晨。因此 露和霜都预示天气晴朗。

大气科学中的大气水循环与降水机制

大气科学中的大气水循环与降水机制

大气科学中的大气水循环与降水机制大气水循环是指水分在地球大气圈中的循环过程,是地球气候系统中至关重要的组成部分。

大气水循环的核心机制是降水,它将水分从大气层释放到地表,影响着地球上的水资源分布和气候变化。

本文将探讨大气科学中的大气水循环与降水机制。

一、蒸发与蒸腾作用大气水循环的起始过程是水的蒸发。

当地表的水受热后蒸发成水蒸气,进入大气层中。

水的蒸发来自水体表面,包括海洋、湖泊、河流、植被、土壤和雪等。

同时,植物通过根系吸收土壤中的水分,经过植物体内水分的运输和蒸腾,将水分释放到大气中,这就是蒸腾作用。

二、水蒸气传输与对流水蒸气在大气中通过传输来实现水的循环。

水蒸气在大气中具有气态的特性,受到风的影响而发生传输。

水蒸气的传输主要通过大气的水平传输和垂直传输来完成。

大气水平传输是指水蒸气在水平方向上的输送。

水蒸气会随着风流的推动逐渐向远处传播,并因此导致不同地区水分的分布差异。

垂直传输是指水蒸气在大气中的上升和下降过程。

热空气会上升,带着水蒸气上升到高空,逐渐冷却成为云。

随着气温的下降,水蒸气凝结成液态或固态水形成云滴或降雪。

当水滴或冰晶达到足够大小时,它们就会从云中下降,形成降水。

三、降水机制降水是大气水循环中最为重要的环节之一。

降水形式多样,包括雨、雪、冰雹等。

降水通常发生在云块之间,云在凝结过程中产生的水滴或冰晶会在重力的作用下向下降落,最终达到地表。

降水机制主要有两种:对流降水和层状降水。

对流降水是指形成于对流云中的降水。

当大气中存在不稳定的气团,上升气流快速上升,使空气迅速冷却,水汽凝结成水滴,形成对流云。

随着云体内部的水滴增加,达到一定大小时,便会通过重力作用下降至地表,形成降水。

层状降水是指云层在稳定的大气环境中形成的降水。

这种降水形式通常出现在稳定的大气环境下,云层水滴的大小比对流云要小,降水过程较为持久。

降水的发生与大气中的湿度、温度和压强等因素密切相关。

当湿度较高、温度较低且有适当的上升气流或下沉气流时,大气中的水蒸气容易凝结成降水。

气象第三章

气象第三章

第三章大气中的水分地球上的水分就是通过蒸发、凝结和降水等过程循环不已。

在自然界中,常有一种或数种处于不同物态的物质所组成的系统。

在几个或几组彼此性质不同的均匀部分所组成的系统中,每一个均匀部分叫做系统的一个相。

单位时间内跑出水面的水分子比落回水中的水汽分子多,系统中的水就有一部分变成了水汽,这就是蒸发过程。

动态平衡时的水汽称为饱和水汽,当时的水汽压称为饱和水汽压E。

水相变化的判据:e与E的大小的比较,若水汽压大于饱和水汽压,则过饱和。

O的横坐标为0℃水只存在于0℃以上的区域,冰只存在于0℃以下的区域,水汽虽然可存在于0℃以上及以下,但其压强却被压制在一定范围内。

图中,OA、OB分别表示水与水汽、冰与水汽两相共存的情况。

OA又称蒸发线,表示水与水汽处于动态平衡时水面上饱和水汽压与温度的关系线上K点所对应的温度和水汽压是水汽的临界温度和临界压力,高于临界温度时就只有水汽存在了,因此蒸发线在K点中断。

OB为升华线,表示水汽与冰平衡时冰面上饱和水汽压和温度的关系。

OC是融解线,表示冰与水达到平衡时,压力与温度的关系。

可以看出COK区域为水。

凝结时,由于水汽分子变为液态水,分子间的位能减小,因而有热能释放出来。

这种凝结时释放出来的热量叫做凝结潜热。

它与同温下的蒸发潜热数量上相等。

蒸发潜热(L)是指在恒定温度下,使某物质由液相转变为气相所需要的热量。

L与温度之间有关系:L =(2500-2.4t)×103(J/kg)当t=0℃时,L=2.5×106 J/kg 当温度变化不大时,L变化很小,故取L=2.5×106J/kg同理,冰升华为水汽有两个过程,冰变为水,水变为水汽,故升华潜热Ls为融解潜热(3.34×105 J/kg)和蒸发潜热的和,故Ls=2.8×106 J/kg饱和水汽压与蒸发面的温度、性质(水面、冰面,溶液面)、形状(凸面、凹面、平面)之间有密切的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响水面蒸发速率的因子
温度:T E d W
湿度:e d W
气压:P W 风:风速 W 蒸发面性质:W过冷却水>W冰 蒸发面形状:W凸面>W平面>W凹面 含盐度:含盐度 W
空气湿度的时间变化
水汽压的时间变化 日变化 单波型(海洋型) 海洋、沿海地区、冬季大陆
e
14时
影响因子:蒸发强度
e
E e (T,e) T Td T E
空气经常处于未饱和状态,所以露点经常低于气温。
饱和差( d )
定义: 同一温度下饱和水汽压与实际水汽压之差。 d = E - e
反映空气的潮湿程度。 影响因子:
水汽含量、温度
温度不变,E不变:水汽含量 e d 水汽含量不变,e不变:温度 E d
比湿(q)、混合比(S)、绝对湿度(a)
f
夏季 冬季
时间
夏季: 夏季风,来自海洋,潮湿 冬季: 冬季风,来自内陆,干燥
相对湿度的大小不但取决于水汽压,还取决于温 度。气温升高时,虽然地面蒸发加快,水汽压增大, 但这时饱和水汽压随温度升高而增大得更多些,使 相对湿度反而减小。同样的道理,在气温降低时, 水汽压减小,但是饱和水汽压随温度下降得更多些,
饱和水汽压
动态平衡时的水汽称为饱和水 汽,当时的水汽压称为饱和水 汽压。饱和水汽压和蒸发面的 温度、性质(水面、冰面,溶 液面等)、形状(平面、凹面、 凸面)等密切相关。
饱和水汽压随着温度升高而 按指数规律迅速增大。 随着温度的升高,单位时间内 脱出水面的分子增多,只有当 水面上水汽密度增大到更大值 时,落回水面的分子数才和脱 出水面的分子数相等。
不同形状的蒸发面,水分子受到周围分子的吸引力也不同
如图,三个圆圈分别表示凸水面、平水面和凹水面对于A、B、C 三点分子引力作用的范围。由图可知,A 分子受到的引力最小,最 易脱出水面;C 分子受到的引力最大,最难脱出水面;B 分子的情 况介于二者之间。因此,温度相同时,凸面的饱和水汽压最大,平 面次之,凹面最小。而且凸面的曲率愈大,饱和水汽压愈大;凹面 的曲率愈大,饱和水汽压愈小。
蒸发与凝结
一、水相变化
在大气的常温常压下,水分是唯 一能由一种相态转变为另一种相 态,而以气态、液态和固态三种 形式存在于大气中的成分。水相 变化指的就是水在三态之间的互 相转换。
1、水相变化的物理过程
从分子运动论看,水相变化是各相之间分子交换
的结果。例如,在水和水汽两相共存的系统中, 在水的表面层,运动比较快而具有较大动能的水
比湿:湿空气中水汽的质量与湿空气总质量的比值。
mw q m w md
混合比:湿空气中水汽的质量与湿空气中干空气质量的比值。
m水汽 S=———— m干空气
绝对湿度(水汽密度):单位体积湿空气中水汽的质量。
m水汽 a=——— V
表示湿度的物理量 1.水汽压(e) 2.饱和水汽压(E) 3.绝对湿度a 4.相对湿度f 5. 饱和差d 5.比湿q 6.混合比 w 7.露点 td
水面的水分子多,系统中的水汽有一部分
变成了水,就称为凝结过程。与此相似, 可定义冻结过程与融解过程,凝华过程与
升华过程。
如果同一时间内,跑出水面的水分子与落回水
中的水汽分子恰好相等,系统内的水量和水汽
分子含量都不再改变,即水和水汽之间达到了 两相平衡,这种平衡叫做动态平衡,因为这时
仍有水分子跑出水面和水汽分子落回水中,只
不同形状的蒸发面,水分子受到周围分子的吸引力也不同
云雾中的水滴有大有小,大水滴曲率小,小水滴曲率大。如果实际 水汽压介于大小水滴的饱和水汽压之间,也会产生水汽的蒸发现象。 小水滴因蒸发而逐渐变小,大水滴因凝结而不断增大。此即所谓的 “凝结增长”。不过,在水滴增长到半径大于1μm 时,曲率的影响 就很小了。故“凝结增长”只在云雾刚形成时起作用。
在云中,冰晶和过冷却水共存的情况是很普遍的,如果当 时的实际水汽压介于两者饱和水汽压之间,就会产生冰水 之间的水汽转移现象。水滴会因不断蒸发而缩小,冰晶会 因不断凝华而增大。这就是“冰晶效应”,该效应对降水 的形成具有重要意义。
溶液面的饱和水汽压:
由于溶质的存在使溶液内分子间的作用力大于纯水内分子 间的作用力,使水分子脱离溶液面比脱离纯水面困难。因 此,同一温度下,溶液面的饱和水汽压比纯水面要小,且 溶液浓度愈高,饱和水汽压愈小。这种作用对在可溶性凝 结核上形成云或雾的最初胚滴相当重要,而且以溶液滴刚 形成时较为显著,随着溶液滴的增大,浓度逐渐减小,溶 液的影响就不明显了。此外,水滴上的电荷对水滴表面上 的饱和水汽压也有一定的影响,这也是使饱和水汽压减小 的0帕斯卡(Pa)
反映空气中水汽含量的多少
水汽含量 水汽压e
饱和水汽压(E)
定义:一定体积的空气在一定温度条件下所能容纳的最 大水汽量所具有的压力,称为该温度时的饱和水汽压, 用E表示,单位与水汽压相同。
E
反映空气的最大水汽容纳能力
E
饱和水汽压取决于温度
分子,有可能克服周围水分子对它的吸引而跑出
水面,成为水汽分子;同时,接近水面的部分水 汽分子,受水面水分子的吸引或相互碰撞,又重 新落回水中,成为水分子。
如果单位时间内跑出水面的水分子比落回
水中的水汽分子多,系统中的水有一部分
变成了水汽,就称为蒸发过程。反之,如 果单位时间内落回水中的水汽分子比跑出
温度
T
T
E
相对湿度(f)
定义:
空气的实际水汽压与同温度下的饱和水汽压的百分比值。
e f 100% E
反映空气的潮湿程度(直接反映空气距离饱和的程度) 温度不变,E不变:水汽含量 e f 水汽含量不变,e不变:温度 E f
露点温度( Td )
定义:
对于含有水汽的湿空气,在不改变气压和水汽含量的 情况下,降低温度而使空气达到饱和状态时的温度。
近海地区及其它大型水体的周围(晴朗稳定的天气条件下)
与气温的日变化同相
f
海陆风(水陆风)


时间
昼: 吹海风,潮湿 夜: 吹陆风,干燥
年变化
大多数地区:与气温的年变化反相 T 地面水分蒸发强度 e f 夏季 冬季
时间
T E
并且E比e快
因此 T f 同理 T f
季风气候区:与气温的年变化同相
饱和水汽压随蒸发面的性质而异 对于冰面和过冷却水面,饱和水汽压仍然是按指数规律变 化。不同的是冰分子摆脱冰面的束缚比水分子脱出水面的 束缚更困难,因此,当冰面上水汽密度还比较小时,落回 的分子就能与脱出的分子相平衡,达到饱和。这样,与同 温度下的过冷却水相比,冰面的饱和水汽压自然要少一些。
E冰<E过冷却水
影响蒸发的因素
在静止大气中,水分蒸发速度W由下述方程描述 (道尔顿定律) :
Ee W A P
'
表明蒸发速度与饱和差(E-e)及分子扩散系数 (A)成正比,而与气压(P)成反比。
道尔顿蒸发公式
Ee WA P
'
d>0 时,W>0,蒸发过程 d=0 时,W=0,动态平衡 d<0 时,W<0,凝结过程
水相变化中的潜热
在水相的转变过程中,还伴随着能量的转换 。蒸发过程中,液面温度会降低,损失的这部分 热量就是蒸发潜热。 当水汽发生凝结时,这部分潜热又将会全部 释放出来,这就是凝结潜热。
水三相变化过程中的潜热转换
水汽 吸 热 放 热 凝固 冰
融化
吸 热
水 吸热
蒸发和蒸散
水面蒸发
蒸发速率 定义:单位时间从单位面积上蒸发掉的水的质量。 单位:g/cm2·日 日蒸发量 定义:一天中蒸发掉的水层的厚度。 单位:mm/日; 1g/cm2·日=1mm/日
② 平流冷却 (雾、露、霜)
暖水面蒸发——增大水汽含量 通常情况下,水面蒸发作用虽然可以增大空气湿度,但并不 能使空气中的水汽产生凝结。因为靠近水面的空气接近饱和 时,蒸发即基本停止。然而,当冷空气流经暖水面时,由于 水面温度比气温高,暖水面上的饱和水汽压比空气的饱和水 汽压大得多,通过蒸发可使空气达到过饱和,并产生凝结。 秋冬季的早晨,水面上腾起的蒸发雾就是这样形成的。
凝结核 实验证明,纯净空气,相对湿度即使达到300%~400%, 也不会发生凝结。因为作不规则运动的水汽分子间引力很小, 通过相互碰撞不易结合为液态或固态水。只有在巨大的过饱 和条件下,纯净的空气才能凝结。然而巨大的过饱和在自然 界不存在。大气中存在着大量的吸湿性微粒物质,它们比水 汽分子大得多,对水分子吸引力也大,从而有利于水汽分子 在其表面上的集聚,使其成为水汽凝结核心。这种大气中能 促使水汽凝结的微粒,叫凝结核,半径一般为10-7~10-3cm, 而且半径越大,吸湿性越好的核周围越易产生凝结。
空气冷却的几种方式
(1) 辐射冷却 (2) 平流冷却 (3) 绝热冷却 (4) 混合冷却
可使空气温度降低到露点温度以下 而发生凝结 暖空气流经冷的下垫面,使空气温 度降低到露点温度以下而发生水汽 凝结 空气在上升过程中,温度降低,饱 和水汽压减小而发生水汽凝结 两块湿空气,当其温差较大,经水 平混合,其饱和水汽压小于实际水 汽压,从而发生水汽凝结
水相平衡图
蒸发线(OA)
表示水与水汽处于动态平 衡时水面饱和水汽压与温 度的关系。
升华线(OB)
表示冰与水汽平衡时冰面上 饱和水汽压与温度的关系。 OB′线由表示过冷水与水汽 平衡时水面上饱和水汽压与 温度的关系。
融解线(OC)
表示冰与水达到平衡时压力与 温度的关系。
三相共存点(A)
水汽、水及冰三相共存所需的 温度和压力条件: t0=0.0076℃ E0=6.11hPa
使相对湿度反而增大。所以相对湿度在一天中有一
个最大值出现在清晨,一个最低值出现在午后
凝结和凝结物
凝结发生的条件
空气达到饱和或过饱和状态,
相关文档
最新文档